

UNIVERSITY OF CALIFORNIA,

IRVINE

Understanding How Information Flows in and out of
Regularly Scheduled Software Maintenance Design Meetings:

 a Case Study

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Software Engineering

by

Adriana Meza Soria

Dissertation Committee:

Professor André van der Hoek, Chair
Professor David Redmiles

Assistant Professor Iftekhar Ahmed

2022

© 2022 Adriana Meza Soria

ii

DEDICATION

To

I am dedicating this thesis to those who supported me the most during these five years of
study. First, I dedicate this thesis to my mother, Bertha Alicia Soria Arteche, who has been a
role model for me since my childhood; Her good examples have taught me to work hard for
the things I aspire to achieve. I also dedicate this work to my father, Eduardo de Jesus Meza

Lara. Although he is no longer in this world, my memories with him will continue to give
me little moments of happiness throughout my life. I also want to dedicate this work to

Jesus Alberto Alvarado Tovar, a constant source of support and encouragement during the
challenges of graduate school. I am genuinely thankful for having him in my life.

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES vii

ACKNOWLEDGEMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xii

1 Introduction .. 1
2 Background ... 9

2.1 Software maintenance design .. 9
2.2 Collaboration in software development ... 11
2.3 Software design studies ... 12

2.3.1 Studying Professional Software Design Workshop ... 14
2.3.2 Beyond the SPSD workshop .. 16

2.4 Meetings in software development... 17

2.4.1 The daily stand-up meeting... 18
2.4.2 Software design meetings .. 19
2.4.3 Recurring meetings in software development .. 21
2.4.4 Distributed and hybrid meetings in software development 21
2.4.5 Tool support for meetings ... 22

2.5 Information studies ... 25

2.5.1 Information needs ... 25
2.5.2 Information capture ... 28

2.6 Knowledge management and knowledge capture.. 29
2.7 Design rationale .. 31

3 The topics that are discussed in RSSMDMs ... 33

3.1 The meeting participants .. 33
3.2 The meeting setting ... 35
3.3 Methodology .. 37
3.4 The topics that were discussed .. 38

iv

3.5 The kind of work addressed in the meetings .. 41
3.6 The overall purpose of the discussions the participants held 46
3.7 The relationship between the kind of work and the purpose of the discussion 72
3.8 Additional observations .. 78
3.9 Topic recurrence .. 79
3.10 Summary.. 84

4 Prior Information Shared during RSSMDM ... 86

4.1 Methodology .. 87

4.1.1 What to consider as prior information and what not ... 88
4.1.2 Classifying prior information ... 89

4.2 What kinds of information are shared?... 94
4.3 Information shared in relation to the work done ...102
4.4 Importance of prior information sharing in RSSMDM ..108
4.5 Shared spontaneously or upon request? ..111
4.6 Are requests for information answered? ...113
4.7 Who shares the information? ..117
4.8 Prior information from other people ...120
4.9 Are tools used to obtain prior information? ...122
4.10 Implications for research, practices, and tools ..127

4.10.1 Implications for research ..128
4.10.2 Implications for practice..130
4.10.3 Implications for tool support ...132

5 Outflow Captured during RSSMDMs ..135

5.1 Methodology ..137

5.1.1 What to consider as discussion outflow and what not ..138
5.1.2 Classifying discussion outflow ...138

5.2 The kinds of discussion outflow that were captured ..142
5.3 Kinds of discussion outflow captured more often ..146
5.4 Understanding why discussion outflow is not always captured148

5.5 Kinds of discussion outflow captured in relation to the work done and the
discussions held ..156
5.6 Tools and artifacts used to capture discussion outflow ...160
5.7 Tools used more frequently to capture discussion outflow ...164
5.8 What do participants do with tools during the meeting? ..170
5.9 The participants that capture discussion outflow ..175
5.10 Implications for research, practice and tool support ..178

5.10.1 Implications for research ..178

v

5.10.2 Implications for practice..183
5.10.3 Implications for tool support ...186

6 Threats to Validity ...189
7 Conclusions ..192

7.1.1 Major findings ...193
7.1.2 Contributions ..197
7.1.3 Future work ...200

REFERENCES ...206

vi

LIST OF FIGURES

 Page

Figure 1. The design of the study. .. 6

Figure 2. Typical virtual setting of the meeting. ... 35

Figure 3. The matrix to evaluate the priority and scope of tickets. ... 52

Figure 4. Timeline of topics addressed per meeting. Shading from the lightest to the darkest

identifies the topics that were discussed only once, rediscussed within the same meeting,
and discussed in more than one meeting. ... 81

Figure 5. Thematic analysis process. ... 91

Figure 6. Information shared from Confluence. ... 124

Figure 7. Information shared from a Slack channel.. 125

Figure 8. Information shared from AWS. .. 126

Figure 9. Information shared from development a tool. .. 127

Figure 10. An “Ask an Architect” wiki page is one of the artifacts used in Confluence. 163

Figure 11. A “minutes of the meeting” wiki page is one of the artifacts used in Confluence.

 .. 163

Figure 12. Distribution of tools used per topic. .. 165

Figure 13. Original information in the Jira ticket before refinement. ... 166

Figure 14. Redefined information in the Jira ticket. ... 167

Figure 15. Discussion outflow captured in "Ask an Architect". ... 167

Figure 16. Ticket created during the meeting. .. 168

Figure 17. Ticket after the high-level description was added. ... 169

Figure 18. An example in which the participants “set metadata” in Jira. 172

Figure 19. An issue before “setting metadata”.. 173

Figure 20. A question in Confluence which status is “new”. ... 173

Figure 21. A question in Confluence which status was set to “done”. ... 174

vii

LIST OF TABLES

Page

Table 1. Meeting participants ... 33

Table 2. List of topics discussed across the ten meetings. .. 39

Table 3. The kinds of work addressed in the meetings according to Swanson’s maintenance
dimensions. .. 42

Table 4. Categorization of topic discussions (in alphabetical order) in terms of the purpose

of the discussion, together with which topic discussions are of each type. 47

Table 5. Relationship between the kind of work done and the purpose of each discussion. 72

Table 6. Example of two discussion intertwined. ... 83

Table 7. The prompt of prior information. .. 92

Table 8. The roles of participants who requested and shared prior information. 93

Table 9. The kinds of prior information observed (in alphabetical order) 94

Table 10. Frequency of different kinds of information shared per meeting and in all the

meetings. ... 96

Table 11. Prior information shared per type of work.. 103

Table 12. Prior information shared in discussions with a certain purpose (results ordered

by the average number of times information was shared). .. 106

Table 13. Meeting duration and information shared. .. 108

Table 14. Prior information shared per topic. .. 109

Table 15. Frequency of different kinds of information being requested (#RQ), the number

of requests that were not answered (#NOT AN), the number of requests for which

information of the same kind was provided in response (#AN), and the ones for which
information of a different kind (#DIF TYPE) was provided in response. Categories not listed

had 0 requests. ... 114

Table 16. Sharing, requesting, and answering per role. ... 117

Table 17. The source of the prior information that was shared. ... 122

Table 18. Tools used to share information. Categories not listed did not involve tool use.123

viii

Table 19. The ways tool drivers capture information in a tool shared on screen. 141

Table 20. The kinds of discussion outflow observed when new information was captured,

or information was refined. .. 143

Table 21. Kinds of discussion outflow that were captured per meeting.................................... 147

Table 22. Discussion outflow captured per topic. ... 149

Table 23. Topics for which discussion outflow was not captured per kind of work............. 150

Table 24. Kinds of discussion outflow captured per kind of work. .. 157

Table 25. Kinds of discussion outflow captured per discussion purpose.................................. 159

Table 26. Tools in which discussion outflow was captured. ... 161

Table 27. Artifacts created to capture information for each tool used. 162

Table 28. Tools used to capture outflow per topic. .. 164

Table 29. The actions that the participants did with the tools. .. 170

Table 30. The actions that the participants did with the tools. .. 171

Table 31. Participants that used the tools to capture meaningful information. 175

Table 32. Participants who used the tools to capture discussion outflow and to perform

other actions. .. 177

Table 33. The ways tool drivers were prompted to capture discussion outflow. 177

ix

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my committee chair, Professor André
van der Hoek, who has been a supportive mentor in good and bad times. Without his
guidance and persistent help, this dissertation would not have been possible.

I would like to thank my committee members, Professor David Redmiles, and Professor
Iftekhar Ahmed, whose knowledge of comparative literature and modern technology
helped me to shape this thesis.

In addition, I thank Professor Marian Petre from The Open University, who provided much
of her wisdom in the early stages of this project, and Professor Janet Burge from Colorado
College, who has been a close collaborator in this project. Finally, I want to thank
outstanding students who worked with me as undergraduate researchers during my Ph.D.:
Taylor Lopez, Negin Mashhadi, Joshua Joseph Costa, Liz Seero, Emily Evans, Juwin Viray,
Yuqi Huai, Seunghwan Hong, Nayoung Lee, and SangHoon Kim.

x

VITA

Adriana Meza Soria

EDUCATION

2018-2022 Ph.D. in Software Engineering
 University of California, Irvine
 Research Area: Software Design and Collaboration
2014-2016 M.S in Engineering (Summa Cum Laude)
 CETYS University, Tijuana, Mexico
2008-2013 B.S. in Computational Systems Engineering
 Instituto Tecnologico de Tijuana, Tijuana, Mexico

PROFESSIONAL EXPERIENCE

Summer 2021 Research Intern, MIT-IBM Watson AI Lab
2013-2017 Senior Software Engineer, Grupo Tress International
2012–2013 IT Assistant, IWAI Metal Mexico

TEACHING EXPERIENCE

Summer 2020 Professor, University of California, Irvine, U.S.A
2018-2022 Teaching Assistant, University of California, Irvine, U.S.A
2016-2017 Professor, CETYS University, Mexico
2014-2017 Professor, Autonomous University of Baja California (UABC), Mexico

HONORS AND AWARDS

2022 Recipient of Miguel Velez Scholarship (3rd)
2021 Latino Excellence and Achievement Award
2019 Recipient of Miguel Velez Scholarship (2nd)
2019 Recipient of Rosalva Gallardo Valencia Graduate Award
2018 Second place at AMIA Design Challenge
2017 Recipient of Miguel Velez Scholarship (1st)

REFERRED PUBLICATIONS

A. Meza Soria, A. van der Hoek, J. Burge, “Recurring distributed software maintenance
meetings: toward an initial understanding,” 2022 IEEE/ACM 15th International Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE), 2022, pp. 21-25.

A. Meza Soria and A. van der Hoek, "The Design of an Experiment Concerning the Capture of
Important Design Bits at the Whiteboard,” 2021 ACM/IEEE 5th International Workshop on
Human Factors in Modeling (HUFAMO), 2021.

xi

A. Meza Soria and A. van der Hoek, "Collecting Design Knowledge through Voice Notes,”
2019 IEEE/ACM 12th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE), 2019, pp. 33-36.

A. Meza Soria and A. van der Hoek, "Toward Collecting and Delivering Knowledge for
Software Design at the Whiteboard," 2018 IEEE/ACM 11th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE), 2018, pp. 108-109.

OTHER PUBLICATIONS

B. Ryan, A. Meza Soria, K. Dreef, A. van der Hoek, " Reading to Write Code: An Experience
Report of a Reverse Engineering and Modeling Course," 2022 IEEE/ACM 44th International
Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET), 2022, pp. 223-234.

VOLUNTEER WORK

2018-2022 Member, Mexico Graduate Research Education Program
2019 Mentor, I-SURF summer program, UC Irvine
2019 Mentor, ExploreCSR workshop, CSULB and UC Irvine

xii

ABSTRACT OF THE DISSERTATION

Understanding How Information Flows in and out of

Regularly Scheduled Software Maintenance Design Meetings:

 a Case Study

by

Adriana Meza Soria

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2022

Professor André van der Hoek, Chair

Meetings have always been a significant part of all types of work. Software

development is no exception, with meetings of all kinds taking place daily. One type of

meeting that is critical to software development is the Regularly Scheduled Software

Maintenance Design Meeting (RSSMDM): a recurring meeting during which the primary

product leads of a software development team consider emerging issues and new

directions for an already deployed and functioning software system. To date, RSSMDMs

have not been widely studied and particularly ignored is the perspective of the role of

information in shaping the discussions in these meetings.

This dissertation contributes a foundational understanding of how information

flows in and out of RSSMDMs through a single case study of ten such meetings at a

healthcare software company. Through a thematic analysis, it particularly characterizes the

variety of information that the participants in these meetings on the one hand share and on

the other hand capture while they engage in their design work. In addition, the dissertation

xiii

identifies the tools that the meeting participants use to share and capture information and

the various ways in which they use the tools.

The results from the thematic analysis are varied, with several of the more

important findings being: (1) many different types of information are shared, with the

range much greater than what traditionally has been considered as important to capture

for future use, (2) much of the information shared is fleeting, concerning the current state

of the deployed software and the current state of its code base, (3) sharing is frequent, with

new information shared on average once or twice a minute, (4) the diversity and frequency

of information captured is much less than information shared, and (5) traditional design

tools such as diagramming and sketching tools are not used in support of the meetings,

displaced by the use of Confluence (a wiki-style knowledge repository) and Jira (an issue

tracker). These and other findings establish a baseline for future research into RSSMDMs,

provide insights into current practices, and offer suggestions for the development of

improved tools to support participants with information sharing and information capture

in RSSMDMs.

1

1 Introduction

Design not only takes place when a system is first envisioned. It is equally important

thereafter as the system is enhanced and refined [1]. Such maintenance design [2], [3]

manifests itself in all sorts of forms. At one end of the spectrum, it concerns small-scale,

detailed design, for instance in an agile stand-up meeting when a team member requests

help in deciding how to approach a given task [4] or via chat or Zoom when a developer in

the midst of programming something hits a roadblock and consults a colleague to discuss

approaches for overcoming the obstacle [5].

At the other end of the spectrum, it involves high-level design, for instance when the

system needs to be significantly re-architected to eliminate costly accumulating technical

debt [6] or when a major new enhancement needs to be planned out [7]. Such design is

typically relegated to designated meetings.

In between, another form of maintenance design [2] plays out daily across software

organizations everywhere: the type of maintenance design that concerns ongoing direction

setting, shaping, and managing of a system on a day-to-day basis. This kind of maintenance

design is addressed across regularly scheduled (once or twice per week) meetings that

members of a development team attend, to, for instance, build an understanding of an

urgent issue that has been reported early that day or review the design of a new feature a

client has requested. The discussion of topics of this nature does not necessarily require a

standalone meeting to be planned, nor are they lightweight enough to be dealt with during

daily scrum meetings. However, a regular meeting to discuss as many maintenance design

issues as possible during the allocated time is a suitable venue.

2

In this dissertation, I name this kind of meeting a Regularly Scheduled Software

Maintenance Design Meeting (RSSMDM). Particularly for large software systems, where

dealing with maintenance problems is part of the daily routine, these meetings are

essential to discuss high-level aspects of day-to-day maintenance design problems.

The kind of people that participate in these meetings varies. On the one hand, there

are core participants that coordinate and attend RSSMDMs on a regular basis. These core

participants are all key internal stakeholders of the software products of the company

because they are responsible for their long-term evolution and scalability. On the other

hand, other non-core participants also join RSSMDMs, but on a more incidental basis, when

they have something to discuss with the key internal stakeholders, or when their presence

is critical to discuss a topic. Both core and non-core participants may have a highly

technical (e.g., software architect, quality control engineer, developer) or less technical

(e.g., manager, product owner) background. However, core participants are typically more

experienced than non-core participants in terms of their knowledge of the codebase, the

customer’s background, procedures to interact with other teams, and more.

Information is particularly crucial to how the discussions of day-to-day design

problems in RSSMDMs proceed. On the one hand, just like programmers need to have the

right information available for them to make code changes [8] and software architects

sometimes need to know the rationale associated with past decisions [9] to make new

decisions, key internal stakeholders in RSSMDMs need information that exists prior to the

meeting to support their design deliberations. Without it, the decisions being made may be

flawed, the resulting code might be of inferior quality, time-sensitive issues may need to be

3

postponed to a later discussion, and the design conversations themselves may be

ineffective due to different understandings among the meeting participants.

On the other hand, key internal stakeholders need to capture the discussion outflow

of RSSMDMs. It is well known that capturing the outflow of meetings is essential to provide

continuation to the work being performed [10]. Previous studies report that developers

may capture decisions as a set of informal diagrams during early-design meetings (e.g.,

[11]–[13]) or that they may keep more formal representations of decisions, alternatives,

and sometimes some rationale in wiki repositories (e.g., [14]–[17]). However, little is

known about what information is captured in RSSMDMs. Given that these meetings center

on maintenance, it could be that in addition to decisions [18], [19], alternatives [20], and

rationale [21], other information is captured as well (e.g., procedures on how to execute a

database migration, good development practices to avoid architectural drift, internal team

processes).

The goal of my dissertation is to build a foundational understanding of how

information flows in and out of RSSMDMs. It seeks to characterize the variety of

information that key internal stakeholders share during these meetings, the new

information that they generate as part of discussing design work, and the tools that, as of

now, they use to obtain prior information or capture discussion outflow during RSSMDMs.

Studies about developers’ information needs (e.g., [22], [23]), the role of knowledge

in software development [24], and software development meetings (e.g., [25], [26]) exist.

However, lacking today is a study about prior information needed in RSSMDMs, as it is

needed to, for instance, discuss the implications of a support case, propose a solution for a

defect in the context of a deployed and functioning system, or to re-architect a testing

4

pipeline. Moreover, what information is captured after discussing maintenance design for

these kinds of situations has also not been studied.

A holistic approach to understanding these phenomena represents a gap in the

software engineering literature to which this dissertation contributes directly. It is

important to fill this gap because RSSMDMs serve a critical role in the long-term

maintenance of many software products. By developing an understanding of how

information flows in and out of these meetings, we may discover improvements to meeting

practices and potentially design novel tools to better share and capture information.

As a first step toward understanding how information flows in RSSMDMs, my

dissertation contributes an in-depth study of ten such meetings held by a group of team

leads at a major healthcare software development company in early 2020. This group is

responsible for a key healthcare software product that is used in hundreds of hospitals

worldwide. The group consists of a product owner, two software architects, and a quality

assurance engineer, all of whom are located in the U.S. and all of whom attend nearly every

meeting. Other participants join from across the U.S. and India on a more incidental basis,

and include a shadow product owner in India, a manager, and developers at a range of

levels. I requested and was given copies of the WebEx recordings of ten regularly scheduled

meetings1 that took place between March 24th and July 16th, 2020, which were transcribed

by a professional service. These videos and transcripts then, constitute the basis for my

study.

1 These meetings were provided to us in an opportunistic manner. We did not have an inclusion or exclusion criterion other than the

meetings being scheduled regularly and concerning maintenance design. We settled on ten meetings, because it balances depth (in it
being feasible to manually, line-by-line analyze ten hours of meetings) with breadth (in having a month of maintenance design issues
available to examine and make sense of).

5

One could take many perspectives to perform a qualitative study of this nature. For

instance, I could study what typical design elements the participants use (e.g., decisions,

alternatives, constraints), how specific roles contribute to the discussions (e.g., software

architects, product owners, developers), and more. In this dissertation, I particularly

choose to look at information because it is foundational in supporting design deliberation.

Below, I present the overarching research questions that guided this qualitative study. Each

question targets a critical aspect of how information is shared and captured in RSSMDMs.

RQ 1. What prior information do participants share in RSSMDMs in the course of

design deliberation?

RQ 2. What tools do participants use in support of sharing prior information in

RSSMDMs?

RQ 3. What is the discussion outflow of the topics addressed in RSSMDMs?

RQ 4. What tools do participants use to capture discussion outflow in RSSMDMs?

My approach to studying the ten RSSMDMs is grounded in a constructivist

philosophical point of view that, rather than verifying previously established theories,

centers on exploring and understanding a particular phenomenon in its natural setting

[27]. Specifically, this work presents a single exploratory case study [28] in a major

healthcare software company. The focus of the case study is a set of RSSMDMs in which a

high-performing team (i.e., product owners, software architects, and lead developers)

discuss day-to-day maintenance design issues and new directions in the context of a

deployed and functioning system. Figure 1 shows the design of the study that I just

described.

6

Each meeting was first partitioned into the design topics that were deliberated

(minimum two, maximum eleven). Over the course of the ten meetings, the key internal

stakeholders attending discussed 45 different topics, which were significantly diverse in

type. Example topics included a performance problem with a deployed instance of the

software at one of the hospitals, a design review of a major proposed change by one of the

developers, a discussion of the impact of a customer choosing to implement their own

single sign-on solution, and an analysis of the testing environment and how it incurs

unnecessary cloud expenses.

Four researchers, one of them myself, paired up in different configurations to

analyze different aspects of the meetings’ video recordings and their respective

transcriptions by applying thematic analysis [29]. Thematic analysis is a method to

qualitatively classify data into categories according to a coding scheme that can be

developed in different ways (e.g., inductively, deductively, hybrid) [30]. Two inductive

Figure 1. The design of the study.

7

thematic analyses were performed in total. One centered on the prior information that the

participants shared during the meetings and which tools (if any) they used to share it. The

other one centered on the discussion outflow of the 45 topics that the participants

discussed and which tools (if any) the participants used to capture it.

Together, the answers to the four research questions offer a comprehensive view of

how information flows in and out of RSSMDMs, where there might be opportunities for

improvement in terms of practices and tools to share prior information, and where there

might be opportunities for improvement in practices and tools to capture the discussion

outflow while at the meeting.

My dissertation provides the following contributions:

C1. A rich set of observations about information sharing practices and tool use in

RSSMDMs. Understanding what kinds of prior information participants share to

discuss design (e.g., architecture, deployment, testing), who shares it (e.g., product

owners, software architects, developers), how it is shared (e.g., by request,

voluntarily), and what tools are used to do so has important implications for future

tool development and meeting practices in RSSMDMs.

C2. A rich set of observations about information capture practices and tool use in

RSSMDMs. Understanding what kinds of outflow participants capture, whether they

capture outflow throughout the discussion or at specific moments, identifying when

discussion outflow is not captured in tools, who captures it (e.g., product owners,

software architects, developers), how participants capture it (e.g., prompted,

unprompted, requested by the tool driver), and what tools they use to do so has

8

important implications for future tool development and meeting practices in

RSSMDMs.

The remainder of this dissertation is organized as follows: Chapter 2 covers

important related work. Chapter 3 describes the ten RSSMDMs studied. In Chapters 4 and

5, I present the results of analyzing how prior information is shared and how information is

captured in RSSMDMs. In Chapter 6, I discuss threats to validity. Finally, Chapter 7 presents

the conclusions I draw from this work and my suggestions for future work.

9

2 Background

My work relates to various research areas: software maintenance design,

collaborative work in software development, software design studies, software

development meetings, information studies, knowledge management, and design rationale.

In this chapter, I discuss a representative sample of studies for each of these research

areas.

2.1 Software maintenance design

Foundational work defines software maintenance as the process of modifying

software systems after delivery to correct faults, improve performance, or adapt them to an

environment that has changed [31]. Software maintenance was initially categorized into

three types: adaptative (software maintenance to adapt the system to changes in its data

environment), corrective (software maintenance to correct processing, performance, or

implementation failures of the system), and perfective (software maintenance to perfect

the system in terms of its performance, processing efficiency, or maintainability) [32]. This

initial classification gave rise to other typologies and standards (e.g., [33]–[37]).

Articulating the key dimensions of software maintenance served as a baseline to

further research in this area. As one example, some work centered on empirically studying

how developers perform software maintenance activities (e.g., refactoring [38], program

comprehension [39], debugging [40]). As another example, many empirical studies

centered on how developers make code changes (e.g., identifying characteristics in

vulnerable code changes [41], exploring how developers understand code changes [42],

measuring the future impact of code changes [43]). Other work studied developers’

10

information needs in their day-to-day programming. This topic in particular was studied

not only empirically [44], but also through laboratory experiments [45].

The foundational work and empirical evidence led to the development of novel tools

to improve software maintenance in practice. For instance, Dias et al. presented a novel

approach to detect and untangle source code changes across different program versions

[46] and Rastkar and Murphy proposed multi-document summarization techniques to

generate a description of why code changed so that developers could understand the

rationale behind code changes [8]. Other researchers proposed tools that support

developers in visualizing different aspects of code changes (e.g., code understanding [47],

code evolution [48], [49], debugging [50]). Yet other research led to tools that refactor code

automatically [38] or address information needs that developers have while programming

(e.g., [51], [52]).

Software maintenance has also been studied in relation to design. At the

architectural level, for instance, researchers have proposed techniques (e.g., [53], [54]) and

tools (e.g., [55], [56]) to recover the architecture of large systems based on their source

code. Others have studied the role of software architecture in the evolution and quality of

software [57]. My work in particular relates to software maintenance design [2] because

the discussions held in the RSSMDMs that I am studying are all about maintenance design

work. Understanding the types of maintenance work that exist, and the kind of design each

requires, is fundamental to understanding the context of the discussions that constitute the

basis of my study, as these discussions range from architectural design to low-level design

to solve day-to-day maintenance issues.

11

2.2 Collaboration in software development

Many studies about collaborative work center on observing co-located physical

environments in which software is developed. For instance, Mark studied the interaction of

software developers working together inside dedicated project rooms (she calls them war

rooms, shared physical spaces where team members work together synchronously [58]).

Mark in particular named this kind of collaboration “extreme collaboration”, but others

also refer to it as “radical collaboration” [59]. Researchers who have studied collaboration

inside dedicated project rooms (e.g., [59], [60]) observed that it brings advantages in terms

of coordination, communication, and learning to software development teams, which

eventually reflects positively on their overall productivity.

Even though co-located spaces, and particularly dedicated project rooms, have been

reported as beneficial to make coordination tasks agile in software development teams

[61], the distribution of development teams around the world is a step that every company

must eventually take as it grows. Sometimes companies distribute their development

teams around the globe because they seek to conquer new markets, which requires

maintenance and technical support in the time zones of those respective markets [62].

Other times, they do so because companies seek to reduce development costs and must

outsource development tasks to economically favorable locations [63].

The distribution of software development teams creates new collaboration

challenges [64] that need to be understood and addressed to make possible the gains that

distributed software development offers [65]. For instance, Espinosa et al., confirmed that

geographic distance has a negative effect on coordination [66]. They also observed that

sharing information with team members at other locations is a way to mitigate

12

coordination issues by establishing a common ground regarding development tasks and

processes [66]. Moreover, studies have shown that a substantial amount of synchronous

coordination in co-located software development teams takes place through informal

encounters in public areas at the workplace (e.g., the water cooler, coffee room) [67][68].

Such unplanned interactions do not happen when team members are separated by

distance. Therefore, synchronous collaboration is relegated to virtual, sometimes hybrid

meetings [69], which often are scheduled on a regular basis, and that have become a crucial

space to share information and build a common ground among distributed team members.

My work studies one kind of such meetings, the RSSMDM, a regularly scheduled meeting to

address software maintenance issues and new directions in the context of a deployed and

functioning system.

2.3 Software design studies

The study of professional software designers and how they engage in design work

has received steady attention over the years. Foundational work was rooted in personal

experiences that, for instance, reflect on the importance of separating design and project

management in large software development projects [70], establish important foundations

for software architecture design [71], classified common design problems in software

development [72], and identified known solutions for them (design patterns) [73].

Later work centered on observing software developers engaged in design either in

situ (e.g., [74]–[76]) or as part of laboratory experiments (e.g., [77], [78]) to study how they

make decisions, and how they represent these decisions as well as other design constructs

(e.g., alternatives, assumptions, constraints). Regarding decisions, in [79], decision-making

was studied in the context of agile versus non-agile organizations; Falessi et al. studied

13

decision-making strategies (e.g., naturalistic, rational) suitable to resolve tradeoffs in

software architecture design [9]; and Zannier et al. observed that the structure of design

problems determines how rational or naturalistic (in the sense of Falessi et al.) decision

making may become [76].

Regarding design representations, Cherubini et al. interviewed software developers

at Microsoft to investigate why they make drawings [74]. They identified two scenarios in

which developers make drawings to represent design, namely refactoring and code

reviews. Moreover, they observed that design decisions were often externalized in

temporary drawings that designers rarely capture in tools for long-term use, and that the

reason for not doing so was the time such capturing would require. As a second example,

Dekel and Herbsleb conducted observational studies of development teams working on

design exercises [80]. They observed that developers preferred to use notations that

deviate from standard UML to represent their designs. They also observed that team

members rely on other communication mediums (e.g., conversation and gesturing) to

interpret the sketches made. They claimed that without this additional non-visual

information the drawings would be difficult to interpret and would have limited

documentation potential.

The motivation underneath these and other studies of the use of drawings in

software design (e.g., [75], [81]) informed the development of novel sketching tools to

create, re-use, and annotate drawings that represent the design of software systems (e.g.,

SILK [82], Knight [83], DENIM [84], Calico [85], FlexiSketch [86]).

14

2.3.1 Studying Professional Software Design Workshop

In 2010, the Studying Professional Software Design (SPSD) workshop [87] took

place at the University of California, Irvine. The SPSD was a workshop similar to the Design

Thinking Research Symposium series [88], though it focused exclusively on software

design. The goal of the SPSD workshop was to collect a foundational set of observations and

insights about software design. Before the workshop, teams of professional software

designers were tasked with designing a traffic simulator. They were given a problem

prompt about an educational traffic simulator, a non-electronic whiteboard, and had one

hour and fifty minutes to come up with the high-level design of it. They were asked to

produce two design outcomes: the simulator’s interface and a basic algorithm to run the

simulator. The three design sessions were video recorded, and these videos were then

shared with the SPSD workshop participants before the workshop.

The workshop led to a wide range of studies based on the videos and their

respective transcripts. For instance, Christiaans and Almendra studied design decisions by

classifying the transcripts of the three sessions using a decision-making framework [89].

They observed that decision making was most of the time cooperative, meaning the

developers worked together for the sake of integrating their ideas. As another example,

Matthews studied the use of assumptions to show how creative parts of design work, such

as imagining nonexistent circumstances, are facilitated by designers’ use of assumptions

[90]. In a similar vein, Ossher et al. studied the sessions to understand how designers

develop concerns [91]. They observed that concerns were revisited repeatedly throughout

the design process, that designers use multiple notations to represent them, and that these

15

representations evolve throughout the sessions to little by little become more detailed and

formal.

Other studies about the SPSD workshop’s data centered on studying design

processes and activities. For instance, Baker et al. analyzed the videos of the three design

sessions to track individual ideas that the designers generated over the course of their

respective sessions [92]. They grouped the ideas identified into high-level subjects (a

segment of work related to the same topic) and divided the sessions into cycles, which they

termed “periods of time that begin with a moment of focus setting by the designers and

that last until the next focus setting in the session”. They observed three prevalent types of

cycles in regards of the way subjects were discussed, single-subject cycles (various subjects

are mentioned, but there is always a central one), paired-subject cycles (two subjects are

considered together with equal relevance and depth), and low-depth cycles (instances in

which many subjects are addressed without engaging with any one in depth). Overall,

Baker et al. suggest that designers might benefit from being able to view two parts of a

design-in-progress side by side, implying that subject switching is beneficial to the process.

Tang et al. also studied design activities, but with the goal of discovering practices

that characterize effective design [93]. In contrast to Baker et al., they concluded that

excessive switching between topics (subjects in the sense of Baker [92]) negatively impacts

the overall use of time. They explain that excessive topic switching defocuses the design

discussion, and that for this reason designers require more time to address all the issues

that must be addressed. These authors suggest that having an outline about what must be

discussed prior to the actual discussion might improve developers’ understanding of the

design problem and facilitate the proposal of solutions.

16

My work relates to the studies based on the SPSD workshop in terms of methods

and contributions. Given that these studies laid an important foundation for how to analyze

videos and transcripts about software design discussions, part of my methodology to

analyze the set of RSSMDMs that I have been provided with is inspired by this prior work.

Moreover, my work complements the SPSD workshop studies in two ways. First, while all

the SPSD workshop studies center on the early design of a new system, my work addresses

maintenance design (design in the context of a deployed and functioning system). Second,

none of the SPSD workshop studies analyzed the design sessions by taking information

flow as the central perspective, which my work does.

2.3.2 Beyond the SPSD workshop

The studies based on the SPSD workshop, as well as relevant work that preceded it

(e.g., [74], [80]), served as a baseline for other studies about collaborative design in

software engineering. For instance, Mangano et al. conducted a literature review to identify

behaviors that characterize informal design using (physical) whiteboards [11]. They

improved the implementation of an interactive whiteboard called Calico [85] to support all

the behaviors identified in their literature review. They evaluated this improved version of

Calico following an experimental protocol very similar to the one used in the SPSD

workshop, with the difference that designers used a digital whiteboard tool instead of a

physical whiteboard. They concluded that interactive whiteboard applications such as

Calico have the potential to support designers to manipulate design content effectively

during design sessions.

As a second example, Baltes and Diehl performed an exploratory study at three

companies (all located in different countries and working on different software products)

17

and combined this with an online survey to investigate how developers use diagrams [94].

They confirmed some of the insights observed by Cherubini et al. [74] and by Dekel and

Herbsleb [80]: most diagrams were informal and contained some UML elements (though

UML was not applied by the book). They also observed that the most common purposes to

create drawings and diagrams were designing, explaining, and understanding.

Future work kept building upon this thread, for instance, by proposing to link

drawings and diagrams to source code artifacts [95], automatically transforming paper

drawings into digital ones and vice versa [96] and motivating the development of tools

with novel features to support collaborative software design meetings (e.g., FLEXISKETCH

TEAM [97], [98], the Interaction Room [99], [100]). The focus of these tools is to capture

design information in drawings. However, important aspects of the design are also

conveyed by discussing them [80]. My work seeks to inform the design of tools that

consider both aspects.

2.4 Meetings in software development

Meetings have always been a significant part of working life and software

development is no exception, with meetings of all kinds taking place daily. On a typical day,

developers may attend various types of meetings, all with different purposes. For instance,

they may attend the daily stand-up meeting [101] to share and provide an update of the

work that they have done, or they may attend a design meeting to work on the design of a

new software application. They may also attend sprint planning meetings [102] to define

the work to implement as part of the next sprint, or retrospective meetings [103] to reflect

on the way the previous sprint was handled.

18

During these different kinds of software development meetings, software design is

addressed at different levels. For instance, aspects of low-level maintenance design (i.e.,

where to find a code example to avoid a memory leak) might be briefly discussed during an

agile stand-up meeting [4]. As another example, high-level aspects about the early design

of a new product might be discussed during a one-off design meeting.

2.4.1 The daily stand-up meeting

The daily stand-up meeting is one of the most applied agile practices [101].

However, while much has been written about it in all sorts of venues, it has not undergone

many detailed empirical studies. Stray et al. are perhaps the exception in having dived

deeply into it. They built an empirical understanding of this kind of meeting by analyzing

the transcriptions of eight daily stand-up meetings from two software development teams

[104]. They observed that even though the literature states that information sharing should

focus on answering straightforward questions (i.e., what have I done? what will be done?

what obstacles are in my way?), not all the time participants followed this approach by the

book. In fact, they observed that 35% of the time (across all the meetings studied) was

spent on design related discussions (e.g., gathering knowledge to fix issues, discussing

possible solutions). Even though the nature of the meetings was to give short updates,

some design work, most of it of a “low-level” nature, occurred.

Stray et al. also performed a grounded theory study of daily stand-up meetings to

identify factors that may influence developers’ attitudes towards how daily stand-up

meetings are conducted at their workplace [4]. They observed that information sharing and

the opportunity to discuss and solve problems contribute to having a positive attitude

towards the daily stand-up meeting. Stray et al. also conducted a case study to identify

19

practices that contribute to inefficient meeting management [105]. Participants reported

that developers often engage in discussing details about issues on which they are working,

instead of briefly mentioning the issues and scheduling a different time to discuss them in

detail. They shared that this practice extends the meeting time considerably, which many

developers perceive as inefficient. Another negative practice reported was that the

developers sometimes used the daily stand-up meetings to report only to the scrum

master, instead of sharing information with all team members.

Stray more deeply investigated these various aspects of daily stand-up meetings as

part of her dissertation [106]. Her work lays a strong empirical foundation to understand

daily stand-up meetings and problems that may arise. In a similar vein, my work seeks to

build a foundation to understand RSSMDMs, but from a perspective focused on

information, and how it flows in and out of the meetings. None of the studies performed by

Stray et al. addressed this perspective.

2.4.2 Software design meetings

In Section 2.3.1, I introduced various design studies about the SPSD workshop (e.g.,

[80], [89], [90], [92], [93], [107]), all based on the same meeting setting of two designers

working at the whiteboard on a complex software system, a traffic simulator. The design

meetings conducted at the SPSD workshop were all centered on a single project and the

nature of design work was that of “early-design” (the design of a new system), with

participants brainstorming ideas, alternatives, and making decisions.

Olson et al. [25] conducted a study in two companies with a meeting setting quite

similar, though not equal to the one studied at the SPSD workshop. In this setting, small

groups of developers were sitting around a table with minimal tools such as whiteboards,

20

flipcharts, paper, and pencil. The meetings centered on addressing the early design of large

and complex software systems (e.g., internal systems, prototype ideas for future systems)

that others, rather than the meeting participants themselves, would implement in future.

Olson et al. analyzed ten videos of these design meetings from two companies. In my study,

I analyze the same number of meetings. However, the meetings in my study are regularly

scheduled and from the same organization. These characteristics are important because

recurrence is part of the aspects that my study addresses.

One of the various aspects that Olson et al. studied in these meetings was design

deliberation: discussions in which the designers generate ideas, discuss their pros and

cons, and select some of the ideas discussed to be included in the final design. They used

issues, alternatives, and criteria to describe the structure of design deliberations. They

were interested in identifying moments at which designers stated questions explicitly,

listed alternative solutions, or shared the rationale of why each alternative was good or

bad. The focus of my work is not studying design discussions in terms of alternatives,

decisions, and more, but to look at what information is needed to discuss them. Moreover, I

look at the new information that they produce, and how they capture it.

Another difference between both the Olson et al. study and the SPSD workshop

studies as compared to my study is the kind of design in which the participants engaged.

The Olson et al. videos and the SPSD workshop videos were all about early design

discussed at designated design meetings, and for which a deployed instance of the software

being designed did yet not exist. My work addresses maintenance design [2] as part of

regularly scheduled meetings, in which maintenance issues and new directions in the

context of a deployed and functioning system are discussed.

21

2.4.3 Recurring meetings in software development

Recurring meetings are part and parcel in software development, with the daily

stand-up meeting [101] the prototypical example. As another example, Grapenthin et al.

observed agile sprint planning meetings [102]. They noted that 26% of new sprint tasks

were discovered later in the meeting, rather than at the beginning when they were

supposed to be all identified to then be planned. While daily stand-up (e.g., [4], [108]) and

sprint planning meetings [102] are recurring software development meetings, with a clear

purpose and structure, the research studies to date do not center on recurrence.

To the best of our knowledge, only one study has focused on studying recurrent

meetings [109]. In this work, the authors argue that regularly scheduled meetings are

interesting to study because of their repetition, which allows relationships, norms, and

roles to form and evolve. They believe that the routine nature of regularly scheduled

meetings lends a casual character that distinguishes them from one-time, topic-focused

meetings. Even though this study does consider recurrence as an important perspective of

analysis, it was not about software development meetings, and did not address how

information flows in an out of the meetings, which my work does.

2.4.4 Distributed and hybrid meetings in software development

The study of distributed, and now hybrid, collaboration also speaks to software

development meetings. In general, the massive shift to remote meetings due to the

pandemic, and now back to hybrid, has led to a renewed interest from the research

community (e.g., [110]–[112]). Most studies remain agnostic to the meeting purpose or

topic, for instance investigating how shared meeting facilities for collocated participants in

hybrid meetings influence communication [113], unpacking blended technological and

22

conversational practices of inclusion and exclusion [114], studying the experience of the

remote participants and how they can be better included in the conversations (e.g.,[115],

[116]), and investigating the use of chats as an important side channel that helps inclusivity

and coordination but equally can be a potential distraction that is difficult to keep up with

[117], [118]. To date, none of these studies centers on information flow or the affordances

that recurrent meetings bring.

The company that I am studying typically organizes RSSMDMs in a hybrid modality,

with some participants physically present at the same location and others joining remotely

via a conference call. However, given these ten meetings were all recorded right after the

COVID-19 pandemic spread globally, all of them are fully remote, with participants joining

from different physical locations.

2.4.5 Tool support for meetings

Much research has focused on developing tools to support software developers

during meetings. Some examples are tools to capture design drawings and diagrams, such

as the ones presented in Section 2.3 (e.g., FlexiSketch [97], [98], the Interaction Room [99],

[100], Calico [85]). Other examples are tools to capture what is said and agreed upon

during the meetings by, for instance, augmenting written notes with audio recordings (e.g.,

Filochat [119], Dynomite [120], the Audio Notebook [121]) or capturing audio clips from

the discussion (i.e., OctoUML [122], KNOCAP [123]).

Rather than supporting specific meeting activities such as drawings or notetaking,

other researchers proposed the creation of integrated meeting rooms able to offer a variety

of meeting services. One example was LiteMinutes [124], an integrated meeting room that

supports text notes taken on wireless laptops, slide images captured from presentations,

23

and video recording from cameras in the meeting room. A few years later, the conceptual

design of a meeting room called SMaRT [125] was proposed. The novelty of this design was

that it required minimal explicit human-computer interaction to operate, given that many

tasks were designed to be triggered automatically. To mention one additional example,

Haller et al. introduced the NiCE meeting room in 2010 [126]. The central piece of this

meeting room was an electronic whiteboard with advanced features to, for instance,

automatically transfer data from PCs (i.e., PC screenshot) and physical paper (i.e.,

drawings) to the whiteboard’s canvas, take snapshots of the whiteboard’s canvas, and

create overlays to juxtapose different drawings. Moreover, some whiteboard functionalities

could be handled via a physical remote control (a tool pallet) to, for instance, change the

color of the pens to draw.

A disadvantage of heavy-weight tools like LiteMinutes, SMaRT, and NiCE in

comparison to light-weight tools such as notetaking apps (e.g., Microsoft OneNote [127],

Evernote [128], Apple Notes [129], Google Keep [130], Notion [131], Obsidian [132]),word

processors (e.g., Google Docs [133], Microsoft Office 365 [134]) and web whiteboards (e.g.,

Mural [135], Miro [136], Google Jamboard [137]) is the need of advanced technological

devices and a physical space to operate. Considering the current state of the world (due to

the COVID-19 pandemic), with many teams working from home [112], this requirement is

unrealistic, or at least inconvenient.

Research on video conferencing practices (e.g., [138]–[141]) and technologies (e.g.,

[142], [143]) has been instrumental to virtual meetings becoming a reality. For instance,

Geyer et al. proposed a collaborative workspace system called TeamSpace [144], [145], the

focus of which was to support virtual meetings as part of a larger collaborative work

24

process. This tool proposed the integration of meeting information from multiple meetings,

enabling users to efficiently gain knowledge of both current and past activities. As a second

example, Yankelovich et al. proposed the Meeting Central prototype, a suite of

collaboration tools designed to support distributed meetings, with a minimalist design that

provided only those features that have the most impact on distributed meeting

effectiveness [146].

Nowadays, powerful videoconferencing platforms such as Zoom [147], Google Meet

[148], and Cisco WebEx [149] are part and parcel in global software development.

However, these are not the only tools that software developers use to work in a distributed

fashion. As in co-located meetings, tools to capture information are also needed. Typically,

developers combine the affordances of videoconferencing platforms with other tools by, for

instance, sharing their screen to show what they are writing in a word processor (e.g.,

Google Docs [133], Microsoft Office 365 [134]), an issue tracking system (e.g., Jira [150],

Zenhub [151], Bugzilla [152]), or a web-based corporate wiki (i.e., Confluence [153]).

Information management is such an important issue for meetings that some

researchers have proposed the creation of meeting virtual assistants to automate

information management tasks. For instance, the CALO Meeting Assistant (MA) [154], part

of the CALO personal assistant system, provides distributed meeting capture and

annotation together with automatic transcription and semantic analysis of multiparty

meetings. As another example, Squartini and Esposito investigated the design of digital

assistants able to process multimodal signals in real-time, to infer contextual information

and support interaction in group activities [155]. They argue that assistants should act as

25

co-workers, actively cooperating and contributing to the group’s knowledge building, and

pretending to work with the group rather than acting as passive data storage devices.

2.5 Information studies

Previous work centers on studying information in the context of software

engineering from two main perspectives. One of these perspectives studies the information

that developers need to perform their work on day-to-day basis. The other one studies the

information that developers consider important to capture for future use. My work relates

to these studies in two ways. First, I use some of the methods used in this previous work to

analyze the information needs of participants during the meeting, as well as the

information that they captured. Second, my work contributes to the body of knowledge

about information studies because it seeks to study information and information capture in

an unexplored context, RSSMDM. In this section, I present studies that take an “information

needs” perspective to analyze software developers’ activity, as well as studies that center

on information capture for future use.

2.5.1 Information needs

Many studies have taken an “information needs” perspective to analyze software

developers work with the goal of designing tools to support developers in efficiently

searching information during different activities. These studies focus on three main

aspects: 1) analyzing what kinds of information developers need, 2) observing what

sources or tools they use to obtain such information, and 3) identifying the obstacles that

prevent developers from obtaining information when so needed.

Ko et al., for instance, shadowed seventeen developers to observe their information

needs while performing various development activities [22]. They identified 334 moments

26

in which developers sought information and classified these moments into 21 different

categories. Categories represent generalized information needs that cover specific

questions or utterances that the subjects being studied said. For example, in this work, the

utterance “Originally, the repro steps said I need a blog count [as a test case] but I couldn't set

one up, so I went back and forth” was classified into the category “in what situations does

this failure occur?”. Ko et al., also identified the activities in which the developers engaged

during the sessions (e.g., writing code, submitting code, triaging bugs, reproducing failures,

understanding program behavior, reasoning about design, maintaining awareness) to

contextualize the information needs that they observed.

While Ko et al. studied information needs in the context of multiple development

activities, others focused on observing information needs associated with specific

development tasks. For instance, Sillito, Murphy, and De Volder studied questions that

developers ask when evolving a code base [156]. To investigate this phenomenon, they

performed two independent studies. The first study was a laboratory experiment of

newcomers working on an open-source project, the second study involved industrial

developers working on the code base of their respective companies. The focus of both

studies was observing the information that the developers needed to know about the code

base they were working with when making a code change (e.g., a bug fix, an enhancement).

They classified the information needs into 44 different categories, with each category based

on a generalized version of similar specific questions that the participants asked. The

authors also investigated the tools that the participants used to obtain the information

needed [157]. A noteworthy finding was the identification of 78 questions that developers

commonly have of the codebase, but for which tool support is typically lacking.

27

 Breu et al. investigated questions that developers and end users ask as part of bug

reports [23]. They identified 940 frequently asked questions in the content of 600 bug

reports. Breu et al. classified the questions into eight categories (i.e., missing information,

clarification, triaging, debugging, correction, status inquiry, resolution, process). Some

noteworthy findings that stem from this study are that only 67.66% of the questions had an

associated response, and that the type of question (the category) had a significant effect on

the respective response rate. For instance, questions related to “corrections” (category that

contains questions that discuss how to correct a bug) were more likely to be answered than

questions related to “resolution” (a category that contains questions that ask whether a bug

was resolved).

Other studies about information needs focused on understanding how developers

search information in the web. For instance, Treude et al. analyzed 385 questions from

Stack Overflow to explore which of them were answered and which were not [158]. Their

preliminary findings show that questions that ask for instructions (classified as “how-to”),

questions that inquire about unexpected behaviors (classified as “discrepancy”), and

questions related to development or deployment environments (classified as

“environment”) often remained unanswered. In a similar vein, Xia et al. studied the

information developers frequently search on engines such as Google, Mozilla, or Safari

[159]. They collected search queries from 60 developers and surveyed 236 software

engineers to investigate it. Their results report that the participants used these web

browsers to search for unknown terminology, exceptions and error messages, code

snippets to reuse, solutions to common programming bugs, and suitable third-party

libraries that they could use to build software. To mention one additional example, Duala-

28

Ekoko and Robillard studied questions that arose when developers work with unfamiliar

APIs. To investigate this phenomenon, they observed 20 developers working on

programming tasks in which they had to use an API they were not familiar with. Their

motivation to study this kind of information needs was to figure out how to evaluate tools

that aim to improve API learning.

2.5.2 Information capture

Information capture tools have been developed for different contexts and with

different kinds of functionality. For instance, in Section 2.4.5, I introduced various tools

including tools to capture drawings and diagrams (e.g., FlexiSketch [97], the Interaction

Room [99], Calico [85]), tools to augment written notes with audio recordings (e.g., Filochat

[119], Dynomite [120], the Audio Notebook [121]), tools to capture audio clips from the

discussion (i.e., OctoUML [122], KNOCAP [123]), and tools to capture and index meetings

via video recordings (e.g., LiteMinutes [124], SMaRT [125], NiCE meeting room [126]).

Studies about information capture have been performed in other contexts as well.

For instance, knowledge management tools were particularly popular as a research topic

several decades ago (e.g., [160]–[164]). Much like design rationale, this research often

centered on highly structured approaches to capture and retrieve knowledge (e.g., [17],

[165]–[167]), though unstructured approaches based on hypermedia or wikis were also

explored considerably (e.g., [14], [168]–[170]). Interestingly, these informal, lightly

structured approaches appear to have had more influence than the highly structured

approaches in practice, with the use of platforms such as Confluence [153] and lightweight

architecture decisions records [171], [172] being popular choices. I provide further details

29

about information capture in the context of knowledge management and rationale in

Sections 2.6 and 2.7 respectively.

2.6 Knowledge management and knowledge capture

Knowledge management for software engineering aims to support knowledge flow

across different phases of a software engineering process [162]. Foundational work in this

area introduced critical terminology. For instance, Vasanthapriyan, Tian, and Xiang defined

the concept of “knowledge” as the interpretation of information within its context [162].

Later, Polanyi classified this concept into two broad categories: “tacit knowledge”

(intuitive, unarticulated, typically obtained by experience, reflection, or individual talent)

and “explicit knowledge” (objective, rational, technical, articulated in files, documents,

databases) [173]. Nonaka defined “knowledge management” as the means to create a

learning environment to support knowledge creation and transfer [174].

Other work focused on identifying knowledge management needs and practices

[164]. Rus, Lindvall, and Sinha, for instance, observed that knowledge tracking is a real

problem in practice and argued that a structured way to manage knowledge could help

organizations to leverage the knowledge that they possess [175]. As another example,

Fischer et al., studied the role of knowledge in long-term indirect collaboration (a kind of

collaboration in which designers who originally create design knowledge may never know

the people that will use and update this information in future) [10]. These authors argued

that indirect collaboration should be an aspect to consider in the design of knowledge

management tools. To mention one additional example, Ward and Aurum performed two

case studies to investigate knowledge management practices in two different

30

organizations. They observed that, even though several structures to store knowledge

exist in both companies, knowledge remained primarily tacit.

A strand of work at the intersection of knowledge management and software

architecture centers on studying how to keep architectural knowledge. This term is

commonly used to refer to the high-level design of software systems, either in terms of

components and connectors [176] or in terms of design decisions, assumptions, and their

associated rationale [177]. Some studies that stem from this strand of work focused on

understanding various aspects of architectural knowledge management. As one example,

Clerc, Lago, and van Vliet performed a survey to collect feedback on the importance of

architectural knowledge for the daily work of practitioners [178]. As a second example, van

Heesch and Avgeriou performed a survey with 53 professional software architects to

explore how architects make architectural design decisions [179].

Foundational work about architectural knowledge in particular led to many tools to

manage such knowledge [166]. Some researchers, for instance, proposed to create central

repositories of design information (e.g., ADkwik [17], PAKME [165]) or to recover design

information from artifacts such as code and design documents (e.g., ADDRA [180],

DiscoTect [181], Revealer [182]). A common characteristic across these approaches was

that an underlying structure to capture information always exist. PAKME [165], for

instance, proposed to capture two types of knowledge: generic knowledge (e.g., patterns,

general scenarios, quality attributes) and project-specific knowledge (e.g., concrete

scenarios, architectural decisions). In contrast to PAKME [165], which comes with a

prescribed fixed data model, CADDMS [183] allows end users to define their own

knowledge model.

31

Unstructured approaches based on hypermedia and wikis were also explored

considerably (e.g., [14], [168]–[170], [184], [185]). Clerc et al. studied global software

development practices that could be implemented using wikis [14] and Sousa et al. studied

how an organizational wiki could be used as a knowledge management tool from the point

of view of two knowledge management models [168]. More recently, grey literature on

lightweight architecture decision records [19] proposes the use of version control systems

(similar to GitHub [186]) to keep decision records and their history [171], [172]. Some

lightweight approaches to capture information have also been proposed to capture

lightweight knowledge records during meetings (e.g., KNOCAP [123], OctoUML [122]). A

common factor in these proposals is that knowledge is directly captured from

conversations.

My work relates to this body of knowledge because it seeks to study knowledge

management practices and what tools are used to capture knowledge in a particular kind of

meeting, the RSSMDM.

2.7 Design rationale

One strand of research to which my work relates closely is that of design rationale,

which has a long-standing history of seeking to understand and provide support for

documenting the rationale behind software design decisions (e.g., [21], [187]–[190]). As

already discussed, this work often limits itself to recognized concepts such as ideas,

arguments, alternatives, constraints, issues, and decisions, with the resulting tools often

structured accordingly (e.g., [160], [191]–[194]).

An extensive strand of research has focused on meeting capture to preserve

important aspects of discussions for later, as motivated by the need to capture rationale.

32

Some of these tools are generic (e.g., the Audio Notebook [191], Dynomite [120]), and

others are specialized toward software design [195]. Even though useful to avoid lost

knowledge, most of these tools focus on capture and preservation only, with no features for

bringing captured information back into future meetings, other than making the

information available through search (e.g., [196]).

My work sets itself apart by focusing on all kinds of information that may be

important in future and not just rationale, as well as by proposing the exploration of

unstructured approaches to re-using (when so needed) and capturing discussion outflow in

a lightweight manner during RSSMDMs.

33

3 The topics that are discussed in RSSMDMs

My dissertation contributes an in-depth single-exploratory case study [27], [28] that

centers on ten RSSMDMs held by a high-performing development team at a major

healthcare software development company. Important characteristics about these

meetings are that they are regularly scheduled, are maintenance oriented, cover multiple

topics (I use the term topic to refer to the discussion of an independent maintenance design

issue during a meeting), and involve participants who are distributed. The ten meetings

that I have studied each last about an hour, sometimes a bit less or more, and took place

from March 24th to July 16th, 2020. In this section, I provide the background of the meeting

participants, describe the meeting setting, and delve into the nature of the discussions held

during the meetings.

3.1 The meeting participants

A total of twelve participants joined the ten RSSMDMs. Table 1 shows all the

participants, preferred pronoun, role, and which meetings each participant attended. Note

the different roles of the participants and the mostly even distribution of participants from

the U.S.A. and India, the latter to where most development is outsourced. The first four

Table 1. Meeting participants

 Meetings attended

Participant Preferred pronoun Role Location
M1

Mar.
24th

M2
Mar.
31st

M3
Apr.
8th

M4
Apr.
14th

M5
Apr.
21st

M6
Jun.
5th

M7
Jun.
12th

M8
Jun.
19th

M9
Jul.
2nd

M10
Jul.
16th

1 she, her, hers Product owner U.S.A. X X X X X X X X
2 he, him, his Software architect U.S.A. X X X X X X X X X X
3 he, him, his Software architect U.S.A. X X X X X X X X X X
4 he, him, his QA engineer U.S.A. X X X X X X X X
5 she, her, hers Product owner India X X X X X
6 he, him, his Manager U.S.A. X X X X X X
7 he, him, his Developer India X X X X X X X

8 he, him, his Developer India X X X X X
9 he, him, his Developer India X X X X

10 he, him, his Developer India X X
11 he, him, his Manager India X
12 he, him, his Infrastructure engineer India X X

34

participants (P1-P4) are the key internal stakeholders (as defined in Chapter 1) who run

these meetings. This group of team leads is composed of a product owner (P1), two

software architects (P2 and P3), and a quality assurance engineer (P4), all of whom are in

the U.S. and attend these meetings on a regular basis. The two architects (P2 and P3)

attended all ten meetings, the product owner (P1) missed only one, and the quality control

engineer (P4) missed two of them. The rest of the attendees are all non-core meeting

participants who attend the meetings on a more incidental basis. Most of these non-core

participants are in India, except for a manager, who joins the meetings from the U.S.A. The

participants from India include another manager, a shadow product owner, an

infrastructure engineer, and developers at a range of levels.

The role of the key internal stakeholders in the discussions held in RSSMDMs is

primarily that of experts, who propose ideas to solve complex design issues that have a

long-term impact on the system (e.g., technical debt, performance issues, security issues).

They often discuss topics of this nature by themselves, though non-core participants are

welcome to be present and contribute if they want to. By virtue of being part of the

organization longer, the key internal stakeholders have more knowledge about the

codebase, customers, projects, and past decisions associated with them. Therefore, another

responsibility that they have during the meetings is that of sharing knowledge (e.g., good

programming practices, internal processes) with the non-core participants.

The role of non-core participants in the meetings is more that of an on-demand

contributor. They may join the meetings all the times they want to, though they typically

join when they need to or upon request of the key internal stakeholders. For example, non-

core participants may attend the meetings because they need advice on how to handle

35

issues to which they have been assigned, because their presence is critical to discuss a

specific high-level maintenance issue, or to learn practices and processes that the architects

want to establish.

3.2 The meeting setting

Figure 2 shows the look and feel of a typical meeting setting. The figure shows only

five participants on the screen. However, seven other participants were connected to the

call. The three participants with their camera on (P1-P3) are key internal stakeholders. The

other two people in Figure 2 are non-core participants (P5 and P7).

The meetings are typically run based on an agenda, though this agenda is not always

the same kind of artifact. Sometimes, for instance, the key internal stakeholders use a wiki

page with a list of issue ticket links as the meeting agenda. Other times they use a plain wiki

Figure 2. Typical virtual setting of the meeting.

36

page with a list of bullets that a participant prepared before the meeting. In some meetings,

the participants also use a pre-populated list of topics with questions and concerns that the

participants want to discuss as the meeting agenda. They call this artifact “Ask an

Architect”: a wiki page with a pre-loaded table template to which the team, and

occasionally employees from other teams in the organization, can add to receive help from

the architects (Figure 2 shows an example of what it looks like). Each row in this table

contains relevant information for a topic that someone has requested to be discussed: a

submission date, the topic status, who submitted the topic, the description of the topic, and

the outflow of discussing it once the topic discussion commences (e.g., decisions made,

agreements, procedures to establish).

In these RSSMDMs, the participants discuss as many topics as they can within the

meeting timeframe (about an hour). When time is over, they roll the rest of the topics over

to a next meeting. P2 (one of the software architects) typically coordinates the meetings by

walking through the meeting agenda (e.g., an “Ask an Architect” wiki page, plain wiki page,

list of tickets) and selecting topics to discuss based on the priority for the team. P2 typically

provides or asks another participant to provide an overview of the topic to be discussed.

There are also occasions when non-core participants request to discuss topics that

were not part of the meeting agenda. Non-core participants often make these impromptu

requests when they need to discuss urgent matters (i.e., a support case that has arisen).

The key internal stakeholders give priority to discussing these requests. The participant

who made the request typically starts the discussion by providing the background of the

issue. Then, the discussion focus switches to defining a plan of action to either obtain more

information about the issue in question or brainstorm how to solve the problem.

37

3.3 Methodology

My dissertation aims to analyze how prior information is shared in RSSMDMs, what

new information is captured as outflow, and what tools participants use to do either of

these. For these analyses, it is critical to place prior information that is shared and the

meeting outflow captured in the context of the discussions in which this information was

shared or captured. The reason is that participants may share different kinds of

information or capture specific kinds of outflow depending on the nature of the discussion.

As one example, participants may mention deployment information (e.g., server logs,

reports from monitoring tools) as part of the overview of a support case. Then, they may

capture some decisions as to who should handle the case together with some high-level

direction to do so in a (newly created) Jira ticket. As another example, participants may

share knowledge about past solutions while reviewing the design of a new feature to

integrate into the application, to then capture the feedback provided into an (existent) wiki

page.

As a preliminary step to studying the meetings, two researchers (one of them

myself) independently partitioned each meeting according to the different topics being

addressed in it. Then, they compared their partitioning, discussed differences, and agreed

on a unique list of topics. Detecting when the discussion of a new topic begins was

relatively evident in these meetings. Sometimes, the participants would verbally end a

discussion and signal a moving on to the next topic (i.e., “… But as of now, my questions are

done for this ticket. Yeah, and I move to another ticket which is around app integration

feature.”), would announce that they need to discuss something urgent (i.e., “… there’s a

present issue at [client name], uh. I’d reckon we’ll discuss that …”) or would simply change

38

the content shared on screen to implicitly signal they are about to start a new topic

discussion (i.e., switching from one Jira ticket to another). Another aspect to consider along

this partitioning process was recurrence: when topics were re-discussed within a meeting

or at different meetings, we kept the same topic id in the respective conversation

fragments. A preliminary fragmentation of the meetings into topic discussions was

presented in [197], with the result below a refinement over those initial results based on a

refined coding pass2.

After partitioning the meetings into topics, I categorized all the topics identified in

two ways. The first relates to the kind of work that the participants discussed (e.g., support

case, integration of new functionality, practices and processes). The second relates to the

overall purpose of the discussion (e.g., devising a solution, gathering knowledge, reviewing

a design proposal). The process to categorize the topics according to these two

perspectives was as follows: I first developed an initial categorization that a second

researcher independently reviewed. This review led to suggestions for improvement. By

discussing the suggestions and iterating through this process of one researcher updating

the codes and another reviewing the updates, the final categorizations emerged.

3.4 The topics that were discussed

Across the ten meetings, a total of 45 topics were discussed. Table 2 shows the

resulting list of topics after the last revision. The first column shows the identifier assigned

to each topic; the second lists the meetings in which each topic was discussed; the third and

fourth columns, respectively, show the name and description of topics. Note that the table

2 The updates applied were: 1) merging topics T3 and T41, I assigned the same identifier to both discussions (T3), and 2) re-numerating
the identifiers of topics T42-T46 to T41-T45 respectively).

39

Table 2. List of topics discussed across the ten meetings.

Topic id Meetings Name Description

T1 M1, M4 AWS accounts for team members in India
Check the status of AWS accounts that the team
members in India had requested.

T2 M1 Client onboarding additional users

The team evaluates whether a client onboarding
additional users may generate additional computational
resources that the client should be charged for.

T3 M1 Noisy neighbor

An architectural issue in which unusual traffic of some
clients may affect others because the clients share
computational resources.

T4 M1 In house IdP

A client decides to build its own IdP (Identity Provider)
solution instead of the one the team recommends. They
evaluate the risks of this decision.

T5 M2 Connect over public internet

Discussion centers on clarifying whether it is safe to
connect one of their software products over the public
Internet.

T6 M2 Performance testing baggle
Discussion that centers on the design of major
improvements to their testing suite.

T7 M3 App loading response time

Discussion centers on reviewing the design of a
performance test for certain functionality (e.g.,
scenarios to consider, input boundaries).

T8 M3 Model mapping
The meeting participants provide feedback on the
design of a new feature.

T9 M4 Upgrade failure

The meeting participants walk through an issue and
how it was handled to share with the rest of the team
how to avoid the issue and improve their practice.

T10 M5 Connectivity issues
The discussion addresses a connectivity issue with
docker containers.

T11 M5 Left behind testing environments

The meeting participants touch base on how they create
and get rid of unused environments with the goal of
improving the team practice in regards of deployment.

T12 M5 Shut down unused environments

The meeting participants get rid of many unused
environments during the meeting upon request of a
manager.

T13 M6 Accounts request
The team in India urgently requests more privileges in
their accounts to monitor software.

T14 M6, M8 APPSEC

One of the meeting participants shares the status of a
project to integrate APPSEC (security software to check
vulnerabilities) into their development pipeline.

T15 M6 Broken provider shared functionality

The discussion centers on an open issue about a
functionality that is not working. Participants have
different ideas on what works and does not.

T16 M6 Documentation template

The discussion focus is a proposal of a documentation
template to track functional details of the system (how it
works for the end-user) along with majority of design
details (how it works internally).

T17 M6 Health check
The participants discuss a ticket about a new
development.

T18 M6 Client SC update
The participants check the status of an open (but not
urgent) issue with a client.

T19 M7 Access from local environment
The participants discuss why a development account is
not working as it should.

T20 M7 Automating upgrades
The meeting participants discuss the establishment of a
standard procedure to perform maintenance upgrades.

T21 M7 Redis restart problem

The meeting participants walk through how a support

case was improperly handled (because of Redis3 DB
being restarted), and how it should be handled correctly
instead.

T22 M8 Priorities
Discussion centered on the aspects that should be
considered to define the priority of tickets.

3 Redis is an in-memory data structure store, used as a distributed, in-memory key–value database, cache and message broker, with

optional durability.

40

T23 M8 First databank feature
The participants review the proposed design of a new
feature.

T24 M8 Infrastructure baggle
Participants discuss how to organize a huge list of
tickets about infrastructure improvements.

T25 M8 Quadrant
The meeting participants share a grid that will help
them to prioritize tickets.

T26 M8 Single sign-on discussion
The team schedules the discussion of Single sing-on
technology and procedures for a future meeting.

T27 M8 Ticket 24325
The participants discuss a ticket to reduce lock
contention on task definitions.

T28 M8 Ticket 26159

The participants discuss a ticket about their load
balancer not being compliant with the company
building.

T29 M9 Ticket 23482

The participants discuss a ticket related to build the UI
of a routine that monitors services and servers that they
use.

T30 M9 Ticket 23979
The participants discuss a ticket to monitor API requests
that time out.

T31 M9 Ticket 24021
The participants discuss a ticket related to Redis high
CPU utilization.

T32 M9 Ticket 24178 Participants discuss a ticket to set up Elasticsearch4 logs.

T33 M9 Ticket 25059 / 25590
The participants discuss tickets related to upgrading
Elasticsearch.

T34 M9 Ticket 25356

The participants discuss a ticket to track browser usage
through Real User Monitoring (RUM)5. The ticket was
already solved so they just close it.

T35 M9 Ticket 26058

The participants discuss a ticket related to an Amazon
Relational Database Service (RDS)6 instance with CPU
utilization spiking to 100% and staying there. They
currently work around this problem by rebooting the
instance, but a better solution is needed.

T36 M9 Ticket 26440
The participants discuss a ticket to trigger an alert when
a service hits its maximum scalability.

T37 M9 Ticket 26626
The participants discuss a ticket about a mechanism to
automatically collect metrics from containers.

T38 M9 Ticket 26869

The participants discuss the development of a
monitoring dashboard for an internal team that
provides support to clients. They need to easily check
the environments’ information.

T39 M10 Testing pipeline doubts

Discussion about concerns developers have with the
kind of testing that should be done on a regular basis
and what kind of technology should be used to create
new test cases.

T40 M10 Authentication across system

Discussion about an open issue at one of the client sites
to integrate two different applications under the same
authentication mechanism.

T41 M6 End-to-end tests broken

Discussion about end-to-end tests that do not work as
they should. The meeting participants share that there
are many tickets to fix those issues, but that doing that
work will take time.

T42 M6 Embedding documentation
Discussion about ideas on how to improve
documentation for end users inside their application.

T43 M8 Conversation about defects
Brief discussion about the need of having a defect
backlog meeting soon.

T44 M8 Ticket 20441
Participants close a duplicated ticket to upgrade
Elasticsearch. They kept the tickets discussed in T33.

T45 M9 Infrastructure bucket summary
Discussion to coordinate on the way to triage a long list
of tickets about infrastructure.

4 Elasticsearch is a search engine based on the Lucene library. It provides a distributed, multitenant-capable full-text search engine with

an HTTP web interface and schema-free JSON documents.
5 Real user monitoring is a passive monitoring technology that records all user interaction with a website or client interacting with a

server or cloud-based application.
6 Amazon Relational Database Service is a distributed relational database service by Amazon Web Services.

41

is ordered by topic id; this is the identifier we use to track all the times a topic was

discussed. For example, if a topic was discussed twice within a meeting or across different

meetings, every discussion fragment will have the same topic id assigned.

The kinds of work addressed during the meetings were broad, with discussions

ranging from high-level issues such as the re-design of components of the system’s

architecture to day-to-day issues such as support cases or the integration of new features.

The purpose of the discussions was also varied. While some discussions were preliminary

and centered on gathering knowledge to start new projects, other discussions sought to

solve issues with ongoing projects. In the next sections, I analyze the 45 topics observed

from two different perspectives: (1) the kind of work addressed in the meetings, and (2)

the purpose of the discussions.

3.5 The kind of work addressed in the meetings

Table 3 presents the classification of the kinds of work discussed in the meetings.

This categorization consists of nine different kinds of work that inductively emerged from

my analysis of the discussions (conform the procedures described in Section 3.3). Each

kind of work has a unique name (first column) and a description (third column), with the

fourth column listing which topic discussions were of which kind and the fifth column

listing the total number of topics in each category. The second column shows a meta-

classification of the kinds of work observed according to the dimensions of maintenance

work proposed by Swanson (ADAPTATIVE, CORRECTIVE, and PERFECTIVE). Note that not

all topics discussed fit the maintenance dimensions of Swanson.

42

 Below, I discuss a range of observations associated with the categorization shown

in Table 3. For each, I first list the observation, and then illustrate the observation with an

example obtained from the RSSMDMs. A first observation distilled from Table 3 is that:

In these meetings, only four topics address CORRECTIVE maintenance. All these

discussions are about SUPPORT CASES that, most of the time, a participant requests to

discuss, sometimes to obtain help from the key internal stakeholders in diagnosing the

issue and other times to brainstorm ideas to solve the actual problem. The excerpt below

Observation 1: All kinds of maintenance work (ADAPTATIVE, PERFECTIVE,

CORRECTIVE) are addressed in the meetings.

Table 3. The kinds of work addressed in the meetings according to Swanson’s maintenance

dimensions.

Type of work

Dimension of
maintenance

(Swanson, 1976) Description Topics

Topics
per

category

ADMINISTRATIVE
TASK N/A

Administrative tasks needed to provide maintenance to the
software (it is not the maintenance work itself). For instance,
tasks related to the management of development tools and
services and tasks related to providing access to developers to
these tools and services, so that they can use them to work on
maintenance issues.

T1, T12, T13, T19 4

ARCHITECTURAL
RE-DESIGN ADAPTATIVE

Design work at the architectural level that centers on re-
designing components of the architecture of a deployed and
functioning system to prevent future failures (e.g., performance,
security).

T3 1

COORDINATION AND
PLANNING N/A

Coordinating the roadmap of future projects, planning the work
to discuss in future meetings, and coordinating activities to
carry out after the meeting.

T14, T24, T26,
T43, T45

5

INFRASTRUCTURE PERFECTIVE

Improvements to monitor the software, upgrade the software
stack, keep the software in compliance with standards and
laws, or reducing costs in terms of the software stack.

T27-38, T44 13

INTEGRATION OF
NEW
FUNCTIONALITY ADAPTATIVE

Features to meet new expectations, customer needs, and more.
These new features require design and sometimes re-design of
the front- and back-end of the system.

T4, T8, T17, T23,
T42

5

PERFORMANCE ADAPTATIVE

Evaluating the performance of the system under circumstances
different from the ones for which it was originally designed, so
to adapt it to upcoming changes in the environment (i.e., higher
demand because of additional customers onboarding)

T2 1

PRACTICE AND
PROCESS N/A

Discussion on how to improve the way the team works by
proposing new processes and practices or changes to them.

T9-11, T16, T20-22,
T25

8

SUPPORT CASE CORRECTIVE

The correction of misfunctions of the software due to wrong
configurations, a defect in the code, or a deficient design that
does not performs as expected in real circumstances.

T5, T15, T18, T40 4

TESTING PERFECTIVE

Designing individual tests or an overall testing pipeline to
detect processing inefficiencies and performance issues in the
software before it is deployed.

T6, T7, T39, T41 4

 45

43

(from T40) is an example of how a participant requests to discuss a SUPPORT CASE this

participant had been assigned.

P7: Okay, and some peculiar, uh, list of questions like there’s a present issue at
[Confidential], uh. I’d reckon we’ll discuss that or…   
P1: Uh, sure. Go for it.
P7: Okay, so. Um, I will share my screen and share the email chain, hang on.
[P2], can I interrupt?   

P2: Yeah, go ahead. I’ll –    
P7: So, the background here, in last week, uh, um, [customer] was trying to
integrate …

In comparison to CORRECTIVE maintenance, ADAPTATIVE maintenance was

discussed twice as often. Specifically, the participants discussed how to integrate A NEW

FUNCTIONALITY into the system (T4, T8, T17, T23, T43), how to meet new PERFORMANCE

requirements (T2), and how to prepare the system’s architecture (ARCHITECTURAL RE-

DESIGN) to account for higher usage levels in future (T3). The excerpt below illustrates the

overview provided to kick off topic T23, which addressed the integration of a new feature

into the system.

P7: Can you all see the screen?    

P2: Yeah.    
P7: Okay. So, I mean most of us have the context. So, yesterday, we had a
discussion in the team, and [name] briefed us about, uh, what we’re trying to do
here. So, during the discussion, we came out with seven approaches that I
wanted to, um, gather feedback on, uh, depending upon how you want to
handle. So, uh, basically, just for the interest of all here, uh, what we’re trying to
do here is to, uh, get the standard codes from [Confidential], uh, [audio cuts
out] and, uh, take over this pain from the clients so that they don’t have to, um
– they don’t have to upgrade it and maintain it each time that it’ll change,
which could be probably weekly, fortnightly, or monthly. So, essentially, taking
over that pain away from the client and since it is common for all the, uh,
clients, then we were thinking about what other areas we can, uh, take that up.

44

Maintenance work of a PERFECTIVE nature was the dimension in which most topics

were discussed (17 topics in total). These topics centered on improving the maintainability

of the software by designing a better TESTING suite (four topics) and on improving

components of the software stack (INFRASTRUCTURE) upon which the system runs (13

topics). At a first glance, PERFECTIVE maintenance seems to be discussed much more than

CORRECTIVE and ADAPTATIVE maintenance. However, many topics classified as

INFRASTRUCTURE (T27-38, T44) were discussed as part of a ticket triage session. During

ticket triage sessions, discussions were relatively short in comparison to, for instance,

discussing a SUPPORT CASE or an ARCHITECTURAL RE-DESIGN. Thus, more topics could

be addressed within the usual meeting timeframe of an hour.

The team also discussed topics that allowed them to improve their practice (e.g.,

how they handle issues, how they use resources, how they develop software), solve

operative roadblocks (i.e., not having access to a server or tool) efficiently, and coordinate

on a variety of activities. I classified these discussions into three groups, PRACTICE AND

PROCESS, ADMINISTRATIVE TASK, and COORDINATION AND PLANNING.

As an example of discussions in which ADMINISTRATIVE TASKs were addressed, in

T13, P5 requests the key internal stakeholders to create additional accounts to access a

monitoring service tool for the team members in India (i.e., P5: “Is it possible to provide at

least one or two, um, access, maybe to [Name] and, uh, to [Name] or any of the people?”).

Having access to run-time information is essential for the developers to be able to debug

Observation 2: The participants also engage in discussing topics that are not
maintenance work in the sense of Swanson, but that are critical for the team to
operate.

45

problems. P2 spends about five minutes sorting out who can have access to this tool (i.e.,

P2: “So, everyone can get access – uh, access to the production account”) and in creating the

new accounts with the appropriate level of permissions. This discussion was efficient

because the manager that had to approve the creation of the accounts and the associated

role each account should have, was present in the meeting (i.e., P6: “Not admin. So, let’s do

operational”). Sorting this out via email or Slack could have taken much more time. The

discussions of T1 and T19 also centered on creating accounts for the development team.

In topic T12, the participants centered on getting rid of unused servers, a clean-up

activity they had not performed in a while and that the manager (P6) urged them to

address. I provide detailed examples of both kinds of ADMINISTRATIVE TASKS in Section

3.6.

As an example of discussions in which the team coordinates and plans

(COORDINATION AND PLANNING), in T14 P2 shared an update about a new project in

which the team was expected to participate, the excerpt below illustrates the information

shared by P2:

P2: Um, cool. Um, [project name] update, I just got this today. [person name] is
always very bad planning ahead, I guess. I have a meeting tomorrow at 10:00
to go over next steps. Um, it looks like we’ll be doing planning, essentially. Um,
obviously it’s up to the team to come up with shard sizing and endpoints an all
that stuff, so what we’ll probably start doing is crating Jira tickets for what we
had planned and getting those together. Um, so we’ll see.

This information came from an email that only P2 received. However, it was important to

share it with the rest of the team so that they could prepare for it. The discussions of T24,

T43, and T45 were similar and involved announcements of upcoming tasks and work

distribution. T26, however, was a bit different in nature. During this discussion, the team

46

centered on planning the discussion of a topic of interest for the team in India. I provide

examples of some of these discussions in Section 3.6 as well.

The participants also engaged in discussing aspects of their internal practice

(PRACTICE AND PROCESS). For instance, some discussions focused on creating socio-

technical documentation (T16) and a pair of discussions defined a systematic way to triage

tickets (T22, T25). The participants also held discussions in which they walked through

issues with the software to evaluate their actions and learn from them (T9, T10, T21).

Moreover, they discussed how to automate cumbersome activities by simplifying them

(T11, T20). I provide examples of these topics in Section 3.6.

3.6 The overall purpose of the discussions the participants held

Table 4 presents the topics' classification based on the overall purpose of the

discussions. The table consists of 14 categories of topic discussions, organized

alphabetically. Each type of discussion has a unique name (first column) and a description

(second column), with the third column listing which topic discussions were of which type

and the fourth listing the total number of topics assigned to each category. Note that each

topic discussion is only assigned to a single type. While some exhibited a flavor of more

than one type (e.g., PROBLEM UNDERSTANDING with some DEVISING A SOLUTION

interwoven), one type always dominated the other considerably in how much time was

spent on it in the discussion. Moreover, team members often would make it clear what they

needed out of a discussion (e.g., they stated they would like to have feedback on a proposed

solution they were presenting – REVIEWING A DESIGN). In cases where a discussion also

exhibited aspects of some other types of discussion (e.g., a team member who identifies a

problem with a design – ASSESSING A PROBLEM – and who also shares some ideas for how

47

to overcome the problem – DEVISING A SOLUTION), the participant stating the purpose

Table 4. Categorization of topic discussions (in alphabetical order) in terms of the purpose of the

discussion, together with which topic discussions are of each type.

Purpose of discussion Description Topics
Topics per
category

ASSESSING A PROBLEM

A new problem has arisen that must be addressed by the team, but
the problem is not well understood; the primary goal of the
discussion is to build a better understanding of what might be
transpiring, how serious of a problem it is, etc.

T15, T18, T40, T41, T42 5

AUTOMATING
ACTIVITIES

Discussion centers on automating inefficient activities or parts of
them (i.e., database upgrades, the destruction of testing
environments).

T11, T20 2

CLARIFYING A
MISUNDERSTANDING

Discussion centers on clarifying a question that arose concerning
some past decision about planning, the architecture, the code, or
deployment, and ensuring that everybody is on the same page; the
clarification may regard an internal misunderstanding by someone
on the team, or by someone outside the team.

T5, T39 2

DEFINING INTERNAL
PRACTICES

Discussion centers on clarifying, defining, and sometimes
documenting practices to improve the way the team handles
internal activities (e.g., documenting their practices, prioritizing
tickets).

T16, T22, T24, T25 4

DEVISING A SOLUTION

Given an issue—bug, deployment problem, newly needed
functionality—that is already well-understood by at least one of the
participants, the discussion centers on identifying one or more
solutions for how to address the issue (e.g., bug fix, process change,
proposed design).

T3, T6 2

GATHERING
KNOWLEDGE

A discussion in which the team focuses on providing one or more of
the team members with comprehensive knowledge and
considerations that they will need to discuss the topic with the
clients and/or executives in future; often focuses on complexity,
feasibility, potential risks, and so on.

T2, T4 2

MANAGING ACCOUNTS

 A discussion that centers on setting up accounts that the team
members need to, for instance, access specific environments, use
monitoring tools, development tools, or testing tools; sometimes,
participants describe the process that should be followed to set up
accounts, other times they execute the actions needed to set up the
accounts.

T1, T13, T19 3

MANAGING
COMPUTATIONAL
RESOURCES

A discussion about work that concerns steps to set up or clean up
environments (server instances) that the team members use to
work; typically, participants do not only discuss these steps, but act
on them during the meeting.

T12 1

PERFORMING A
POST-MORTEM

Discussing a prior problem to understand what went right, what
went wrong, and what the team could have done differently and
should do differently next time to improve the experience for
everyone involved; can concern process issues as well as coding
issues.

T9, T10, T21 3

PLANNING A FUTURE
MEETING AGENDA

A meta discussion in which the team engages in a discussion as to
what kinds of topics they should discuss in the next meeting; often it
is spurred by one member needing a topic discussed, but results in
an open conversation as to what else they might have ignored and
should tackle.

T26 1

PLANNING HOW TO
TRIAGE TICKETS

A discussion that centers on figuring out an optimal way to triage
long backlogs of tickets; it is not a ticket triage discussion, but a
prior conversation to define how they will go about it.

T45 1

REVIEWING A DESIGN
PROPOSAL

A team member brings a proposed design solution to the team with
the explicit objective to receive feedback and spot potential flaws
early, so to be able to refine the design before some developer (or
set of developers) is tasked with actually implementing it.

T7, T8, T17, T23 4

SHARING
INFORMATION ABOUT
FUTURE PROJECTS

A discussion that centers on providing information about future
projects. Sometimes informally, other times as a formal
announcement that includes important dates and milestones.

T14, T43 2

TRIAGING A TICKET

Assessing a ticket in the ticket management system (Jira) as to
where it falls in terms of its priority for the team to address it;
discussion typically considers severity of the issue, difficulty of
implementation and/or code changes, cost-benefit, and more.

T27-38, T44 13

 45

48

helped us in deciding the primary type of discussion, resulting in the mapping shown in

Table 4.

While closely related, the type of work and the discussion purpose are different. The

former is higher level, with the latter applicable in more than one of the types of work. That

is, a topic discussion may pursue a different purpose for the same type of work. For

instance, for T9 and T16 the kind of work was related to the team's internal way of doing

things (PRACTICE AND PROCESS), but the purpose of each of these topic discussions was

different. T9 centered on walking through a recent issue (PERFORMING A POST-MORTEM)

from which lessons could be learned to improve the team’s practice. On the other hand, T16

focused on documenting a formal way to perform a task (DEFINING INTERNAL

PRACTICES).

Across the multiple instances of each discussion purpose, I observed common

characteristics that together define the essence of each discussion's purpose. Below, I

discuss each of the 14 categories shown in Table 4 in more detail. I first show a list of

common characteristics of each discussion purpose. Then, I provide an example that maps

such characteristics to the context of a real topic discussed in the meetings.

T15 is one of the discussions in which the main purpose is ASSESSING A PROBLEM.

This discussion begins with P5 requesting to discuss an issue reported on the support Slack

channel. Someone from the support team reported that certain functionality in one of their

ASSESSING A PROBLEM
• Participants request to discuss a problem that has recently arisen.

• Not all participants are aware that this problem exists.

• The outcome of the discussion can be a diagnosis, or a plan to obtain more

information about the problem. The participants may also suggest to

delegate work to other teams.

49

products was not working. The excerpt below shows how P5 requested to discuss this

problem.

P5: It is very clear that when we worked on share feature, provider was a
recipient as well. [Inaudible] and it worked, … so I’m wondering when did it
break? And if it is broken, how come we didn’t, uh – we didn’t get any
notification …
P3: Anyone know about this? Broken provider sharing?
P5: Yeah, the [inaudible] is going on the support channel. [name] has asked.

The excerpt does not show it, but a formal ticket reporting the issue had not been

created yet. Note that P5, who requested to discuss this issue, did mention that the

problem had been reported recently, via a Slack channel. Also, note that many participants,

including some of the key internal stakeholders, were not aware of this problem.

P5 shared her screen with an instance of the system where the issue could be

reproduced to demonstrate it. After demonstrating the issue several times, one of the

architects mentioned a number of possible causes. The excerpt below illustrates.

P2: It could be a bad user experience, I guess. So, that – I mean, it could be
actual defect. It could be, uh, user experience, too. It could be, um, bad
configuration, which is another user experience problem, or maybe a training
problem.

The outcome of this discussion was delegating the issue’s diagnosis to the support

team. The architects concluded that it was too early for them in the process to diagnose

what exactly the problem was because the causes could be many. Their advice was to let

the support team work on this issue a few more, so that they could run tests to potentially

discard a wrong configuration or a training problem as the cause. They also advised P5 to

wait for the support team to submit a ticket to engage in this issue.

50

In T5, P10 requests to discuss a misunderstanding between two external people (no

team members) that was going on in a Slack channel. The external people requested that

someone from the development team clarify whether or not an envisioned solution could

go through the public Internet. The excerpt below illustrates.

P10: Hi team, good morning. So, I was listening to all of you, uh, patiently,
[inaudible] and then, uh, because this is all – I mean, it is almost in end of the
meeting. I – I just wanted two minutes. Uh, [P3], uh – uh – the reply which we
got from [person name 1], uh, on that third-party – MC – MC, channel, right?
Uh, so, shall I – shall I mention the same, uh, you know, to, uh, [inaudible]?
P3: I mean, the only – the only thing I’d – the only thing that gives me
hesitation is [person name 2] wrote in bold, “MC will not connect to public
internet.” What [person name 1] said is, “It will be secure over SSL,” which is

connected to the public internet.    
P10: Yeah.
…
P2: It was Slack – on our Slack channel. I was looking over at [person name 2]’s
response. It looked pretty good, except for the public part.    

In the subsequent discussion, the architects determined that neither of the two

external people was completely right or wrong. Instead, the right approach was a

combination of both proposals: connecting the MC channel to the public internet, but over

SSL. The architects then guided P10 in what he should reply on the Slack channel to clarify

the misunderstanding.

CLARIFYING A MISUNDERSTANDING
• An internal misunderstanding among the team members or between the

team and external people exists.

• The discussion centers on clarifying the misunderstanding.

• The outcome of this discussion is an improved understanding that the

participants sometimes share with external people.

51

T25 is an example of a discussion focused on DEFINING INTERNAL PRACTICES.

Before this discussion, the key internal stakeholders defined a matrix to evaluate the

priority and scope of tickets during ticket triage sessions. They had temporarily called it

“the quadrant”, though they were still unsure about using that name. The architects

presented the matrix to the rest of the team on behalf of the product owner (P1), who was

not present during this meeting. The idea was that, from that day forward, everybody

ideally should use the matrix to systematically decide the priority and scope of tickets. The

excerpt below illustrates how P2 introduced the matrix to the rest of the team. Then, P3

explained the motivation behind the matrix and how they should use it.

P2: … Um, P1 wanted us to look at this – it’s no longer really a quadrant. Um, I
don’t know. What – what do you guys call this? A, uh…
…
P3: … At least then when we look at a ticket, we can say is this a small ticket or
a large ticket? What’s the general scope of the ticket? Do we wanna allocate a
lot of time to it or a medium amount or just a little time? And then in that area,
priority from highest to lowest, right? So that, when you go to here, you can say,
okay, is there a – oh, here, look. Here’s a – here’s a small scope, nice to have that
we can pull in because we’re out of – you know, all we have are these large
scope tickets left to do, right? And we don’t – you know, we don’t have the
bandwidth to do a large scope. So, let’s grab a small scope.

Figure 3 shows what the matrix looks like. Note that the matrix juxtaposes priority

(first column) and scope (other column headers). The items in the matrix cells are all

DEFINING INTERNAL PRACTICES
• Participants seek to standardize the way certain activities are handled.

• Sometimes, the participants use the meeting to brainstorm ideas towards

defining a practice. Other times, they use the meeting to present practices

previously worked out.

• The outcome of the discussion is the establishment of a new practice that

all team members should follow.

52

tickets and their associated metadata (e.g., id, summary, status, resolution, points,

assignment).

As one example of a discussion that seeks to AUTOMATE ACTIVITIES, in T11 P2

shared a concern about how the team members were creating environments and

deployments for testing. P2 explained that it was important that developers destroy testing

environments when these are not needed anymore because all these environments cost

money to the company.

AUTOMATING ACTIVITIES
• Participants identify an activity performed on a regular basis that is

executed inefficiently (e.g., it takes more time than it should, it costs the

company more than it should).

• All the participants brainstorm ideas to automate the activity, or at least

part of it.

• They sometimes search for information needed to evaluate the cost

benefit of automation, or to validate if the ideas proposed to automate the

activity are doable.

• The outcome of the discussion is the early design of an automatic process

to perform the activity or part of it.

Figure 3. The matrix to evaluate the priority and scope of tickets.

53

P2: … Um, one other item I wanted to bring up on this call, is, uh, I just wanna
make sure that when environments and deployments are created for testing
that they’re – [Crosstalk] – within a timely manner. We’re finding a lot of like
orphaned deployments and a whole bunch of ground ups and all kinds of stuff.
Those all cost money. I think we have seven ground ups running right now. And
the [inaudible] cost alone is $800.00 a month. So, we’re gonna start kind of –
just sorta think of ideas to kinda shake that down, like fewer ground ups, um.
Like what features do we need to add to ground up to maybe have one ground
up for Dev, one ground up for Prod, or – and how do we ensure that? Cause
we’ve found some deployments that are pretty old and some old environments
that have been around for a bit.

After describing the activity, and why it is inefficient, P2 proposed to automate this

cumbersome task by defining a “time to live” for testing environments so that these are

auto-destroyed two weeks after being first created. Other participants chimed in to

consider and argue the proposal from various angles. P3, for instance, raised the point that

the approach should be integrated into the software they use to handle deployments.

P2: And most of those should’ve only lived two weeks max. So, maybe we should
have like a time to live.
P1: Yeah.
P2: Self-destruct after two weeks.
P1: Is that possible?
P3: That’s a great idea especially if it’s integrated into [name of the software
they use to handle deployments], right?

Then, P2 looked at examples of auto-destruction timeframes set in other tools (e.g., Redis,

EC27, RDS) to assess what would be a good default for the auto-destruction of the

environments created for testing, and how they could configure such auto-destruction

automatically. Notice P3 also engaged in this conversation.

P2: So, like this – this [inaudible] has been running since [date]. I don’t it
it’s…these – this is, uh, R3X large, so it’s probably like $200.00 a month or
something, um. Some of these like, I don’t know [inaudible].
…
P3: Are you looking at Redis?

7 Amazon Elastic Compute Cloud is a part of Amazon.com's cloud-computing platform, Amazon Web Services, that allows users to rent

virtual computers on which to run their own computer applications.

54

P2: Yeah.
P3: It’s just – it’s – it’s – that – that—and – and we might be able to improve on
this. Every deployment creates a little Redis instance and you talk – you
mentioned that on that – on that – is the – the page – the – the Confluence page
you were documenting. You might be able to change that. We just need a little –
it’s just a central place for key values for – for – for information about a
deployment.
P2: Oh, here’s all the – this is what I was looking at. Why was I thinking Redis,
but –
P3: With EC2, yeah, it’s run on EC2, yeah.
P2: Yeah. I think it has RDS as well. I don’t know. So, let’s start page.

The outcome of the discussion was an improved automatic way to handle this task, as

exemplified in the following excerpt.

P3: And that’s why – that’s why I love that idea of – of the – of the time to, you
know, self-destruction. You go into ground up. And if there’s only one ground
up, it’s all managed right there. First of all, you’re gonna see all of the
environments. Anything we – you decide you need to create and wanted to run
some tests, it’s automatically gonna have [inaudible] of – of like three days. And
you should have to go in there and say, “Give me another day. Give me another
day. Give me another day,” if you want it to stick around. Otherwise, boom, it
autodestructs.
P1: Yeah. I like that idea, too, ‘cause like so far, we just have it on the release
checklist, and I ask – like I as – I’ll ask every few weeks or so. And I get the same
[inaudible]. Yeah.

DEVISING A SOLUTION
• At least one participant fully or near fully understands the issue to be

discussed (e.g., bug, deployment problem, newly needed functionality).

• Participants develop a collective understanding of the issue by asking

questions and clarifying doubts.

• Participants engage in design deliberation: they propose alternatives,

raise design issues, and evaluate scenarios. These episodes in the

discussion are typically long.

• The outcome of the discussion is not a final design, but design directions

that need further investigation (e.g., a ticket to work on a proof of concept,
the skeleton of a process, a list of requirements).

55

T6 is an example of how participants work on DEVISING A SOLUTION. During its

discussion, they seek to design a new performance testing strategy. P3 shared the kind and

volume of the performance testing that they had already performed. P3 also explained

what, in his opinion, should be an expanded scope and objective of performance testing for

their system. The excerpt below illustrates how P3 kicked off this discussion.

P3: Yeah, so – so, I just want to – breaking it down to the three things that
we've got. Or two things that we've got, and one that we've… working on. And
the three times – three kinds of performance test. One, a component
performance test. Uh, thanks to – to our ex-colleague [person name], uh, we
have a performance component test.
…
Um, and so, we've got an example, and, uh, I think that – it’s already running in
the – it’s already running in the pipeline. All we have to do is, um, write more
tests. So, use that as an example, to write more tests.
…
Uh, the second kinds of tests that we have are sort of like load and stress tests.
These have been generally ad hoc tests that we've put together. Um, and done
in such a fashion as to prove to ourselves that something is, uh, something will
handle the load, or perform under certain conditions, right?
…
Um, so, that’s second level. And then, a third level would be performance
regression tests in an automated sort of, um, way, with a sort of full system –
full system testing.
Um, so, that being said, we have A and we have B, and we've got versions of C.
So, I would propose that for this baggle, that we do what we can to get our, uh,
uh, version C into our release process. As long as regression tests are really, I
think this an important part for our release process, where we review the
performance of the system before we release it.

After P3 provided the topic’s introduction, P4 (quality control engineer) chimed in to share

some concerns about it. P4 illustrated these concerns with hypothetical scenarios. The

excerpt below shows one of P4’s contributions.

P4: Well, the one thing that I have a question on is, where are we doing the
testing? Um, if it’s still inside of, uh, an environment sped up by Jenkins? Is it
gonna be done on a headless browser? Um, you know, so, like, my only concern
with, let’s say, performance testing – performance testing, um, like components
that – like render time, for example – is what does the data look like, right?

56

Uh, what’s being rendered? And then, what’s the environment that we're doing
it in? Um, you know, because let’s say, for example, like our patient summary.
We're expecting it so you get one second render time, right? But that’s many
different components, essentially, with they're all running with the data size.
And then, also, it may look different from the client’s perspective, because
they're on a different box, too. So, I think we have to kind of keep up with if –
…

The participants also discussed what should be the goal of performance testing. P3

explained that the amount of data and traffic of each customer would impact performance,

and therefore, the processing time will be different for each customer. P3 proposed that the

goal of performance testing should not be a fixed processing time, but a comparison of how

the system behaves before and after a new release, and that this comparison should be

made with each client. They should always ensure the system’s performance is never worse

than before a new release. P3 used one of the test examples already developed in Selenium8

to illustrate this idea.

P3: Right, right. And everybody wants to say, “Oh, I've got this thing,” like it has
to render in two seconds. So, therefore, write your test to prove that it renders
in two seconds. What I'm trying to say is, here, we can – you can log in and click
on the button, and see whether or not it’s good enough. But right here, what I
want to be able to do is to make sure it doesn’t get worse.
P4: Sure, right? And I – I think that’s respectable.
P3: Yeah. I mean, so, so, like the – the test I have, you know, the test that I have,
that is running Selenium, and it’s recording the render times, it’s against fake
data, right? These are not necessarily, you know, uh, not necessarily modeled
after exactly what we're gonna see in production. However, it’s gonna stay the
same, you know? And it’s not trivial, right? There are hundreds of clinical
messages – clinical items for these patients, right? Not thousands, not five or
ten; but some relatively constant number. So, when that renders, you know, it’s
gonna be a value which may – it is sort of representative of what they're gonna
see, but it won’t – but the important thing is going forward, does it stay the
same? Do we make some changes that causes it to get worse? And I think that’s
a pretty – you know, pretty good goal.
…

8 Selenium is an open source umbrella project for a range of tools and libraries aimed at supporting browser automation.

57

At the end of the session, P1 urged the team to summarize what they discussed and decide

on which components they should begin to work with. Note the relevance of the product

owner's intervention in summarizing what has been discussed. Otherwise, the discussion

of low-level technical details could have continued until the end of the meeting. At the end

of the meeting, P1 also created some tickets. One of them focused on building a proof of

concept (PoC) for component C. The excerpt below illustrates the summary of the whole

discussion.

P1: So, are you saying that all we have to do is take what you wrote, point it at
perf prod, and say we’ve met our goals for this baggle? Or is there other stuff?
P3: I – we just have to work out exactly – yes.
…
P1: Okay. So, I know we only have like 18 minutes left in this meeting, and I still
feel kind of fuzzy on – on what the – like plan to be for this baggle, and I feel
like, um, it’s – I'm trying to listen and understand what you guys are saying, and
grab the actionable pieces; and what I had so far was, like, take what you
wrote, [P3], from site, and [inaudible] for prod, and then – and the next step is
to figure out a way, um, like to be able to incorporate our performance test into
our really – or, whatever, uh, stage of the process we – we do for coding and
releasing. Um, I don’t know if – is that – is that – does that summarize it? Am I
missing anything?
P3: Yeah. Yeah, you know, it’s – perfectly summarizes it.

GATHERING KNOWLEDGE

• A participant shares external information about a project that may

influence the context in which the software is or will be deployed.

• The key internal stakeholders discuss hypothetical scenarios about the

software being used in the new context.

• During these discussions they typically share prior information,

sometimes from their experience and knowledge of the codebase, other

times from investigating what they need to know by checking server logs,

monitoring tools, or performance graphs.

• The outcome of the discussion are factors that are relevant to make furher

decisions about the project.

58

T2, for instance, is an example of a conversation that seeks GATHERING

KNOWLEDGE. P1 (product owner) shares that one of their customers is planning to

onboard additional users, which would potentially double the number of calls to one of

their APIs. Then, she requests help from the architects to foreshadow whether performance

issues may arise due to the new workload.

P1: So, uh, [customer name], uh, [company name 1] owner, reached out to me
today, and in the next few months they were thinking of onboarding a few
more, um, of their clients, which would potentially double the number of calls,
um, sending it to [API name]. Are there any concerns?

P2 then brought up a hypothetical scenario in which the new workload may require an

increase in the size of the database of the customer, which eventually may generate

unusual charges in terms of computational resources. He explained to P1 that increasing

the database size is not difficult, though the monthly charges paid for database services

would increase.

P2: What if they – what if they increase the size of their database? We’re
already heading 90% during –
P1: Oh, they are?
P3: That’s okay. That’s not hard to increase. It’s just –
P2: Yeah. That’s not hard.
P3: It’s – it’s a five-minute downtime – fifteen-minute.
P2: You just – gotta pay –
P1: Okay.
…
P4: I think we should charge those guys. [Laughs] Get some of the sweet [client]
money.

The product owner became particularly concerned about it and shared a second piece of

external information (someone asked her to keep track), which led the architects to explain

how resources are charged to customers.

P1: Well, [employee name] has asked me to keep track of the cost difference,
um, between, you know – We know when they went live with their workflows
and, um, you know, when they – when they weren’t live.

59

…
P2: Um, well their costs won’t change because, um, we haven’t changed the size
of their database. So –
P1: So, we’re not paying for – a small portion for each – for any of the
transactions that they’re sending?
P3: It’s – that’s really hard to do.
P2: You can’t tell. [Laughs]
…
P2: It’s shared across the entire system, so everyone shares and then –

Then, the product owner proposed a second hypothetical scenario trying to figure out a

way to track the additional cost that this customer may generate in terms of resources. This

scenario led the architects to engage in a bit of investigation, with P3 looking at usage

graphs to check the monthly resource usage of this customer.

P1: Sure. But if we see an increase in the month of – like, during the month of
March, then we can confidently attribute it to the workflows that [company]
turned on.
P2: Well, [company 2] also doing more. They’re turning on CDA feeds. Um –
P3: It’s these little, short spikes, which is probably a vacuum getting kicked off
or something.
…
P2: Yeah. And maybe we could just even out those spikes, and then we wouldn’t
have to increase their – their database.
P3: By a spike – by a spike, I mean, like, a 15-minute spike. That’s [inaudible] .
Yeah. You should look at the graph. You should look at their graph. It’s like –
[inaudible – crosstalk].

The eventual takeaway of the discussion was that the product owner had sufficient

information to continue talking with the customer about the potential consequences of

increasing their usage.

60

As an example of a discussion focused on MANAGING ACCOUNTS, in T13, P5

requested the creation of additional accounts to access a monitoring service tool for the

team members in India. The excerpt below illustrates.

P5: Uh, I have a request. Uh, we already spoke about this, uh, the Cognito9
access. I think we have two accounts in the [India] office, but I feel it’s not
enough. Uh, yesterday we struggled a lot because people who had, uh, access,
they went – I mean, a little bit quickly, and the people who were actually
working, they didn’t have access to an account. So, is it possible to provide at
least one or two, um, access, maybe to [Name] and, uh, to [Name] or any of the
people?

The participants spent several minutes discussing which team members needed accounts,

and what roles should be granted to them. P2 mentioned he could provide accounts with an

operational role right away. One of the managers (P6) then inquired about the difference

between this and other roles available (read only, administrator).

P2: So, everyone can get a access – uh, access to the production account, I
guess? Or choose some people. We can give them read only access, and then we
can give them operational. read only is obviously read only, but operational
allows them to, um, configure Cognito.
P5: Okay.

 …
P6: [Crosstalk] Why don’t you plug in the entire team then, [P2]?
P5: Yeah.
P2: I can request the entire team. It just has to go through –

9 Amazon Cognito provides authentication, authorization, and user management for your web and mobile apps.

MANAGING ACCOUNTS
• The developers make or follow up on an account request.

• They discuss the request details (e.g., which team members need accounts,

what role they should have, who should provide approval).

• If creating the accounts is under control of the key internal stakeholders,

they create them during the meeting; otherwise, they walk participants

through the process to obtain the accounts.

• The outcome of these discussions are accounts with the permissions the

developers need, or detailed guidance on how to obtain them.

61

P6: Let’s do that. I don’t want to piecemeal this then.
P2: You wanna give them operational or –
…
P6: Out – outside of the operational if, you know, people are gonna get involved
in, uh, doing any kind of production support, that’s the minimum required,
right?

Based on the information provided by P2, the manager decided that an operational role

fulfilled what the developers needed to do and approved creating the accounts for them

with that role. P2 created these accounts right after. He also shared that, given that the

operational role is under the control of their team, it was the best choice because they

could edit the accounts' role and permissions as needed.

P2: Operational only allows you read only and to modify Cognito. It’s our own
role though. We can change that role. Um, I would be hesitant to give everyone
admin because –
P6: Not admin. So, let’s do operational, and let’s figure out what we’re doing
based on the support needs whether we need to add more privileges to the
operational role.
P2: Yeah, and that is controlled by us. The other two are controlled by, uh,
DevOps? So, we do have wiggle room with operational to add additional roles
and privileges as – as we decide, so I think that – that’s reasonable.

In T12, the conversation centered on MANAGING COMPUTATIONAL RESOURCES. P6

brings to the discussion the revision of various unused server instances that were running,

costing money to the company, and that nobody was using nor taking the time to destroy.

Revisiting these servers and revising whether they were still in use was an external request

MANAGING COMPUTATIONAL RESOURCES
• A housekeeping task exists that the team has ignored for some time and at

least one participant inquires about it.

• The participants discuss the perils of doing the task at that moment. If no

major roadblocks are anticipated, they attempt to take care of the task

during the meeting.

• The outcome of the discussion is the completion of a housekeeping task.

62

from another team. P6 inquired about why this task had not been handled. Thus, P2

decided to investigate it during the meeting.

P6: … The email that came out from I guess [other team] … regarding shutting
down, uh, the unused instances and so from that list provided, have you done
anything of shutting down the ones that we – that were not used?
[nobody answered]
P2: Guess that’s a no. Let’s see.

P2 opened the list of servers that the external team shared with them to review the status

of each server. The architects and the manager then discussed the use of specific servers

and whether they should keep them. Notice P6 considered several angles of the team's

internal organization in an attempt to reduce the number of servers that they used.

P6: So, which ground up is, uh, [Team in India] using? Are they using the
[instance name1] one?
P3: We’ve got like three or four. There’s like [instance name 2] and…the
[instance name 3]?
[Crosstalk]
P6: You need three for two teams?
P3: Yes.
P3: Yeah, I mean, so for example, we’ve got [instance name 4] and [instance
name 5]. We can get rid of ground up [instance name 5]. We don’t need to have
two, right, [inaudible].
P6: What would it take for us to, I guess, trim down to one?

P6 then asked questions to the developers present in the meeting to clarify what server

instances were indeed needed.

P6: So – so, I guess the question then [P8] for you guys is why do you need three
environments, [instance name 2], [instance name 3], and [instance name 6]?
P8: We can manage with two but we created three because we have multiple
demos so we will only have [instance name 2] and [inaudible].

Across the ten meetings, only one topic was classified into this category. MANAGING

COMPUTATIONAL RESOURCES is an activity they may not often discuss during the

meetings. However, given that all people who may know whether a server was still

63

required were present at the meeting in question, the manager decided it was a good

moment to inquire about it.

The discussion of this topic (T12) was intertwined with another discussion (T11) that

focused on defining a strategy to create testing environments in an efficient way (this is

discussed in Section 3.9 and shown in Table 6.

T9 is an example of a discussion in which participants PERFORM A POST-MORTEM.

This kind of discussion begins with somebody providing an overview of a past problem and

how it was handled. In topic T9, for instance, P2 shared that the problem was that a

database upgrade script failed during a migration. They considered this kind of issue a

blocker because there was no easy way to roll back to the previous version, yet the upgrade

to the next version could not be completed. This situation put the team in an uncomfortable

position because it could not use an automatic process to make the upgrade anymore and

needed to instead execute manual SQL commands to solve the issue, which they know is

risky because many unforeseen issues may arise. Later in the conversation, P3

complemented the overview of the issue by explaining what caused this problem: the script

was using the same connection to open a database cursor and to do some updates, which is

a bad programming practice. The excerpt below illustrates the most important parts of the

overview.

PERFORMING A POST-MORTEM
• The software architects provide an overview of an issue that was handled

in the wrong way.

• The software architects explicitly identify the actions that could be

improved.

• The outcome of the discussion are best practices and/or processes to avoid

similar situations in future.

64

P1: Could we also just give like a like, brief overview of what the issue is and
how I guess [inaudible – crosstalk] release.
P2: … So, on Friday I was upgrading everyone to the latest release, which was
255, something like that. … Um, so the – the database upgrade was failing,
basically. Um, so we created this ticket.
…
P3: And so, the way the script was written, it said, fetch all of the roles, and give
me 20 at a time. Open a cursor, and then I’m gonna do some work. But in the
script, it used the same connection to open the cursor that it did to do some
updates.

Then, the architects explicitly identified the actions that could be improved when a

similar situation happens in future. In the above example, P3 mentioned the bad

programming practice. This participant also mentioned this bad programming practice was

not new, and that it had happened with other developers in the past. P2 then urged the

team to define a process to handle future instances of such misuse of the database cursor,

which he believed was another important improvement they could work on, given that the

issue kept recurring and may well appear in future again.

P3: So, this is just a normal snafu that often gets us when we open up a cursor
and don’t create a second connection to do work. And it just so happened that
this migration script suffered from this.
…
P2: so the ticket was created, but it still hasn’t been fixed. So, we still cannot do
any further releases …– is there anything that we could have done to have it
fixed by now …

After stating what could be improved, the stakeholders defined and explained a new

best practice to avoid this kind of poor programming in future, and worked on defining a

process to handle blocker issues that break the build. These two points were the outcome

of this discussion. The excerpt below illustrates how P3 explained the new best

programming practice, and P2 proposed some ideas to define a process to handle blocker

issues.

P6: So, do we have anything in terms of a best practice of –

65

P3: Yeah. Whenever you open a cursor, that cursor has to be dedicated, and
there’s no – I mean, that connection has to be dedicated to that cursor. And the
biggest problem is it won’t break until you’re in a situation where, you know, it
returns multiple pages, and then all of a sudden it explodes, and dies– in a not
so obvious way. Right? It just doesn’t work. I think
…
P2: Would it make sense to create a [inaudible] ticket next time for tracking
the – the issue? Or should we just ping everyone, hey guys, we have a blocker,
please fix this ASAP? What would be the messaging?

T26 is an example of discussions in which participants PLAN A FUTURE MEETING

AGENDA. In this topic, P6 requested to schedule the discussion of Single Sign-On (SSO)

integration into their solutions for a next meeting. Given this was a new goal of the

company, P6 desired to clarify the expectations for the feature, the business rules, an

architectural plan, and the toolset they could use to implement it. The excerpt below

illustrates.

P6: So, can – for the next meeting, can we talk about the whole SSO? Because,
uh, there’s like a – a lot of questions going with [person name]. And I’m not sure
if, uh, we need to talk to [person name] or we need to decide first as – from an
SSO perspective. It’s, um, you know, SSO client, non-SSO client. Within SSO, how
do we secure APIs versus UI? And then what do we wanna use at the tool set?
To me, it seems like these should just be options from a configuration
perspective. And depending on what the client likes, we should be able to
configure and move on. So, I just wanted to have further discussion on that, and
we need to come up with what is that architectural plan or patterns, and that’s
what the system will support, right?
…

PLANNING A FUTURE MEETING AGENDA
• Participants request to discuss a certain topic in a next meeting.

• There is a brief discussion about the most important points that should be

discussed about this topic, and who should attend the meeting.

• The key internal stakeholders document this information (e.g., they create

an “Ask an Architect” question or they create a wiki page with notes).

• The discussion’s outcome is the formal scheduling of the topic’s discussion

for a next meeting.

66

At the end of the discussion that then unfolded, P2 added the question to the “Ask an

Architect” dashboard they will use for the next RSSMDM, with the team deciding to call the

topic “SSO next steps”. Then, the participants discussed important points that should be

addressed in this discussion. P2 actively documented these points in “Ask and Architect”.

The excerpt below illustrates.

P3: Okay, so should we create a topic specifically around – what would we call
this? SSO, uh – SSO…

 …
P3: SSO next steps.
P2: We can just – let’s just make it an “Ask an Architect” question first just…
…
P2: – I think part of the confusion is that, um, we only support some single sign-
ons. So, Okta and – what’s the other one? – Auth0 fully.
P3: I think – I think that’s part of – I think part of what we need to discuss,
right? – is what – what are the aspects that are preventing us from being more
generic and require – do you know what I mean? I – I – I think – I think a lot of
it is around trying to support basic auth, which I’d rather not do anyway.
P4: Right.
…
P2: Yeah, I think that’s the – that’s the main rub is that, you know, if you are a
user, you’re fine. You can use any single sign-on. But if you wanna use basic
auth, which is required for the API, then you need custom code. So, then we’re
writing custom code for every single sign-on that exists.

Across the ten meetings, only one topic was classified into this category.

As an example of the team PLANNING HOW TO TRIAGE TICKETS, prior to beginning

a ticket triage session, P1 takes a moment to discuss high-level aspects of the tickets they

PLANNING HOW TO TRIAGE TICKETS
• A preliminary discussion in which participants briefly look at large

backlogs to figure out how to start a triaging session.

• The participants propose high level groups to classify tickets, define the

goal of each group, and more.

• The outcome of the discussion is the articulation of the goals for a future

ticket triage session, and a strategy to work on a subset of the tickets.

67

are about to triage (T45). Participants exchanged ideas about how and where to start. The

excerpt below illustrates.

P3: Yeah, sounds good. How do we want – how do we want to do that
prioritization – Do we want to have a manual, like [P12] suggested, the top 20?
Start going through the list and see what makes it, makes the cut.
P12: I’ll make the list tomorrow. Maybe today you just go over the themes and
just tell like what do you want from our prospective. You can say I want an
alert, any services are stretched to its maximum limit, something like that. An
alert based on, ah, um, something like Redis disc usage. You know, that could be
a lower priority than the alert that you wanted to prioritize. You know, this is a
lengthy list. Like more than – I think more than 100. It’s definitely more than
100 items.
P1: You did mention when you first introducing this list that you think we
should tackle the monitoring section first. Is that correct? Like if we were going
to pick one of these sections, you –
P12: Yeah. I really – these are easier problems to solve. And some of them are
really important to solve, as well. They do not require much coding. We just
already have the data available somewhere. You just need to put it in a
different place where someone can access it or alert them based on something.

Note the team does not yet have an efficient way to go over it. P1 suggests starting with

what P12 believed should be prioritized. After listening to the information that P12 shared,

P1 defined the goal of the first group of tickets, and a strategy to go about them.

P1: Okay, so how about we just take maybe our goal for [baggle name] baggle
is to improve our monitoring, mass produce tickets here, and, um, and then, ah,
in addition to some of our other PTR work. So, maybe we can, in this meeting,
like, as a group, go through this list and ask questions, discuss what each ticket
might entail. And then pull like the top X number of tickets from this and put it
in our infrastructure epic.

Across the ten meetings, only one topic was classified into this category. This

planning typically occurs prior to a ticket triage session that might require more than one

meeting to be concluded. Note that even though coordination did not take the whole

meeting, it did take some time.

68

In T8, for instance, P5 shared a design for some new functionality that had been

requested. P5 did so by sharing the requirements and some technical concerns about what

was possible in terms of the components already existing, and that must be modified.

P5: … We’ll start with the results model story where the expectation is that
currently, we do not support CD mapping. So, we have to support CD, um,
messages for results, and also, um, current mapping for pathology is incorrect.
…
So, before we take a decision, I want to check whether – because it will involve
separate privileges. And maybe, I just wanted to ask this group, will it impact
anyone if we go with the separate, uh, placeholder here for re – results?

In addition to providing an overview of the proposed design, P5 shared specific concerns

about the design, some related to the design proposing to use separate privileges. The

excerpt below shows the answers that some of the key internal stakeholders provided.

P2: You can use the, um – you don’t need new privileges or anything. You can
use the same API and add a new section. For example –
P5: Mm-hmm.
P5: – [module name 1] and [module name 2]. I believe all – and search settings,
those all use the same API. They all use the same privilege.
P4: Mm-hmm, yeah.

Note that P2 (an architect) clarified that separate privileges are not needed and pointed out

modules in which a similar implementation was followed. P4 (quality control engineer)

confirmed the information that P2 shared.

The outcome of this discussion were multiple notes to refine the design before

implementing it. One of them, for instance, stemmed from the information that P2 shared

REVIEWING A DESIGN PROPOSAL
• One or more participants share an initial design document.

• The rest of the team shares concerns about the design, which sometimes are

evaluated through hypothetical scenarios.

• The outcome of the discussion are suggestions to refine the design.

69

about the privileges and the code snippets the developers from India could look at to follow

the same approach to handle privileges.

Two times the topics discussed centered on SHARING INFORMATION ABOUT

FUTURE PROJECTS. In T14, for instance, P2 shared an update about a new project in which

the team was expected to participate. This information came from an external meeting that

only P2 attended. However, it was important to share the information with the rest of the

team so that they could prepare for it.

P2: Um, cool. Um, [Confidential] update, I just got this today. [person name] is
always very bad at planning ahead, I guess. I have a meeting tomorrow at
10:00 to go over next steps. Um, it looks like we’ll be doing planning, essentially.
Um, obviously it’s up to the team to come up with shard sizing and endpoints
and all that stuff, so what we’ll probably start doing is creating Jira tickets for
what we had planned and getting those together. Um, so, we’ll see.     
Sounds like they want to plan a full year, which isn’t really how we do things, so
it is what it is. We’ll create a backlog, and we’ll hope that we can finish all of it
and, you know, see how it goes. So –   

In the below, note how P7 chimed in to clarify whether they already had part of the

work done, and how P3 offered his support in handling some of the activities. Even

though some coordination takes place, the main purpose of this conversation was to

share the status of the project with the team.

P7: You – you do have, um, high level shard sizes, right? From the last meeting?

SHARING INFORMATION ABOUT FUTURE PROJECTS
• The team shares external information about future projects.

• Sometimes they make formal announcements about activities that will

happen in other meetings. Other times, they share information informally,

to create awareness about important milestones coming up.

• This discussion does not have a particular outcome; it is merely

informative. However, participants may foreshadow activities in which

they could assist.

70

P2: Uh, those were, like efforts – I have, like, um, amount of effort, so we didn’t – I
don’t know if I can translate effort to shard sizes, but I don’t need – I don’t think
we need the sizing tomorrow. It sounds like we’re gonna talk about sizing, so I’m
hoping to have some time to create the Jiras and then maybe get the team’s input
on some of that stuff, so that’s my plan anyways. We’ll see what [person name]
says.   
P3: Let me know. We can – we can also work on getting all of those on the PTR.
P2: Yeah. Probably need to do that.

An example of a discussion centered on TRIAGING A TICKET is topic T37. The

participants briefly discussed a ticket to build a dashboard with application metrics during

this discussion. This discussion began with P12 recapping the ticket’s background. While

doing so, he shared the screen with the ticket’s information in Jira as backdrop. P1, the

product owner, quickly reminded the participants of the goal of the conversation: defining

the ticket’s priority.

P12: Something that has been discussed before, if you wanted to track our
applications metrics so that we can take better direction on how to shape them,
I think there’s enough information here. It’s probably assigned to [person
name], I think, yeah, it’s assigned to [person name] and then they ask me for
some information and then I give them.
P1: Okay. So, does the group agree that this is still a must have? I’ll wait – I’ll
wait for that answer.
…

TRIAGING A TICKET
• A ticket with some information exists, but it needs to be refined,

prioritized, and possibly assigned.

• The participants quickly recap the ticket’s history (e.g., what it is about,

why it was created, to whom it was assigned).

• A brief design discussion takes place to define the goal and scope of the

tickets. The goal of the discussion is to define the business value of the

ticket, so that they can decide if it should be implemented soon.

• The participants update the ticket’s information in parallel (e.g., business

value, goal, description, the title).

• The outcome of this discussion is the ticket’s refinement, and potential

scheduling.

71

After reviewing the tickets’ information, the architects raised some questions about the

ticket’s goal. P2, for instance, pointed out that focusing development on detecting bad code

would have more value for the development team. P3, on the other hand, was more

concerned about implementation details. For example, he wanted to know which

technology they could use to build the dashboard.

P2: What do, um – I guess, what does that afford us? What does it – allow us to
kill unhealthy containers? Is that the main rev?
P12: Yup. That’s it.
P2: Or does it also, um – is that the main outcome? Or do we also get more
insight into when we deploy bad code? I’d be more interested in the bad code, so
we know, you know, this release is bad, pull it back.
P12: Right – Right now, this is just some counters and then I guess timers, like
within how many 99 percentile completed. And then node .js event flag to
detect anything code.
P3: Are we going – Do these get – Where do these – Are we going to record
them to Datadog10?
P12: Right now – this ticket is for collecting only. Then we have the option of
either sending to Datadog or I’m proposing using something called
Prometheus11. That will be part two or step two.
…

The design conversations held in the context of ticket triage discussions are typically short.

Overall, design is discussed at a high level, and details are only addressed when critical to

define the ticket’s priority. Once the ticket’s priority has been decided, the participants may

also assign the ticket to a sprint or baggle. The product owner typically makes these

decisions based on the input that the architects provide. All this information is captured in

the issue tracking system (Jira in this case), which is continuously shared on-screen during

the session so that other participants can observe and correct what the person driving the

tool was capturing or updating. The excerpt below illustrates.

10 Datadog is a monitoring and analytics tool for information technology (IT) and DevOps teams that can be used to determine

performance metrics as well as event monitoring for infrastructure and cloud services.
11 Prometheus is a free software application used for event monitoring and alerting.

72

P3: I mean, I like it. I like, you know – I think – I think it’s – It will be very
valuable. Um, I’m not sure if it is a top priority for this coming baggle.
P12: I feel that.
…
P1: Can we, if that’s the case let’s remove from must have and high priority
labels. Um, and then maybe also that [person name] ticket, so that they don’t,
ah, yes. We pick a must have ticket over this one. Cool. Thank you.

3.7 The relationship between the kind of work and the purpose of the discussion

As explained before, the kind of work is a high-level categorization that classifies the

work that the participants addressed (see Section 3.5). The purpose of the discussion (see

Section 3.6), on the other hand, is orthogonal, and typically fits with more than one kind of

work. Table 5 shows the relation between the kinds of work addressed and the purpose of

Table 5. Relationship between the kind of work done and the purpose of each discussion.

 ADAPTATIVE CORRECTIVE PERFECTIVE N/A
 (7/9) (4/7) (17/22) (17/28)

Purpose of the discussion
 A

R
C

H
IT

E
C

T
U

R
A

L

R
E

-D
E

SI
G

N

IN
T

E
G

R
A

T
IO

N
 O

F

N
E

W

F
U

N
C

T
IO

N
A

L
IT

Y

P
E

R
F

O
R

M
A

N
C

E

SU
P

P
O

R
T

 C
A

SE

IN
F

R
A

S
T

R
U

C
T

U
R

E

T
E

ST
IN

G

A
D

M
IN

IS
T

R
A

T
IV

E

T
A

S
K

C
O

O
R

D
IN

A
T

IO
N

A

N
D

 P
L

A
N

N
IN

G

P
R

A
C

T
IC

E
 A

N
D

P

R
O

C
E

S
S

Total
ASSESSING A PROBLEM 1 3 1 5
AUTOMATING ACTIVITIES 2 2
CLARIFYING A
MISUNDERSTANDING 1 1 2
DEFINING INTERNAL
PRACTICES 1 3 4

DEVISING A SOLUTION 1 1 2
GATHERING KNOWLEDGE 1 1 2
MANAGING ACCOUNTS 3 3
MANAGING
COMPUTATIONAL
RESOURCES 1 1
PERFORMING A POST-
MORTEM 3 3

PLANNING A FUTURE
MEETING AGENDA 1 1
PLANNING HOW TO TRIAGE
TICKETS 1 1

REVIEWING A DESIGN
PROPOSAL 3 1 4
SHARING INFORMATION
ABOUT FUTURE PROJECTS 2 2
TRIAGING A TICKET 13 13
Total 1 5 1 4 13 4 4 5 8 45

73

each discussion. The value in each cell represents the number of topics respectively

classified into that respective combination of work and discussion purpose.

In terms of maintenance work (ADAPTATIVE, CORRECTIVE, PERFECTIVE), the

participants held discussions in which six different purposes came to the foreground:

ASSESSING A PROBLEM (4 topics), CLARIFYING A MISUNDERSTANDING (2 topics),

DEVISING A SOLUTION (2 topics), GATHERING KNOWLEDGE (2 topics), REVIEWING A

DESIGN PROPOSAL (4 topics), TRIAGING A TICKET (13 topics).

The team most often engaged in ASSESSING A PROBLEM (T15, T18, T40) when issues

with deployed instances of the software arose (SUPPORT CASES). ASSESSING A PROBLEM

was also the goal of one of the discussions when the participants worked on INTEGRATING

A NEW FUNCTIONALITY (T42) or on creating the tests cases (TESTING) required for a given

implementation (T41).

Concerning shaping the strategy of upcoming projects, the participants held

discussions with the purpose of GATHERING KNOWLEDGE. Two examples are T4 (the client

wishing to create their own IdP solution, with the product owner needing to talk to the

client about not doing this but lacking technical knowledge that the team then provides to

her so she can effectively engage) and T2 (the company’s customer wishing to onboard new

users, with the product owner concerned about the computational resources that the new

workload may generate). Somewhat unexpected, another discussion whose purpose also

relates to strategy is TRIAGING A TICKET (T27-38, T44). The key internal stakeholders found

these discussions particularly useful in re-defining the goal and scope of improvements

they have had in their backlog for a long time, and that they desire to get done in an

upcoming release. As one example, the excerpt below shows the discussion of T29. P12 first

74

reminded the architects that this ticket was originally created to develop a dashboard with

monitoring information from EC2 for which they had the backend (information extraction)

already developed. At present, they typically review the monitoring information that the

routine extracts via a console. The discussion does not explicitly mention the word

“dashboard”, but the ticket shared on screen did show it. P12 also shared that having this

dashboard at first was important to monitor overloads that were occurring very often, but

since they added a cache to the application, the frequency of overloading issues decreased

considerably. Thereby, a dashboard to look at this information was not urgent anymore.

P3: What about the monitoring for [Confidential]?
P2: I think the most critical parts of our system.
P12: So, the thing is we already have the information [audio cuts out] EC2,
providing this console. But nobody looks at it. Usually, I look at it sometimes
when I suspect that the errors are because of [inaudible]. But since we added
cache, we have not seen this problem that much. So, that has been saving us.
P3: That cache was, ah, very good. Um, you know, this is such a critical part of
our system, I can’t see us doing away with it anytime soon.
…
P3: Yeah, the load balancer is just throwing – all the errors on the load
balancer, that was being caused by overloading it. Can we alert on it? Can we
make this an alert? [Inaudible – crosstalk] Let’s make this a must-have. Yeah.
Must have small. And then – and then say –
P2: Alert, as well. Not just – We’ll never look at it if there’s not an alert. There’s
too many dashboards.
P3:Yeah, and we get so much. Want to change the – the title to, you know, alert
for [Confidential] errors, something like that?

P3 then concluded that the problem with monitoring in regards to the current context was

that an alert to warn them when overloading occurs does not exist. P2 and P12 agreed with

re-defining the goal of the ticket to address that. P12 then re-wrote the ticket’s goal (and

actually also changed the ticket’s title) to configure an alert that detects and warns them

when an overload occurs, instead of developing a dashboard to display monitoring

information, which would be more complex and would take more time to develop.

75

Some of these maintenance discussions (e.g., DEVISING A SOLUTION, REVIEWING A

DESIGN PROPOSAL) align with the concept of design work because participants incur in

design deliberation more than anything else. For instance, when DEVISING A SOLUTION,

participants engaged in proposing alternatives for a significant architectural change (T3) or

in discussing what kinds of tests should form the core of a renewed test pipeline (T6). The

excerpt below shows a discussion that involves a design reflection toward DEVISING A

SOLUTION (T6).

P3: … the test I that I have, that is running Selenium, and it’s recording the
render times, it’s against fake data, right? These are not necessarily, you know,
uh, not necessarily modeled after exactly what we’re gonna see in production.
…
There are hundreds of clinical messages … clinical items for these patients,
right? Not thousands, not five or ten; but some relatively constant number. So,
when that renders, you know, it’s gonna be a value which may … it sort of
representative of what they’re gonna see, but it won’t … but the important
thing is going forward, does it stay the same? Do we make some change that
causes it to get worse? And I think that’s pretty good goal.
P4: Yeah, exactly.

Note that P3 relies on a test example he has already coded to explain that testing should

not address specific conditions at the client sites, but instead it should focus on a general

performance target. P3 believes that their performance metrics should compare the

previous performance state of the software (before updates have been introduced to the

codebase) against the state obtained with the new release (once updates have been made

to the codebase). Note that P4 (quality control engineer) agreed.

Discussions in which the participants engaged in REVIEWING A DESIGN PROPOSAL,

for instance, centered on reviewing the design of a performance test for certain

functionality (T7) or focused on providing feedback about the design of a new feature (T8).

76

The excerpt below, extracted from T8, illustrates how P2 provides feedback to P5 on a

specific part of a design proposal that she presented.

P2: … You don’t need new privileges or anything. You can use the same API and
add a new section. For example …
P5: Mm-hmm.
P2: [module name] and [module name]. I believe all … and search settings,
those all use the same API. They all use the same privilege.

P2 also highlighted some coding examples they could check to code the privileges of this

feature in the same way.

During discussions in which participants engaged in DEVISING A SOLUTION or

REVIEWING A DESIGN PROPOSAL, the kind of work addressed typically covered an

ARCHITECTURAL RE-DESIGN, INTEGRATING A NEW FUNCTIONALITY, or work related to

TESTING.

For other discussions, design was also addressed, but at a smaller scale. For

instance, while CLARIFYING A MISUNDERSTANDING, short design conversations were

conducted to explain how the system works internally or how it could be configured. The

excerpt below illustrates how as part of clarifying what kind of tests the team should apply

after a recent update to the testing pipeline (T39), P3 mentioned all the kinds of testing they

had. Note P3 did not go into details about it but did mention what components the

developers could use.

P3: think there’s just a – just a, you know, are – um, we gotta make sure that all
the other tests – all the other tests are understood and written. If we take – you
know, if we’re not paying attention to we’ve got API testing, right. We’ve got
Karma testing. We’ve got integration testing on the front end, right. So, uh, we
could pull up [P4]’s document about it, right. It basically, everything else covers
everything that should be in end-to-end.

Moreover, when the purpose was GATHERING KNOWLEDGE for upcoming projects,

participants walked through hypothetical design scenarios about how the system would

77

behave under different circumstances. For instance, during T2, P2 led the team to analyze

this scenario:

 P2: What if they – what if they increase the size of their database? We’re
already heading 90%.

As another example, while TRIAGING A TICKET, tiny design discussions were conducted to

summarize the background of issues and to re-define the goal and scope of the ticket in

question. During the discussion of T38, for instance, P12 explained the background of the

ticket to triage, and the possible causes to investigate from a design perspective:

P12: Yeah, so, it’s – So, when customers say that, you know, either
[Conficential] queues are backed up, that means that his transaction [audio
drops out] or they will say there is a general slowness in the UI. So, there are
two things. First this is business transaction. Second thing is in either the
Elasticsearch [inaudible] is busy or the entire search query system is really
[audio drops out].

In RSSMDMs, spending most of the meeting’s time in design conversations is

expected. For most topics (28 out of 45), the key internal stakeholders did lead the

participants to spend a non-trivial portion of the meetings’ time discussing maintenance

design work (at different scales). However, discussions not related to design but to

COORDINATION AND PLANNING, PRACTICE AND PROCESSES, and ADMINISTRATIVE

TASKS that the team needs to operate also took place. The purpose of these conversations

was more varied. The ADMINISTRATIVE TASKs performed, for instance, centered on

creating accounts (MANAGING ACCOUNTS) that the developers needed and on getting rid

of environments that nobody was using (MANAGING COMPUTATIONAL RESOURCES).

Regarding COORDINATION AND PLANNING, activities ranged from planning the agenda of

future meetings (PLANNING A FUTURE MEETING AGENDA) to sharing the status of

projects (SHARING INFORMATION ABOUT FUTURE PROJECTS) and more. Finally, in terms

78

of PRACTICE AND PROCESS, participants engaged in the automation of technical tasks

(AUTOMATING ACTIVITIES), the definition of good practices (DEFINING INTERNAL

PRACTICES), and the analysis of how the team reacts to issues with deployed instances of

the software (PERFORMING A POST-MORTEM).

3.8 Additional observations

Additional observations were also obtained from analyzing the topics from the two

perspectives previously introduced: (1) the type of work that was addressed, and (2) the

purpose that the discussions had.

Not all the discussions in which the team engages are as creative or as challenging as

DEVISING A SOLUTION or ASSESSING A PROBLEM. The team also holds discussions that

are more mundane. This does not mean they are less important; they just are more routine

or low-key in the items being considered. MANAGING ACCOUNTS and COMPUTATIONAL

RESOURCES, for instance, involve tasks that are outside the normal realm of development,

but necessary to keep the overall effort going.

A common activity across several types of discussions is to investigate some aspects

of what is being considered in detail. For instance, this excerpt highlights how, during a

topic discussion in which they worked to understand why the software appeared to be

slowing down under certain circumstances, the team used one of the tools in the AWS

toolkit to study the CPU load, live:

Observation 3: Some types of discussions are mundane.

Observation 4: Several types of discussions commonly involve some form of
investigation.

79

P3: Do you see that?
P1: Oh, wow.
P3: So, what’s on there? Zero instance. I just picked on that because it’s 11 – Oh.
That’s – that’s the reader. So, look at that. The CPU is higher on the read replica
right now. Then if we look on their writer – Let’s look at that over the last week.

This regularly happened for ASSESSING A PROBLEM, but similar episodes were part of

PERFORMING A POST-MORTEM, MANAGING COMPUTATIONAL RESOURCES, and

DEVISING A SOLUTION. In each case, it was important to the proceedings of the

conversation to obtain current information about the state of a deployed instance of the

software, or to examine some of its historical behavior in terms of user behaviors and

associated resource use.

In addition to examining data coming from the deployed system, the team

sometimes goes back into its own history. For instance, on some occasions they browsed

older Confluence pages or Jira issues, and on one occasion they even reverted to the Slack

channel where some key information could be found.

The participants rarely fully resolve an issue that they discuss. Instead, the result

from the discussion is typically some high-level assessment, guidance, design

consideration, design decision, or directive. They may, for instance, perform a first level of

triaging by assigning issues to particular releases, but then the details are still left to one of

the team members.

3.9 Topic recurrence

An important characteristic of the meetings studied is that they are not single but

multiple-topic oriented. In every meeting, more than one topic was discussed, though the

Observation 5: The key internal stakeholders nearly always delegate.

80

number of topics discussed varied considerably (minimum two, maximum eleven). In the

first meeting, for instance, the participants discussed five topics, while for the second one

they only discussed two. On average, participants discussed between four and five (4.5)

topics across the ten meetings studied. Figure 4 shows the topics discussed in each meeting

in order and provides an idea of how long each discussion was.

Regarding recurrence, one can observe interesting phenomena by examining this

distribution. For example, observe that:

Figure 4 shows the topics that were re-discussed within the same meeting. Note that T2 was

re-discussed in the first meeting, and that topics T11 and T12 were re-discussed in the fifth

meeting. Then, in the sixth and eighth meetings, topics T15 and T18, and topics T22, T25, and

T27 were respectively re-visited.

In some situations, certain aspects of one topic led participants to engage in

discussing another one. For instance, in T15, P5 requested to discuss a support case that

was, at that time, active in the technical support Slack channel. The excerpt below

illustrates the problem reported.

P5: I have a question for this group. Can I – uh, I’m just following, uh, the
discussion, which is regarding shared, uh, functionality. [P2] has mentioned
there that, um, provider never worked, so service providing, it’s not possible.
Actually, that will not work with provider. Maybe it is broken. It is very clear
that when we worked on share feature, provider was a recipient as – as well.
[Inaudible] and it worked, so I’m wondering why because we built this function
so long ago, so I’m wondering when did it break? And if it is broken, how come
we didn’t, uh – we didn’t get any notification then how did we know this ever?

This conversation led the participants to discuss the flakiness of their end-to-end tests

(T42), which is supposed to be the way to prevent the issue reported in T15. The discussion

Observation 6: The participants revisit topics.

81

of T42 lasted about two minutes. Then, the participants returned to discussing the support

case (T15). The excerpt below illustrates part of T42.

P3: Our full end-to-end tests are so broken that it needs to be a unit test and
component test. It has to be down on the pyramid. We stack that pyramid so
high that – that – that they break, and nobody can – too many are broken. It’s
too flakey and too complex end-to-end wise.

Topics were also revisited after being officially concluded when new doubts about

what had been said arose. This was the case for T18. Once the topic had concluded, and

participants had already discussed another unrelated topic (T16), P8 raised one more

Figure 4. Timeline of topics addressed per meeting. Shading from the lightest to the darkest

identifies the topics that were discussed only once, rediscussed within the same meeting, and

discussed in more than one meeting.

82

question about T18 (i.e., P8: “Oh, wait a moment. I have one more question regarding the

[confidential] updates”), which led the team to re-discuss certain aspects of T18.

Another interesting pattern observed was that some of the topics revisited exhibited

an intertwined nature, meaning the participants alternated the discussion of a pair of

topics and made progress with both. Across the ten meetings, I observed intertwined topic

discussions in two meetings. Topics T11 and T12 during the sixth meeting, and topics T22 and

T27 during meeting eight.

In the sixth meeting, for instance, one of the architects brought as a concern that the

creation of testing environments (virtual machines in which the software was deployed)

was not being handled properly (T11); Table 6 , timestamp [00:11:00] illustrates how this

discussion began. Then, a manager brought up a question related to getting rid of various

unused environments; this was an ADMINISTRATIVE TASK that IT requested the team to

get done, but that they had left pending. The first fragment in timestamp [00:48:55]

illustrates how a new discussion (T12) began after this question was raised. P2, P6, and P3

worked on reviewing the excel sheet that lists the names of unused environments (T12).

They discussed these one by one and got rid of some of the unused server instances. P2 was

the one initially deleting the unused instances, but at some point P3 began to help him.

While performing this activity, P3, then drew the attention back to T11 (timestamp

[00:51:01]), in which P6 also got involved by making key suggestions. Then, P3 interrupted

to let P2 know he had eliminated one of the unused instances (timestamp [00:54:52]); this

action was related to T12. After this brief interruption, P6 continued discussing the overall

strategy to create, use, and destroy environments (timestamp [00:55:00]). While the

purpose of T11 was to define a good process to create, use, and destroy testing

83

environments, T12 sought to complete a pending ADMINISTRATIVE TASK. Note that the

domain of both topics was related, such a connection seemed enough to, in a natural way,

go back and forth between both topics. A similar behavior was observed in [92].

There was only one case in which topics were not really re-discussed, but briefly

interrupted. For example, the discussion of T2 was interrupted by P2 in an attempt to start

discussing a new topic (T1). The excerpt below shows P2’s attempt for starting a new topic.

Table 6. Example of two discussion intertwined.

Timestamp Discussion about T11 Discussion about T12

[00:11:00]

P2: Um, one other item I wanted to bring up on this call, is,
uh, I just wanna make sure that when environments and
deployments are created for testing that they’re –
[Crosstalk] – within a timely manner. We’re finding a lot of
like orphaned deployments and a whole bunch of ground
ups and all kinds of stuff. Those all cost money.
…

[00:48:55]

P6: So – so, I had a question on costs not related to ground
ups. The email that came out from I guess [confidential]
regarding shutting down, uh, the unused instances and so
from that list provided, have you done anything of shutting
down the ones that we – that were not used?  

[moment of silence] 
P2: Guess that’s a no. Let’s see.
…
P6: So, why are we not getting rid of [instance name 4]and
[instance name 5]?
P2: I think we still use ‘em as far as I –
P6: But the reason that came up on the list is because they’re
unused for the last one week or something; the CPU
utilization is less than one percent.
…
P3: Dev [inaudible] just shut down, uh, delete [instance name
7] today. Now, it’s got [instance name 8] on it.

[00:51:01]

P2: So, right now, when you switch you can only switch to
blue, but it’d be nice to be able to switch to any
deployment that is on this list over here.
…
P6: So, are you saying, P2, that until we figure things out
and do enhancements to ground up, we would have a
minimum of two ground ups, one for – uh, three, one for
each team?
P2: Um, yeah, uh, that’s …
…
P6: So – so – so, will we say that maybe for now we keep
one for each team, and then with the target of, okay, over
the next eight months, we need to figure out how we can
work with just one.
…

[00:54:52]
P3: Right. [inaudible] is gone, it is terminated.
P2: Thank you.

[00:55:00]

P6: So – so, I guess the question then P8 for you guys is
why do you need three environments, [instance name 1],
[instance name 2], and [instance name 6]?
…

84

P2: Has, uh, [team in India] got their, uh, Amazon accounts yet?
P1: Oh, yeah. Wanted to, uh, follow up with that.

Apparently, P2 assumed they had concluded the discussion of T2. However, P3 ignored this

request, and continued the discussion of T2, which extended until the end of the meeting.

The participants also re-discussed topics from meeting to meeting. This form of re-

discussion was much less frequent than re-discussions within the same meeting, and it

actually happened only two times. One of them was T1, the topic that P2 attempted to

discuss in meeting six, but that in the end they did not because P3 had still a lot to say

about the previous topic (T2). They therefore had the discussion in a later meeting. This is

not really a recurring discussion, as the full actual discussion all took place in meeting four.

The other discussion was T14, the purpose of which was SHARING INFORMATION

ABOUT A FUTURE PROJECT. On two occasions, P2 used the RSSMDM to broadcast

information about this project. In this case, a real recurrence, though it was not

reconsidering prior design decisions. Rather, it simply was further information sharing.

3.10 Summary

This chapter presents the kind of work the participants addressed and the overall

purpose of the discussions held during the meetings. Across the ten meetings, a total of

nine different types of work were addressed, and 14 different purposes were observed.

This chapter also presents the relation between these two categorizations. While the kind

of work is a high-level classification, the purpose of the discussion is orthogonal and

typically fits with more than one kind of work. Though, all topics were assigned to only one

type of work and overall purpose, the one that was most representative of what was done

during each topic. From the analysis of these categorizations two high level observations

85

stem: (1) all kinds of maintenance work (ADAPTATIVE, PERFECTIVE, CORRECTIVE) were

addressed during the meetings, and (2) the participants also discussed other activities that

were not maintenance related. Both observations provide an idea of how the meetings

proceed, with participants primarily centered on addressing design but taking care of other

activities that are also required to move work forward (e.g., ADMINISTRATIVE TASK,

COORDINATION AND PLANNING, PRACTICE AND PROCESS). Other low-level observations

were also obtained. One of the most remarkable is that participants did revisit topics

within the same meeting and on a couple of occasions across meetings. Overall, topics

revisited within the same meeting were often related, and participants alternated their

discussion. Other times, they revisited them because someone still had concerns about it

that had not been discussed.

86

4 Prior Information Shared during RSSMDM

Information is crucial to how the design discussions in RSSMDMs proceed. Some of

this information is pre-existing to the meeting and has the potential to shape the design

discussions held at the meeting as well as its outcomes. In this dissertation, I call this

information prior information. The participants in an RSSMDM share and need prior

information to understand problems, propose alternatives, and make design decisions.

Without the right prior information, design conversations in RSSMDMs may turn

ineffective; wrong assumptions could be made; or potential misunderstandings may arise.

As a result, the design work may take the wrong path or time sensitive issues may need to

be postponed to a later meeting.

Part of the goal of this dissertation is to characterize the variety of prior information

that the participants in these meetings share. Another important part of this dissertation’s

goal is to describe the tools that participants use to share and/or obtain it. In Chapter 1, I

introduced two primary questions that seek to describe how prior information flows into

RSSMDMs (RQ 1 and RQ 2). Answering these two questions is the primary objective of this

chapter. This chapter answers these two questions, together with a number of secondary

questions. The answers provide a comprehensive, complementary view about how prior

information flows into RSSMDMs.

RQ 1. What prior information do participants share in RSSMDMs in the course of

design deliberation?

RQ 1.1 Do certain kinds of discussions require more prior information than

others?

RQ 1.2 How often is prior information shared in RSSMDMs?

87

RQ 1.3 Is prior information shared spontaneously or upon request?

RQ 1.4 When prior information is requested, is the request answered?

RQ 1.5 Who shares the prior information?

RQ 1.6 How often is prior information shared that people not attending the

meetings said?

RQ 2. What tools do participants use in support of sharing prior information in

RSSMDMs?

The remainder of this chapter is organized as follows. Section 4.1 explains the

methodology used to analyze the data. Section 4.2 presents the results associated to RQ 1.

Sections 4.3 to 4.8, respectively present the results for RQ 1.1 to 1.6. In Section 4.9, I

present the results that answer RQ 2. Finally, in Section 4.10, I discuss the implications of

the findings for research, practice, and tool development.

4.1 Methodology

To answer the research questions proposed, I analyzed the transcripts and videos of

ten meetings from a healthcare software development company (details about this dataset

are provided in Chapter 3). The analysis was primarily performed on the transcripts,

though the videos were used as a source for understanding tool use. For instance, on quite

a few occasions someone on the team would share their screen to bring up the issue

tracker (Jira) or present a graph with data collected by the run-time monitoring tools the

team employs. Non-verbal interaction of this kind is only possible to detect by watching the

videos.

As a preliminary step, I partitioned each meeting based on the topics being

deliberated (I described this process in Chapter 3). Once the meeting had been partitioned

88

into smaller topic discussions, a thematic analysis [29], [30] was performed to identify and

categorize all the occasions prior information was mentioned for each topic. I describe this

process below.

4.1.1 What to consider as prior information and what not

A first step in performing the thematic analysis was defining what should be

considered prior information. Two researchers (one of them myself) defined a set of rules

to identify prior information in the data. These rules stem from two perspectives: (1)

considering as prior information statements that participants voluntarily share during the

conversation (without being explicitly requested by someone), and (2) considering as prior

information statements shared in response to an explicit request (“information needs” in

the sense of [22]). I list the four rules below. Rules one to three stem from the first

perspective; rule four stems from the second.

Rule 1. A characteristic of prior information is that information is pre-existing. It is

not a random thought, an idea, or some plan for doing something. Rather, it is

something that has been said before, a particular state of something, or some data

that was observed (e.g., “they did not have source queuing on”). Prior information is

most of the times verifiable, meaning that an artifact containing it exists somewhere

(e.g., code, design document) or that someone (whom one could ask to verify such

information) who is not present at the meeting said.

Rule 2. We generally looked for the smallest part of a spoken segment as the

information; that is, information typically consists of short utterances and may well

be just a small part of a full sentence or longer fragment of contribution by a

participant. A single conversation turn sometimes contained multiple pieces of

89

information. We therefore coded the precise fragments of information rather than

sentences or complete turns, so that no fragments overlapped with one another.

Rule 3. We only tagged information if it was not merely a repetition of something

that was said earlier, even if in slightly different words; each coded bit of

information had to contribute something new.

Rule 4. We tagged for an “information need” if there was an explicit request for prior

information (e.g., a question), if there was an implied request (e.g., an expressed

doubt), or if someone acknowledged something was missing (e.g., “I wish we…”).

4.1.2 Classifying prior information

Three researchers performed an inductive thematic analysis [29] to categorize the

kinds of prior information identified in the sessions. We followed the set of steps below to

create a coding scheme to perform this categorization:

1. Open coding: two researchers (one of them myself) independently performed

open coding on the first meeting, identifying each place where they felt

information was being shared or requested in the conversation. We also

independently categorized the pieces of information identified.

2. Collaborative review: we then met, compared, and discussed our respective

findings, and created a first version of a coding scheme organizing the categories

of information being shared in the meeting.

3. Final review: a third researcher reviewed the coding scheme and the assigned

codes of the first meeting and gave feedback, which led to further changes to the

coding scheme and codes assigned.

90

4. The two researchers who performed the coding of the first meeting (Step 1) then

independently analyzed the second meeting. Thereafter, the two researchers

compared and discussed the findings, which led to a refined coding scheme that

the third researcher once more reviewed. The suggestions that the third

researcher provided led the two researchers to several updates to the coding

scheme, which they then reflected by updating the codes for the second and first

meeting.

5. All other meetings were analyzed meeting-by-meeting following the process

used for the second meeting, with any updates to the coding scheme reflected by

recoding earlier meetings. With each new meeting, the coding scheme slowly but

surely stabilized in terms of the categories it contained.

6. Axial coding: the two researchers (one of them myself) then performed axial

coding, reviewing all the categories of the coding scheme one by one, examining

the internal consistency of all assigned codes in each category as well as

potential overlaps among categories. As a result, a few categories were merged,

and several assigned codes were changed to be consistent with one another.

7. Once the ten meetings had been coded, an additional coding pass was done to

detect segments that qualify as MISINFORMATION, segments in which prior

information shared was corrected by the participants right after it was shared. In

such cases, the two researchers (one of them myself) changed the information

type that had been originally assigned to MISINFORMATION. MISINFORMATION

was also added as a category to the coding scheme.

Figure 5 shows a visual representation of the process (steps one to six) that was followed.

91

The coding process previously described provided the basis for answering RQ 1. By

juxtaposing the results obtained for RQ 1 with the topic categorizations done in Chapter 3, I

then answered RQ 1.1 and RQ 1.2. To answer questions RQ 1.3, RQ 1.4, and RQ 1.5, other

coding passes were performed to tag each already identified prior information fragments

with several additional codes. These additional codes were distilled from what each of

these questions seek to answer.

For RQ 1.3, for instance, two researchers (one of them myself) coded how each

segment of prior information was shared. Specifically, this coding captures if the prior

information was voluntarily offered without a particular nudge to do so (VOLUNTEERED),

or if it was contributed in response to a request (ANSWERED).

The information contributed voluntarily (VOLUNTEERED) was information shared

that someone else, not present at the meeting said, we identified those segments by adding

an additional code, RECALL. All the other segments of this kind (VOLUNTEERED) were

coded with the additional code NOT RECALL. In a similar vein, for the information

contributed in response (ANSWERED) we added the additional code RECALL if the answer

Figure 5. Thematic analysis process.

92

provided was something that someone not present in the meeting said. All other segments

of this kind (ANSWERED) were coded as NOT RECALL. For all the segments coded as

information ANSWERED, we also coded the statements requesting the information as

REQUESTED. Table 7 shows the description of all these codes.

For RQ 1.4, I analyzed the transcripts once more to tag any parts of the conversation

where participants requested prior information and a response was not issued. I added an

additional code (NOT ANSWERED) to the segments tagged as requests (REQUESTED) for

which a corresponding response was not provided (segments tagged as ANSWERED).

During this coding pass I also noticed occasions in which requests of a certain type were

made, and prior information of a different type was provided in response. In this case, I

applied a different additional code (DIF TYPE) to the segments tagged as requests

(REQUESTED).

Finally, to answer RQ 1.5, two researchers (one of them myself) coded the ROLE of

the participants who shared, requested, or answered information requests. This involved

the straightforward mapping of the speaker, which was information that was provided by

Table 7. The prompt of prior information.

Prompt Description RECALL NOT RECALL

VOLUNTEERED

Information that is shared spontaneously as part
of the meeting discussion; someone voluntarily
refers to some information that they deem is
important for the design discussion.

The participant explicitly mentions
that the information shared is
something someone else said (i.e.,
“[person name] wrote in bold,
[component name] will not connect
to public internet.”).

The participant does not
mention that the
information shared is
something someone else
said.

REQUESTED

Information is requested if there is an explicit ask
for it (e.g., a question), if there is an implied
request (e.g., a meeting participant expresses a
doubt about something), or if someone
acknowledges something is missing from the
conversation (e.g., “I wish we…”). NA NA

ANSWERED Information contributed in response to a request.

The participant explicitly mentions
that the information contributed in
response is something someone else
said (i.e., “I think he said it was
reconnecting now”).

The participant does not
mention that the
information contributed in
response is something
someone else said

93

the transcription service we used, to their ROLE. Table 8 shows the various roles of the

participants in the RSSMDMs.

Additional coding was not required to answer RQ 1.6. Instead, an analysis of the

segments that had been previously coded as RECALL and NOT RECALLED was performed.

To answer RQ 2, two researchers (one of them myself) performed an additional

coding pass to classify the SOURCE of each prior information segment. This coding captures

if the information contributed originated from the mind of a participant (PERSON) or if it

was actually visible on the screen in the tool that they were using at the time (TOOL).

All qualitative coding (when it applied) was performed in MAXQDA [198], with 3368

codes assigned to prior information segments in order to answer RQ 1, RQ 1.3, RQ 1.5, and

RQ 2. In addition, 694 codes were added to segments labeled as either VOLUNTEERED or

ANSWERED to define whether the information shared was something someone else said

(RECALL) or not (NOT RECALL), and 53 codes were added to some of the segments tagged

as REQUESTED to answer RQ 1.4.

For confidentiality reasons, the healthcare software development company does not

allow me to share the videos or transcripts; I do, however, have permission to share

anonymized extracts from the discussions in this dissertation.

Table 8. The roles of participants who requested and shared prior information.

Role Description

SOFTWARE ARCHITECT
A team member who is the primary person responsible for the high-level technical design choices
and who enforces standards, including software coding and design standards.

DEVELOPER
A programmer on the team; generally they contribute code, test cases, and locally build and test the
changes they make.

INFRASTRUCTURE ENGINEER
A team member who is responsible for choosing, adopting, and interfacing with key infrastructure
that the software being developed uses (e.g., AWS, deployment tools, monitoring tools).

MANAGER
Role responsible for overseeing and coordinating the work of a number of developers on the team
(also called a team lead).

PRODUCT OWNER
Carries overall responsibility for the project and its success; contributes particularly a business,
finance, and customer-oriented perspective to the discussion.

QUALITY ASSURANCE ENGINEER
Responsible for quality assurance processes to ensure that the software adheres to appropriate
standards before it is released.

94

4.2 What kinds of information are shared?

In this section, I present the results of the analysis conducted to answer RQ 1: what

prior information do participants share in RSSMDMs in the course of design deliberation?

Table 9 shows the final version of the coding scheme that emerged in classifying the kinds

of prior information that participants shared across the ten meetings. A total of 36 different

categories were observed (left column). The respective description of each category

appears on the right column.

Table 9. The kinds of prior information observed (in alphabetical order)

Category Description

ANALOGOUS SOLUTION
An example of how some programming/design problem was overcome elsewhere in some other system or
systems, or in some other part of the system under development

ARCHITECTURAL FACT A statement about how the system is designed and/or operates at a high level
ARCHITECTURAL

QUALITY ASSESSMENT
An informed assessment about a high-level design aspect of the software

ARGUMENT The reasoning for why a certain decision was made

BEST PRACTICE
A way of doing things in code, deployment, or development process that is commonly understood to be a
good approach

CHANGE DIFFICULTY
An assessment of how complex/effort intensive it may be to perform a change that the team identified as
needed

CODE FACT
A statement about how the system is designed and/or operates at a low level; the fact concerns a specific
aspect of the implementation that one should (hypothetically) be able to trace to a specific location in the
source code

CODE QUALITY
ASSESSMENT

An informed assessment about an internal quality aspect of the source code

CUSTOMER CONTEXT
A fact characterizing some aspect of a customer or set of customers that helps in understanding the
business side of the software

CUSTOMER COST A fact about what charges are levied to a customer by the development organization
DEPLOYMENT FACT A fact describing a concrete aspect of the static state of a deployed instance of the software
DEPLOYMENT
MANAGEMENT

Information that may influence the actions that the team has undertaken or might still need to undertake
to perform some work on/updates to the deployed software

DEPLOYMENT QUALITY
ASSESSMENT

An informed assessment about an externally observable quality aspect of the deployed software

DEVELOPMENT
PROGRESS

An understanding of what the development team has designed and/or implemented already and what it
has not yet designed and/or implemented, typically in terms of specific features of the product they are
talking about

DOCUMENTATION
PROGRESS

An understanding of what the development team has documented and what it has not yet documented,
typically in terms of features of the product or aspects of its internal development process

DOCUMENTATION
QUALITY ASSESSMENT

An informed assessment about some aspects of the documentation of the software

EXTERNAL
DEVELOPMENT
PROGRESS

An understanding of what a client has designed and/or implemented already and what it has not yet
designed and/or implemented

FUNCTIONALITY
REQUEST

A request from another person, team, or part of the organization, or from a customer, for certain new
functionality

GENERAL PROGRAMMING
KNOWLEDGE

An insight about programming that is not tied to the software being developed and generally known to
many developers

INFRASTRUCTURE
FUNCTIONALITY

An understanding of how some part of some external software works; that software could be a component
included in the software stack or some general infrastructure

INFRASTRUCTURE
PROGRESS

An understanding of what has been designed and/or implemented already as part of some external
software; that software could be a component included in the software stack or some general
infrastructure

95

INTERNAL COST
A fact about what charges external service providers would levy against the development organization for
hosting the software and/or support services

ISSUE An identified problem with the software in terms of its source code and/or its current operation
ISSUE DETAIL Additional observations towards a deeper understanding of the problem being discussed

MISINFORMATION
A wrong assertion about the system functionality, the code, specific characteristics of a deployed instance
of the software, the customers, etc.

NON-FUNCTIONAL
REQUIREMENT

An existing statement of a non-functional goal for the software that should be met (toward, e.g.,
performance, usability)

PEOPLE EXPERTISE
An understanding of the expertise and/or capabilities of an individual developer or team within the
development organization

PRIOR ISSUE An issue that was raised and deliberated in the past

PRODUCT METADATA
A non-code property of the product or part thereof that specifies information about the product that may
be relevant to customers

RUN-TIME INFORMATION
An observed fact about the executing software in the form of operational data points and/or specific
behaviors at a specific time/under specific circumstances

TEAM HOUSEKEEPING An understanding of non-code tasks that have been completed, are in progress, or still to be performed
TEAM PROCESS Information that pertains to how the team works together

TESTING FACT
A statement concerning the testing of the software, the details of how the team does so, and what it reveals
about the software

TESTING MANAGEMENT
Information that may influence the actions that the team has undertaken or might still need to undertake
with respect to testing the software

TESTING PROGRESS An understanding of what parts of the software have and have not been tested
TESTING QUALITY
ASSESSMENT

An informed assessment about some aspects of testing the software

At a high level, the types of information that participants shared include information

pertaining to system execution (e.g., DEPLOYMENT FACT, RUN-TIME INFORMATION), the

state of development (e.g., FEATURE REQUEST, DEVELOPMENT PROGRESS), the code itself

(e.g., ARCHITECTURAL FACT, CODE FACT), the development process (e.g., TEAM PROCESS,

TESTING MANAGEMENT), clients (e.g., CUSTOMER COST, CUSTOMER CONTEXT), and more

(e.g., PRODUCT METADATA, INTERNAL COST). Note that the range of information not only

covered facts about the code based nor just the state of deployed instances of the software,

but the participants also mentioned information about the customers, as well as their own

practice. In summary, I observed that:

Given the fact that the design work by the team takes place in the context of a

system that is deployed and in use by multiple customers, it is not surprising that

information sharing is so broad. The high diversity in the types of information being shared

reflects the different kinds of design challenges that arise in this particular design context,

Observation 7: The kinds of information shared in RSSMDMs vary wildly.

96

in which participants must ensure that all information needed to shape the design gets

considered. Otherwise, updates to the software may take the wrong path (e.g., software

updates may break functionality that was already working, software updates may slow

down the overall performance of the system).

The result of applying inductive thematic analysis to the 45 topics discussed (as

these were introduced in Chapter 3) across the ten meetings was a mapping of the 36

categories (in Table 9) to 694 conversation fragments in which participants shared prior

information (either voluntarily or in response to an information request). Table 10

Table 10. Frequency of different kinds of information shared per meeting and in all the meetings.

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 All meetings
Category # # # # # # # # # # # %

RUN-TIME INFORMATION 11 6 1 2 14 3 12 0 17 0 66 9.5%
DEVELOPMENT PROGRESS 3 4 7 1 4 4 3 5 18 4 53 7.6%
CODE FACT 9 1 8 1 1 9 5 3 8 3 48 6.9%
DEPLOYMENT MANAGEMENT 3 1 1 5 13 7 10 2 4 1 47 6.8%
DEPLOYMENT FACT 2 6 3 0 16 2 2 0 11 1 43 6.2%
ISSUE DETAIL 2 0 1 5 13 8 7 1 4 2 43 6.2%
CUSTOMER CONTEXT 9 2 8 3 0 2 0 6 4 5 39 5.6%
INFRASTRUCTURE FUNCTIONALITY 7 1 0 0 5 2 2 6 6 7 36 5.2%

TEAM HOUSEKEEPING 0 0 0 21 1 9 4 0 0 0 35 5.0%
TESTING FACT 0 5 1 4 1 1 0 0 0 15 27 3.9%
ARCHITECTURAL FACT 4 7 5 0 0 0 4 1 3 1 25 3.6%
TEAM PROCESS 0 0 0 7 2 7 3 5 0 0 24 3.5%
ISSUE 4 0 3 1 2 1 4 1 4 1 21 3.0%
ARGUMENT 0 1 2 0 5 2 0 2 2 3 17 2.4%
TESTING PROGRESS 0 11 0 0 0 1 0 0 0 5 17 2.4%
CHANGE DIFFICULTY 1 1 2 1 2 0 1 3 5 0 16 2.3%

PRIOR ISSUE 0 0 0 1 3 4 2 1 2 0 13 1.9%
DEPLOYMENT QUALITY ASSESSMENT 3 1 2 0 2 0 0 0 4 0 12 1.7%
TESTING MANAGEMENT 0 3 1 0 2 0 0 0 0 6 12 1.7%
GENERAL PROGRAMMING KNOWLEDGE 6 1 0 1 0 1 0 0 2 0 11 1.6%
INTERNAL COST 1 0 0 0 9 0 0 0 0 1 11 1.6%
PEOPLE EXPERTISE 1 0 0 3 0 1 0 1 0 5 11 1.6%
BEST PRACTICE 1 0 0 4 0 2 2 0 0 1 10 1.4%
TESTING QUALITY ASSESSMENT 0 0 0 1 0 1 0 0 0 8 10 1.4%

MISINFORMATION 0 2 2 0 0 0 1 2 1 0 8 1.2%
ANALOGOUS SOLUTION 3 0 2 0 0 0 1 1 0 0 7 1.0%
DOCUMENTATION PROGRESS 0 0 0 2 0 3 0 0 0 1 6 0.9%
CUSTOMER COST 4 0 0 0 0 0 0 0 0 1 5 0.7%
FUNCTIONALITY REQUEST 0 0 2 0 0 0 0 2 1 0 5 0.7%
CODE QUALITY ASSESSMENT 0 0 1 0 0 0 0 1 2 0 4 0.6%
DOCUMENTATION QUALITY ASSESSMENT 0 0 0 0 0 4 0 0 0 0 4 0.6%
ARCHITECTURAL QUALITY ASSESSMENT 1 1 0 0 0 0 0 0 1 0 3 0.4%

PRODUCT METADATA 1 0 0 0 0 0 0 0 0 1 2 0.3%
EXTERNAL DEVELOPMENT PROGRESS 1 0 0 0 0 0 0 0 0 0 1 0.1%
INFRASTRUCTURE PROGRESS 1 0 0 0 0 0 0 0 0 0 1 0.1%
NON-FUNCTIONAL REQUIREMENT 0 1 0 0 0 0 0 0 0 0 1 0.1%

Total 78 55 52 63 95 74 63 43 99 72 694 100.0%

97

presents the information identified as being shared by participants across the ten

RSSMDMs studied. The table includes the number of occurrences of each type of

information per meeting, together with the totals across all meetings in absolute numbers

and as relative percentages. Shading identifies the top five categories in each meeting as

well as in all the meetings (if multiple types of information ranked as fifth-most, I marked

them all).

Even though diverse kinds of information were shared, not all were shared that

often. The shaded areas in the right most column show the kinds of prior information that

were shared more often across the ten meetings. Note that all these kinds of information

(RUN-TIME INFORMATION, DEPLOYMENT FACT, ISSUE DETAIL, DEVELOPMENT

PROGRESS, CODE FACT, DEPLOYMENT MANAGEMENT) not only have the highest overall

percentages (right column of Table 10), but also appear at least one time in eight (RUN-

TIME INFORMATION, DEPLOYMENT FACT), nine (ISSUE DETAIL), or even ten meetings

(DEVELOPMENT PROGRESS, CODE FACT, DEPLOYMENT MANAGEMENT). These kinds of

information have interesting characteristics. First, note that most of them reflect the

software being in use (RUN-TIME INFORMATION, DEPLOYMENT MANAGEMENT, ISSUE

DETAIL, DEPLOYMENT FACT). In the excerpt below (extracted from T2), for instance, one

of the architects reminded the team that the current load on one of the servers involved

was already near its maximum (RUN-TIME INFORMATION). Sharing this information was

relevant to analyze how onboarding new people (e.g., users, patients) could affect the

overall performance of the system:

P2: What if they – what if they increase the size of their database? We’re
already heading 90% during [confidential].

98

A second characteristic about the kinds of information shared most often is that

these also reflect the software being under active development (DEVELOPMENT

PROGRESS, CODE FACT). For instance, the excerpt below (extracted from T7) illustrates

how the team shares facts about the current state of the code as they deliberated what kind

of testing should be covered for certain development (the fragment that we coded as prior

information shared is underlined).

P7: So, essentially, that means that I’m going back to the API, [confidential]
API, and it is responding back to me with a list of applications. So, that is one
response time.

In this case, the developer is verbally walking through how the current code works

to discuss what should be tested. What motivated this discussion is covering the typical

issues their customers experience before deploying the software in development.

These two characteristics boil down to the observation below:

The top-most categories in Table 10 all offer insight into what is happening with the

system at the client site or into the current state of the code and the progress in its

development. Given that the software is in use by clients and actively under development,

this can be expected as the team reacts to problems arising at the deployed sites and has to

keep into account what functionality has and has not been completed yet.

In relation to the body of knowledge provided in Chapter 2, the kinds of information

that I observed being shared are quite different from what has long been stated as

important to capture for later (e.g., decisions [18], alternatives [199], [200], constraints

Observation 8: The information that is shared most often relates to the system
as deployed and under development.

99

[201]). Interestingly, I did not see these kinds of information being shared in the meetings.

Instead, the team seems to rely on what in many ways is the manifestation of past

deliberations in the code. That is, rather than referring to an underlying decision or

constraint, they typically refer to the current state of the code. The following

ARCHITECTURAL FACT (shared during T3), for instance, is clearly the result of an

important decision the team made in the past:

P2: So, because both, um, you know, tenants or clients, whatever, share the
same computer layer, um, it is possible for one client to, uh, negatively affect –
affect the other…

The original decision, which likely concerned a choice of architectural style and

associated cloud-based infrastructure, shows through in the ARCHITECTURAL FACT, but

the decision itself is not being recounted here.

As another example, I highlight ARGUMENT, information that shares a reason

behind some past action. The following is an example (from T6), with a member recalling

why they had chosen a certain flow:

P4: I remember the general idea of why we wanted it, because we wanted the –
the back end to feed the front-end information, so we didn’t have to worry
about hard-coding stuff. So, when the backend updated something, right, the
front-end got it. That was the general idea.

 Even though P4 did not explicitly acknowledge it as such, one may recognize this

piece of information as an example of what previous studies (e.g., [21], [190]) have named

rationale because it is the reason (why) a past decision was made. Despite their purported

importance in the literature, such arguments were not recalled too often (only 17 times in

total).

100

The meeting participants did not share past decisions, design goals, or alternatives, which

are all elements that have a strong presence in the design rationale literature (e.g., [89],

[199], [200]). While I did see some information being shared that traditionally is

considered part of rationale (PRIOR ISSUES, ARGUMENTS, ISSUES, NON-FUNCTIONAL

REQUIREMENTS), this represented just 7.4%.

Other important observations distilled relate to specific information kinds rather

than to a subset of them. As one example, I observed that participants rely on information

about their customers (CUSTOMER CONTEXT) to foreshadow what kind of effect decisions

may have once these are implemented and deployed. In the excerpt below (extracted from

T2), for instance, the product owner brought up an important point as the team was

debating whether and how to scale some service component (CUSTOMER CONTEXT):

P1: [customer name] reached out to me today, and in the next few months they
were thinking of onboarding a few more, um, of their clients, which would
potentially double the number of calls.

This piece of information led the team to engage in discussing the impact and scope of an

issue in terms of this new information.

Information of this kind (CUSTOMER CONTEXT, CUSTOMER COST) is most of the time

shared by one of the key internal stakeholders. Sharing this kind of information allows the

Observation 10: The team performs its design work by accounting for what is
happening at their customers.

Observation 9: Several types of information historically advocated as
important for design discussions were barely shared, though they sometimes
show through in other types of information.

101

team to plan major updates to the codebase while keeping design work centered on the

customer needs.

A second category from which I distilled an interesting observation is

MISINFORMATION, which represents when someone shared some information that

subsequently was corrected. These kinds of cases were rare but reflect important moments

in the design discussions. Consider the following extract (from T8):

P2: I will say that, um, [confidential] did not have a UI for the lab or the
mappings, so. It would be something new, I guess.
P1: So, would the –
P5: [confidential]– [confidential] has it. I don’t know if we are talking the same,
but, um, I don’t know if you’re talking about these mappings. Are you talking
about this?
P2: Yeah, I can show my screen really quick.
P5: Yeah, and even – even this mapping is there. And it is configurable there.

During a design discussion, one of the developers asserts that some part of the

system does not have a UI (first fragment underlined). P5 corrects him (second fragment

underlined), points out that it does, and works with the developer to then proceed and

show the UI and the views it supports to the others in the discussion. Had P5 (a product

owner) not brought up that the UI exists, the team might have gone down a design path

that would be superfluous (e.g., designing a UI).

That said we only know when the participants did point out the information shared was

wrong, not when they should have but did not. Even though the results show wrong

information was shared a few times, it could be that it was shared more times, but the

participants did not make the respective correction. Further research is needed to know

Observation 11: Participants do not always take for granted all the information
that is shared and do point out when someone shares wrong information.

102

how much MISINFORMATION is shared during the meetings, and if it represents a serious

problem. The results obtained in this study only show that it does happen, wrong

information is shared, and sometimes it is corrected.

4.3 Information shared in relation to the work done

In this section, I present the results of the analysis conducted to answer RQ 1.1: do

certain kinds of discussions require certain kinds of prior information? To answer this

question, I first placed the kinds of information shared in the context of the different kinds

of work done in RSSMDMs, as determined in Chapter 3 (Section 3.5). Table 11 shows the

information shared per kind of work. The shading identifies the five categories that were

most frequently shared for each kind of work. Note that 420 times prior information was

shared while doing some form of maintenance work (ADAPTATIVE, CORRECTIVE,

PERFECTIVE). This accounts for approximately the 60% of the information that was shared

during the meetings. The remainder of prior information (274) was shared as part of

supportive activities that do not directly address maintenance work, but that are important

for the team to get work done (e.g., creating accounts that some team members urgently

need, sharing announcements about the status of projects, or establishing processes to

improve activities that they typically do).

During discussions that concerned future modifications to the code base, such as

performing an ARCHITECTURAL RE-DESIGN, solving a SUPPORT CASE, INTEGRATING A

NEW FUNCTIONALITY, or updating the software stack (INFRASTRUCTURE), descriptions

of how specific parts of the code work (CODE FACTS) appear particularly important: for all

these types of work CODE FACTS ranked in the top five.

103

A particular interesting example in this regard concerns the only topic in which the

team worked on an ARCHITECTURAL RE-DESIGN (T3). In this discussion, facts about the

code were shared even more often (13 times) than facts about the architecture itself

(ARCHITECTURAL FACT, one time). The excerpt below shows the only ARCHITECTURAL

FACT that was shared to justify why modifying the architecture was needed:

Table 11. Prior information shared per type of work.

ADAPTATIVE
(128)

CORRECTIVE
(64)

PERFECTIVE
(228)

N/A
(274)

Category A
R

C
H

IT
E

C
T

U
R

A
L

R

E
-D

E
SI

G
N

IN
T

E
G

R
A

T
IO

N
 O

F

N
E

W
 F

U
N

C
T

IO
N

A
L

IT
Y

P
E

R
F

O
R

M
A

N
C

E

SU
P

P
O

R
T

 C
A

SE

IN
F

R
A

S
T

R
U

C
T

U
R

E

T
E

ST
IN

G

A
D

M
IN

IS
T

R
A

T
IV

E

T
A

S
K

C
O

O
R

D
IN

A
T

IO
N

A

N
D

 P
L

A
N

N
IN

G

P
R

A
C

T
IC

E

 A
N

D
 P

R
O

C
E

SS

A
ll

 t
yp

es
 o

f
w

o
rk

RUN-TIME INFORMATION 4 7 3 17 7 2 26 66
DEVELOPMENT PROGRESS 3 9 7 17 6 2 9 53
CODE FACT 9 6 6 9 7 11 48

DEPLOYMENT MANAGEMENT 2 1 1 4 4 1 10 2 22 47
DEPLOYMENT FACT 1 1 4 11 8 3 15 43
ISSUE DETAIL 2 1 10 5 25 43

CUSTOMER CONTEXT 5 8 3 6 4 9 1 3 39
INFRASTRUCTURE FUNCTIONALITY 6 7 2 6 7 1 7 36
TEAM HOUSEKEEPING 3 27 5 35
TESTING FACT 22 5 27
ARCHITECTURAL FACT 3 2 1 2 3 9 1 4 25
TEAM PROCESS 2 1 6 4 11 24
ISSUE 3 4 2 4 1 1 6 21
ARGUMENT 1 1 2 6 1 1 5 17

TESTING PROGRESS 17 17

CHANGE DIFFICULTY 1 2 3 3 3 4 16
PRIOR ISSUE 2 1 2 8 13
DEPLOYMENT QUALITY ASSESMENT 1 2 4 3 2 12
TESTING MANAGEMENT 10 2 12
GENERAL PROGRAMMING KNOWLEDGE 4 2 2 1 2 11
INTERNAL COST 1 1 9 11
PEOPLE EXPERTISE 1 6 3 1 11

BEST PRACTICE 1 1 8 10
TESTING QUALITY ASSESMENT 9 1 10
MISINFORMATION 4 2 1 1 8
ANALOGOUS SOLUTION 3 2 1 1 7
DOCUMENTATION PROGRESS 1 2 3 6
CUSTOMER COST 1 3 1 5
FUNCTIONALITY REQUEST 3 1 1 5
CODE QUALITY ASSESSMENT 1 2 1 4

DOCUMENTATION QUALITY ASSESMENT 4 4
ARCHITECTURAL QUALITY ASSESMENT 1 1 1 3
PRODUCT METADATA 1 1 2

EXTERNAL DEVELOPMENT PROGRESS 1 1
INFRASTRUCTURE PROGRESS 1 1
NON-FUNCTIONAL REQUIREMENT 1 1
Total 51 59 18 64 98 130 55 20 199 694

104

P2: So, because both, um, you know, tenants or clients, whatever, share the
same computer layer, um, it is possible for one client to, uh, negatively affect –
affect the other...

The participants immediately follow up this high level ARCHITECTURAL FACT with highly

technical descriptions about how the code works (CODE FACTs), as exemplified in the

following excerpt.

P2: You trying to do an HTTP post to a TCP, which I have done before.
…
P3: Right. So, yeah, right now, it just – it handles an execute – an evaluation,
and if it evaluates to true, it turns around and tries to send. And if it’s blocked,
that thread is blocked until it’s able to send. Right? So, if the actions were
queued, that would allow evaluations to continue.

Note how the two architects on two different occasions mentioned specific parts of the

code and how each works.

When the team worked on improving their practice (PRACTICE AND PROCESS), the

participants typically walked through issues that were not handled properly. This is why

ISSUE DETAIL ranked second during these discussions. The excerpt below shows a

conversation focused on improving their practice (T9). P2 first introduced an ISSUE that

had not been handled properly.

P2: So, on Friday I was upgrading everyone to the latest release, which was
255, something like that. Um, and one of our environments [electronic tone]
would fail while trying to – to upgrade it. Um, so the – the database upgrade
was failing, basically. Um, so we created this ticket.

Then, P3 followed up by also sharing various details about this issue (ISSUE DETAIL). This

information helped others to understand the big picture of the issue in question, as well as

the actions that were taken. The excerpt below illustrates a couple of ISSUE DETAILs

shared by P3 (fragments highlighted):

105

P3: And so, the way the script was written, it said, fetch all of the roles, and give

me 20 at a time. Open a cursor, and then I’m gonna do some – some – some

work. But in the script, it used the same connection to open the cursor that it

did to do some updates. Now, this always works if you get – if there are less

than 20 because that’s the batch size. So, in other words, if you say, give me up

to 20, and it gives – and there are only 18, then it acts normal. But as soon as

you go over 20, that cursor is still open. That query is still open, and you try to

make an update, ppppt, everything fails.

So, this is just a – a – a normal snafu that often gets us when we open up a

cursor and don’t create a second connection to do work. And it just so happened

that this migration script suffered from this.

In this particular kind of discussions (PRACTICE AND PROCESS), the description of

issues was interwoven with information about how the deployed instance of the software

in which the issue occurred behaved (RUN-TIME INFORMATION). As one example, P2 said:

P2: I’ll say that script worked for, I don’t know, like 25 to 30. It just failed for
one. One environment it failed. All the other ones passed. So, it would be hard to
catch.

Sharing this piece of information makes even more clear why the issue occurred,

and why it is difficult to catch during testing. RUN-TIME INFORMATION was the kind of

information most often shared during discussions that addressed work related to

improving their practice (PRACTICE AND PROCESS).

An important observation that stems from the two examples previously introduced

is that:

Table 11 shows not only these two, but other types of information commonly shared while

discussing certain kinds of work. For instance, the types of information most often shared

when the team worked on the design or implementation of test cases (TESTING) were

Observation 12: Specific kinds of information are more relevant for certain
kinds of work.

106

TESTING FACTs, TESTING PROGRESS, and information about how to set up or run tests in

production (TESTING MANAGEMENT). Prior information from these three categories was

shared much more often (22, 17, and 10 times respectively) than prior information of any

other kind. In a similar vein, when the INTEGRATION OF NEW FUNCTIONALITY was

discussed, the customer needs (CUSTOMER CONTEXT) as well as components of the

software that could be used to implement that new functionality (DEVELOPMENT

PROGRESS) were often shared.

I also analyzed how much information was shared per discussion based on its

respective purpose (as introduced in Chapter 3, Section 3.6). Table 12 shows the

information shared (fourth column), how many topics were discussed (third column), and

the average number of prior information that was shared (most right column) per

discussion purpose. The results are ordered in descending order, from purposes with the

most average number of prior information shared to purposes with the least average

number of information shared. The shading shows the five discussion purposes with the

highest average number of information shared. The first column shows whether a

Table 12. Prior information shared in discussions with a certain purpose (results ordered by the

average number of times information was shared).

Does the
discussion

involve design? Purpose of discussion Topics
Information

shared

Avg # information was
shared per discussion

purpose
Yes DEVISING A SOLUTION 2 99 49.5
Yes PERFORMING A POST-MORTEM 3 112 37.3
Yes AUTOMATING ACTIVITIES 2 66 33.0
Yes CLARIFYING MISUNDERSTANDINGS 2 55 27.5
Yes REVIEWING A DESIGN PROPOSAL 4 77 19.3
No MANAGING ACCOUNTS 3 47 15.7
Yes GATHERING KNOWLEDGE 2 27 13.5
Yes ASSESSING A PROBLEM 5 64 12.8
No MANAGING COMPUTATIONAL RESOURCES 1 8 8.0
Yes TRIAGING A TICKET 13 98 7.5
No DEFINING INTERNAL PRACTICES 4 29 7.3
No PLANNING A FUTURE MEETING AGENDA 1 4 4.0
No PLANNING HOW TO TRIAGE TICKETS 1 3 3.0
No SHARING INFORMATION ABOUT FUTURE PROJECTS 2 5 2.5

 45 694 15.4

107

discussion purpose entails design work or not. Chapter 3 presents the characteristics each

discussion has.

On the one hand, a considerable amount of information was shared while DEVISING

SOLUTIONS (49.5), PERFORMING POST-MORTEMS (37.3), AUTOMATING ACTIVITIES

(33.0), CLARIFYING MISUNDERSTANDINGS (27.5), and REVIEWING DESIGN PROPOSALS

(19.3). Also note that only three categories out of the top five involve design work:

GATHERING KNOWLEDGE (13.5), ASSESSING PROBLEMS (12.8) and TRIAGING A TICKET

(7.5). Together, all the discussion purposes that involve some kind of design work account

for approximately 86% of the information that was shared.

On the other hand, in discussions the purpose of which was merely coordinating or

executing administrative tasks and that did not involve design work, prior information was

barely shared. MANAGING ACCOUNTS (15.7), MANAGING COMPUTATIONAL RESOURCES

(8.0), DEFINING INTERNAL PRACTICES (7.3), PLANNING A FUTURE MEETING AGENDA

(4.0), PLANNING HOW TO TRIAGE TICKETS (3.0), and SHARING INFORMATION ABOUT

FUTURE PROJECTS (2.5). The categories previously mentioned account for only about 14

% of the information shared across the ten meetings.

While information sharing also happened during non-design-centered discussions, clearly

much more information is needed to convey design ideas. For example, while DEVISING A

SOLUTION to improve the performance testing suite (T6), 48 different pieces of prior

information of 18 different kinds were shared. As one example, the excerpt below shows

how P3 kicked off this topic’s discussion.

Observation 13: Discussions that involve design deliberation require more
prior information than discussions that do not.

108

P3: Yeah, so – so, I just want to – breaking it down to the three things that
we've got. Or two things that we've got, and one that we've… working on. And
the three times – three kinds of performance test … we have a performance
component test. And we've got an example. It works great. It’s caught one
defect, one regression, that we – we put in at one point.
…
Um, and so, we've got an example, and, uh, I think that – it’s already running in
the – it’s already running in the pipeline. All we have to do is, um, write more
tests.
…
Um, that’s another place where we could be doing this. Uh, the second kinds of
tests that we have are sort of like load and stress tests. These have been
generally ad hoc tests that we've put together.
…
Um, so, that being said, we have A and we have B, and we've got versions of C.
So, I would propose that for this baggle, that we do what we can to get our, uh,
uh, version C into our release process. As long as regression tests are really, I
think this an important part for our release process, where we review the
performance of the system before we release it.

Just during this fragment of the discussion, four different pieces of prior information

were shared, all of the kind TESTING PROGRESS.

4.4 Importance of prior information sharing in RSSMDM

In this section, I present the results of the analysis conducted to answer RQ 1.2: How

often is prior information shared in RSSMDMs? To answer this question, I determined the

average number of times prior information was shared per minute based on the meeting’s

duration (in minutes) and how much information was shared per meeting. Table 13 shows

these results. The first row shows the duration of each meeting, the second row the total

number of times information was shared, and the third row shows the average per minute.

Table 13. Meeting duration and information shared.

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Total

Duration (min) 43 60 42 62 61 52 55 69 63 55 562

Times
Information shared

78 55 52 63 95 74 63 43 99 72 694

Times information
was shared per minute

1.81 0.92 1.24 1.02 1.56 1.42 1.15 0.62 1.57 1.31 1.23

109

Note that for meeting eight, prior information was shared approximately once every

minute. For all the other meetings, prior information was shared between one or two times

per minute.

I also analyzed how much information was shared per topic discussion (all topics

were introduced in Chapter 3). Table 14 shows this distribution, the first column shows the

Topic Id, and the second the number of times prior information was shared. Topics are

Table 14. Prior information shared per topic.

Topic Id Times prior information was shared
T11 52
T3 51
T6 48
T39 48
T21 48
T10 35
T1 34
T7 30
T9 29
T38 26
T40 24
T8 22
T23 22
T18 22
T36 19
T2 18
T16 18
T31 16
T20 14
T30 13
T13 12
T15 11
T4 9
T24 8
T12 8
T5 7
T35 7
T29 7
T14 5
T41 4
T26 4
T45 3
T42 3
T37 3
T17 3
T34 2
T32 2
T27 2
T25 2
T33 1
T22 1
T19 1
T28 0
T43 0
T44 0
Total 694

110

organized in descending order, from the topic in which the most prior information was

shared (T11), to the topic in which the least information was shared (T33, T22, T19). Note that

only for three topics (T28, T43, T44) out of 45 prior information was not shared.

Overall, the results obtained from the two analyses indicate that:

As one example of the high frequency with which prior information sharing happens

in these meetings, prior information was shared 52 times in T11. The discussion of this topic

was intertwined with T12 (as explained in Chapter 3, Section 3.9). After being discussed the

first time, T11 was re-discussed a couple of times more. Each of the times the topic was

discussed, prior information was shared. Most of the shared information related to the

software as deployed (e.g., DEPLOYMENT MANAGEMENT, DEPLOYMENT FACT), and

TESTING.

As a second example, I discussed T6 in Section 4.3. During this topic, prior

information was shared about 48 times. The excerpt used as an example in Section 4.3

lasted approximately four and half minutes. During this short timeframe, prior information

(all of the same kind) was shared four times, meaning that almost one piece of information

was shared per minute.

As another example, in T38 information was shared 28 times. The excerpt below

shows three pieces of information (ISSUE, RUN-TIME INFORMATION, FUNCTIONALITY

REQUEST) that were shared to set the context of the discussion:

P12: Um, so, the thing is this morning some of the environments were down.
The machine processing was at scale and then could not – could not serve the

Observation 14: Information sharing is very frequent in RSSMDMs, on the
order of once or twice a minute on average.

111

request in time. The [confidential] wanted to have a dashboard or something to
detect these kind of problems.

In this example, a developer first shared an ISSUE for the team to discuss (“Um, so,

the thing is this morning some of the environments were down.”) then, a fact about the state

of the run-time environment (RUN-TIME INFORMATION, “The machine processing was at

scale and then could not – could not serve the request in time.”), to then explain that the

customer wants to be able to monitor and detect when this issue happens again

(FUNCTIONALITY REQUEST, “The [confidential] wanted to have a dashboard or something

to detect this kind of problems.”). Note how, in a single paragraph, one following

immediately after the other, three different kinds of prior information were shared.

Overall, these results and exmaples show how critical prior information is to the

way RSSMDMs are conducted. Without the prior information being shared, the participants

may need to make assumptions during their design process to move design work forward.

In the context of a deployed and functioning system, however, such a practice may incur a

high risk to the final design. Not only may the expectations of end users not be covered, but

new bugs might be introduced to the software.

4.5 Shared spontaneously or upon request?

In this section, I present the results of the analysis conducted to answer RQ 1.3: Is

prior information shared spontaneously or upon request? The results presented from

Table 10 to Table 14 count all the times that information was shared. However, not all

information was shared in the same way. Out of 694 total shared pieces of information, 587

were coded as VOLUNTEERED, that is, the team member shared the particular piece of

information out of their own volition without any prompt by another team member. The

112

participants sharing the prior information simply included the information in the course of

making a contribution to the discussion.

The remainder (107) was shared by request (coded as ANSWERED, as explained in

Section 4.1): before someone shared the information with the team, another person in the

meeting asked for it, whether explicitly or implicitly.

Most of the excerpts I have previously used as illustrations were VOLUNTARILY

shared, nobody asked for them. However, prior information was also shared upon the

request of a participant. On most occasions, the request was explicit (with someone asking

for it), as in the following excerpt:

P2: …Need to know – know your, uh, – your Linux pretty well, and how to use
Vault, and get your – how to get the – all that. Use all – we have some scripts
that we use here.
P3: Which – which script to use?
P2: We all have our like, our preferences. I use, uh, I think one of [confidential]’s
Vault scripts.

The request (fragment underlined) concerned a DEPLOYMENT MANAGEMENT piece of

information by P3, which was answered instantly by P2. Interestingly, the answer did not

point to a single script, but to the availability of a set of scripts. The discussion continued

talking about the options.

In other cases, the request was implicit in the conversation, with the following a

typical example (DEPLOYMENT FACT):

P3: If you try to do 250 con – concurrent requests, you’re gonna get 429-ed
because we’ve got every endpoint limits any site from making, was it, 100
concurrent requests, right, 100 or 150 is the default. A hundred or 150 –
P4: I think it’s a – I think it’s 100. That’s ss – good.
P3: – a hundred concurrent requests for any site on any endpoint.

Note how P3 never explicitly asked the team, mentioning two potential values simply as

part of their narrative (fragment underlined). P4 felt compelled to interject and answered

113

with the actual value. P3 did not skip a beat, continuing their train of thought with the

clarified limit.

I am not aware of any prior literature that has looked at this balance, but

hypothesize that the fact that most information is shared of the participants’ own volition

might be an indicator of this team being highly experienced at conducting design

deliberations. The opposite might also be true: the team is poorly performing in not

soliciting the information that it truly needs.

4.6 Are requests for information answered?

In this section, I present the results of the analysis done to answer RQ 1.4: when

information is requested, is the request answered? Table 15 shows all types of information

that were requested, together with how often these were or were not answered. The table

presents the number of occurrences of information requested (RQ), the requests that were

not answered (NOT AN), and the requests for which information of a different kind was

provided in response (DIF TYPE). Results are sorted based on the percentage of

unanswered requests (%NOT AN).

The requests that went unanswered (NOT AN) should definitively be considered

INFORMATION MISSING. However, to determine whether the requests for which answers

of a different kind were provided (DIF TYPE) answered the question that was asked,

further investigation is needed. Thus, whether information was MISSING or not will depend

on each case basis.

Observation 15: Information is most often shared spontaneously as part of the
natural unfolding of the discussion, with a small portion explicitly requested.

114

As an example of an information request that was not answered (NOT AN), the

excerpt below shows a request for a NON-FUNCTIONAL REQUIREMENT that went

unanswered.

P2: Is there an NFR for how long it should take? Because I think right now, it’d
probably take uh, at least a maybe like a day to process all the results and set
the new type. Or should we consider doing something with the – at query time
for Elasticsearch?
P5: Mm-hmm.
P2: Um, is – is there NFR for this, or is it okay for it take – maybe that will help
make the decision. Um, cause currently, we do set the value in Elasticsearch and
Postgres. But we could probably change that to do something at query time
depending on what the NFR is.

Indeed, P2 asked twice in the above fragment (which we coded only once, since we did not

code repetitions) and later asked again. The team deliberated what a potentially good limit

Table 15. Frequency of different kinds of information being requested (#RQ), the number of

requests that were not answered (#NOT AN), the number of requests for which information of the

same kind was provided in response (#AN), and the ones for which information of a different kind

(#DIF TYPE) was provided in response. Categories not listed had 0 requests.

Category #RQ #NOT AN #DIF TYPE #AN %NOT AN

ANALOGOUS SOLUTION 3 3 0 0 100.0%
FUNCTIONALITY REQUEST 2 2 0 0 100.0%
NON-FUNCTIONAL REQUIREMENT 2 2 0 0 100.0%
ARCHITECTURAL FACT 2 1 0 1 50.0%
CHANGE DIFFICULTY 2 1 0 1 50.0%
DOCUMENTATION PROGRESS 4 2 0 2 50.0%
INFRASTRUCTURE FUNCTIONALITY 10 5 0 5 50.0%
INTERNAL COST 2 1 0 1 50.0%
PRIOR ISSUE 4 2 0 2 50.0%
TESTING MANAGEMENT 2 1 0 1 50.0%
CODE FACT 16 6 1 9 37.5%
CUSTOMER CONTEXT 7 2 0 5 28.6%
TEAM PROCESS 7 2 0 5 28.6%

TESTING FACT 7 2 0 5 28.6%
TEAM HOUSEKEEPING 20 5 0 15 25.0%
ISSUE DETAIL 9 2 2 5 22.2%
DEPLOYMENT MANAGEMENT 9 2 0 7 22.2%
DEVELOPMENT PROGRESS 9 2 0 7 22.2%
ARGUMENT 5 1 0 4 20.0%
DEPLOYMENT FACT 10 2 0 8 20.0%

ISSUE 2 0 2 0 0.0%
CUSTOMER COST 3 0 1 2 0.0%
RUN-TIME INFORMATION 6 0 1 5 0.0%
BEST PRACTICE 2 0 0 2 0.0%
DEPLOYMENT QUALITY ASSESMENT 1 0 0 1 0.0%
PEOPLE EXPERTISE 2 0 0 2 0.0%

TOTAL 148 46 7 95 31.1%

115

might be based on a few analogous situations, but never provided a definite answer as to

whether or not an NFR existed. In this case, however, the team at least considered the

request and discussed it, as compared to other cases in which requests were simply

ignored. For instance, in the following extract (also tagged as NOT AN), P6 makes a request

concerning the review process, but P3’s answer does not touch that process at all and

neither does the discussion afterwards.

P6: Isn’t that part of the quarterly review, the checklist is like, hey if I’m gonna
be writing scripts then it’s part of this process.
P3: It’s – this – this is not just restricted to strips – scripts. This is like, in our
entire code base, [electronic tone] where we always open cursors, and we
always iterate over them, and we always open up a second connection. It’s just
standard best practice. Only practice, I mean, it – it –

As an example of an information request in which information of a different kind

was issued as an answer (DIF TYPE), the excerpt below illustrates how P6 made a request

about information related to CUSTOMER COST, which P2 answered by providing

information related to the deployment of the software (DEPLOYMENT MANAGEMENT).

P6: Yeah. So, does – does that mean that if clients don’t wanna be in this multi-
tenant environment they will pay more and be in their own VPC?
P2: It just means they wouldn’t have a public endpoint.
P12: Yeah. Nothing changes before it gets to the application. It’s just how the
client will connect to it.
P6: Okay. But it will still be a shared architecture still?
P12: Yeah. Nothing changes before it gets to the application. It’s just how the
client will connect to it.

Note that nothing about how clients would be charged, whether they are part of a multi-

tenant or dedicated environment, was said. Though, the fact “they would not have a public

endpoint” seems to implicitly deliver a message, as it draws attention to the deployment

configuration rather than the cost. P12 complements the answer, which led the

conversation to a different path. In this case, it is not possible to confirm whether the

116

answer fulfilled what was asked. Note that even though P6 confirmed to understand what

P2 explained, information was requested a second time.

Table 15 also shows the number of requests that were answered (AN). This value

was obtained by subtracting the number of unanswered requests (NOT AN) from the total

number of requests made (RQ). This value does not match the number of segments that we

coded as ANSWERS in the transcripts (we coded 107 segments as answers). The reason is

that some requests had more than one corresponding answer.

Across all meetings, 26 types of information were requested and 23 of those had at

least one occasion in which one of the requests went completely unanswered (not even an

answer of a different type was issued). In total, 148 information requests were made, 46 of

them went completely unanswered (NOT AN), and on seven occasions, prior information

contributed in response to a request was of a different type (DIF TYPE). Situations of this

kind occurred only for five categories of prior information: ISSUE (twice), ISSUE DETAIL

(twice), CODE FACT (once), CUSTOMER COST (once), and RUN-TIME INFORMATION (once)

for a total of seven times across the ten meetings. In general, when information requests

were made and an answer was indeed issued, information of the same kind was provided

in response.

I also broke down the results shown in Table 15 per meeting. In so doing, I did not

find any patterns; requests for each type of information appear fairly evenly spread out

across the meetings, as are generally the times that requests went unanswered. An

Observation 16: In approximately a third of the cases when information is
requested, participants do not produce the requested information, with the
discussion proceeding without it.

117

exception to this even distribution is TEAM HOUSEKEEPING. In this category, 15 requests

were raised during the fourth meeting. All these requests were discussed as part of T1.

During this discussion, participants touched base on the creation of some AWS accounts

that the developers from the team in India had requested days before, and that they still

did not have, yet they urgently needed to work on a support case. A particular

characteristic of this discussion is that work was not delegated but done during the

meeting. P2 created the accounts for the participants during the discussion. They went

back and forth clarifying details such as who should have access (i.e., “Well, I think everyone

has [Confidential] by now, right?”), what roles were needed (i.e., “Which roles do you have?”),

and more. This explains why an uncommonly high number of HOUSEKEEPING requests

were made in a single meeting.

4.7 Who shares the information?

 In this section, I present the results of the analysis done to answer RQ 1.5: who

shares the information? Table 16 presents the count and relative percentage of which

meeting participants shared information (columns “#shared” and “%shared”), requested

information (columns “#requested” and “%requested”), or provided answers to the

Table 16. Sharing, requesting, and answering per role.

Role #
sh

a
re

d

%
sh

a
re

d

#
re

q
u

e
st

e
d

%
re

q
u

e
st

e
d

#
a

n
sw

e
re

d

%
a

n
sw

e
re

d

#
an

sw
er

ed
 (

n
o

t
re

ca
ll

)

#
an

sw
er

ed
 (

re
ca

ll
)

#
co

n
tr

ib
u

te
d

vo

lu
n

ta
ri

ly

#
co

n
tr

ib
u

te
d

vo

lu
n

ta
ri

ly
 (

n
o

t
re

ca
ll

)

#
co

n
tr

ib
u

te
d

vo

lu
n

ta
ri

ly
 (

re
ca

ll
)

DEVELOPER 48 6.9% 12 8.1% 17 15.9% 17 0 31 30 1
DEVOPS ENGINEER 44 6.3% 0 0.0% 10 9.3% 10 0 34 33 1
MANAGER 12 1.7% 22 15.5% 5 4.7% 5 0 7 7 0
PRODUCT OWNER 45 6.5% 17 11.5% 7 6.5% 7 0 38 32 6
QA ENGINEER 24 3.5% 6 4.1% 3 2.8% 3 0 21 21 0
SOFTWARE ARCHITECT 521 75.1% 90 61.8% 65 60.7% 63 2 456 447 9

Grand Total 694 100.0% 147 100.0% 107 100.0% 105 2 587 570 17

118

requested information (columns “#answered” and “%answered”). In the table, meeting

participants are organized by role. The count of information shared considers the

information that participants shared without a previous request (“#contributed

voluntarily”) as well as the information that was provided in response to a request

(“#answered”). The count of information “#requested” comes directly from the segments

that we coded as such in the transcripts, and the count of information “#answered”

corresponds to the sum of segments coded as “#answered (not recall)” and “#answered

(recall)”. The results in the column “#contributed voluntarily” (which forms part of the

information shared) were obtained from summing up segments respectively coded as

“#contributed voluntarily (recall)” or “#contributed voluntarily (not recall)”. The terms

“recall” and “not recall”, which respectively identify the occasions in which participants

quoted things other people said (recalls), and when they did not (not recall). In Section 4.1,

I provide details about this coding.

The results presented in Table 16 clearly show that the two architects were central

to the meetings: they shared nearly 75% of all information, they made over 60% of the

information requests, and, between the two of them, they answered nearly 60% of the

information requests. Given their responsibility of providing technical oversight for the

product, this is not surprising. It is also not surprising given that both are long-time

employees of the company and are at almost every single meeting of the team, which has

allowed them to assimilate much knowledge about the product.

Even so, other meeting participants were regularly called upon, providing key input

into the various design discussions, and helping diagnose potential issues with the

deployed software. Given their more specialist roles, they spoke less than the two

119

architects and made fewer contributions from the perspective of sharing information.

When they did contribute information, however, it often was important:

P12: Yeah, they’ll be running their application just like we currently do, but it
will not be exposed to internet. It will be exposed only in their private database
[Confidential].
P6: Okay. But it will still be a shared architecture still?
P12: Yeah. Nothing changes before it gets to the application. It’s just how the
client will connect to it.
P2: It’s like going through like the private door rather than the public door at
the –
P3: Sort of the – a private API.
P2: – club.

P12, who is an expert on infrastructure matters, explains the design of a security

configuration for an API. It was critical for others on the team to hear what he had to say

about the new configuration.

The role of the two product owners was less technical when it came to the

discussions. The primary product owner, who resides in the U.S., often focused on steering

the discussion at a high level. The below excerpt, for instance, represents a typical way in

which she engaged, setting the stage for the ensuing discussion:

P1: I – I think – I have a question about – hopefully, it’s quick – um, about the
[confidential] workflows. Uh, it looks like those are pretty, like, smooth sailing,
no real issues when it comes to impacting, um, other clients. Right?

She requested an update on a recent upgrade to the software and if it eliminated a long-

term performance issue (DEPLOYMENT QUALITY ASSESSMENT). One of the architects

then engaged in a lengthy back-and-forth with her in which she further motivated the

question by highlighting that more hospitals were planned to be onboarded and that she

wanted to ensure that the software would be able to handle the additional load. When the

team began to discuss, the product owner let the architect lead the discussion and said very

120

little. From the perspective of information, however, she provided essential, context setting

information enabling the team to focus and function.

Two of the software architects were responsible for over 75% of the information

being shared. On the one hand, this result is not completely unexpected because it is the

architects’ express responsibility to lead the design and development from a technical

point of view. On the other hand, the concentration of knowledge in just two of the twelve

team members might be an issue of concern if these team members were to leave the

company or transition to another team.

4.8 Prior information from other people

In this section, I present the results of the analysis done to answer RQ 1.6: How

often is prior information shared that people not attending the meetings said? The

aggregation of columns “#answered (recall)” and “#contributed voluntarily (recall)” from

Table 16 shows that only 19 times out of 694 participants recalled what someone not

attending the meeting said. As one example of these recollections, during T5, the main point

of the discussion was clarifying a comment made by two different people over a Slack

channel:

P3: I mean, the only – the only thing I’d – the only thing that gives me
hesitation is [person name 1] wrote in bold, “[Component name] will not
connect to public internet.” What [person name 2] said is, “It will be secure over
SSL,” which is connected to the public internet.

In this case, clarifying whether the software could connect to the public internet was

critical to make progress with this SUPPORT CASE.

Observation 17: A significant amount of information sharing is done by a
limited number of participants.

121

As another example, while PERFORMING A POST-MORTEM to establish a new

practice (T10) the architects kick off the discussion by recapping what the issue was about

as well as its status. To do so they shared prior information other people said:

P3: And, uh, so, we’ve resolved that, but apparently, I know something [persona
name] was saying that there’s still – he’s still seeing high amount of disconnect
reconnects.

From the 19 times participants shared something said by someone not attending the

meeting, seven times the information was shared during a SUPPORT CASE that was still

open, and four times it was shared to improve a process (PRACTICE AND PROCESS) about

SUPPORT CASES that were not handled in the ideal way. This means that recalls of what

external people said were most often used to discuss a SUPPORT CASE or to improve an

INTERNAL PROCESS.

Participants do not seem to re-state what others have said very often. However,

these recollections seemed to be particularly relevant for the non-core participants (as

introduced in Chapter 3) to articulate the background of topics that had recently arisen,

and for which well-organized documentation did not exist. Conversation from Slack

channels (e.g., support channel, devops channel), for instance, was particularly useful for

this purpose. It seemed to help developers to articulate the background of a recent problem

during the meeting so that the key internal stakeholders could provide feedback on how to

solve it.

Observation 18: Recollections of what external people said or what they did are
indeed shared, but not very often.

122

4.9 Are tools used to obtain prior information?

In this section, I present the results of the analysis done to answer RQ 2: What tools

do participants use in support of sharing prior information in RSSMDMs? Table 17 shows

the variety of tools that the participants of the meetings use to share information. Observe

that participants use both development-oriented tools as well as general purpose tools.

Also, note the use of some proprietary software (not a tool, but one of their products).

I also observed that while drawing and diagramming tools (e.g., whiteboards [13],

[85], [86], CASE tools [202]–[204]) have been historically reported as beneficial during

design meetings (i.e., create and/or show early sketches or UML diagrams), the participants

did not use tools of this kind during the meetings. Instead, most prior information was

obtained from a knowledge repository (Confluence) and an issue tracking system (Jira). A

chat tool (Slack) and other development tools (e.g., AWS, testing tools) were used as well.

In fact, only a few times did information come from a non-textual source. On one occasion,

for instance, a participant actively demonstrated a defect in one of their products

(PROPRIETARY).

Observation 19: Typical design tools were not used to share prior information
in these meetings.

Table 17. The source of the prior information that was shared.

Category Source Description

DEVELOPMENT

CONFLUENCE Project management dashboard for project planning and document sharing.
JIRA Issue tracking system used to record, manage, and prioritize problem tickets.

DEPLOYMENT/MONITORING
Internal or external services (not part of AWS) to deploy software or monitor
deployed instances of their software.

AWS Amazon Web Services (AWS) are cloud computing services provided by Amazon.

GENERAL

PURPOSE

OFFICE SUITE (EXCEL) Spreadsheet software that supports calculation and graphical presentation of data.

EMAIL (OUTLOOK)
Outlook is a personal information manager web app from Microsoft consisting of
webmail, calendaring, contacts, and tasks services.

CHAT (SLACK) Messaging app for business.
NA PROPRIETARY The company software products.

123

The fact that drawing tools were not used to share prior information during the

meetings that I observed does not necessarily mean participants never use them. However,

these results do point out that participants find text-based information sharing more

practical during the meetings.

As part of this analysis, I also quantified the times prior information was shared

through each tool. Table 18 shows the times that the information being shared by one of

the meeting participants was visible to all others in the tool that had been brought up via

screen share in WebEx. Results appear organized in descending order, both vertically and

horizontally. Note that out of 694 pieces of information shared, only 75 times did

participants rely on the information displayed in a tool. This means that tools were only

used about 11% of the times information was shared; all other times information purely

Table 18. Tools used to share information. Categories not listed did not involve tool use.

Category Ji
ra

C
o

n
fl

u
e

n
ce

E
-m

a
il

/c
h

a
t

A
W

S

D
e

p
lo

y
/m

o
n

it
o

r

P
ro

p
ri

e
ta

ry

O
ff

ic
e

 s
u

it
e

T
o

ta
l

RUN-TIME INFORMATION 2 3 4 3 12
DEVELOPMENT PROGRESS 5 3 1 2 11
ISSUE 2 2 1 5
TESTING FACT 5 5

CODE FACT 1 2 1 4
FUNCTIONALITY REQUEST 2 2 4
ISSUE DETAIL 4 4
TESTING PROGRESS 4 4
CUSTOMER CONTEXT 2 1 3
DEPLOYMENT MANAGEMENT 1 1 1 3

ARCHITECTURAL FACT 2 2
DEPLOYMENT FACT 2 2

DEPLOYMENT QUALITY ASSESSMENT 1 1 2
PRIOR ISSUE 1 1 2
TEAM HOUSEKEEPING 1 1 2
TEAM PROCESS 1 1 2
TESTING MANAGEMENT 2 2
ANALOGOUS SOLUTION 1 1
CUSTOMER COST 1 1
DOCUMENTATION PROGRESS 1 1

INFRASTRUCTURE FUNCTIONALITY 1 1
INTERNAL COST 1 1
TESTING QUALITY ASSESSMENT 1 1

Total 17 17 15 11 11 3 1 75

124

came from participants’ own memory and knowledge12. Even though the information

participants shared from their own memory they did not use a tool to show the

information, relying on tools to share information would improve the accuracy of the

information shared and avoid the risk of misinforming the team.

For the few occasions tools were used (75), I also looked into the ways participants

use them to share prior information. As one example, participants typically set the stage for

a discussion by bringing up issues in Jira, sharing a wiki page with notes in Confluence or

referencing a conversation from a Slack channel. The excerpt below is an example of how a

participant set the stage for a discussion with information previously captured in

Confluence (see Figure 6).

P2: So, I think that’s worth talking about. Um, basically, like 12 days ago, um,
[Confidential] was trying to send, uh, automated workflows, uh, out of the
[Confi-dential] system, but the entire system was being, uh, clogged by
[Confidential] or, you know, another phrase for it is like a noisy neighbor.

In this example, P2 shared the background of a reported ISSUE to kick off a root

cause analysis by using some of the content captured in the Confluence page where P12

12 A possibility exists that they looked it up on their computer without sharing, which is data we do not have;
the team has an established practice to share screens though.

P12

Figure 6. Information shared from Confluence.

Observation 20: Tools, including everyday development tools, are a source of
information for the meetings, though they are not the main source.

125

raised the issue and already contributed a few notes documenting the issue and its

undesirable behavior. Information from Confluence and Jira was often used this way,

though not all issues were introduced only from these tools. For quite a few discussions,

the meeting participants would show and cite from the Slack support channel. As one

example, a participant shared the following information about an issue, while showing the

Slack conversation in which it was reported (see Figure 7).

P2: basically, it looks like, um, we’re getting a lot of errors coming out of the
API.

Another use of tools was to provide illustrations that helped the team understand

the behavior of the deployed system. They used either standard AWS tooling to gain insight

into the resource use of their cloud application or would bring up a monitoring tool they

had connected to their own logging infrastructure for detailed insight into code-level

behavior. As one example, a meeting participant wanted to know whether an observed

issue was still a problem (it was) and brought up AWS RDS (RUN-TIME INFORMATION, see

Figure 8):

P3: The CPU is higher on the read replica right now.

Figure 7. Information shared from a Slack channel.

126

Figure 8. Information shared from AWS.

As another example, they would study test results to remind themselves of what the

various parts of their test suite actually covered. Figure 9 shows two tests side by side for

inspection. Various instances of prior information were shared based on the inspection of

these two tests. The excerpt below shows what the architects said, the first line is a

TESTING FACT shared spontaneously, the second an answer, and the third expanded detail

(also contributed voluntarily):

P2: So, here are the two test runs, [P3], and it looks like DB – or sorry, Merge
runs everything for UI.
P3: Oh, okay. We got live site there?
P2: Yeah.
P3: Live site, local code, local test. Okay. It’s just – it’s just everything except all
the, uh, mm, perfect.

127

In total, TESTING FACTS were shared three times: two were contributed voluntarily and

one in response to an information request.

Finally, in terms of who was driving the tools, one person (P2) predominantly

shared his screen since they navigated Confluence and Jira on behalf of the team during the

meetings, but other tools were brought up and other participants would take turns sharing

screen content when so relevant. Using information in the tools to set the stage was

something almost all participants who acted as tool drivers did. However, using tools to

share RUN-TIME INFORMATION or configuration details about deployed instances of the

software was a way to use the tools that only the architects and some developers did.

4.10 Implications for research, practices, and tools

The results of the previous sections give rise to several observations concerning the

current state of information sharing as part of RSSMDMs. These observations have

implications for further research, as well as for the tools and practices surrounding

Figure 9. Information shared from development a tool.

128

meetings of this kind. In this chapter, I discuss these various implications by anchoring

them in the observations and research questions introduced in previous sections.

4.10.1 Implications for research

Several findings of this work confirm results from previous studies. As one example,

previous research has described software design as a knowledge intensive activity [24].

The fact that I observed information sharing being extremely frequent (RQ 1.2) and that

discussions that involved design work involved more information sharing than discussions

that did not (RQ 1.1), reinforces this previous finding. On average, one to two pieces of prior

information were shared per minute and about 80% of the times prior information was

shared, it was done while discussing a design-related topic. Both these findings, empirically

validate the knowledge intensive nature of design work that previous researchers have

claimed.

 Other findings obtained did not confirm but extend more than one existing body of

knowledge. Regarding information needs (see Section 2.5), for instance, investigating what

kinds of information are shared in these meetings (36 different kinds) describes which are

the information needs of developers in RSSMDMs. In the same vein, the findings of this

work set apart the kinds of information needed to discuss maintenance design (see Section

2.1) from information that has been found to be important to discuss design work in

general (see Section 2.3). While decisions [18], concerns [91], and constraints [201] have

been historically advocated as important for design work, participants did not explicitly share

them in these meetings, though these kinds of information sometimes show through in other

types of information (RQ 1). For instance, rather than explicitly mentioning past decisions

and their associated rationale, the participants described the current state of the codebase

129

(CODE FACTS) to then share ARGUMENTS about why certain functionalities were coded

that way. Even though some instances of decision-making and rationale show through in

other kinds of information during the meetings (in a way akin to the one just described),

these instances account for no more than the 7.4% of the information shared. In general,

the kinds of information developers relied on the most to discuss design were related to the

system as deployed and under development (RQ 1).

The results obtained in this study also serve as a baseline for future research in

more than one area. Regarding rationale (see Section 2.7), for instance, this work raises an

interesting question: how often is rationale information needed for other types of design

work? While for maintenance design rationale was not shared that often, a different

distribution might be observed for other kinds of design work (e.g., green-field design,

architectural design, re-design to address technical debt). In relation to knowledge

management (see Section 2.6), however, the fact that a significant amount of information

sharing was done by a limited number of participants (RQ 1.5) raises the need to confirm

whether this represents a risk. Given that these people may leave the team at some point, it

would also be an important topic to study how teams prepare for such occasions.

In terms of information needs (see Section 2.5), various strands of future work may

be followed as well. For example, even though the absence of information did not appear to

slow down the discussion when an information request was not met, the actual impact is

unknown at this time (RQ 1.4). This raises some interesting research questions as well, for

instance: Were the answers not really needed? Were answers deferred to the team doing

more detailed design once it has been considered by the key internal stakeholders and

130

assigned? Or did the absence of answers lead to later problems? Further study is necessary

to understand the impact of MISSING INFORMATION in RSSMDMs.

Finally, a future research agenda should also address the limitations of the present

study. Given that I studied a particular kind of design work (maintenance design, see

Section 2.1) and setting (RSSMDMs) for one team of developers all from the same company,

further research is required to generalize (if applicable) the findings obtained from this

work. Future studies may, for instance, replicate this study with other teams that also held

maintenance design meetings, or with teams that conduct other kinds of meetings in which,

at a small or large scale, participants engage in discussing design work (e.g., green-field

design meetings, SCRUM meetings).

4.10.2 Implications for practice

My research and findings also have important implications for practitioners in

relation to the way they run maintenance design meetings, and perhaps design meetings in

general. First, the wild diversity in the types of information being shared in RSSMDMs (RQ 1)

reflects the interest of the key internal stakeholders in ensuring that all the information

needed to shape design in the context of a deployed and functioning system gets

considered. For instance, in the case of post-mortem discussions, the way the architects

shared best practices and introduced procedures is a practice that many other experienced

developers may find useful to implement. As a second example, the way in which the

product owners intervened to share information about the customers in critical moments

of the discussion is also a good practice that other product owners may want to apply to

ensure the team performs its design work by accounting for what is happening at their

customers (RQ 1).

131

Second, regardless of who shares information, their background, experience,

knowledge of the codebase or the customers, participants do not always take for granted all

the information that is shared and do point out when wrong information is shared (RQ 1).

This is a good practice that team leads must encourage among the team members. Even

though instances of MISINFORMATION were barely observed during these meetings, the

times participants pointed out wrong information was being shared and actually provided

the right information, saved the team from taking a wrong direction with the design. Such

corrections are highly valuable for everyone.

Another important observation in relation to practice is that a significant amount of

information sharing was done by a limited number of participants (RQ 1.5). In these

meetings, these participants were the software architects, who shared over 75% of the

prior information. On the one hand, this can be expected because it is their express

responsibility to lead the design and development from a technical point of view. On the

other hand, the concentration of knowledge in just two of the twelve team members might

be an issue of concern if these team members were to leave the company or transition to

another team. From that perspective, it is important that software development teams

consciously engage in knowledge sharing, and knowledge documentation, so that

important knowledge about the system and the team’s internal practice does not reside

only in a few people. Instead, knowledge should be spread among several team members.

While it is not necessarily harmful or risky that few people accumulate large amounts of

knowledge, it is potentially harmful when only those people know it. A primary motivating

factor for establishing the RSSMDMs in this company was precisely to enable such

knowledge sharing, together with the meetings being the place to address issues that

132

continued to emerge. Companies in which recurring meetings of this nature have yet not

been installed, could justify the need of installing them to improve one or both of these

situations.

4.10.3 Implications for tool support

This work also uncovered important implications for the development of better

tools to assist prior information sharing during design meetings. First, some of the findings

obtained point out where current tools fall short in regards to prior information sharing.

For example, the fact that tools were only used approximately 11% of the times

information was shared is a red flag to investigate why: Could it be that tools do not live up

to their potential to assist developers with information sharing during meetings? Could it

be that users found it difficult to find information in the tools during the meeting? It would

be interesting to know why, even though tools, including everyday development tools, were a

source of information for the meetings, they were not the main source (RQ 2). As another

example of tool support falling short relates to the fact typical design tools were not used to

share prior information (RQ 2). Historically, design tools (see Sections 2.3, 2.6, and 2.7) have

been reported as beneficial for design work. However, participants did not use tools of this

kind during the meetings. This does not necessarily mean these tools are not important for

this kind of design setting. Could participants find it useful to be able to look at diagrams of

the systems architecture while discussing ARCHITECTURAL RE-DESIGNS, or while

DEVISING SOLUTIONS for SUPPORT CASES? An experimental study of this team using

diagrams of the architecture during discussions of this kind would be a starting point to

investigate.

133

My work also uncovers implications for the development of better tools to support

information sharing in RSSMDMs. Observing that specific kinds of information were more

relevant for certain types of work (RQ 1.1) calls attention to creating tools able to pull

information from multiple sources to share during the meeting. This research would

extend the scope of previous work in knowledge repositories (see Section 2.6). While

knowledge repositories were created to serve as a primary source of design information,

my study shows that other tools, for instance issue tracking systems (i.e., Jira) were nearly

equally important to obtain it. The creation of mechanisms to interconnect information

between knowledge repositories (i.e., Confluence) and these other tools (e.g., Jira, Slack,

AWS) might bring a positive change to developers’ practice. In fact, some simple

mechanisms towards this direction have already been implemented through plug-ins that

enable the creation of links between Confluence and Jira. However, the integration of

information snippets from other sources such as Slack channels, or AWS dashboards would

be equally useful. In a similar vein, meeting assistants could support participants by

suggesting relevant information for specific maintenance discussions based on the

participants’ conversation. For instance, while discussing the root cause analysis of a past

issue, a smart meeting assistant could automatically share links to the tickets associated to

that issue. As a second example, when utterances requesting RUN-TIME INFORMATION are

made (i.e., “what is the usual number of requests for that API?”), an automated assistant

could share the access to AWS dashboards containing this information. The state of the art

in language processing techniques [205] is already able to identify certain utterances and

trigger actions based on them (e.g., [206]–[209]), though utterances that implicitly

134

represent an information need (i.e., “I don’t know what the NFR is for that”) would be more

challenging.

Another factor to consider in this regard is the way in which information sharing

happens. In these meetings, I observed that information is shared spontaneously as part of

the natural unfolding of the discussion, with a small portion explicitly requested (RQ 1.3).

These results point out a challenge for the design of tools that proactively provide

information. While the formulation of questions could be used as a cue to trigger queries to

obtain information from a knowledge base (i.e., Confluence), only about 15% of the

information in these meetings was requested. The rest was voluntarily shared, meaning

that new ways to detect information needed (not only based on questions) should be

investigated. Finally, another factor to consider in the design of future tools supporting

RSSMDMs are the recollections from external people that were shared during the meeting

(RQ 1.6). Even though participants did not share what others had said very often, these

recollections were particularly relevant in some cases. For instance, while working on

SUPPORT CASES, information from technical Slack channels (e.g., support channel, devops

channel) was particularly useful to understand the problems being reported. It helped

developers to provide the situation’s background in order to obtain advice from the

architects on how to solve it. In this regard, an interesting future research direction could

be investigating the extraction of useful information snippets from Slack channels to be

shared during RSSMDMs when so relevant.

135

5 Outflow Captured during RSSMDMs

Finding better ways to capture information generated in software development

meetings is not a recent problem (see Section 2.4). Sometimes, a meeting participant is

tasked with taking notes during the meeting. Other times, someone may take a picture of

the whiteboard used at the end of the meeting and share it with the rest of the team or

participants may simply rely on their memory to retain information during the meeting, to

then create more formal notes or diagrams of what was designed afterwards.

Tools to assist meeting information capture have also been the subject of study.

Some examples are tools to capture early design sketching (e.g., [13], [85], [86]) or multi-

media recordings of the meeting (e.g., voice notes [123], full meeting recording [120],

[121], [124]). Moreover, tools to document information from the meeting once is has

concluded have been studied as well (see Section 2.4). However, lacking today is a study

that classifies the new information that is generated during the meetings. In this

dissertation, I call this information discussion outflow. The participants in RSSMDMs

capture information generated during the meetings to document the work done for future

use (e.g., individual work, subsequent meetings about the same topics, unforeseen future

updates to the project). Without a proper way to capture discussion outflow, future design

conversations in RSSMDMs may turn ineffective and excessive reverse re-engineering

[210] and in some cases even re-work might be needed. As a result, future design work

may take longer than it should.

My study fills this gap in the literature by describing what kinds of information are

captured as discussion outflow in RSSMDMs. The participants in RSSMDMs may, for

instance, capture information that contributes to understanding a problem, or generating a

136

solution for it (e.g., decisions [18], alternatives [199], constrains [201]). They may also

share a design proposal with the rest of the team with the goal of obtaining feedback to

improve it, with the feedback made as annotations on the design proposal or simple notes

on a Google doc.

Part of the goal of my dissertation is to characterize the variety of discussion

outflow that the participants in these meetings generate and capture. Another important

part of this dissertation’s goal is to describe the tools and artifacts that participants use to

capture it. In Chapter 1, I introduced two primary questions that seek to describe how

discussion outflow is captured in RSSMDMs (RQ 3 and RQ 4). This chapter answers these

two questions, together with a number of secondary questions. The answers provide a

comprehensive view about how information flows out of RSSMDMs.

RQ 3 What is the discussion outflow of the topics addressed in RSSMDMs?

RQ 3.1 What kinds of discussion outflow are captured more often?

RQ 3.2 Is discussion outflow always captured?

RQ 3.3 Are certain kinds of discussion outflow captured during certain kinds

of work?

RQ 3.4 Are certain kinds of discussion outflow captured for discussions of a

certain purpose?

RQ 4 What tools do participants use to capture discussion outflow in RSSMDMs?

RQ 4.1 Are specific artifacts used to capture discussion outflow?

RQ 4.2 Are certain tools used more often to capture discussion outflow?

RQ 4.3 How do participants use tools during RSSMDMs?

RQ 4.4 What participants drive the tools to capture discussion outflow?

137

RQ 4.5 How are tool drivers prompted to capture discussion outflow?

The remainder of this chapter is organized as follows. Section 5.1 explains the

methodology used to analyze the data. Section 5.2 presents the results associated to RQ 3.

Sections 5.3 and 5.4 present the results of RQ 3.1 and RQ 3.2 respectively. In Section 5.5, I

present the results of RQ 3.3 and RQ 3.4. Then, Section 5.6 presents the results for RQ 4 and

RQ 4.1, Section 5.7 the results for RQ 4.2, and Section 5.8 the results for RQ 4.3. In Section

5.9, I present the results that answer RQ 4.4 and RQ 4.5. Finally, in Section 5.10, I discuss

the implications of the findings for research, practice, and tool development.

5.1 Methodology

I analyzed the transcripts and videos of ten meetings from a healthcare software

development company (details about this dataset are provided in Chapter 3). The analysis

was primarily performed on the videos to detect when participants captured information

in a tool. For instance, participants would typically share their screen to create a new ticket

in an issue tracker system (Jira) to capture some information. As another example, they

captured meeting notes in a wiki page with a pre-loaded template for that purpose

(Confluence). Non-verbal interaction of this kind is only possible to detect by watching the

videos. The transcripts were also analyzed to detect discussion outflow that was not

captured in tools. For instance, on quite a few occasions someone on the team would task

other participants with creating a support ticket, requesting new accounts for a team

member after the meeting, or organizing a list of issues to be triaged in a future meeting.

As a preliminary step, I partitioned each meeting based on the topics being

deliberated (I described this process in Chapter 3). Once the meeting had been partitioned

into smaller topic discussions, a thematic analysis [29], [30] to identify and categorize all

138

the occasions in which discussion outflow was captured for each topic was performed. I

describe this process below.

5.1.1 What to consider as discussion outflow and what not

A first step to perform the thematic analysis was defining what information should

be considered discussion outflow. Two researchers (one of them myself) develop a set of

rules to identify discussion outflow in the data. These rules stem from the idea of

considering as discussion outflow all moments in which information was captured in tools

that were shared on screen. I list the three rules so defined below.

Rule 1. Consider as discussion outflow information that is captured in tools that are

being shared on screen.

Rule 2. Every time participants typed information in a tool. For instance, a tool

driver could uninterruptedly capture part of an idea for a while, then engage in

discussion (no typing), to, thereafter resume typing to complete what was being

captured. Each of those times outflow was captured it was tagged as a separate

occasion.

Rule 3. Discussion outflow could be captured in three different ways: (1) the tool

driver could voluntarily capture discussion outflow, (2) the tool driver could

capture discussion outflow as per the explicit request of someone, or (3) tool drivers

may capture information that they asked of other participants.

5.1.2 Classifying discussion outflow

139

Two researchers performed an inductive thematic analysis [29], [30] to categorize

the kinds of prior information identified in the sessions. We followed the set of steps below

to create a coding scheme to perform this categorization:

1. Open coding: two researchers (one of them myself) independently performed open

coding on the first meeting, identifying each place where they felt information was

being captured. We also independently categorized the pieces of information

identified.

2. Collaborative review: we then met, compared, and discussed our respective

findings, and created a first version of a coding scheme organizing the categories of

information being captured in the meeting.

3. Final review: a third researcher reviewed the coding scheme and assigned codes of

the first meeting and gave feedback, which led to further changes to the coding

scheme and codes assigned.

4. The two researchers who performed the coding of the first meeting (Step 1) then

independently analyzed the second meeting. Thereafter, the two researchers

compared and discussed their findings, which led to a refined coding scheme that

the third researcher once more reviewed. The suggestions that the third researcher

provided led the two researchers to several updates to the coding scheme, which

they then reflected by updating the codes for the second and first meeting.

5. All other meetings were analyzed meeting-by-meeting following the process used

for the second meeting, with any updates to the coding scheme reflected by recoding

earlier meetings as needed. With each new meeting, the coding scheme slowly but

surely stabilized in terms of the categories it contained.

140

6. Axial coding: the two researchers (one of them myself) then performed axial coding,

reviewing all the categories of the coding scheme one by one, examining the internal

consistency of all assigned codes in each category as well as potential overlaps

among categories. As a result, a few categories were merged, and several assigned

codes were changed to be consistent with one another.

Figure 5 in Section 4.1.2 shows a visual representation of the process (steps one to six) that

was followed.

Once an instance of discussion outflow was identified in the videos, the coding

process previously described was followed to characterize the kind of information that was

captured as outflow. This process provided the basis for answering RQ 3. A table showing

the resulting kinds of discussion outflow observed is presented in Section 5.2. An analysis

of these results per meeting and per topic provided the answers for RQ 3.1 and RQ 3.2,

respectively. Then, by juxtaposing the results obtained to answer RQ 3 with the kinds of

work and the purpose of the discussions (both introduced in Chapter 3), I answered RQ 3.3

and RQ 3.4.

To answer other research questions other coding passes were performed to tag

each already identified prior information fragment with several additional codes. These

additional codes were distilled from what each of these questions sought to answer.

For RQ 4 and RQ 4.1, two researchers (one of them myself) coded the TOOL that was

used to capture information and the ARTIFACT (type of document) in which information

was captured. To answer RQ 4.2, an analysis of the tools used per topic provided the

answer. Then, to answer RQ 4.3, the researchers coded all the ACTIONS performed with the

tools. All the actions observed are presented in Section 5.8.

141

In order to answer RQ 4.4, the same two researchers coded which participant was

using the tool shared on screen to capture outflow (TOOL DRIVER), as well as the

respective role this participant had (TOOL DRIVER’S ROLE). The codes applied to identify

TOOL DRIVERS are the same we used to identify the meeting participants in Chapter 3 (see

Table 1). The roles of the participants that attended these meetings were presented in

Chapter 4 (see Table 8).

To answer RQ 4.5, the researchers focused on coding what prompted TOOL

DRIVERS (participants driving the tool shared on screen) to capture (tool-based) outflow.

They identified three different ways: PROMPTED, UNPROMPTED, and REQUESTED BY

TOOL DRIVER. Table 19 shows the description of each of these codes. In addition, for each

instance of discussion outflow coded as PROMPTED, the researchers coded the segment in

which the PROMPT was made. Then, for each instance of discussion outflow coded as

REQUESTED BY TOOL DRIVER, the respective REQUEST was coded as well. Table 19 also

shows the description of these codes.

Table 19. The ways tool drivers capture information in a tool shared on screen.

Category Description Additional codes

UNPROMPTED
The tool driver was not explicitly requested by someone
to capture discussion outflow.

NA

PROMPTED
The tool driver captured discussion outflow as per the
explicit request of someone.

PROMPT: The segment in which capturing
something is requested.

REQUESTED BY
TOOL DRIVER

The information captured is something the tool driver
asked for from other participants.

TOOL DRIVER’S REQUEST: The segment in which
the tool driver requests son information.

For confidentiality reasons, the healthcare software development company does not

allow me to share the videos or transcripts; I do, however, have permission to share

anonymized extracts from the discussions and anonymized screenshots of the meetings in

this dissertation.

142

All qualitative coding (when it applied) was performed in MAXQDA [198], with 167

codes assigned to discussion outflow segments to answer RQ 3, and 167 codes to answer

RQ 4. For RQ 4.1, RQ 4.4, and RQ 4.5, 167 codes were added per question. To answer RQ 4.3

in particular, 167 codes were added to identify the times information was captured, and 65

additional codes were assigned to identify other ACTIONS done with the tools. Together, all

these codes account for a total of 1067 codes. A few other codes were added to some

segments to, for instance, identify the PROMPT or REQUEST made by TOOL DRIVERS (to

complement RQ 4.5).

5.2 The kinds of discussion outflow that were captured

In this section, I present the results of the analysis performed to answer research

question RQ 3: What is the discussion outflow of the topics addressed in RSSMDMs? Table

20 shows the different kinds of discussion outflow observed when new information was

added or information was refined. Table 20 is organized as follows: the second and third

columns show the different kinds of information captured and their respective

descriptions. The first column shows a meta-classification of the kinds of discussion

outflow observed. I alphabetically ordered the results in Table 20 by the “meta-

classification” of the information categories (first column).

At a high level, the meta-classification of the 16 kinds of discussion outflow that

were captured shows that participants captured DESIGN INFORMATION. Observe that only

one type of information (PROBLEM BACKGROUND/CODE STATE) in this group relates to

the problem space, the rest relates to various aspects of the solution proposed to fix a

143

problem (e.g., ISSUE/TICKET HIGH LEVEL DESCRIPTION, IDEA/ALTERNATIVE,

IMPLEMENTATION GOAL/SCOPE, REQUIREMENT, THINGS TO KEEP IN MIND). The

participants also captured some RATIONALE, sometimes to explain why the current state

of code is what it is (in regards of the problem space), or to justify why certain feature had

to be implemented in a certain way (in regards of the solution space). Information related

to the team’s ways of operating (TEAM PROCESS), information to coordinate future

activities (COORDINATION), and some information related to PROJECT MANAGEMENT

were also captured. PROJECT MANAGEMENT information was specifically about aspects of

the code (e.g., IMPACT ESTIMATE, DEVELOPMENT ESTIMATE) while COORDINATION

activities were more general (DISCUSSION ITEM, ACTION ITEM). In comparison to DESIGN

INFORMATION, the kinds of information observed in these other groups (TEAM PROCESS,

COORDINATION, PROJECT MANAGEMENT) were less diverse. An observation that stems

Table 20. The kinds of discussion outflow observed when new information was captured, or

information was refined.

Meta-classification Category Description

COORDINATION
DISCUSSION ITEM (TOPIC) The information captured is a topic they will discuss during the session.
ACTION ITEM An action item is a single, clearly defined task that must be done.

DESIGN
INFORMATION

PROBLEM
BACKGROUND/CODE STATE

The background of a design problem to be discussed; the state of the
codebase, and how things currently work.

ISSUE/TICKET HIGH LEVEL
DESCRIPTION

High level description of a development task for which the team
decided to create either an issue or a ticket, but for which a detailed
design had not been defined yet; this is the initial description added to a
ticket.

IDEA/ALTERNATIVE
Design ideas or alternatives to solve a problem or improve the state of
the system.

IMPLEMENTATION
GOAL/SCOPE

The goal for some future functionality or update to the codebase is
captured.

IMPLEMENTATION ROADMAP The roadmap of a major development update (i.e., testing pipeline)
RATIONALE The reason behind a design decision, proposal, or idea.
REQUIREMENT A new functionality desired.
THINGS TO KEEP IN MIND Feedback received on a design proposal.

TEAM PROCESS

ADMINISTRATIVE DECISION
The approval of administrative tasks during the meeting (i.e., approval
to create new accounts).

BEST PRACTICE Documenting a best practice.
PLAN OF ACTION FOR CERTAIN
SITUATION Documenting a set of steps to take.
SITUATION'S
BACKGROUND/STATUS

The background information of a topic to be discussed (i.e., the status of
a support case).

PROJECT
MANAGEMENT

IMPACT ESTIMATE
An estimate of how much impact a development could have on the end
users, the codebase, or resources.

SCHEDULING ESTIMATE An estimate of how long a development would take.

144

from comparing the information that was shared (as introduced in Chapter 4) with the

kinds of information that were captured (all shown in Table 20) is that:

While participants shared 36 different kinds of prior information during their

discussions (see Chapter 4), only 16 different kinds of discussion outflow were captured.

As an example of the kinds of design information captured, during T6, the

IMPLEMENTATION ROADMAP for a renovated performance testing suite was captured.

This implementation roadmap was composed of five steps. The summary of one of the

steps in this plan was captured as “PoC on writing component test for FE”. Then, an

associated piece of RATIONALE was also captured in relation to this step to justify why the

step was needed, “Biggest bump for our buck is increase component performance testing”. At

the very end of this discussion, the participants also captured “< 1 Spring”. They captured

this information after estimating how long would the development of this step of the

roadmap take (SCHEDULING ESTIMATE). During the same discussion, an ACTION ITEM in

relation to the first step of the plan was also captured (“To be ticketed”) to remind the team

members a ticket for the work related to that step had to be created. According to the meta-

classifications shown in Table 20, specific kinds of DESING, COORDINATION, and PROJECT

MANAGEMENT information were captured during this discussion. Only TEAM PROCESS

information was not captured.

I also informally explored if some of the prior information shared was captured. I

did observe some occasions in which prior information shared was captured as part of a

piece of discussion outflow in some topics. For instance, I witnessed the statement

Observation 21: The kinds of discussion outflow captured were less diverse in
nature than the prior information that was shared.

145

“currently one queue handles both, evaluation and action” captured as part of the problem’s

description (PROBLEM/BACKGROUND STATUS) of T3. In this example, the information

captured was a CODE FACT that one of the architects shared during the discussion. Given

that a systematic method was not followed to establish connections between what was

shared and what was captured, I do not include this as a formal finding of this work.

However, this is an interesting research direction to explore in future. I discuss this idea in

Section 5.10.

Another important part of this analysis was identifying the kinds of prior

information shared that were completely absent in what was captured as discussion

outflow. For instance, note that information about the system as deployed and under

development (e.g., RUN-TIME INFORMATION, DEVELOPMENT PROGRESS, DEPLOYMENT

MANAGEMENT, DEPLOYMENT FACT, as defined in Chapter 4) does not appear in Table 20.

Participants often shared information about the software as deployed and under

development to build up the context of a problem. These kinds of information are typically

fleeting, they seem to have only a temporal relevance in the discussion. T3 (a discussion

that addressed the ARCHITECTURAL RE-DESIGN of certain part of the software), offers an

example. With the goal of completing the problem’s description, participants shared

different kinds of information about the deployed instance of the software in which the

Observation 22: Even though information about the software as deployed (e.g.,
RUN-TIME, DEPLOYMENT FACT) was the kind of information most often
shared as part of the discussions, such information was not captured as
discussion outflow.

146

problem occurred. The excerpt below shows some of the prior information that was

shared:

P2: …Um, so, basically, I think it was backed up like 12 hours or something,
because [service name] had an external system they were sending to. Um, it was
responding very slowly, like 30 second responses, and there were millions of
automated workflows that were trying to be sent out, but because it was so
slow, it was just backing everything up.

While P2 shared this information to communicate how this issue affected the clients (RUN-

TIME INFORMATION, underlined in the third paragraph), it was not captured anywhere,

neither at the time P2 brought it up nor later.

5.3 Kinds of discussion outflow captured more often

In this section, I present the results of the analysis that answers research question

RQ 3.1: What kinds of discussion outflow are captured more often? To answer this research

question, I counted the times information was captured for each kind of discussion outflow

presented Table 20 (second column). The result of this analysis was a mapping of the 16

categories (in Table 20) to 167 times in which the participants shared their screen and

captured information as outflow of the discussion. Table 21 presents this mapping across

the ten meetings. The table shows the times each type of information was captured per

meeting (from column two to column 11), together with the totals across all meetings

(column 12). Most importantly, it shows in how many meetings a kind of information was

captured (last column). Every information kind that was captured at least once during a

meeting was considered in this count. Shading identifies all the information kinds for which

discussion outflow was captured at least once during a meeting, as well as, in the last

column, the kinds of information captured in the most meetings. Results appear organized

147

from the kind of information captured in more meetings to the kind of information

captured in the least meetings.

The takeaway from the results in Table 21 is the total number of different kinds of

information shared per meeting. Note that across the ten meetings the categories most

often captured were: IDEA/ALTERNATIVE (five meetings), PROBLEM

BACKGROUND/CODE STATE (four meetings), IMPLEMENTATION ROADMAP (four

meetings), ACTION ITEM (four meetings), PLAN OF ACTION FOR CERTAIN SITUATION

(three meetings), DISCUSSION ITEM (three meetings), and RATIONALE (three meetings).

An important observation that stems from these results is that:

Except for ACTION ITEMs (captured in four meetings) and the PLAN OF ACTION FOR

CERTAIN SITUATIONs (captured in three meetings), all other information kinds do relate

Observation 23: DESIGN INFORMATION is what participants of RSSMDMs most
often captured as discussion outflow.

Table 21. Kinds of discussion outflow that were captured per meeting.

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 A
ll

 m
ee

ti
n

gs

C
ap

tu
re

d
 in

#

 m
ee

ti
n

gs

Category # # # # # # # # # # # #
IDEA/ALTERNATIVE 13 2 0 0 9 0 6 0 6 0 36 5
PROBLEM BACKGROUND/CODE STATE 3 1 0 0 7 0 0 0 3 0 14 4
IMPLEMENTATION ROADMAP 1 7 0 0 0 0 0 2 1 0 11 4

ACTION ITEMS 0 1 0 3 1 0 0 2 0 0 7 4
PLAN OF ACTION FOR A CERTAIN SITUATION 0 0 0 10 0 0 7 0 0 6 23 3
DISCUSSION ITEMS 0 0 0 11 5 0 0 3 0 0 19 3
RATIONALE 0 1 0 0 2 0 0 6 0 0 9 3
THINGS TO KEEP IN MIND 0 0 6 0 0 0 0 12 0 0 18 2
SITUATION'S BACKGROUND/STATUS 0 0 0 7 0 0 2 0 0 0 9 2
ISSUE/TICKET HIGH LEVEL DESCRIPTION 3 0 0 0 2 0 0 0 0 0 5 2
IMPLEMENTATION GOAL/SCOPE 1 0 0 0 0 0 0 0 3 0 4 2
SCHEDULING ESTIMATE 0 3 0 0 0 0 0 0 0 0 3 1

REQUIREMENT 0 0 0 0 3 0 0 0 0 0 3 1
IMPACT ESTIMATE 0 0 0 0 0 0 0 2 0 0 2 1
ADMINISTRATIVE DECISION 0 0 0 2 0 0 0 0 0 0 2 1
BEST PRACTICE 0 0 0 2 0 0 0 0 0 0 2 1

Total 21 15 6 35 29 0 15 27 13 6 167

148

to design work. During half the meetings, the participants captured proposed solutions

(IDEAS/ALTERNATIVE). Moreover, details about the background of design problems

(PROBLEM BACKGROUND/CODE STATE) as well as the IMPLEMENTATION ROADMAP of

solutions for those problems were captured in four meetings.

On the one hand, these results highlight that the team captures design information

more than anything else during the meetings, which aligns with the general good practice

that the literature recommends (e.g., [24], [211]). On the other hand, the fact that nothing

was captured during the sixth meeting and that the kind of information that was most often

captured (IDEA/ALTERNATIVE) was only captured in five meetings raises the concern of

whether discussion outflow was indeed always captured. I elaborate more on this in the

next section.

5.4 Understanding why discussion outflow is not always captured

In this section, I present the results of the analysis conducted to answer RQ 3.2 Is

discussion outflow always captured? Towards answering this question, I analyzed how

much discussion outflow was captured per topic.

Table 22 shows the results of this analysis. The left side of the table (first three

columns) shows the meetings in which a topic was discussed (first column), the topic

identifier (as defined in Chapter 3) for which information was captured (second column),

and how often information was captured for each topic (third column). The results on this

side of the table appear organized in descending order, from the topic(s) in which more

times information was captured, to the topic(s) in which less times information was

captured. The right side of the table (columns four and five) shows the meetings for which

information was not captured. The fourth column shows in which meetings each topic was

149

discussed, and the fifth column shows the topic identifier (as defined in Chapter 3). For all

the topics on this side of the table information was never captured.

More than the exact number, or the average number of times information was

captured per topic, what stands out from these results is the number of the topics in which

discussion outflow was not captured at all. For 27 topics, no discussion outflow was

captured. In fact, for all the topics discussed during the sixth meeting (T13-18, T41, T42), zero

instances of discussion outflow were captured.

Table 22. Discussion outflow captured per topic.

Topics for which discussion outflow was captured
Topics for which discussion outflow

was not captured

Meeting(s) in which
the topic was discussed Topic Id

Times information
was captured

Meeting(s) in which
the topic was discussed Topic Id

M5 T11 27 M1 T2
M1 T3 21 M1 T4
M4 T9 21 M2 T5
M2 T6 15 M3 T7

M1, M4 T1 14 M5 T10
M8 T23 12 M6 T13
M7 T21 9 M6 M,8 T14
M9 T38 9 M6 T15
M8 T27 8 M6 T16
M3 T8 6 M6 T17
M7 T20 6 M6 T18
M8 T24 6 M7 T19

M10 T39 6 M8 T22

M5 T12 2 M8 T25
M9 T31 2 M8 T28
M8 T26 1 M9 T30
M9 T29 1 M9 T32
M9 T36 1 M9 T33

Information captured 18 Topics 167 times M9 T34
 M9 T35
 M9 T37

 M10 T40
 M6 T41
 M6 T42
 M8 T43
 M8 T44
 M9 T45

 Information captured 27 Topics

Observation 24: Discussion outflow was captured for less than half the topics
that were discussed across the ten meetings.

150

On the one hand, these results may mean that important information could have been lost

(not captured). On the other hand, the results may also mean that capturing the outflow of

certain discussions is not always required.

To better understand what these results mean, I organized the 27 topics for which

no discussion outflow was captured per kind of work. Table 23 presents the resulting

mapping. The first column shows the topic identifier, and from the second to the ninth

columns I list each type of work (a categorization of topics per type of work was introduced

in Chapter 3). I analyzed each of these discussions in detail with the objective of providing

Table 23. Topics for which discussion outflow was not captured per kind of work.

Topic Id A
D

M
IN

IS
T

R
A

T
IV

E

T
A

S
K

C
O

O
R

D
IN

A
T

IO
N

A

N
D

 P
L

A
N

N
IN

G

IN
F

R
A

S
T

R
U

C
T

U
R

E

IN
T

E
G

R
A

T
IO

N
 O

F

N
E

W

F
U

N
C

T
IO

N
A

L
IT

Y

P
E

R
F

O
R

M
A

N
C

E

P
R

A
C

T
IC

E
 A

N
D

P

R
O

C
E

SS

SU
P

P
O

R
T

 C
A

SE

T
E

ST
IN

G

T2 1
T4 1
T5 1

T7 1
T10 1
T13 1
T14 1
T15 1
T16 1
T17 1
T18 1
T19 1
T22 1
T25 1
T28 1
T30 1
T32 1
T33 1
T34 1
T35 1
T37 1
T40 1
T41 1
T42 1
T43 1
T44 1
T45 1

Total topics 2 3 8 3 1 4 4 2 27

151

some additional insight into how harmful it might be not to capture discussion outflow.

Below, I share some high-level observations in this regard.

Capturing discussion outflow did not seem to be that relevant during some discussions.

For instance, the discussion of T13 (the team in India requested additional privileges in

their accounts to monitor software) and T19 (a development account was not working as it

should and the team worked on figuring out why) did not seem to require outflow to be

captured because both addressed ADMINISTRATIVE TASKs in which actions were

performed during the meeting, rather than being documented as ACTION ITEMs to take

care of later. Other discussions in which capturing outflow did not seem needed concerned

activities to coordinate work during the meeting or to broadcast information about future

projects among the team members (COORDINATION AND PLANNING). As one example,

during T14, a brief announcement about the status of a project to integrate APPSEC

(security software to check vulnerabilities) into the development pipeline was shared. As

another example, during T45 a participant briefly explained the logistics of that meeting. For

both discussions, agreements were not made, nor were significant doubts solved. The

simple act of informing the participants about it, without documenting anything, seemed to

be sufficient. That said, it is unknown whether others who were not at the meeting could

have benefited had the shared information been captured.

During some topics capturing information seem to be relevant only to a specific

participant. On a couple of occasions, one of the product owners (P1) raised questions

about future projects for which development had not yet been started. One example is T4,

in which P1 shared with the team that a client decided to build its own IdP (Identity

Provider) solution. P1 requested help to evaluate the risks of this decision in preparation

152

for a future meeting with the customer and external team leads (not part of this team).

Something similar happened during T2, in which P1 desired to know whether a client

onboarding additional users may incur an additional cost for which the client should be

charged. The answers provided to these questions were not documented in any tool.

However, at that moment, this information seemed to be relevant only for P1.

During some discussions no design information was captured, though participants did

use tools to set metadata (e.g., dates, special tags to set the status or priority of a

development). For example, during meeting eight, the team centered on planning various

details of a future TICKET TRIAGE session. During this meeting, the participants used T28 (a

ticket about a load balancer not being compliant with the company policies) and T40 (an

open issue at one of the client sites to integrate two different applications under the same

authentication mechanism) as examples to reflect on how to determine the value of tickets.

Then, the actual triaging session was conducted during meeting nine. The participants

started this meeting by providing an overview of the process to be followed (T45) to then

engage in the actual triaging. T30, T33-35, and T37 were some of the tickets reviewed during

this session. Information was not captured in the tickets during any of these meetings.

However, the participants did add some tags to classify them. Most of these topics appear

classified as INFRASTRUCTURE (see Table 23), the triaging session conducted was about

INFRASTRUCTURE tickets.

Discussion outflow was not captured during unplanned conversations. Some of the

discussions for which outflow was not captured were not part of the original meeting

agenda. For instance, unplanned topics that were discussed were often SUPPORT CASES

(T5, T15, T18, and T40) that participants requested to discuss to seek guidance from the key

153

internal stakeholders. Other unplanned discussions (T41, T42, T43) were spontaneously

started in relation to the previous topic. For example, during T42 the team brainstormed

some ideas to improve the documentation embedded in the system for end users. This

topic was spontaneously started after discussing a support case (T15) in which a participant

demonstrated an issue reported in the system. The participant actively used the system to

reproduce the issue (while sharing the screen), then someone happened to ask if the

documentation to use that functionality was easily available to end users. This was the

comment that got the discussion of T42 started.

 Not capturing discussion outflow did not seem to be that harmful for most unplanned

topics. For discussions that addressed SUPPORT CASES, for instance, once an issue with the

software is confirmed, a ticket is typically created, and the outflow of the discussion would

be captured there plus any other relevant information. In the case of discussions that

started in relation to the previous topic, the team was not even actively working on them. I

only observed one unplanned topic for which important information to improve their

practice may not have been captured (T10). I discuss this topic in the next section together

with other discussions about PRACTICES AND PROCESS for which information was not

captured.

Topics that addressed the discussion of internal processes. During meeting eight, the

participants discussed what aspects should be considered to define the priority of tickets

(T22). Moreover, they introduced an artifact they called “the quadrant” that was supposed

to help the team with this task (T25). The motivation behind these discussions was an

upcoming triaging session in which they wanted to determine the priority and value of a

long list of tickets. The participants brainstormed some ideas towards figuring out how to

154

measure the value of tickets (T22) and how to use “the quadrant” to make the process more

systematic (T25). However, the ideas to improve the process were not captured. As another

example, during T10, a post-mortem discussion about a connectivity issue with docker

containers that troubled the team for a while was conducted. Important information about

how to prevent and fix this issue (PRACTICE AND PROCESS) was provided. Interestingly,

the participant who raised the topic was not sharing their screen at that time. In this case, I

cannot confirm information was not captured (P2 might have captured outflow offline).

However, the typical practice of sharing his screen and documenting outflow

collaboratively was not followed.

Topics in which important feedback was provided and the developers were the tool

drivers. As a first example, in T17, a developer shared their concerns about how to design a

new functionality for which the implementation goal and some early ideas had been

previously documented. The participant shared his screen and showed the existing

information. P3 then chimed in to share some concerns to consider in the design, though

the developer did not capture these suggestions in the artifact shared on screen. As a

second example, during T16, a developer presented a template to capture socio-technical

documentation. The developer shared his screen to show the template, then the key

internal stakeholders provided feedback, which was also not captured at that time. As a

third example, during T7 a developer requested help with the design in performance testing

for a feature he was soon to implement. The participant shared a document with all the

ideas and information they had about the feature. The discussion then centered on

providing feedback about it, with the architects proposing some scenarios to consider for

155

testing, as well as some input boundaries to keep in mind. Interestingly, these ideas were

not captured in the design document shared on screen.

A common factor among these discussions was that the tool drivers were all

developers. While we cannot confirm information was not captured (they could have

captured information on a physical notebook), it is interesting the developers did not

follow the somewhat established practice of sharing their screen during these discussions.

For future research, it would be worthwhile to investigate why they did not share their

screen as other participants did most of the time, it would also be worthwhile to confirm

whether information was captured, and if it was not captured, what was the reason.

Overall, it seems that:

For most of the topics in which discussion outflow was not captured it does not seem to be

that harmful (21 out of 27). During discussions that seek to simply pass on information or

coordinate how they will work that day, new design information was not generated. Thus,

there was no need to capture something. For unplanned discussions such as SUPPORT

CASES, documenting information seemed premature because many things were still

inaccurate. Moreover, topics that were spontaneously brought up because of a certain

relation with the previous topic discussed, were not things the team was actively working

on at that moment. Thus, capturing outflow could be premature as well. Finally, for some of

the topics reviewed during the triaging session, only metadata was set.

Overall, it seems that important information may not have been captured for only

six topics (T7, T10, T16, T17, T22, T25). Interestingly, these discussions possessed at least one

Observation 25: Not every discussion generates outflow that needs to be
captured.

156

the next characteristics: (1) the topics addressed the discussion of internal processes (T10,

T16, T22, T25), and/or (2) the developers were the tool drivers (T7, T16, T17,). An interesting

future research direction in this regard would be checking with the participants whether

information was captured offline, and if it was not, whether they believe some information

from these discussions should have been captured.

5.5 Kinds of discussion outflow captured in relation to the work done and the

discussions held

In this section, I present the results of the analysis conducted to answer RQ 3.3 and

RQ 3.4. For RQ 3.3: Are certain kinds of discussion outflow captured while discussing

certain kinds of work? I first placed the kinds of information captured in the context of the

different kinds of work (as determined in Chapter 3, Section 3.5) that participants

discussed across the ten meetings. Table 24 shows the kinds of discussion outflow

captured per kind of work. The kinds of information appear grouped by meta-category

(DESIGN INFORMATION, TEAM PROCESS, COORDINATION, PROJECT MANAGEMENT), and

the kinds of work appear by the maintenance dimensions of Swanson (as introduced in

Section 2.1).

First, note that information was not captured during PERFORMANCE discussions

(e.g., T2), and neither was it captured while discussing SUPPORT CASES (e.g., T5, T15, T18,

T40). A common characteristic among topics that addressed these two kinds of work is that

participants spontaneously requested to discuss these topics during the meetings. These

discussions were not part of the meeting agenda, and formal documentation about them

(e.g., tickets, a design in a wiki page) did not exist, so there was no apparent base to which

to attach notes. Typically, too, verbal outcomes were expressed to be followed up by the

157

developers handling the case, who in the case of confirming an issue with the software

exists, would create a ticket with all the relevant information (as explained in Section 5.4).

While these results do not necessarily mean information would never be captured when

the team discusses SUPPORT CASES or PERFORMANCE, it highlights that:

Observation 26: It is unlikely that the team captures information as the
outflow of maintenance topics that are brought impromptu to the conversation.

Table 24. Kinds of discussion outflow captured per kind of work.

ADAPTATIVE

(39)
CORRECTIVE

(0)
PERFECTIVE

(42)
N/A
(86)

Meta-category Category A
R

C
H

IT
E

C
T

U
R

A
L

 R
E

-D
E

SI
G

N

IN
T

E
G

R
A

T
IO

N
 O

F
 N

E
W

F

U
N

C
T

IO
N

A
L

IT
Y

P
E

R
F

O
R

M
A

N
C

E

SU
P

P
O

R
T

 C
A

SE

IN
F

R
A

S
T

R
U

C
T

U
R

E

T
E

ST
IN

G

A
D

M
IN

IS
T

R
A

T
IV

E
 T

A
S

K

C
O

O
R

D
IN

A
T

IO
N

 A
N

D

P
L

A
N

N
IN

G

P
R

A
C

T
IC

E
 A

N
D

 P
R

O
C

E
SS

A
ll

 t
yp

es
 o

f
w

o
rk

DESIGN
INFORMATION

IDEA/ALTERNATIVE 13 6 2 15 36
THINGS TO KEEP IN
MIND 18 18
PROBLEM
BACKGROUND/CODE
STATE 3 3 1 7 14
IMPLEMENTATION
ROADMAP 1 1 7 2 11
RATIONALE 6 1 2 9
ISSUE/TICKET HIGH
LEVEL DESCRIPTION 3 2 5
IMPLEMENTATION GOAL
/ SCOPE 1 3 4
REQUIREMENT 3 3

TEAM PROCESS

PLAN OF ACTION FOR A
CERTAIN SITUATION 6 1 16 23
SITUATION'S
BACKGROUND / STATUS 7 2 9
ADMINISTRATIVE
DECISION 2 2

BEST PRACTICE 2 2

GENERAL
DISCUSSION ITEMS 2 3 14 19
ACTION ITEMS 1 2 2 2 7

PROJECT
MANAGEMENT

SCHEDULING ESTIMATE 3 3
IMPACT ESTIMATE 2 2

 Total 21 18 0 0 21 21 16 7 63 167

158

Another noteworthy observation stems from analyzing the kinds of information in

terms of maintenance versus non-maintenance work. For instance, note that design

feedback (THINGS TO KEEP IN MIND), the goal and scope of code to be developed

(IMPLEMENTATION GOAL/SCOPE), as well as estimates of how much value a new feature

or change may have in the eye of the customer (IMPACT ESTIMATE) or how long it would

take to the team to develop it (SCHEDULING ESTIMATE) were only captured during

maintenance activities. At the other end of the spectrum, however, most TEAM PROCESS

information (SITUATION’S BACKGROUND STATUS, ADMINISTRATIVE DECISION, BEST

PRACTICE) was only captured during non-related maintenance activities.

As part of this analysis, I also note that the topics to be discussed (DISCUSSION

ITEMS) were captured for all non-maintenance categories (PRACTICE AND PROCESS,

ADMINISTRATIVE TASK, COORDINATION AND PLANNING). In contrast, for maintenance

related discussions, the topics to be discussed (DISCUSSION ITEMS) were not captured

before the meeting.

While these results do not necessarily mean feedback (THINGS TO KEEP IN MIND) may

never be captured during non-maintenance discussions, or that TEAM PROCESS

information may not be captured while discussing a maintenance topic, they do highlight

certain kinds of information are typically the outflow of certain maintenance or non-

maintenance activities.

I also placed the kinds of information captured in the context of the purpose of each

discussion held (as determined in Chapter 3) with the goal of answering RQ 3.4: Are certain

Observation 27: Certain kinds of discussion outflow are more likely to be
captured when maintenance work is addressed, while others are more likely to
be captured when non-maintenance activities are addressed.

159

kinds of discussion outflow captured for discussions with a particular purpose? Table 25

shows the results of this analysis. It presents the kinds of information captured (grouped

by a meta-category) per discussion purpose. The squares over the table identify the meta-

categories of information, specifically DESIGN and TEAM PROCESS information, that were

often captured as part of discussions that had a certain purpose.

The first cluster (located on the top-left side of the table) shows that most DESIGN

INFORMATION was captured during discussions with the purpose of DEVISING A

SOLUTION, AUTOMATING ACTIVITIES, TRIAGING A TICKET, or REVIEWING A DESIGN

Table 25. Kinds of discussion outflow captured per discussion purpose.

Meta-category Category D
E

V
IS

IN
G

 A
 S

O
L

U
T

IO
N

A
U

T
O

M
A

T
IN

G
 A

C
T

IV
IT

IE
S

T
R

IA
G

IN
G

 A
 T

IC
K

E
T

R
E

V
IE

W
IN

G
 A

 D
E

SI
G

N

P
R

O
P

O
SA

L

P
E

R
F

O
R

M
IN

G
 A

 P
O

ST
-

M
O

R
T

E
M

M
A

N
A

G
IN

G
 A

C
C

O
U

N
T

S

C
L

A
R

IF
Y

IN
G

 A

M
IS

U
N

D
E

R
ST

A
N

D
IN

G

D
E

F
IN

IN
G

 I
N

T
E

R
N

A
L

P

R
A

C
T

IC
E

S

M
A

N
A

G
IN

G
 C

O
M

P
U

T
A

T
IO

N
A

L

R
E

SO
U

R
C

E
S

P
L

A
N

N
IN

G
 A

 F
U

T
U

R
E

M

E
E

T
IN

G
 A

G
E

N
D

A

A
l

d
is

cu
ss

io
n

 p
u

rp
os

es

DESIGN
INFORMATION

IDEA/ALTERNATIVE 15 15 6 36
THINGS TO KEEP IN
MIND 18 18
PROBLEM
BACKGROUND/CODE
STATE 4 7 3 14
IMPLEMENTATION
ROADMAP 8 1 2 11
RATIONALE 1 2 6 9
ISSUE/TICKET HIGH
LEVEL DESCRIPTION 3 2 5
IMPLEMENTATION
GOAL / SCOPE 1 3 4
REQUIREMENT 3 3

TEAM
PROCESS

PLAN OF ACTION FOR
CERTAIN SITUATION 16 1 6 23
SITUATION'S
BACKGROUND / STATUS 2 7 9
ADMINISTRATIVE
DECISION 2 2
BEST PRACTICE 2 2

GENERAL
DISCUSSION ITEMS 5 9 2 2 1 19
ACTION ITEMS 1 1 1 2 2 7

PROJECT
MANAGEMENT

SCHEDULING ESTIMATE 3 3
IMPACT ESTIMATE 2 2

 Total 36 33 21 18 30 14 6 6 2 1 167

160

PROPOSAL. The second cluster (located in the middle of the table) shows that most TEAM

PROCESS information was captured during discussions with the purpose of PERFORMING

A POST-MORTEM, MANAGING ACCOUNTS, or CLARIFYING A MISUNDERSTANDING.

An observation that stems from these results is that:

While capturing DESIGN INFORMATION was highly relevant for certain discussion

purposes (DEVISING A SOLUTION, AUTOMATING ACTIVITIES, TRIAGING A TICKET,

REVIEWING A DESIGN PROPOSAL), TEAM PROCESS information was relevant for others

(PERFORMING A POST-MORTEM, MANAGING ACCOUNTS, CLARIFYING

MISUNDERSTANDINGS). Moreover, note that some kinds of information were only

captured for only one discussion purpose (the shading identifies them). For instance,

THINGS TO KEEP IN MIND were only captured during discussions that addressed the

INTEGRATION OF A NEW FUNCTIONALITY, BEST PRACTICES were only captured while

PERFORMING A POST-MORTEM, REQUIREMENTS were only captured during discussions

to AUTOMATE ACTIVITIES, and ADMINISTRATIVE DECISIONS were only captured during

discussions related to MANAGING ACCOUNTS.

5.6 Tools and artifacts used to capture discussion outflow

In this section, I present the results of the analysis conducted to answer RQ 4 and

RQ 4.1. For RQ 4: What tools do participants use to capture discussion outflow in

RSSMDMs? Table 26 shows the variety of tools that the participants of the meetings use to

capture information. The second and third columns show each tool’s name and description

respectively. The first column shows whether the tool is exclusively used for software

Observation 28: Certain kinds of information are more likely to be the outflow
of discussions with a certain purpose.

161

development, or if it is a tool also used in other domains. This categorization was also used

to classify the tools that participants used to share prior information (see Chapter 4).

Table 26. Tools in which discussion outflow was captured.

Category Tool Description

DEVELOPMENT

CONFLUENCE Project management dashboard for project planning and document sharing.
JIRA Issue tracking system used to record, manage, and prioritize problem tickets.

VSCODE
Visual Studio Code is a code editor for building and debugging modern web and
cloud applications.

Various observations stem from these results in the context of the tools used to

share prior information (see Chapter 4). First, note that more tools were used to share

information than the ones used to capture it. Moreover, while the purpose of tools to share

prior information was broad (DEVELOPMENT, GENERAL PURPOSE, PROPRIETARY), only

DEVELOPMENT tools were used to capture discussion outflow: a knowledge repository

(Confluence), an issue tracking system (Jira), and a code editor (VSCODE). The first two

tools (Confluence and Jira) were also used to share prior information. Even though much

less kinds of tools were used to capture discussion outflow, than the ones used to share

information, this finding was not surprising, since many of the other tools used to share

information present dynamic information (e.g., AWS, monitoring tools).

A second important observation stems from analyzing which DEVELOPMENT tools

were used to capture discussion outflow. While drawing and diagraming tools (e.g.,

whiteboards [13], [85], [86], CASE tools [202]–[204]) have been historically reported as

beneficial during design meetings to, for instance, draw early sketches or create UML

diagrams, the participants did not use tools of this kind to capture information. During

these meetings, participants are more likely to capture information in tools such as

Observation 29: Few tools were used to capture information and all of them
were development-oriented tools.

162

knowledge repositories (e.g., [165], [167]) or issue tracking systems [212], even during

discussions in which new DESIGN INFORMATION is considerably produced.

I also investigated what specific artifacts the participants created with these tools to

answer RQ 4.1: Are specific artifacts used to capture discussion outflow? Table 27 presents

the kinds of artifacts the participants created with each of the tools they used in order to

capture discussion outflow.

Table 27. Artifacts created to capture information for each tool used.

Tool Artifact Description

CONFLUENCE

ASK AN ARCHITECT
WIKI PAGE

A wiki page with a pre-loaded table template to which the team, and occasionally
employees from other teams in the organization can add to receive help from the
architects (Figure 2 shows an example of what it looks like). Each row in this table
contains relevant information for a topic that someone has requested to be
discussed: a submission date, the topic status, who submits the topic, the description
of the topic, and the outflow of discussing it once the topic discussion commences
(e.g., decisions made, agreements, procedures to establish).

MINUTES OF THE MEETING
WIKI PAGE

A wiki page with a pre-loaded template to capture the minutes of the meeting. The
template suggests titles and a placeholder for information that is typically capture
during meetings (e.g., date, list of topics, action items).

PLAYBOOK
WIKI PAGE A wiki page to document technical notes, procedures, or tutorials.
WIKI PAGE A wiki page without a pre-loaded template.

JIRA
TICKET

In the context of an issue tracking system (i.e., Jira), or any other service desk
platform, a ticket is an event that must be investigated or a work item that must be
addressed by the development team.

ISSUE
In Jira Service Desk, Jira tickets entered by customers are referred to as “requests”,
which the development team internally refers to as issues.

VSCODE TEXT NOTE Notes captured in a notepad app or lightweight code editor (not an IDE).

Observe that several different artifacts were used to capture information in

Confluence (knowledge repository). During T3 (the re-design of a major component of the

architecture), for instance, information was captured in “Ask an Architect” (a Confluence

wiki page with a pre-loaded template that the team itself had produced). Figure 10 shows

Observation 31: Participants use different artifacts to organize discussion
outflow.

Observation 30: Typical drawing and diagramming tools were not used to
capture information during the meetings.

Observation 30: Typical drawing and diagramming tools were not used to
capture information during the meetings.

Observation 30: Typical drawing and diagramming tools were not used to
capture information during the meetings.

Observation 30: Typical drawing and diagramming tools were not used to
capture information during the meetings.

163

the look and feel of this wiki template, the information inside the dashed box is what was

captured during the meeting.

Another wiki page template commonly used was the one to capture “the minutes of

the meeting”. Figure 11 shows an artifact of this kind being used to capture information

Figure 11. A “minutes of the meeting” wiki page is one of the artifacts used in Confluence.

Figure 10. An “Ask an Architect” wiki page is one of the artifacts used in Confluence.

164

during a discussion in which the architects walked through an issue to educate the team on

how to avoid it in future (T9). During this discussion, participants also created a “playbook”

to capture information on how to properly use database cursors, which was the reason

behind the issue reported.

5.7 Tools used more frequently to capture discussion outflow

In this section, I present the results of the analysis conducted to answer RQ 4.2 Are

certain tools used more often to capture discussion outflow? Table 28 shows the tools in

which participants captured discussion outflow per topic (discussion outflow was only

captured during 18 topics out of 45). The first column shows the “Topic Id” and the next

columns, in pairs of two (“#Topics”, “# Times”), show the topics in which that tool was used

and how many times respectively. The results appear organized by topic. Shading

highlights all the tools used per topic.

Participants used Confluence to capture information during 12 discussions, Jira

during seven, and VSCODE for only one. Note that, except for T3 and T12, one tool was

Table 28. Tools used to capture outflow per topic.

 CONFLUENCE JIRA VSCODE

Topic Id # Topics # Times # Topics # Times # Topics # Times
T1 Y 14 N 0 N 0
T3 Y 18 Y 3 N 0
T6 Y 15 N 0 N 0
T8 N 0 Y 6 N 0
T9 Y 21 N 0 N 0
T11 Y 27 N 0 N 0
T12 Y 1 N 0 Y 1
T20 Y 6 N 0 N 0
T21 Y 9 N 0 N 0
T23 Y 12 N 0 N 0
T24 Y 6 N 0 N 0
T26 Y 1 N 0 N 0
T27 N 0 Y 8 N 0
T29 N 0 Y 1 N 0
T31 N 0 Y 2 N 0
T36 N 0 Y 1 N 0
T38 N 0 Y 9 N 0
T39 Y 6 N 0 N 0

Total 12 136 7 30 1 1

165

typically sufficient to capture all the outflow generated per discussion. Figure 12 shows this

distribution more clearly. Note that most topics appear in only one circle (which represents

a tool), rather than at the intersection of two (when two or more tools were used).

Confluence was used in conversations that had various purposes. For instance, it

was used during discussions in which participants addressed the AUTOMATION OF

ACTIVITIES (T1, T11, T20) or discussions in which they PERFORMED A POST-MORTEM (T9,

T21). As another example, it was also used to capture information while DEVISING A

SOLUTION (T6), REVIEWING A DESIGN PROPOSAL (T23), DEFINING INTERNAL PRACTICES

(T24), PLANNING A FUTURE MEETING AGENDA (T26,), or while CLARIFYING A

MISUNDERSTANDING (T39).

In contrast, most of the topics in which Jira was used (e.g., T27, T29, T31, T36, T38) had

the purpose of TRIAGING TICKETS. During these discussions, participants opened tickets

previously created with the goal to assess their scope or impact, or to schedule them into a

sprint. As one example, in T29, the discussion’s outflow was re-defining the scope of the

CONFLUENCE

JIRA T3

VSCODE

T1, T6, T9, T11, T20,
T21, T23, T24, T26, T39

T8, T27, T29,
T31, T36, T38

T12

Figure 12. Distribution of tools used per topic.

166

ticket from developing a monitoring dashboard to developing an alert. The scope in this

case was re-defined in the ticket’s title. Figure 13 shows the original title of the ticket

(“monitoring for vault and consult”), and Figure 14 shows the re-defined title (“alert for

vault and consult 5xx errors”).

Both Confluence and Jira, were only used together to capture information during T3

(the architectural re-design of a component). During this discussion, the participants

captured the problem’s description (PROBLEM/BACKGROUND STATUS), various ideas to

re-design the component in question (IDEA/ALTERNATIVE), and a plan to implement this

major architectural change (IMPLEMENTATION ROADMAP). All this information was

captured in Confluence. Figure 15 (left arrow) shows the sections of the wiki page (in “Ask

an Architect”) that the participants used to capture it. The information inside the dashed

box is what was captured as outflow of this discussion.

Figure 13. Original information in the Jira ticket before refinement.

167

Figure 14. Redefined information in the Jira ticket.

Figure 15. Discussion outflow captured in "Ask an Architect".

168

The participants also created a Jira ticket during this conversation and captured the

HIGH-LEVEL DESCRIPTION of the first activity they had decided to do, which was

implementing a proof of concept (PoC). Figure 16 shows the ticket’s creation, and Figure 17

shows the final state of this ticket, which contains a high-level description of the work to do

(ISSUE/TICKET HIGH LEVEL DESCRIPTION).

Figure 17 shows the ticket updated (the dashed box indicates the area in which

information was captured). The excerpt below shows the ticket’s description that the

participants captured in the ticket.

“In order to increase the durability and stability of the AWF system we should
split up the service into two pieces: evaluator service and action service”

Note that even though the description is brief, it contains what this development will afford

them (“to increase the durability and stability of the AWF system”) as well as the summary of

Figure 16. Ticket created during the meeting.

169

the work that needs to be done (“we should split up service into two pieces: evaluator service

and action service”). A link to this ticket was also added to “Ask an Architect” to keep both

artifacts connected (Figure 15 , right arrow identifies the link that was created).

The other topic in which more than one tool was used was T12. While most

information was captured in Confluence, VSCODE was briefly used to fix up some text

copied from an AWS dashboard. They then copied the text with the format desired to

Confluence. Even though I cannot confirm it, it seems that the information captured in the

code editor was not captured for a long term, but simply to fix its format. VSCODE was used

only this time, nothing else was done with it.

Overall, these results show that:

Observation 32: Knowledge repositories are the tool that is used most often to
capture information during RSSMDMs.

Figure 17. Ticket after the high-level description was added.

170

Three situations represent an exception: (1) discussions in which TICKET TRIAGING is the

main activity, (2) discussions in which a plan to implement a major update

(IMPLEMENTATION ROADMAP) is defined (T3) and tickets for some of the activities that

this plan involves are created, and (3) discussions in which feedback (THINGS TO KEEP IN

MIND) is captured as part of the same design artifact that is being presented (T8).

5.8 What do participants do with tools during the meeting?

In this section, I present the results of the analysis conducted to answer RQ 4.3: How

do participants use tools during RSSMDMs? Table 29 shows all the actions that the two

researchers observed the participants did with the tools. The first two actions, ADDING

NEW INFORMATION and REFINING, are the ones that the two researchers who performed

the coding considered as moments in which discussion outflow was captured. The rest are

other actions the participants did with the tools in preparation for capturing information

(SETTING UP), organizing the information that had been previously captured

(REORGANIZING), classifying artifacts into bigger groups (SETTING METADATA), or

linking different artifacts in which information had been captured (TRACING).

Table 29. The actions that the participants did with the tools.

Action Description

ADDING NEW INFORMATION

Capturing brand-new information in a document (e.g., adding new information to an empty
document, adding a new idea or thought to an existing document, adding a new paragraph in
an existing ticket, etc.)

REFINING
Updating or altering existent information in the tool to make it more accurate (e.g., editing
the content of an existent bullet point, updating the content of an existing paragraph).

SETTING UP

Opening or creating a specific file or document (e.g., ticket, wiki page) to capture information,
or (re)defining the document’s structure to capture information (e.g., changing table
structure, adding bullets, titles). No meaningful content (discussion outflow) is captured.

REORGANIZING
Moving existing content without altering it (e.g., copy-pasting information from one section
to another one, changing the spacing.)

TRACING
Connecting different documents via links (e.g., adding ticket numbers to the minutes of the
meeting).

SETTING METADATA Adding or changing the metadata of a document (e.g., tags, status, the date).

171

Table 30 shows the times each tool and respective artifact was used in a certain way

(ACTION). The first and second columns show the tools and artifacts used, and the third

and fourth columns show the times tools were used to capture information (ADDING NEW

INFORMATION and REFINING); the fifth column shows the total times information was

captured (167). From the sixth to the ninth columns other actions performed with the tools

are shown (REORGANIZING, SETTING METADATA, SETTING UP, TRACING), their

respective subtotal is shown in column tenth (65). The last column shows the total times

tools were used (information captured plus other actions), which sums up a total of 232

times. Each cell shows the times a given tool and artifact was used in a particular way.

Results are organized per tool and artifact used. Various examples of new information

being added (ADDING INFORMATION) were presented in Section 5.7. In that section, I also

mentioned that Jira was often used during TICKET TRIAGE sessions. Figure 14 in particular

is an example of a piece of information being refined (participants updated the ticket’s title

as a result of re-defining their scope). In addition to ADDING NEW INFORMATION and

REFINING existing information, during TICKET TRIAGE sessions, participants also SET

Table 30. The actions that the participants did with the tools.

Tool Artifact A
D

D
IN

G
 N

E
W

IN

F
O

R
M

A
T

IO
N

R
E

F
IN

IN
G

T
im

es
 t

o
ol

s
w

er
e

u
se

d

to
 c

ap
tu

re
 m

ea
n

in
gf

u
l

co
n

te
n

t

R
E

O
R

G
A

N
IZ

IN
G

SE
T

T
IN

G
 M

E
T

A
D

A
T

A

SE
T

T
IN

G
 U

P

T
R

A
C

IN
G

T
im

es
 t

o
ol

s
w

er
e

u
se

d

in
 o

th
er

 w
ay

s

T
o

ta
l t

im
es

 a
 t

o
o

l
w

as

u
se

d

CONFLUENCE

WIKI PAGE 48 7 55 7 7 14 69
ASK AN ARCHITECT

WIKI PAGE 36 4 40 1 5 2 2 10 50
MINUTES OF THE MEETING

WIKI PAGE 32 8 40 5 5 4 14 54
PLAYBOOK
WIKI PAGE 1 1 1 1 2

JIRA
ISSUE 15 4 19 2 10 4 16 35

TICKET 11 11 3 4 3 10 21
VSCODE TEXT NOTE 1 1 0 1

 Total 143 24 167 18 19 19 9 65 232

172

METADATA. For instance, they add labels to the tickets to classify them into specific

buckets. Figure 18 shows an example of an issue the participants were about to classify.

Note that the issue only has one label (the dashed box indicates). Figure 19 shows the label

that the participants added to classify it. Note that the issue was classified into the bucket

“ops_monitoring”. The dashed box in the picture indicates the field in which the label was

added.

Metadata was also set in Confluence while capturing information in “Ask an

Architect”. Participants often changed the status of a question to “done” once they

concluded its respective discussion. Figure 20 shows that the status of the question was

“new” before closing the discussion (signaled by an arrow). Figure 21 shows how the status

changed from “new” to “done” (signaled by an arrow).

Figure 18. An example in which the participants “set metadata” in Jira.

173

 In preparation to capture information before starting a discussion, participants

used tools to SET UP artifacts in which information was going to be captured. For instance,

they often made a copy of an empty wiki page with the “minutes of the meeting” template,

which they slightly modified by adding empty bullets or fixing a table structure to capture

Figure 20. A question in Confluence which status is “new”.

Figure 19. An issue before “setting metadata”.

174

information. Participants also create new Jira tickets during the meeting before starting

various discussions. In Section 5.7, Figure 16 shows the creation of a new Jira ticket.

Participants also used tools to REORGANIZE information. For instance, they copied

information from one section of an artifact to another section or reorganized the rows of

tables. New content was never captured during these interactions with the tools.

Finally, an interesting category is TRACING. A few times, we observed participants

creating links between artifacts in Confluence and Jira. Figure 15 in Section 5.7 shows an

example of how a button (indicated by the right arrow) linking to a Jira ticket that had been

created previously was added to “Ask an Architect” during the discussion of T3.

Overall, information was captured as discussion outflow nearly 71% of the times a

tool was used. However, close to 30% of the times a tool was used, other actions were

Observation 33: Even though capturing information is the main action
performed with tools, other smaller tasks are also required during the meetings.

Figure 21. A question in Confluence which status was set to “done”.

175

performed. Participants dedicated part of the meeting’s time to get these other actions

done. Given that their complexity is most of the time small (e.g., creating an empty ticket or

wiki page, changing the status of a question in “Ask an Architect”), these tasks could

potentially be carried out by semi-automatic tools (e.g., a bot to change a question in “Ask

an Architect” as “done”, a bot to close a ticket in Jira, a bot to make a copy of the “minutes of

the meeting” template). I elaborate more on this idea in Section 5.10.

5.9 The participants that capture discussion outflow

In this section, I present the results of the analysis conducted to answer RQ 4.4 and

RQ 4.5. For RQ 4.4: What participants drive the tools to capture discussion outflow? Table

31 shows the participants who used tools to capture discussion outflow. The first and

second columns show each participant’s role (as defined in Chapter 4, Table 8) and

identifier (as defined in Chapter 3, Table 1), respectively. From the third to the fifth column

all the tools used to capture outflow are listed. The last column presents the total number

of times a participant used a tool. Results appear in descending order based on the number

of times a tool was used by a given person (last column).

Only half the participants who attended the meetings took the role of notetaker at

least once. P2 (one of the architects) is who played this role most often. This result is not

surprising given that P2 typically moderates the meetings. However, it is interesting to

Table 31. Participants that used the tools to capture meaningful information.

Role Participant CONFLUENCE JIRA VSCODE Total
SOFTWARE ARCHITECT PARTICIPANT2 109 11 1 121
PRODUCT OWNER PARTICIPANT1 15 0 15
INFRA ENGINEER PARTICIPANT12 0 13 13
DEVELOPER PARTICIPANT7 11 0 11

PRODUCT OWNER PARTICIPANT5 0 6 6
SOFTWARE ARCHITECT PARTICIPANT3 1 0 1

Total Total 136 30 1 167

176

observe that other participants documented as well. Sometimes participants assumed the

role during the whole meeting, such as P1 during the second meeting and P12 during the

ninth meeting. Other times participants took on the role of notetaker more incidentally,

while the discussion of a certain topic(s) lasted. As one example, when P5 requested to

discuss a topic, she shared her screen with a document to take notes, and acted as

notetaker only while the discussion lasted.

On the one hand, having certain roles defined during the meetings (e.g., meeting

moderator, notetaker) settles a meeting structure and dynamic that has a positive effect

during meetings conducted on a regular basis, such as the ones studied here. On the other

hand, having only one participant capturing information may raise the concern of capturing

this individual’s voice only rather than the voice of the team. In the case of these meetings, I

lean more towards the former because most of the time, a participant (tool driver) kept the

screen shared with the tool in which information was captured, which seems to be an

established practice in the team. Therefore, the rest of the team members could have

objected if wrong information had been captured. They could also have requested the tool

driver to capture something they thought may be important. Moreover, regardless of P2

playing the official role of notetaker, other participants acted as notetakers as well on

several occasions.

Participants also used tools to perform other kinds of actions. Table 32 shows the

other actions that each participant performed from column sixth through ninth. P2 again

was the one who performed other actions more often, and the only one who linked artifacts

Observation 34: Even though the team has a designated notetaker during the
meetings, other participants also take on this role when so needed.

177

(TRACING). Note how often P12 SET METADATA is equal to how often P2 did. Given that

P12 ran the TICKET TRIAGE session, this result is not unexpected.

I also analyzed the ways in which tool drivers were prompted to capture

information. Sometimes tool drivers captured information from their own volition, without

anybody requesting them to do so (UNPROMPTED). Other times, however, an explicit

request was indeed made (PROMPTED). There were also occasions in which the tool driver

themselves asked the other participants what to capture (REQUESTED BY TOOL DRIVER).

Towards answering RQ 4.5: How are tool drivers prompted to capture discussion

outflow? I counted the times each participant was prompted to capture information in one

of the three aforementioned ways Table 33 presents the results of this analysis. The first

and second columns show each participant’s role (as defined in Chapter 4, Table 8) and

identifier (as defined in Chapter 3, Table 1) respectively. From the third to the fifth column

Table 32. Participants who used the tools to capture discussion outflow and to perform other

actions.

Role Participant A
D

D
IN

G
 N

E
W

IN

F
O

R
M

A
T

IO
N

R
E

F
IN

IN
G

Times
information was

captured R
E

O
R

G
A

N
IZ

IN
G

SE
T

T
IN

G
 M

E
T

A
D

A
T

A

SE
T

T
IN

G
 U

P

T
R

A
C

E
A

B
IL

IT
Y

Times
other

actions
were done Total

SOFTWARE ARCHITECT PARTICIPANT2 105 16 121 10 9 13 9 41 162
INFRA ENGINEER PARTICIPANT12 10 3 13 2 9 2 13 26
PRODUCT OWNER PARTICIPANT1 13 2 15 7 3 10 25
DEVELOPER PARTICIPANT7 9 2 11 1 1 12
PRODUCT OWNER PARTICIPANT5 5 1 6 6
SOFTWARE ARCHITECT PARTICIPANT3 1 1 1
Total 143 24 167 19 18 19 9 65 232

Table 33. The ways tool drivers were prompted to capture discussion outflow.

Role Participant PROMPTED REQUESTED BY TOOL DRIVER UNPROMPTED Total
SOFTWARE ARCHITECT PARTICIPANT2 2 119 121
PRODUCT OWNER PARTICIPANT1 4 11 15
INFRA ENGINEER PARTICIPANT12 10 3 13
DEVELOPER PARTICIPANT7 11 11
PRODUCT OWNER PARTICIPANT5 1 5 6
SOFTWARE ARCHITECT PARTICIPANT3 1 1
Total 12 5 150 167

178

the ways in which discussion outflow was captured are listed, and the last column shows

the total number of times participants captured discussion outflow. These results appear in

descending order based on the last column.

Note that with few exceptions, most discussion outflow was captured of the own

volition of the tool drivers (UNPROMPTED). Only P12 was asked to capture information

(PROMPTED) a considerable number of times. Interestingly, the product owners were the

only ones who asked the rest of the team what information to capture (REQUESTED BY

TOOL DRIVER).

This result highlights how critical it is to have a participant taking notes during

meetings. While engaged in discussion, participants barely remind themselves or the tool

driver to capture the outflow of the discussion. Without a person taking notes during these

meetings, a lot of important information may perhaps not be captured.

5.10 Implications for research, practice and tool support

The results of the previous sections give rise to several observations concerning the

current state of information capture in RSSMDMs. These results establish a baseline for

future research, and have important implications for the design of tools and practices

surrounding meetings of this kind. In this chapter, I discuss these implications by anchoring

them in the observations and research questions introduced in previous sections.

5.10.1 Implications for research

The central contribution of this chapter is describing the kinds of information

developers capture during the meetings. I observed participants capturing 16 different

Observation 35: Tool drivers capture discussion outflow mostly because they
decided to do so.

179

kinds of information from different domains. Most of the information captured was DESIGN

INFORMATION (RQ 3.1). Information to improve the team's internal practice (TEAM

PROCESS) and information related to PROJECT MANAGEMENT activities were captured as

well, but not that often.

 Thus far, a plethora of work about DESIGN INFORMATION states that certain kinds

of information such as decisions [18], alternatives [199], constraints [201], and rationale

[21] are essential to capture. However, few examples exist of what capturing such

information looks like in practice. My work contributes to this body of knowledge with a

detailed study of what kinds of information are captured in RSSMDMs. For example, the

team captured alternatives (IDEA/ALTERNATIVE) as a list of key ideas on a wiki page.

Main ideas were often captured as a parent bullet point, and dependent ideas as sub-bullets

of a main idea. As a second example, I did not observe participants explicitly saying design

decisions should be captured. However, the action of creating a ticket during the meeting

and adding a HIGH-LEVEL DESCRIPTION of the work to be done implies that the team

decided to make an update to the codebase. Some of the tickets created were often a step of

an IMPLEMENTATION PLAN. The participants sometimes linked the tickets created to the

artifact in which the overall plan had been captured. On a few occasions, I also observed the

team capturing RATIONALE, sometimes as part of a ticket to explain what developing that

ticket would afford to the end-users and other times as part of the description of an

implementation plan (IMPLEMENTATION ROADMAP) in which a companion piece of

RATIONALE explaining why a given step was necessary was included.

Studying the information that was captured in these meetings also revealed kinds of

information that previous literature does not mention. For example, the participants

180

captured the background of the design problems discussed (PROBLEM

BACKGROUND/CODE STATE), which included narratives of the problem from the user's

perspective as well as low-level descriptions of the current state of the code base.

Moreover, the scope of the solutions proposed (IMPLEMENTATION GOAL/SCOPE) and

feedback provided over design documents (THINGS TO KEEP IN MIND) were also captured.

The resulting kinds of design information captured that I observed also serves as a

baseline to establish future research directions. For instance, future research may center

on studying the connection between the kinds of prior information shared and the

discussion outflow captured. While participants shared 36 different kinds of prior

information during their discussions, only 16 different kinds of discussion outflow were

captured (RQ 3). Through an informal comparison of the kinds of information shared and

the kinds of information captured I observed that some categories of discussion outflow

integrate certain kinds of prior information. In this work, I did not systematically study

whether prior information shared was captured as discussion outflow. However, the

informal comparison performed led me to conclude that this is an important future

research direction to follow. Establishing the connections between the information shared

and the information captured has important implications for the design of tools that allow

us to reuse in future meetings the discussion outflow captured as prior information in past

meetings.

Another interesting future research direction relates to information loss. It would be

worthwhile to investigate whether the participants believe that some of what was

discussed during the 27 topics in which discussion outflow was not captured (RQ 3.2) should

have been captured. By exploring these 27 topics, I observed that for many of these

181

discussions outflow to capture was not generated (RQ 3.2). During various discussions

outflow seemed to be relevant to only one participant. For other discussions work was in

an early stage and capturing information seemed to be premature. Moreover, for

discussions in which the objective was to classify tickets (TRIAGING) participants set

metadata such as labels, but they did not capture any kind of information. I did observe six

discussions in which design information was provided by some team members, and

surprisingly it was not captured. These discussions raise the concern of important

information not being captured. The exploration of the 27 topics provided an idea of how

severe information loss was during these meetings. However, confirming this

interpretation through other methods is important to formulate further conclusions about

information loss in RSSMDMs.

Other future research directions stem from observing who captures information

and how they do it. In these meetings, someone was taking notes almost all the time, though

this person was not always the same (RQ 4.4). While having a designated notetaker during

meetings is a well-known practice [213], [214], whether having the same person doing it or

rotating the activity among the participants has not yet been studied. During these

meetings, which were all multiple-topic oriented, more than one participant played the role

of notetaker. Given that the nature of the topics discussed was diverse (e.g.,

ARCHITECTURAL RE-DESIGN, SUPPORT CASE, TESTING, COORDINATION AND

PLANNING), it could be that having participants with certain backgrounds taking notes

during certain discussions results convenient for the team. For example, while capturing

the IMPLEMENTATION ROADMAP of an upcoming project, the management skills of

product owners made them the best candidates to organize discussion outflow as a plan. As

182

a second example, during post-mortem discussions that involved documenting internal

procedures, the experience of the architects was key in articulating clear instructions about

how to handle the issue that was discussed. Future studies in this regard may center on

comparing the discussion outflow captured by teams with a single notetaker, versus teams

with multiple notetakers. Moreover, it should be studied whether the background of

participants has an impact on what information is captured.

Another interesting research direction in relation to notetaking is comparing

different meeting notetaking approaches to understand which one works better and under

which circumstances. During these meetings, notetakers typically shared their screen so

that the rest of the team could see what they were capturing as discussion outflow. This

approach to taking notes seems to mitigate the concern of only capturing the voice of a

particular individual (the notetaker) rather than the voice of the team. Between having a

participant taking individual notes (not showing to the others what is captured) and having

everybody adding information to a shared document (i.e., a Google Docs document), this is

a middle ground approach to capture collective notes that relies on a central point of entry

because there is a single notetaker. Another research direction in this regard is

investigating how participants feel being observed while taking notes. It has been observed

before that not all people feel comfortable being observed [215]. During these meetings,

discussion outflow was not captured during 27 topics. While in many cases good reasons

seem to exist, as it was previously discussed, it would be worthwhile investigating if a

contributing factor was that the notetakers felt uncomfortable being observed while

writing.

183

In relation to who decides what to capture, it was interesting to observe that most

information was captured because the notetakers themselves decided to do it (RQ 4.5). Rather

than capturing what others requested, or asking the team “Hey, what should I capture?”,

most of the time, notetakers captured information of their own volition. The rest of the

team always had the opportunity to request information to be captured or corrected

(which on a few occasions did happen). However, most of the time the notetakers decided

when and what to capture, and this was implicitly accepted by the other participants. On

the one hand, this could mean notetakers were assertive in selecting what to capture. On

the other hand, it could mean that the rest of the team was not paying attention, or did not

feel comfortable giving instructions to the notetaker. Further research is needed to

systematically confirm how to interpret these results to be able to provide more general

advice to practitioners.

Finally, other future directions emerge from the limitations of the study itself. I only

analyzed the information that was captured during the meetings. However, is this

information kept as is? Or do participants at some point refine it? And if so, who does it? Is

it the whole team? The key internal stakeholders? Or does it vary on a case-by-case? These

are questions that require further investigation by perhaps interviewing the team

members or observing how information flows out of the meetings as well.

5.10.2 Implications for practice

The observations distilled also have important implications for practitioners in

relation to the way they capture information during RSSMDMs. Some of the practices that I

observed relate to who takes notes during the meetings, and what prompts them to do so.

184

Other practices relate to information loss, and the organization of the discussion outflow

that is captured.

In these meetings, someone was almost always taking notes, though this person was

not always the same (RQ 4.4). During these meetings, this approach seems to work quite

well for the team. First, not only one participant has the responsibility of capturing outflow.

Thus, if this participant could not attend the meeting, others could take on this role. Second,

given the diverse nature of the topics discussed (e.g., ARCHITECTURAL RE-DESIGN,

SUPPORT CASE, TESTING, COORDINATION AND PLANNING), it seems convenient having

participants with certain backgrounds taking notes during certain discussions. As it was

previously explained in Section 5.10.1, some roles may be best suited to capture certain

kinds of information. Other software development teams may find it useful to try out, first

always having a notetaker during meetings, and second alternating this role among the

meeting participants when so appropriate to see the effect it has on the discussion outflow

that is captured.

Another interesting practice that I observed was that notetakers typically shared

their screen so that the rest of the team could see what they were capturing as discussion

outflow. If everybody is watching the information that is captured, participants always

have the possibility to object when wrong information is captured or the possibility to

request something relevant from the discussion (that was overlooked by the notetaker) to

be captured. Thur, even though only one person is capturing information, the notes are

collective, and everybody has the right to equally contribute.

Regarding information loss, I observed that it is unlikely that the team captures

information for impromptu discussion topics (RQ 3.3) (i.e., SUPPORT CASES). This is an

185

important factor to be aware of when the discussion of unplanned topics is requested.

While capturing discussion outflow may not be always needed, information about

important topics could indeed be lost. Could the key internal stakeholders somehow

mitigate the risk of losing important information? Could tools detect when unplanned

topics are discussed, and somehow remind the participants of it? As of now, there are no

recommended practices nor tools that support participants in controlling the risk of losing

information under this scenario. Therefore, this could also be a future research direction to

explore. Meanwhile, meeting participants should be vigilant across all topics discussed and

intentionally and explicitly decide for each topic what they should capture and who should

do so.

Concerning how discussion outflow was organized, I observed good and bad

practices. On some occasions, participants did separate information into different artifacts

(e.g., TEAM PROCESS information was captured in Confluence, DESIGN INFORMATION was

captured in Jira) during the same discussion. However, there were also occasions for which

everything was captured in the same place (i.e., the minutes of the meeting). The

organization of information has important implications for reusing the information

captured in future meetings. The more organized information is, the easier it usually is to

reuse it. In that context, the team using templates is a helpful practice. It would be

worthwhile exploring whether having a template for each kind of discussion, rather than

some templates plus a generic “minutes of the meeting” could improve quantity and quality

of the information captured. As one example, for DEVISING A SOLUTION, a template with

different sections to capture the problem’s background (PROBLEM/BACKGROUND), the

186

justification of decisions (RATIONALE), feedback (THINKS TO KEEP IN MIND), and more,

might be a useful start.

5.10.3 Implications for tool support

This study leads to a future research agenda in terms of what information should be

captured, where, and how. It also leads to potential ideas for tools that improve support for

information sharing and capture in RSSMDMs. In the next paragraphs, I describe part of

this future agenda, as well as ideas for tool prototypes that might be useful during

RSSMDMs.

One interesting research question to explore is how can novel tools assist

developers in creating information continuity across meetings to thereby improve the

team's effectiveness and efficiency over time? In previous work [216], for instance, I

proposed the design of a tool to capture Important Design Bits (IDBs), a piece of

information that was spoken and is captured as a relatively short snippet of audio.

Something desired and not achieved in that previous work was an understanding of which

short information snippets would be a good candidate to keep for future use as IDBs. In

section 5.10.1, I mentioned that establishing connections between the information that was

shared and the information that was captured may have important implications to identify

information that the team may reuse in future meetings. In the example provided in that

section, a CODE FACT shared by one of the architects was captured as part of the problem’s

description. This is precisely a short piece of information to keep as an IDB.

In a similar vein, I also mentioned that I witnessed decisions made through silent

agreements in which artifacts (e.g., tickets) were created, and brief HIGH LEVEL

DESCRIPTIONS of the work to do were captured (“In order to include the durability and

187

stability of the AWF system we should split up the service into two pieces: evaluation service

and action service”). These brief HIGH LEVEL DESCRIPTIONS of what they decided to do

could be important pieces of information to share during future discussions as well.

Therefore, these are good IDB candidates too.

Another aspect to which my work contributes is highlighting the type of tools to

which the research efforts should be directed. While the literature has historically reported

digital whiteboards are often used for design work (e.g., [13], [85], [86]), the participants in

these meetings did not use them. Instead, a knowledge repository and sometimes an issue

tracking system were the tools the participants used most often to capture discussion outflow

(RQ 4.2). Even though a broad body of knowledge exists about design knowledge

repositories, and several prototypes of this kind were proposed (e.g., ADkwik [17], PAKME

[165], and CADDMS [183]), their use during meetings has never been studied to date. An

interesting research direction in this regard would be finding better ways to populate

knowledge repositories. During these meetings, all information was captured by typing it.

This activity dependeds on one person only, the notetaker. Moreover, much of the

information captured quoted or phrased something somebody said closely. Therefore,

another interesting research direction in this regard is exploring whether IDBs captured

during an ongoing conversation could be used to populate knowledge repositories. In [217]

and [216], I proposed a tool of this kind to be used during traditional design meetings at

the whiteboard, and in [218] I presented a prototype to capture voice notes retroactively

(after something has been said) during software design meetings. RSSMDMs provide an

almost ideal scenario in which to explore IDBs collection to populate knowledge

repositories so that the burden on the notetaker is reduced during the meeting.

188

Finally, another novel direction in terms of tool support builds upon observing other

actions (i.e., not capturing information) performed with the tools. Participants linked

artifacts across different tools (i.e., the reference to a ticket in Jira was established in a wiki

page in Confluence) or spent some time setting up templates to capture information (e.g.,

creating a copy of a wiki template, creating tickets). Given that there is an emerging

community of researchers investigating the use of bots in software engineering activities

[219], a possible research direction in this regard might be exploring the use of bots to

handle some of these repetitive tasks (e.g., changing the status of a question in Confluence,

changing the status of a ticket in Jira). Could bots assist developers in handling some of the

repetitive tasks needed in preparation to capture discussion outflow? Some potential ideas

in this regard: a bot to mark a question in “Ask an Architect” as “done”, a bot to close a Jira

ticket, a bot to make a copy of the “minutes of the meeting” at the beginning of each

meeting or discussion, and more.

189

6 Threats to Validity

Despite the numbers presented in the tables, this work is much more qualitative

than quantitative in nature, since I analyzed text and videos rather than performing a

controlled experiment. Gasson [220] suggests that, rather than the validity criteria used in

controlled experiments (i.e., objectivity, reliability, internal validity, external validity) to

address typical threats to validity (i.e., representativeness of findings, reproducibility of

findings, the rigor of method, and generalizability of findings) mentioned in the literature

[221], an alternative set of criteria can be applied for studies like this one that are

interpretive in nature. These criteria are: confirmability, dependability and auditability,

internal consistency, and transferability [220].

Confirmability refers to the results depending on the study conditions and study

rather than the researchers. We took a multistage approach to developing and refining the

coding scheme, first defining a set of guiding principles to delineate what we mean by prior

information and discussion outflow, together with associated guidelines for what text or

video should be coded. For example, the two researchers who performed the coding set

guidelines to code. In the case of prior information, small parts of relevant text as opposed

to sentences or complete utterances from a single speaker, and in the case of discussion

outflow, we consider as outflow all the times the participants capture information in a tool

(e.g., adding new information, refining information). These guidelines were followed when

performing the multi-pass coding, refining, recoding, and reviewing process outlined in

Sections 4.1 and 5.1, respectively. A third person beyond the two who performed the

primary coding played a particularly important role from the perspective of confirmability,

as they took an independent look each time the analysis of a new meeting was completed.

190

That said, in the case of prior information, there was significant skill involved in

interpreting a technical discussion, as well as in deciding which pieces of information were

new versus a reformulation of information presented earlier. I do not feel that this is a skill

only possessed by the two researchers that performed the coding, but should the study be

repeated, the coders would need technical knowledge to follow the discussion in the

meeting transcripts.

Dependability and auditability refer to the consistency and stability of the analysis

process. The two researchers who performed the coding for prior information and

discussion outflow respectively did this by consistently applying the coding schemes

developed to analyze all ten meetings. For each coding scheme, the same two authors

performed all coding and a third author reviewed the results each time. If new codes arose,

prior meetings were re-examined to ensure that any changes in the coding scheme were

applied consistently across.

Internal consistency looks at the credibility and consistency of the research findings.

I note that a final analysis step involved examining all information per category to look for

internal consistency within each category. I also note that the researchers who performed

the coding are technically strong and have a reasonable understanding of the kinds of

problems being discussed. Another strategy that I did not employ to this stage is to perform

a member checking.

Finally, transferability refers to the ability to apply what is discovered to other

contexts. The study to date only includes ten meetings from a single team from a single

company. I take it as a positive sign that the coding scheme is domain neutral and that the

resulting categories that the analysis revealed map very well onto typical software

191

engineering concepts. That said, without further study of RSSMDMs from other teams and

other companies, I will not know how transferable the findings are. The research

methodology, however, is certainly transferrable and can be followed by other researchers.

Moreover, these meetings have specific characteristics, their goal is to address software

maintenance design, participants were distributed, and various topics were addressed per

meeting. Different results may be obtained if a similar study is performed in other kinds of

design meetings (e.g., early design meetings, architectural meetings) with different

characteristics.

192

7 Conclusions

This dissertation contributes a foundational understanding of how information

flows in and out of Regularly Scheduled Software Maintenance Design Meetings

(RSSMDMs). RSSMDMs are recurring meetings during which the primary product leads of a

software development team consider emerging issues and new directions for an already

deployed and functioning software system. What motivates this work is building a baseline

for future research about this kind of meeting, uncovering practices that may improve the

way RSSMDMs are conducted, and inspiring the development of better tools to support

participants with information capture and information sharing during RSSMDMs.

To build this understanding, I performed a single case study of ten RSSMDMs, all

from a major healthcare software company. The study answers four overarching research

questions:

RQ 1. What prior information do participants share in RSSMDMs in the course of

design deliberation?

RQ 2. What tools do participants use in support of sharing prior information in

RSSMDMs?

RQ 3. What is the discussion outflow of the topics addressed in RSSMDMs?

RQ 4. What tools do participants use to capture discussion outflow in RSSMDM?

Secondary questions were also posed and answered to complement the primary research

questions.

The ten meetings were analyzed through a thematic analysis that centered on

identifying what information the participants of these meetings shared, what information

they captured, and what tools they used to do so.

193

7.1.1 Major findings

I performed a detailed analysis of the meetings and what transpired in them.

Through the analysis, I made a rich set of observations, in Chapter 4 and 5. Here, I

summarize:

• Many different types of information are shared, with the range much greater than

what traditionally has been considered as important to capture for future use. This

work identified 36 different kinds of information shared to discuss maintenance

design. In terms of technical information, the kinds of information shared range

from information about the system as deployed (e.g., RUN-TIME INFORMATION,

DEPLOYMENT MANAGEMENT, DEPLOYMENT FACT) to descriptions of the

codebase (e.g., CODE FACT, ARCHITECTURAL FACT, DEVELOPMENT PROGRESS)

and its testing (i.e., TESTING FACT) to assessments about the system as deployed

(i.e., DEPLOYMENT QUALITY ASSESSMENT), the state of the codebase (CODE

QUALITY ASSESSMENT, ARCHITECTURAL ASSESSMENT), its testing (i.e.,

TESTING QUALITY ASSESSMENT) and its documentation (i.e.,

DOCUMENTATION QUALITY ASSESSMENT). The participants also shared

information about issues with the software (e.g., ISSUE, ISSUE DETAIL) and new

functionality to integrate (FUNCTIONALITY REQUEST). Other kinds of

information shared were information about the customers (e.g., CUSTOMER

CONTEX, CUSTOMER COST), information about internal practices and processes

of the team (i.e., TEAM PROCESS, TEAM HOUSEKEEPING), and more.

• Much of the information shared is fleeting, concerning the current state of the

deployed software and the current state of its code base. These kinds of

194

information (e.g., RUN-TIME INFORMATION, DEVELOPMENT PROGRESS, CODE

FACT, DEPLOYMENT MANAGEMENT, DEPLOYMENT FACT, ISSUE DETAIL)

typically offer insight into what is happening with the system at the client site or

into the current state of the code and the progress in its development. This is not

surprising, given that the meetings center on maintenance design [2], so design

is always relative to what is already developed.

• Information sharing is frequent, with new information shared on average once or

twice a minute. Previous research observed that software design is a knowledge

intensive activity [24]. The observation that information sharing in RSSMDMs

happens on average one or twice a minute strongly emphasizes this finding and

provides an idea of just how important prior information appears to be in

RSSMDMs. Again, perhaps this is not a surprise, given that this is maintenance

design [2] and different people are typically present each time a topic is

discussed. Thus, information sharing is important for all the participants to be

on the same page and reach a common understanding of the work that needs to

be done. That said, with a few exceptions (e.g., recollections shared, information

requested), information sharing seems to be much less intentional (information

is shared voluntarily). Typically, in a conversational and natural way, the prior

information shared is often the companion of an idea that is being proposed, the

background of an issue that is being explained, or the history behind a good

practice established years ago.

• The diversity and frequency of information captured is much less than information

shared. While participants shared 36 different kinds of prior information during

195

their discussions, only 16 different kinds of discussion outflow were captured.

Moreover, out of 45 topics that were discussed across the ten meetings,

participants shared information in 42, and only captured information in 18. This

means information was shared in 93% of the discussions and captured only in

40% of them. On the one hand, this might indicate that capture is still a major

hurdle. On the other hand, by exploring the 27 topics for which information was

not captured, I found that capturing discussion outflow was not imperative for

every topic discussed (e.g., discussions were mundane, actions were performed

during the meeting rather than captured to be done later). For only six topics

(out of 27) I observed valuable information that was not captured but that

probably should have been captured.

• The majority of information captured was design information. Even though

information about internal processes and management activities was captured,

most of the information captured covered different aspects of design work. A key

contribution that my work offers, then, is empirical evidence of what some of the

types of design information historically recommended to be captured (e.g.,

alternatives, rationale) look like in practice. Moreover, I also found that

participants capture other types of design information. For example, they

captured design feedback (i.e., THINGS TO KEEP IN MIND) and the

IMPLEMENTATION ROADMAP of features they decided to build.

In addition, the analysis led to a few observations about how the team shares and

captures information were also obtained.

196

• A significant amount of information was shared by a limited number of participants. It

is important that software development teams consciously engage in knowledge

sharing and knowledge documentation, so that more than a few people know

important knowledge about the system and the team’s internal practices. Instead,

knowledge should be spread among several team members. While it is not

necessarily harmful that few people accumulate large amounts of knowledge, it is

potentially harmful when only those people know it.

• It is unlikely that the team captures information for impromptu discussion topics.

Topics for which valuable design information (i.e., design feedback) was provided

and not captured, were often not part of the original meeting agenda. Participants

requested to discuss them during the meeting, the discussion took place, the

participant made either mental or their own (not visible to the team) notes, and the

discussion concluded, with the participant then engaging sometime after in their

own work as discussed.

• There is typically a designated notetaker during each topic, but this person is not

always the same for all the topics discussed. While having a designated notetaker has

been reported as a recommended practice before [213], [214], key characteristics

about who that should be and how notetaking is performed in RSSMDMs, have not

been studied to date. One participant was the notetaker on most occasions.

However, this participant also handed off this activity to others depending on the

kind of work being discussed, or the participants themselves requested to share

their screen to take notes. Moreover, the notetakers (whoever they were) often

shared their screen to show the information that was being captured to the rest of

197

the team. Therefore, even with only one person in control of the notes, the rest of

the team could request information to be captured, or to be updated by the

notetaker (which they did on a few occasions).

• Traditional design tools such as diagramming and sketching tools are not used in

support of the meetings, displaced by the use of Confluence (a wiki-style knowledge

repository) and Jira (an issue tracker). In terms of information capture, only these

two tools were used. In terms of information sharing, however, most information

was shared from memory. On the few occasions participants used tools to show

prior information, Confluence and Jira were used most often, though information

was also obtained from other tools (e.g., Slack, AWS, Selenium). Fleeting information

in particular was typically obtained from deployment and monitoring tools such as

AWS.

7.1.2 Contributions

RSSMDMs are essential to the success of medium to larger-scale software systems.

The meetings are a forum for key technical stakeholders to address the typically

continuous stream of design issues that tend to arise from the system being in use, whether

it concerns problems in the field, new functionality to be added, or preventive changes to

avoid future problems. This dissertation contributes a first study of these kinds of

meetings, especially focusing on information sharing and information capture practices in

the design conversations among meeting participants.

While software development meetings have been studied before (e.g., agile meetings

[101], early design meetings [25], [92]), most studies did not analyze meetings from the

perspective centered on the role of information. Moreover those that did focused on

198

activities other than RSSMDMs (e.g., information needs in co-located software development

teams [22], information needs in programming [23], [157]). My study contributes empirical

evidence about what certain kinds of design information historically investigated (e.g.,

alternatives, rationale) look like in practice and reveals many other kinds of information

that are shared and captured to convey design.

At a high level, the dissertation makes, the following two contributions:

C1. A rich set of 14 observations about information sharing practices and tool use in

RSSMDMs. Understanding what kinds of prior information participants share to

discuss design (e.g., architecture, deployment, testing), who shares it (e.g., product

owners, software architects, developers), how it is shared (e.g., by request,

voluntarily), and what tools are used to do so has important implications for future

tool development and meeting practices in RSSMDMs.

C2. A rich set of 15 observations about information capture practices and tool use in

RSSMDMs. Understanding what kinds of outflow participants capture, whether they

capture outflow throughout the discussion or at specific moments, identifying when

discussion outflow is not captured in tools, who captures it (e.g., product owners,

software architects, developers), how participants capture it (e.g., prompted,

unprompted, requested by the tool driver), and what tools they use to do so has

important implications for future tool development and meeting practices in

RSSMDMs.

While this study speaks to several research areas, it also exhibits certain limitations.

First, it is a single exploratory case study. Thus, generic theory cannot be generated.

Second, it is an interpretative study limited to analyzing transcripts and videos of the

199

meetings. What the participants did that was not heard or seen I could not study. Beyond, I

only studied a small number of meetings, in which the topics discussed were at a particular

stage of development. By studying a longer timeframe, one may obtain different results

(e.g., more topics could be rediscussed from meeting to meeting).

Even considering these and other limitations, the findings obtained provide insights

into current practices that other software development teams may find useful to apply

during RSSMDMs, or perhaps even during other kinds of meetings. In the context of

RSSMDMs, the most relevant suggestions are the following:

• Encourage knowledge sharing among the team members and plan ahead what to do

if members who hold much knowledge leave the team at some point.

• Always have a designated notetaker during the meetings and perhaps consider the

topic to be discussed and the background this person has to select who will be the

notetaker per topic (e.g., have software architects take notes while PERFORMING A

POST-MORTEM, have product owners take notes while writing THE

IMPLEMENTATION ROADMAP of a given project).

• Be vigilant in capturing information by explicitly deciding what should be captured

for each topic. This practice should be applied for all topics without exception, even

if a topic is spontaneously brought to the conversation. A question: “Is there

something to capture here?” should always be explicitly asked.

• Define a set of good practices to follow while taking notes (e.g., notetakers should

share their screen so that the rest of the team can observe what information is being

captured as discussion outflow; if possible, organize discussion outflow into

different artifacts such as wikis with a specific purpose or tickets; when more than

200

one artifact is used to capture design information, create links between the various

artifacts used when so appropriate and possible.

7.1.3 Future work

This work also establishes a baseline for future research into RSSMDMs and offers

suggestions for the development of improved tools to support participants with

information sharing and information capture in these meetings. An outline of these ideas is

provided below:

• Investigate whether the presence or absence of information needed impacts the

quality of the solutions designed during the meetings. When information requested

is not provided at the time the participants need it, the effects of it not being shared

are unknown at this time. On the one hand, it may mean that the answers were not

really needed. On the other hand, the absence of answers may lead to later

problems. Moreover, it could also happen that answers are deferred to the team

doing more detailed design once it has been considered by the key internal

stakeholders and assigned to a participant. A study to explore these possibilities

would help the community to measure the impact that missing information has on

the quality of the design work done during RSSMDMs.

• Regarding design rationale, a direction to explore is to investigate how often

rationale information is needed for other types of design work. While during

RSSMDMs, rationale was not shared that often, a different distribution might be

observed for other design settings (e.g., early design, architectural design, re-design

to address technical debt). Overall, having a better idea of the design scenarios in

201

which rationale is needed would help the research community to devise new

approaches to capturing and sharing design rationale, and practitioners to identify

when it is important to capture it.

• Investigate whether a significant amount of information shared by a few

participants represents a high risk for teams. In this regard, we must investigate

whether software development teams prepare for such occasions (i.e., key team

member leaving the company). Moreover, if they do prepare, we also need to

investigate what actions are taken so that such strategies can be applied by others.

An ethnographic study of teams in which a key team member leaves could provide

valuable observations for practitioners on how to prepare for such scenarios.

• In terms of tool support for information sharing, it would be worthwhile to

investigate three directions:

o We must investigate why tools are not used that often to share information. A

possible reason might be that tools do not live up to their potential to assist

developers with information sharing during meetings. Another possible

reason could be that users find it difficult to search information in the tools

during the meetings. Exploring these and other possibilities will provide key

insights into how to improve tools to share information during RSSMDMs.

o Investigate how relevant it is for the meeting participants to share

recollections of what external people said during the meetings. Even though

recollections may not be shared very often, when it did happen in the

RSSMDMs I studied, the information shared seemed to be critical to move the

design process forward. Performing a study exclusively focused on this

202

aspect would shed some light on the importance of recollections for

RSSMDMs.

o Explore mechanisms to obtain information from multiple sources. Initial

ideas in this regard stem from the tools that were most often used. For

instance, could we build a mechanism able to find and share information

from sources such as Confluence, Jira and Slack channels during the

meetings? And most importantly, could sharing information in this way make

design deliberations more accurate in some way? In terms of tool

prototyping, this is definitely an important research direction to pursue.

• Investigate what factors inhibit participants to not capturing important information.

In my study, I observed that important information was shared and not captured for

topics brought up impromptu. May this be an inhibitor to not capturing important

information? Perhaps in the flow or articulating questions and answers for which

participants were not prepared, they usually forget to capture design outflow.

Moreover, I also observed that for many of these topics the developers were the

notetakers. Is there something particular about their skills that prevents them from

capturing outflow? Perhaps they did capture something, but not through the tool

shared on screen. Figuring out what may cause the lack of capture in these scenarios

may help practitioners to mitigate the risk of losing important information, because

they would be aware of when they should actually capture.

• In terms of notetaking practices, three research directions stand out:

o Studying the effects of having a single notetaker during the whole meeting

versus having multiple notetakers (that would be chosen depending on the

203

topic to be discussed) to understand which approach is better and under

which circumstances. Given that the nature of the topics discussed was

diverse in these meetings (e.g., ARCHITECTURAL RE-DESIGN, SUPPORT

CASE, TESTING, COORDINATION AND PLANNING), having participants with

certain backgrounds taking notes during certain discussions might have been

beneficial for the team (e.g., product owners captured implementation

roadmaps, software architects documented internal procedures during post-

mortem discussions). Future studies in this regard may center on comparing

the discussion outflow captured by teams with a single notetaker, versus

teams with multiple notetakers for different meeting scenarios (e.g.,

RSSMDMs, early-field design meetings, architectural debt meetings). This

study would clarify what approach is better and for which kinds of

discussions.

o Investigate whether the background of participants has an impact on what

information is captured. Is project management information better organized

when a project owner captures it? Is design information more specific and

detailed when a software architect or a developer captures it? Finding

answers to these questions would shed some light on how to select a

notetaker for a given discussion.

o Investigate how participants feel being observed while taking collaborative

notes. Privacy is an important angle of many work activities. Personality (e.g.,

extroverted, introverted) and skills (e.g., writing skills, being with the

expectation of sharing the native speaker for the language in which notes are

204

taken), as well as other factors, play an important role in whether one feels

comfortable performing certain activities in front of others. Towards rotating

the role of notetakers and with the expectation of sharing the screen, it is also

important to investigate whether participants feel comfortable doing so.

• In terms of tool support for information capture, it is important to explore other

ways to easily capture information in RSSMDMs so that the workload of notetakers

is reduced. For instance, IDBs [216] captured by the participants could be used to

populate a knowledge repository such as Confluence. This could bring two

important benefits to a team. First, it could reduce notetaking itself because less

information would have to be captured. Second, it could make information capture

more agile. Rather than capturing complete ideas, small updates to the IDBs

captured could be made in order to shape the final documentation. Moreover, it is

also important to explore the use of bots for some of the activities performed in

preparation for capturing discussion outflow. For instance, bots could assist

developers in handling some of the repetitive tasks needed in preparation to

capture discussion outflow (e.g., a bot to mark a question in “Ask an Architect” as

“done”, a bot to close a Jira ticket, a bot to make a copy of the “minutes of the

meeting” at the beginning of each meeting or discussion). As one example,

participants usually have to find the template of the “minutes of the meeting”, create

a copy, assign it a name, and make some basic edits such as updating the date. All

this work could be done by a bot as per the request of the notetaker via a simple

command (i.e., “set up minutes of the meeting”). Even though most of these tasks are

205

not complex, they do take time and participants tend to perform them for almost

every topic discussed during a meeting.

• Investigate how to create information continuity across meetings. Critical steps to

explore in this regard are:

o Establishing connections between the information that is shared and the

information that is captured. For example, for the meetings I have analyzed, I

could go through each segment in which information was captured, to

analyze whether something in the content includes some of the segments

coded as prior information in the previous discussion (within the scope of

each topic). This analysis would provide a clear idea of how often prior

information shared is captured.

o Investigate whether better tools could help to create such continuity. How

can novel tools assist developers in creating information continuity across

RSSMDMs to thereby improve the team's effectiveness and efficiency over

time? My previous work with IDBs [216] could be a starting point in this

regard. Building an interface to bring back IDBs during a meeting (e.g.,

meeting assistant, chatbot), and evaluating its performance by conducting

design studios with professional software developers such as the ones

conducted in [92], would provide insights into designing an effective

interface for this task.

206

REFERENCES

[1] R. N. Taylor and A. van der Hoek, “Software Design and Architecture The once and future focus of

software engineering,” in Future of Software Engineering (FOSE ’07), May 2007, pp. 226–243. doi:
10.1109/FOSE.2007.21.

[2] P. Grisham, H. Iida, and D. Perry, “Improving design intent research for software maintenance,” 2009.
[Online]. Available: http://users.ece.utexas.edu/~perry/work/papers/0712-PG-atgse1.pdf

[3] A. Baker and A. Van Der Hoek, “Understanding maintenance design: how developers work at the
whiteboard to design solutions for software maintenance,” University of California, Irvine, Institute for
Software Research Technical Report, 2010. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.8446&rep=rep1&type=pdf

[4] V. Stray, D. I. K. Sjøberg, and T. Dybå, “The daily stand-up meeting: A grounded theory study,” Journal
of Systems and Software, vol. 114, pp. 101–124, 2016.

[5] P. Lous, P. Tell, C. B. Michelsen, Y. Dittrich, M. Kuhrmann, and A. Ebdrup, “Virtual by Design: How a
Work Environment can Support Agile Distributed Software Development,” in 2018 IEEE/ACM 13th
International Conference on Global Software Engineering (ICGSE), May 2018, pp. 97–106.

[6] P. Kruchten, R. Nord, and I. Ozkaya, Managing Technical Debt: Reducing Friction in Software
Development. Addison-Wesley Professional, 2019.

[7] D. Falessi, P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt at the crossroads of research and
practice: report on the fifth international workshop on managing technical debt,” SIGSOFT Softw. Eng.
Notes, vol. 39, no. 2, pp. 31–33, Mar. 2014, doi: 10.1145/2579281.2579311.

[8] S. Rastkar and G. C. Murphy, “Why did this code change?,” in 2013 35th International Conference on
Software Engineering (ICSE), 2013, pp. 1193–1196.

[9] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-making techniques for software
architecture design: A comparative survey,” ACM Comput. Surv., vol. 43, no. 4, p. 33:1-33:28, Oct. 2011,
doi: 10.1145/1978802.1978812.

[10] G. Fischer et al., “Seeding, evolutionary growth and reseeding: The incremental development of
collaborative design environments,” Coordination theory and collaboration technology, vol. 447, p. 472,
2001.

[11] N. Mangano, T. D. LaToza, M. Petre, and A. van der Hoek, “Supporting informal design with interactive
whiteboards,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems , New
York, NY, USA, Apr. 2014, pp. 331–340. doi: 10.1145/2556288.2557411.

[12] G. Bortis, “DesignMinders: Preserving and Sharing Informal Software Design Knowledge,” p. 8.
[13] B. Vesin, R. Jolak, and M. R. V. Chaudron, “OctoUML: An Environment for Exploratory and Collaborative

Software Design,” in 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), May 2017, pp. 7–10. doi: 10.1109/ICSE-C.2017.19.

[14] V. Clerc, E. de Vries, and P. Lago, “Using wikis to support architectural knowledge management in
global software development,” in Proceedings of the 2010 ICSE Workshop on Sharing and Reusing
Architectural Knowledge, New York, NY, USA, May 2010, pp. 37–43. doi: 10.1145/1833335.1833341.

[15] B. Decker, E. Ras, J. Rech, P. Jaubert, and M. Rieth, “Wiki-Based stakeholder participation in
requirements engineering,” IEEE Software, vol. 24, no. 2, pp. 28–35, 2007, doi: 10.1109/MS.2007.60.

[16] R. Farenhorst, P. Lago, and H. Van Vliet, “Eagle: Effective tool support for sharing architectural
knowledge,” International Journal of Cooperative Information Systems, vol. 16, no. 3–4, pp. 413–437,
2007, doi: 10.1142/s0218843007001706.

[17] N. Schuster, O. Zimmermann, and C. Pautasso, “ADkwik: Web 2.0 collaboration system for architectural
decision engineering,” 2007, pp. 255–260.

[18] H. van Vliet and A. Tang, “Decision making in software architecture,” Journal of Systems and Software,
vol. 117, pp. 638–644, Jul. 2016, doi: 10.1016/j.jss.2016.01.017.

[19] M. Nygard, “Documenting Architecture Decisions,” 2011.
https://cognitect.com/blog/2011/11/15/documenting-architecture-decisions (accessed Jun. 10,
2022).

[20] D. G. Bobrow and I. P. Goldstein, “Representing design alternatives,” in Proceedings of the 1980 AISB
Conference on Artificial Intelligence, NLD, Jul. 1980, pp. 25–35.

[21] T. P. Moran and J. M. Carroll, Design Rationale: Concepts, Techniques, and Use. CRC Press, 2020.

207

[22] A. J. Ko, R. DeLine, and G. Venolia, “Information Needs in Collocated Software Development Teams,” in
29th International Conference on Software Engineering (ICSE’07), Minneapolis, MN, USA, May 2007, pp.
344–353. doi: 10.1109/ICSE.2007.45.

[23] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs in bug reports: improving
cooperation between developers and users,” in Proceedings of the 2010 ACM conference on Computer
supported cooperative work, New York, NY, USA, Feb. 2010, pp. 301–310. doi:
10.1145/1718918.1718973.

[24] P. N. Robillard, “The role of knowledge in software development,” Commun. ACM, vol. 42, no. 1, pp. 87–
92, Jan. 1999, doi: 10.1145/291469.291476.

[25] G. M. Olson, J. S. Olson, M. R. Carter, and M. Storrosten, “Small Group Design Meetings: An Analysis of
Collaboration,” Human–Computer Interaction, vol. 7, no. 4, pp. 347–374, 1992.

[26] G. M. Olson and J. S. Olson, “Distance Matters,” Human–Computer Interaction, vol. 15, no. 2–3, pp. 139–
178, Sep. 2000, doi: 10.1207/S15327051HCI1523_4.

[27] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting Empirical Methods for Software
Engineering Research,” in Guide to Advanced Empirical Software Engineering, F. Shull, J. Singer, and D.
I. K. Sjøberg, Eds. London: Springer, 2008, pp. 285–311. doi: 10.1007/978-1-84800-044-5_11.

[28] C. Wohlin and A. Aurum, “Towards a decision-making structure for selecting a research design in
empirical software engineering,” Empir Software Eng, vol. 20, no. 6, pp. 1427–1455, Dec. 2015, doi:
10.1007/s10664-014-9319-7.

[29] G. Guest, K. M. MacQueen, and E. E. Namey, Applied Thematic Analysis. SAGE Publications, 2011.
[30] D. S. Cruzes and T. Dyba, “Recommended Steps for Thematic Synthesis in Software Engineering,” in

2011 International Symposium on Empirical Software Engineering and Measurement, Sep. 2011, pp.
275–284. doi: 10.1109/ESEM.2011.36.

[31] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE Std 610.12-1990, pp. 1–55, Dec.
1990, doi: 10.1109/IEEESTD.1990.101064.

[32] E. B. Swanson, “The dimensions of maintenance,” in Proceedings of the 2nd international conference on
Software engineering, 1976, pp. 492–497.

[33] B. A. Kitchenham et al., “Towards an ontology of software maintenance,” Journal of Software
Maintenance: Research and Practice, vol. 11, no. 6, pp. 365–389, 1999, doi: 10.1002/(SICI)1096-
908X(199911/12)11:6<365::AID-SMR200>3.0.CO;2-W.

[34] S. Mamone, “The IEEE standard for software maintenance,” SIGSOFT Softw. Eng. Notes, vol. 19, no. 1,
pp. 75–76, Jan. 1994, doi: 10.1145/181610.181623.

[35] D.-R. Harjani and J.-P. Queille, “A process model for the maintenance of large space systems software,”
Jan. 1992, pp. 127–136. doi: 10.1109/ICSM.1992.242550.

[36] N. Chapin, J. E. Hale, K. Md. Khan, J. F. Ramil, and W.-G. Tan, “Types of software evolution and software
maintenance,” Journal of Software Maintenance and Evolution: Research and Practice, vol. 13, no. 1, pp.
3–30, 2001.

[37] “ISO/IEC/IEEE 14764:2022(en), Software engineering — Software life cycle processes —
Maintenance.” https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:14764:ed-3:v1:en (accessed Mar. 23,
2022).

[38] M. O’Keeffe and M. Ó. Cinnéide, “Search-based refactoring: an empirical study,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 20, no. 5, pp. 345–364, 2008, doi:
10.1002/smr.378.

[39] T. D. Hendrix, J. H. Cross, S. Maghsoodloo, and M. L. McKinney, “Do visualizations improve program
comprehensibility? experiments with control structure diagrams for Java,” in Proceedings of the thirty-
first SIGCSE technical symposium on Computer science education, New York, NY, USA, Mar. 2000, pp.
382–386. doi: 10.1145/330908.331890.

[40] L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline, and G. Venolia, “Debugging Revisited: Toward
Understanding the Debugging Needs of Contemporary Software Developers,” in 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement, Oct. 2013, pp. 383–392.
doi: 10.1109/ESEM.2013.43.

[41] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying the characteristics of vulnerable code
changes: an empirical study,” in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, New York, NY, USA, 2014, pp. 257–268. doi:
10.1145/2635868.2635880.

208

[42] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software engineers understand code changes? an
exploratory study in industry,” in Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, New York, NY, USA, Nov. 2012, pp. 1–11. doi:
10.1145/2393596.2393656.

[43] R. Purushothaman and D. E. Perry, “Toward understanding the rhetoric of small source code changes,”
IEEE Transactions on Software Engineering, vol. 31, no. 6, pp. 511–526, Jun. 2005, doi:
10.1109/TSE.2005.74.

[44] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and Answering Questions during a Programming
Change Task,” IEEE Transactions on Software Engineering, vol. 34, no. 4, pp. 434–451, Jul. 2008, doi:
10.1109/TSE.2008.26.

[45] B. De Alwis, “Supporting conceptual queries over integrated sources of program information,” 2008,
doi: 10.14288/1.0051181.

[46] M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse, “Untangling fine-grained code changes,” in
2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER),
2015, pp. 341–350.

[47] T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in 2011 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), Sep. 2011, pp. 117–124. doi: 10.1109/VLHCC.2011.6070388.

[48] Y. Yoon, B. A. Myers, and S. Koo, “Visualization of fine-grained code change history,” in 2013 IEEE
Symposium on Visual Languages and Human Centric Computing, 2013, pp. 119–126.

[49] L. Voinea, A. Telea, and J. J. van Wijk, “CVSscan: visualization of code evolution,” in Proceedings of the
2005 ACM symposium on Software visualization, New York, NY, USA, May 2005, pp. 47–56. doi:
10.1145/1056018.1056025.

[50] A. J. Ko and B. A. Myers, “Source-level debugging with the whyline,” in Proceedings of the 2008
international workshop on Cooperative and human aspects of software engineering, New York, NY, USA,
2008, pp. 69–72. Accessed: Mar. 14, 2022. [Online]. Available:
https://doi.org/10.1145/1370114.1370132

[51] B. de Alwis and G. C. Murphy, “Answering conceptual queries with Ferret,” in Proceedings of the 30th
international conference on Software engineering, New York, NY, USA, 2008, pp. 21–30. Accessed: Mar.
14, 2022. [Online]. Available: https://doi.org/10.1145/1368088.1368092

[52] A. J. Ko and B. A. Myers, “Designing the whyline: a debugging interface for asking questions about
program behavior,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
New York, NY, USA, 2004, pp. 151–158. Accessed: Mar. 14, 2022. [Online]. Available:
https://doi.org/10.1145/985692.985712

[53] G. Rasool and N. Asif, “Software architecture recovery,” International Journal of Computer, Information,
and Systems Science, and Engineering, vol. 1, no. 3, pp. 206–211, 2007.

[54] C.-H. Lung, “Software architecture recovery and restructuring through clustering techniques,” in
Proceedings of the third international workshop on Software architecture, 1998, pp. 101–104.

[55] M. Lungu, M. Lanza, and O. Nierstrasz, “Evolutionary and collaborative software architecture recovery
with Softwarenaut,” Science of Computer Programming, vol. 79, pp. 204–223, 2014.

[56] M. Schmitt Laser, N. Medvidovic, D. M. Le, and J. Garcia, “ARCADE: an extensible workbench for
architecture recovery, change, and decay evaluation,” in Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
New York, NY, USA, 2020, pp. 1546–1550. Accessed: Mar. 14, 2022. [Online]. Available:
https://doi.org/10.1145/3368089.3417941

[57] E. Kouroshfar, M. Mirakhorli, H. Bagheri, L. Xiao, S. Malek, and Y. Cai, “A Study on the Role of Software
Architecture in the Evolution and Quality of Software,” in 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories, 2015, pp. 246–257.

[58] G. Mark, “Extreme collaboration,” Commun. ACM, vol. 45, no. 6, pp. 89–93, 2002.
[59] S. Teasley, L. Covi, M. S. Krishnan, and J. S. Olson, “How does radical collocation help a team succeed?,”

in Proceedings of the 2000 ACM conference on Computer supported cooperative work, New York, NY,
USA, Dec. 2000, pp. 339–346. doi: 10.1145/358916.359005.

[60] L. M. Covi, J. S. Olson, E. Rocco, W. J. Miller, and P. Allie, “A Room of Your Own: What Do We Learn
about Support of Teamwork from Assessing Teams in Dedicated Project Rooms?,” in Cooperative
Buildings: Integrating Information, Organization, and Architecture, Berlin, Heidelberg, 1998, pp. 53–65.
doi: 10.1007/3-540-69706-3_7.

209

[61] M. Eccles, J. Smith, M. Tanner, J. Van Belle, and S. van der Watt, “The impact of collocation on the
effectiveness of agile is development teams,” Communications of the IBIMA, vol. 2010, pp. 1–11, 2010.

[62] B. Sengupta, S. Chandra, and V. Sinha, “A research agenda for distributed software development,” in
Proceedings of the 28th international conference on Software engineering, New York, NY, USA, 2006, pp.
731–740. doi: 10.1145/1134285.1134402.

[63] K. Ketler and J. Walstrom, “The outsourcing decision,” International Journal of Information
Management, vol. 13, no. 6, pp. 449–459, Dec. 1993, doi: 10.1016/0268-4012(93)90061-8.

[64] S. Komi-Sirviö and M. Tihinen, “Lessons learned by participants of distributed software development,”
Knowledge and Process Management, vol. 12, no. 2, pp. 108–122, 2005, doi: 10.1002/kpm.225.

[65] D. Šmite, “A Case Study: Coordination Practices in Global Software Development,” in Product Focused
Software Process Improvement, Berlin, Heidelberg, 2005, pp. 234–244. doi: 10.1007/11497455_20.

[66] J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and J. D. Herbsleb, “Team Knowledge and Coordination in
Geographically Distributed Software Development,” Journal of Management Information Systems, vol.
24, no. 1, pp. 135–169, Jul. 2007, doi: 10.2753/MIS0742-1222240104.

[67] R. E. Kraut and L. A. Streeter, “Coordination in software development,” Communications of the ACM,
vol. 38, no. 3, pp. 69–82, 1995.

[68] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, “People, organizations, and process improvement,”
IEEE Software, vol. 11, no. 4, pp. 36–45, Jul. 1994, doi: 10.1109/52.300082.

[69] J. Noll, S. Beecham, and I. Richardson, “Global software development and collaboration: barriers and
solutions,” ACM Inroads, vol. 1, no. 3, pp. 66–78, Sep. 2011, doi: 10.1145/1835428.1835445.

[70] F. P. B. Jr, The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition. Pearson
Education, 1995.

[71] D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture,” SIGSOFT Softw. Eng.
Notes, vol. 17, no. 4, pp. 40–52, Oct. 1992, doi: 10.1145/141874.141884.

[72] M. A. Jackson, Problem Frames: Analysing and Structuring Software Development Problems. Harlow:
Addison-Wesley, 2000.

[73] E. Gamma, R. Johnson, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software. Pearson Deutschland GmbH, 1995.

[74] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s Go to the Whiteboard: How and Why Software
Developers Use Drawings,” in SIGCHI Conference on Human Factors in Computing Systems, 2007, pp.
557–566. doi: 10.1145/1240624.1240714.

[75] K. Yatani, E. Chung, C. Jensen, and K. N. Truong, “Understanding how and why open source
contributors use diagrams in the development of Ubuntu,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, New York, NY, USA, Apr. 2009, pp. 995–1004. doi:
10.1145/1518701.1518853.

[76] C. Zannier, M. Chiasson, and F. Maurer, “A model of design decision making based on empirical results
of interviews with software designers,” Information and Software Technology, vol. 49, no. 6, pp. 637–
653, Jun. 2007, doi: 10.1016/j.infsof.2007.02.010.

[77] J. D. Herbsleb, H. Klein, G. M. Olson, H. Brunner, J. S. Olson, and J. Harding, “Object-Oriented Analysis
and Design in Software Project Teams,” Human–Computer Interaction, vol. 10, no. 2–3, pp. 249–292,
Jun. 1995, doi: 10.1080/07370024.1995.9667219.

[78] N. Mangano, T. D. LaToza, M. Petre, and A. van der Hoek, “How Software Designers Interact with
Sketches at the Whiteboard,” IEEE Transactions on Software Engineering, vol. 41, no. 2, pp. 135–156,
Feb. 2015, doi: 10.1109/TSE.2014.2362924.

[79] C. Zannier and F. Maurer, “Comparing Decision Making in Agile and Non-agile Software Organizations,”
in Agile Processes in Software Engineering and Extreme Programming, Berlin, Heidelberg, 2007, pp. 1–
8. doi: 10.1007/978-3-540-73101-6_1.

[80] U. Dekel and J. D. Herbsleb, “Notation and representation in collaborative object-oriented design: an
observational study,” SIGPLAN Not., vol. 42, no. 10, pp. 261–280, 2007, doi:
10.1145/1297105.1297047.

[81] W. Heijstek, T. Kühne, and M. R. V. Chaudron, “Experimental Analysis of Textual and Graphical
Representations for Software Architecture Design,” in 2011 International Symposium on Empirical
Software Engineering and Measurement, Sep. 2011, pp. 167–176. doi: 10.1109/ESEM.2011.25.

[82] J. A. Landay and B. A. Myers, “Interactive sketching for the early stages of user interface design,” in
Proceedings of the SIGCHI conference on Human factors in computing systems , 1995, pp. 43–50.

210

[83] C. H. Damm, K. M. Hansen, and M. Thomsen, “Tool support for cooperative object-oriented design:
gesture based modelling on an electronic whiteboard,” in Proceedings of the SIGCHI conference on
Human Factors in Computing Systems, New York, NY, USA, Apr. 2000, pp. 518–525. doi:
10.1145/332040.332488.

[84] J. Lin, M. W. Newman, J. I. Hong, and J. A. Landay, “DENIM: finding a tighter fit between tools and
practice for Web site design,” in Proceedings of the SIGCHI conference on Human Factors in Computing
Systems, New York, NY, USA, Apr. 2000, pp. 510–517. doi: 10.1145/332040.332486.

[85] N. Mangano, A. Baker, and A. van der Hoek, “Calico: a prototype sketching tool for modeling in early
design,” in Proceedings of the 2008 international workshop on Models in software engineering, New
York, NY, USA, May 2008, pp. 63–68. doi: 10.1145/1370731.1370747.

[86] D. Wüest, N. Seyff, and M. Glinz, “FlexiSketch: A Mobile Sketching Tool for Software Modeling,” in
Mobile Computing, Applications, and Services, Berlin, Heidelberg, 2013, pp. 225–244. doi: 10.1007/978-
3-642-36632-1_13.

[87] “Studying Professional Software Design,” 2010. https://www.ics.uci.edu/design-workshop/ (accessed
Apr. 11, 2022).

[88] N. Cross, “A brief history of the Design Thinking Research Symposium series,” Design Studies, vol. 57,
pp. 160–164, 2018.

[89] H. Christiaans and R. A. Almendra, “Accessing Decision-Making in Software Design,” Design Studies, vol.
31, no. 6, Art. no. 6, 2010, doi: 10.1016/j.destud.2010.09.005.

[90] B. Matthews, “Designing Assumptions,” in Software Designers in Action: A Human-Centric Look at
Design Work, M. Petre and A. van der Hoek, Eds. Chapman and Hall/CRC, 2013, pp. 249–266.

[91] R. K. E. Bellamy, B. E. John E., and M. Desmond, “Concern Development in Software Design
Discussions,” in Software Designers in Action: A Human-Centric Look at Design Work, H. Ossher, M.
Petre, and A. van der Hoek, Eds. Chapman and Hall/CRC, 2013, pp. 249–266.

[92] A. Baker and A. van der Hoek, “Ideas, subjects, and cycles as lenses for understanding the software
design process,” Design Studies, vol. 31, no. 6, pp. 590–613, Nov. 2010, doi:
10.1016/j.destud.2010.09.008.

[93] A. Tang, A. Aleti, J. Burge, and H. van Vliet, “What makes software design effective?,” Design Studies, vol.
31, no. 6, pp. 614–640, Nov. 2010, doi: 10.1016/j.destud.2010.09.004.

[94] S. Baltes and S. Diehl, “Sketches and diagrams in practice,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, New York, NY, USA, Nov. 2014, pp.
530–541. doi: 10.1145/2635868.2635891.

[95] S. Baltes, P. Schmitz, and S. Diehl, “Linking sketches and diagrams to source code artifacts,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, New York, NY, USA, Nov. 2014, pp. 743–746. doi: 10.1145/2635868.2661672.

[96] S. Baltes, F. Hollerich, and S. Diehl, “Round-Trip Sketches: Supporting the Lifecycle of Software
Development Sketches from Analog to Digital and Back,” in 2017 IEEE Working Conference on Software
Visualization (VISSOFT), Sep. 2017, pp. 94–98. doi: 10.1109/VISSOFT.2017.24.

[97] D. Wüest, N. Seyff, and M. Glinz, “FLEXISKETCH TEAM: Collaborative Sketching and Notation Creation
on the Fly,” in 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, May 2015,
vol. 2, pp. 685–688. doi: 10.1109/ICSE.2015.223.

[98] D. Wüest, N. Seyff, and M. Glinz, “Sketching and notation creation with FlexiSketch Team: Evaluating a
new means for collaborative requirements elicitation,” in 2015 IEEE 23rd International Requirements
Engineering Conference (RE), Aug. 2015, pp. 186–195. doi: 10.1109/RE.2015.7320421.

[99] S. Grapenthin, M. Book, V. Gruhn, C. Schneider, and K. Völker, “Reducing complexity using an
interaction room: an experience report,” in Proceedings of the 31st ACM international conference on
Design of communication, New York, NY, USA, Sep. 2013, pp. 71–76. doi: 10.1145/2507065.2507087.

[100] M. Book, M. Riedel, H. Neukirchen, and M. Götz, “Facilitating collaboration in high-performance
computing projects with an interaction room,” in Proceedings of the 4th ACM SIGPLAN International
Workshop on Software Engineering for Parallel Systems, New York, NY, USA, Oct. 2017, pp. 46–47. doi:
10.1145/3141865.3142467.

[101] J. Dalton, “Daily Stand-Up,” in Great Big Agile: An OS for Agile Leaders, J. Dalton, Ed. Berkeley, CA:
Apress, 2019, pp. 155–157. doi: 10.1007/978-1-4842-4206-3_24.

211

[102] S. Grapenthin, S. Poggel, M. Book, and V. Gruhn, “Facilitating Task Breakdown in Sprint Planning
Meeting 2 with an Interaction Room: An Experience Report,” in 2014 40th EUROMICRO Conference on
Software Engineering and Advanced Applications, Aug. 2014, pp. 1–8. doi: 10.1109/SEAA.2014.71.

[103] Y. Y. Ng, J. Skrodzki, and M. Wawryk, “Playing the Sprint Retrospective: A Replication Study,” in
Advances in Agile and User-Centred Software Engineering, Cham, 2020, pp. 133–141. doi: 10.1007/978-
3-030-37534-8_7.

[104] V. G. Stray, N. B. Moe, and A. Aurum, “Investigating Daily Team Meetings in Agile Software Projects,” in
2012 38th Euromicro Conference on Software Engineering and Advanced Applications, Sep. 2012, pp.
274–281. doi: 10.1109/SEAA.2012.16.

[105] V. G. Stray, Y. Lindsjørn, and D. I. K. Sjøberg, “Obstacles to Efficient Daily Meetings in Agile
Development Projects: A Case Study,” in 2013 ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, Oct. 2013, pp. 95–102. doi: 10.1109/ESEM.2013.30.

[106] V. Stray, “An empirical investigation of the daily stand-up meeting in Agile software development
projects,” J. Syst. Softw. o, 2014.

[107] J. M. Atlee and M. W. Godfrey, “Studying Professional Software Designers and their Use of Abstraction,”
2010.

[108] V. Stray, N. B. Moe, and G. R. Bergersen, “Are Daily Stand-up Meetings Valuable? A Survey of
Developers in Software Teams,” in Agile Processes in Software Engineering and Extreme Programming,
2017, pp. 274–281.

[109] K. Niemantsverdriet and T. Erickson, “Recurring Meetings: An Experiential Account of Repeating
Meetings in a Large Organization,” Proc. ACM Hum.-Comput. Interact., vol. 1, no. CSCW, p. 84:1-84:17,
Dec. 2017, doi: 10.1145/3134719.

[110] J. M. Barrero, N. Bloom, and S. J. Davis, “Why working from home will stick,” National Bureau of
Economic Research, 2021.

[111] K. Parker, J. Menasce Horowitz, and R. Minkin, “How Coronavirus Has Changed the Way Americans
Work,” Pew Research Center, 2020. https://www.pewresearch.org/social-trends/2020/12/09/how-
the-coronavirus-outbreak-has-and-hasnt-changed-the-way-americans-work/ (accessed Mar. 15,
2022).

[112] S. Rintel, P. Wong, A. Sarkar, and A. Sellen, “Methodology and Participation for 2020 Diary Study of
Microsoft Employees Experiences in Remote Meetings During COVID-19.” [Online]. Available:
https://www.microsoft.com/en-us/research/uploads/prod/2020/10/2020-10-FOW-SIM1-
RemoteMeetingsDuringCOVID19-MethodologyAndParticipation.pdf

[113] A. H. Anderson, R. McEwan, J. Bal, and J. Carletta, “Virtual team meetings: An analysis of
communication and context,” Computers in Human Behavior, vol. 23, no. 5, pp. 2558–2580, 2007.

[114] B. Saatçi, K. Akyüz, S. Rintel, and C. N. Klokmose, “(Re)Configuring Hybrid Meetings: Moving from User-
Centered Design to Meeting-Centered Design,” Comput Supported Coop Work, vol. 29, no. 6, pp. 769–
794, 2020.

[115] “Socially Intelligent Meetings,” Microsoft Research. https://www.microsoft.com/en-
us/research/project/socially-intelligent-meetings/ (accessed Jan. 19, 2022).

[116] N. Prenner, J. Klünder, and K. Schneider, “Making meeting success measurable by participants’
feedback,” in Proceedings of the 3rd International Workshop on Emotion Awareness in Software
Engineering, New York, NY, USA, 2018, pp. 25–31. doi: 10.1145/3194932.3194933.

[117] A. Sarkar et al., “The promise and peril of parallel chat in video meetings for work,” in Extended
Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, May
2021, pp. 1–8. doi: 10.1145/3411763.3451793.

[118] N. Yankelovich, J. McGinn, M. Wessler, J. Kaplan, J. Provino, and H. Fox, “Private communications in
public meetings,” in CHI ’05 Extended Abstracts on Human Factors in Computing Systems, New York, NY,
USA, Apr. 2005, pp. 1873–1876. doi: 10.1145/1056808.1057044.

[119] S. Whittaker, P. Hyland, and M. Wiley, “Filochat: Handwritten notes provide access to recorded
conversations,” in Proceedings of the SIGCHI conference on Human factors in computing systems, 1994,
pp. 271–277.

[120] B. N. Schilit, L. D. Wilcox, and N. “Nick” Sawhney, “Merging the benefits of paper notebooks with the
power of computers in dynomite,” in CHI ’97 Extended Abstracts on Human Factors in Computing
Systems, New York, NY, USA, Mar. 1997, pp. 22–23. doi: 10.1145/1120212.1120228.

212

[121] L. Stifelman, B. Arons, and C. Schmandt, “The audio notebook: paper and pen interaction with
structured speech,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
New York, NY, USA, Mar. 2001, pp. 182–189. doi: 10.1145/365024.365096.

[122] R. Capilla, R. Jolak, M. R. V. Chaudron, and C. Carrillo, “Design Decisions by Voice: The Next Step of
Software Architecture Knowledge Management,” in Human-Centered Software Engineering, Cham,
2020, pp. 166–177. doi: 10.1007/978-3-030-64266-2_10.

[123] A. M. Soria, “KNOCAP: capturing and delivering important design bits in whiteboard design meetings,”
in Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Companion
Proceedings, New York, NY, USA: Association for Computing Machinery, 2020, pp. 194–197. Accessed:
Apr. 26, 2022. [Online]. Available: https://doi.org/10.1145/3377812.3381397

[124] P. Chiu, J. Boreczky, A. Girgensohn, and D. Kimber, “LiteMinutes: an Internet-based system for
multimedia meeting minutes,” in Proceedings of the 10th international conference on World Wide Web,
2001, pp. 140–149.

[125] A. Waibel et al., “SMaRT: the Smart Meeting Room Task at ISL,” in 2003 IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03)., Apr. 2003, vol. 4, p. IV–
752. doi: 10.1109/ICASSP.2003.1202752.

[126] M. Haller et al., “The NiCE Discussion Room: Integrating Paper and Digital Media to Support Co-
Located Group Meetings,” in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, New York, NY, USA, Apr. 2010, pp. 609–618. doi: 10.1145/1753326.1753418.

[127] Microsoft, “OneNote Digital Note Taking App | Microsoft 365.” https://www.microsoft.com/en-
us/microsoft-365/onenote/digital-note-taking-app (accessed Dec. 09, 2021).

[128] “Online Notepad | Best Note-Taking App | Evernote.” https://evernote.com/ (accessed Aug. 13, 2022).
[129] “Notes on the App Store.” https://apps.apple.com/us/app/notes/id1110145109 (accessed Aug. 13,

2022).
[130] “Google Keep.” https://keep.google.com/u/0/ (accessed Aug. 13, 2022).
[131] “Notion – One workspace. Every team.”

https://www.notion.so/product?utm_source=google&utm_campaign=2075789710&utm_medium=80
211061601&utm_content=372709093345&utm_term=notion&targetid=kwd-
312974742&gclid=Cj0KCQjwl92XBhC7ARIsAHLl9anpiuLOcy8c2QYGPRk56Co-
4k9V7DmiqPEyiuGFGI1edeBuSgEUIwIaAv6HEALw_wcB (accessed Aug. 13, 2022).

[132] “Obsidian.” https://obsidian.md/ (accessed Aug. 13, 2022).
[133] Google, “Google Docs.” https://docs.google.com/ (accessed Dec. 09, 2021).
[134] “Microsoft Office is part of Microsoft 365.” https://www.microsoft.com/en-us/microsoft-

365/microsoft-office (accessed Aug. 13, 2022).
[135] “Digital Whiteboard | MURAL,” 2022. https://mural.co (accessed Mar. 15, 2022).
[136] “Miro,” 2022. https://miro.com/ (accessed Jan. 14, 2022).
[137] “Jamboard,” Wikipedia. Jan. 09, 2022. Accessed: Jan. 14, 2022. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Jamboard&oldid=1064728847
[138] C. C. Dudding, “Digital Videoconferencing: Applications Across the Disciplines,” Communication

Disorders Quarterly, vol. 30, no. 3, pp. 178–182, May 2009, doi: 10.1177/1525740108327449.
[139] D. M. Fetterman, “Research news and Comment: Videoconferencing On-line: Enhancing

Communication Over the Internet,” Educational Researcher, vol. 25, no. 4, pp. 23–27, 1996.
[140] M. S. Ackerman, B. Starr, D. Hindus, and S. D. Mainwaring, “Hanging on the ‘wire’: a field study of an

audio-only media space,” ACM Trans. Comput.-Hum. Interact., vol. 4, no. 1, pp. 39–66, Mar. 1997, doi:
10.1145/244754.244756.

[141] H. Richter, “Understanding Meeting Capture and Access,” in CHI ’02 Extended Abstracts on Human
Factors in Computing Systems, 2002, pp. 558–559. doi: 10.1145/506443.506480.

[142] R. Cutler et al., “Distributed meetings: a meeting capture and broadcasting system,” in Proceedings of
the tenth ACM international conference on Multimedia, New York, NY, USA, Dec. 2002, pp. 503–512. doi:
10.1145/641007.641112.

[143] S. R. Ahuja, J. R. Ensor, and D. N. Horn, “The rapport multimedia conferencing system,” SIGOIS Bull., vol.
9, no. 2–3, pp. 1–8, Apr. 1988, doi: 10.1145/966861.45411.

[144] W. Geyer, H. Richter, L. Fuchs, T. Frauenhofer, S. Daijavad, and S. Poltrock, “A Team Collaboration
Space Supporting Capture and Access of Virtual Meetings,” in International ACM SIGGROUP Conference
on Supporting Group Work, 2001, pp. 188–196. doi: 10.1145/500286.500315.

213

[145] H. Richter, G. D. Abowd, W. Geyer, L. Fuchs, S. Daijavad, and S. Poltrock, “Integrating Meeting Capture
within a Collaborative Team Environment,” in Ubicomp 2001: Ubiquitous Computing, Berlin,
Heidelberg, 2001, pp. 123–138. doi: 10.1007/3-540-45427-6_11.

[146] N. Yankelovich, W. Walker, P. Roberts, M. Wessler, J. Kaplan, and J. Provino, “Meeting central: making
distributed meetings more effective,” in Proceedings of the 2004 ACM conference on Computer
supported cooperative work, New York, NY, USA, Nov. 2004, pp. 419–428. doi:
10.1145/1031607.1031678.

[147] Zoom, “Video Conferencing, Cloud Phone, Webinars, Chat, Virtual Events,” Dec. 09, 2021.
https://zoom.us/ (accessed Dec. 08, 2021).

[148] “Google Meet.” https://meet.google.com/ (accessed Aug. 15, 2022).
[149] Cisco, “Video Conferencing, Cloud Calling & Screen Sharing | Webex,” Dec. 09, 2021.

https://www.webex.com/ (accessed Dec. 08, 2021).
[150] Atlassian, “Jira | Issue & Project Tracking Software,” Atlassian.

https://www.atlassian.com/software/jira (accessed Aug. 15, 2022).
[151] “Zenhub - Productivity Management for Software Teams.” https://www.zenhub.com/ (accessed Aug.

15, 2022).
[152] bugzilla.org, “Home :: Bugzilla.” https://www.bugzilla.org/ (accessed Dec. 09, 2021).
[153] Atlassian, “Confluence - Team Collaboration Software,” 2022.

https://www.atlassian.com/software/confluence (accessed Dec. 09, 2021).
[154] G. Tur et al., “The CALO Meeting Assistant System,” IEEE Transactions on Audio, Speech, and Language

Processing, vol. 18, no. 6, pp. 1601–1611, Aug. 2010, doi: 10.1109/TASL.2009.2038810.
[155] S. Squartini and A. Esposito, “CO-WORKER: Toward Real-Time and Context-Aware Systems for Human

Collaborative Knowledge Building,” Cogn Comput, vol. 4, no. 2, pp. 157–171, Jun. 2012, doi:
10.1007/s12559-012-9136-5.

[156] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers ask during software evolution
tasks,” in Proceedings of the 14th ACM SIGSOFT international symposium on Foundations of software
engineering, New York, NY, USA, Nov. 2006, pp. 23–34. doi: 10.1145/1181775.1181779.

[157] T. Fritz and G. C. Murphy, “Using information fragments to answer the questions developers ask,” in
2010 ACM/IEEE 32nd International Conference on Software Engineering, May 2010, vol. 1, pp. 175–184.
doi: 10.1145/1806799.1806828.

[158] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and answer questions on the web?
(NIER track),” in Proceedings of the 33rd International Conference on Software Engineering, New York,
NY, USA, May 2011, pp. 804–807. doi: 10.1145/1985793.1985907.

[159] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing, “What do developers search for on the
web?,” Empir Software Eng, vol. 22, no. 6, pp. 3149–3185, Dec. 2017, doi: 10.1007/s10664-017-9514-
4.

[160] J. Burge and D. Brown, “SEURAT,” in 2008 ACM/IEEE 30th International Conference on Software
Engineering, May 2008, pp. 835–838. doi: 10.1145/1368088.1368215.

[161] A. Girgensohn and F. M. Shipman, “Supporting knowledge acquisition by end users: tools and
representations,” in Proceedings of the 1992 ACM/SIGAPP Symposium on Applied computing:
technological challenges of the 1990’s, 1992, pp. 340–348.

[162] S. Vasanthapriyan, J. Tian, and J. Xiang, “A Survey on Knowledge Management in Software
Engineering,” in Reliability and Security - Companion 2015 IEEE International Conference on Software
Quality, Aug. 2015, pp. 237–244. doi: 10.1109/QRS-C.2015.48.

[163] J. Ward and A. Aurum, “Knowledge management in software engineering - describing the process,” in
2004 Australian Software Engineering Conference. Proceedings., Apr. 2004, pp. 137–146. doi:
10.1109/ASWEC.2004.1290466.

[164] A. Aurum, R. Jeffery, C. Wohlin, and H. Meliha, Eds., Managing Software Engineering Knowledge.
Springer-Verlag, 2003.

[165] M. A. Babar, X. Wang, and I. Gorton, “PAKME: A Tool for Capturing and Using Architecture Design
Knowledge,” in Pakistan Section Multitopic Conference, 2005, pp. 1–6. doi:
10.1109/INMIC.2005.334419.

[166] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years of software architecture
knowledge management: Practice and future,” Journal of Systems and Software, vol. 116, pp. 191–205,
Jun. 2016, doi: 10.1016/j.jss.2015.08.054.

214

[167] A. Jansen, P. Avgeriou, and J. S. van der Ven, “Enriching Software Architecture Documentation,” Journal
of Systems and Software, vol. 82, no. 8, pp. 1232–1248, 2009, doi: 10.1016/j.jss.2009.04.052.

[168] F. Sousa, M. Aparicio, and C. J. Costa, “Organizational Wiki as a Knowledge Management Tool,” in 28th
ACM International Conference on Design of Communication, 2010, pp. 33–39. doi:
10.1145/1878450.1878457.

[169] R. M. Akscyn, D. L. McCracken, and E. A. Yoder, “KMS: a Distributed Hypermedia System for Managing
Knowledge in Organizations,” Communications of the ACM, vol. 31, no. 7, pp. 820–835, 1988, doi:
10.1145/48511.48513.

[170] G. Fischer, R. McCall, and A. Morch, “JANUS: Integrating Hypertext with a Knowledge-based Design
Environment,” in Second Annual ACM Conference on Hypertext, 1989, pp. 105–117. doi:
10.1145/74224.74233.

[171] “What are lightweight Architecture Decision Records? | Packt Hub.” https://hub.packtpub.com/what-
are-lightweight-architecture-decision-records/ (accessed Jun. 10, 2022).

[172] T. Deshpande, “A Simple but Powerful Tool to Record Your Architectural Decisions,” Better
Programming. https://betterprogramming.pub/here-is-a-simple-yet-powerful-tool-to-record-your-
architectural-decisions-5fb31367a7da (accessed Dec. 12, 2021).

[173] M. Polanyi, “The Tacit Dimension,” in Knowledge in Organizations, Routledge, 1997.
[174] I. Nonaka and D. J. Teece, Managing Industrial Knowledge: Creation, Transfer and Utilization. SAGE,

2001.
[175] I. Rus, M. Lindvall, and S. Sinha, “Knowledge management in software engineering,” IEEE software, vol.

19, no. 3, pp. 26–38, 2002.
[176] H. van Vliet, “Software Architecture Knowledge Management,” in 19th Australian Conference on

Software Engineering (aswec 2008), Mar. 2008, pp. 24–31. doi: 10.1109/ASWEC.2008.4483186.
[177] P. Kruchten, P. Lago, and H. van Vliet, “Building Up and Reasoning About Architectural Knowledge,” in

Quality of Software Architectures, Berlin, Heidelberg, 2006, pp. 43–58. doi: 10.1007/11921998_8.
[178] V. Clerc, P. Lago, and H. van Vliet, “The Architect’s Mindset,” in Software Architectures, Components, and

Applications, Berlin, Heidelberg, 2007, pp. 231–249. doi: 10.1007/978-3-540-77619-2_14.
[179] U. van Heesch and P. Avgeriou, “Mature Architecting - A Survey about the Reasoning Process of

Professional Architects,” in 2011 Ninth Working IEEE/IFIP Conference on Software Architecture, Jun.
2011, pp. 260–269. doi: 10.1109/WICSA.2011.42.

[180] A. Jansen, J. Bosch, and P. Avgeriou, “Documenting after the fact: Recovering architectural design
decisions,” Journal of Systems and Software, vol. 81, no. 4, pp. 536–557, Apr. 2008, doi:
10.1016/j.jss.2007.08.025.

[181] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman, “DiscoTect: a system for discovering
architectures from running systems,” in Proceedings. 26th International Conference on Software
Engineering, May 2004, pp. 470–479. doi: 10.1109/ICSE.2004.1317469.

[182] M. Pinzger, M. Fischer, H. Gall, and M. Jazayeri, “Revealer: a lexical pattern matcher for architecture
recovery,” in Ninth Working Conference on Reverse Engineering, 2002. Proceedings., Nov. 2002, pp.
170–178. doi: 10.1109/WCRE.2002.1173075.

[183] L. Chen, M. A. Babar, and H. Liang, “Model-Centered Customizable Architectural Design Decisions
Management,” in 2010 21st Australian Software Engineering Conference, Apr. 2010, pp. 23–32. doi:
10.1109/ASWEC.2010.31.

[184] A. Rüping, Agile documentation: a pattern guide to producing lightweight documents for software
projects. John Wiley & Sons, 2005.

[185] S. Voigt, D. Hüttemann, and A. Gohr, “sprintDoc: Concept for an agile documentation tool,” in 2016 11th
Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2016, pp. 1–6. doi:
10.1109/CISTI.2016.7521550.

[186] “GitHub: Where the world builds software,” GitHub. https://github.com/ (accessed Aug. 15, 2022).
[187] J. Lee, “Design Rationale Systems: Understanding the Issues,” IEEE EXPERT, p. 8, 1997.
[188] W. Kunz and H. W. Rittel, “Issues as elements of information systems (Working Paper 131),” Center for

Planning and Development Research, Berkeley, USA, 1970.
[189] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge, “How do developers discuss rationale?,” in

2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER) ,
Mar. 2018, pp. 357–369. doi: 10.1109/SANER.2018.8330223.

215

[190] J. E. Burge, J. M. Carroll, R. McCall, and I. Mistrik, Rationale-Based Software Engineering. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-77583-6.

[191] R. McCall, “Using Argumentative, Semantic Grammar for Capture of Design Rationale,” in International
Conference on Design Computing and Cognition, 2018, pp. 519–535. doi: 10.1007/978-3-030-05363-
5_28.

[192] D. and R. Noble, “Issue-Based Information Systems for Design,” 1988. Accessed: Oct. 14, 2021. [Online].
Available: http://papers.cumincad.org/cgi-bin/works/BrowseTreefield=seriesorder=AZ/Show?ca71

[193] S. Buckingham Shum, A. M. Selvin, M. Sierhuis, J. Conklin, C. B. Haley, and B. Nuseibeh, “Hypermedia
Support for Argumentation-Based Rationale: 15 Tears on from gIBIS and QOC,” in Rationale
Management in Software Engineering, A. Dutoit, R. McCall, I. Mistrik, and B. Paech, Eds. Berlin:
Springer-Verlag, 2006, pp. 111–132.

[194] M. Bhat, K. Shumaiev, and F. Matthes, “Towards a Framework for Managing Architectural Design
Decisions,” in 11th European Conference on Software Architecture: Companion Proceedings, 2017, pp.
48–51. doi: 10.1145/3129790.3129799.

[195] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. Ali Babar, “A comparative study of architecture
knowledge management tools,” Journal of Systems and Software, vol. 83, no. 3, pp. 352–370, 2010.

[196] F. Gilson, S. Annand, and J. Steel, “Recording Software Design Decisions on the Fly.,” in Joint
Proceedings of SEED & NLPaSE, 2020, pp. 53–66.

[197] A. M. Soria, A. van der Hoek, and J. Burge, “Recurring Distributed Software Maintenance Meetings:
Toward an Initial Understanding,” in 2022 IEEE/ACM 15th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE), May 2022, pp. 21–25. doi:
10.1145/3528579.3529179.

[198] U. Kuckartz and S. Rädiker, Analyzing Qualitative Data with MAXQDA: Text, Audio, and Video. Springer,
2019.

[199] L. Xu, S. A. Hendrickson, E. Hettwer, H. Ziv, A. van der Hoek, and D. J. Richardson, “Towards supporting
the architecture design process through evaluation of design alternatives,” in Proceedings of the ISSTA
2006 workshop on Role of software architecture for testing and analysis, New York, NY, USA, 2006, pp.
81–87. Accessed: Oct. 15, 2021. [Online]. Available: https://doi.org/10.1145/1147249.1147260

[200] A. Tang, J. Han, and R. Vasa, “Software Architecture Design Reasoning: A Case for Improved
Methodology Support,” IEEE Software, vol. 26, no. 2, pp. 43–49, 2009.

[201] A. Tang and H. van Vliet, “Modeling constraints improves software architecture design reasoning,” in
2009 Joint Working IEEE/IFIP Conference on Software Architecture European Conference on Software
Architecture, Sep. 2009, pp. 253–256. doi: 10.1109/WICSA.2009.5290813.

[202] G. Post and A. Kagan, “OO-CASE tools: an evaluation of Rose,” Information and Software Technology,
vol. 42, no. 6, pp. 383–388, Apr. 2000, doi: 10.1016/S0950-5849(99)00099-3.

[203] H. M. Harmain and R. Gaizauskas, “CM-Builder: an automated NL-based CASE tool,” in Proceedings ASE
2000. Fifteenth IEEE International Conference on Automated Software Engineering, Sep. 2000, pp. 45–
53. doi: 10.1109/ASE.2000.873649.

[204] R. Acerbis, A. Bongio, M. Brambilla, and S. Butti, “WebRatio 5: An Eclipse-Based CASE Tool for
Engineering Web Applications,” in Web Engineering, Berlin, Heidelberg, 2007, pp. 501–505. doi:
10.1007/978-3-540-73597-7_44.

[205] D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language processing: state of the art, current
trends and challenges,” Multimed Tools Appl, Jul. 2022, doi: 10.1007/s11042-022-13428-4.

[206] L. Mich, “NL-OOPS: from natural language to object oriented requirements using the natural language
processing system LOLITA,” Natural language engineering, vol. 2, no. 2, pp. 161–187, 1996.

[207] L.-C. Ungureanu and T. Hartmann, “Analysing frequent natural language expressions from design
conversations,” Design Studies, vol. 72, p. 100987, Jan. 2021, doi: 10.1016/j.destud.2020.100987.

[208] B. Huber, S. Shieber, and K. Z. Gajos, “Automatically Analyzing Brainstorming Language Behavior with
Meeter,” Proc. ACM Hum.-Comput. Interact., vol. 3, no. CSCW, p. 30:1-30:17, Nov. 2019, doi:
10.1145/3359132.

[209] S. Sheshadri, “Identifying Action related Dialogue Acts in Meetings: Research into identifying Action
Items, Decisions, and Ideas from multi-party meeting transcripts.” 2019.

[210] M. Majthoub, M. H. Qutqut, and Y. Odeh, “Software Re-engineering: An Overview,” in 2018 8th
International Conference on Computer Science and Information Technology (CSIT), Jul. 2018, pp. 266–
270. doi: 10.1109/CSIT.2018.8486173.

216

[211] S. K. Chang, Handbook of Software Engineering and Knowledge Engineering. World Scientific, 2001.
[212] J. Janák, “Issue tracking systems,” Brno, spring, p. 17, 2009.
[213] L. A. LeBlanc and M. R. Nosik, “Planning and Leading Effective Meetings,” Behav Analysis Practice, vol.

12, no. 3, pp. 696–708, Sep. 2019, doi: 10.1007/s40617-019-00330-z.
[214] T. Shellenbarger and J. Chicca, “More meaningful meetings,” p. 3.
[215] A. Adams and M. A. Sasse, Privacy Issues in Ubiquitous Multimedia Enviroments: Wake Sleeping Dogs, or

Let Them Lie? IOS Press, 1999.
[216] A. M. Soria and A. Van Der Hoek, “The Design of a Study Concerning the Capture of Important Design

Bits at the Whiteboard,” in 2021 ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C), Oct. 2021, pp. 390–399. doi: 10.1109/MODELS-
C53483.2021.00062.

[217] A. Meza Soria and A. van der Hoek, “Toward Collecting and Delivering Knowledge for Software Design
at the Whiteboard,” in 2018 IEEE/ACM 11th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), May 2018, pp. 108–109.

[218] A. Meza Soria and A. van der Hoek, “Collecting Design Knowledge through Voice Notes,” in 2019
IEEE/ACM 12th International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), May 2019, pp. 33–36. doi: 10.1109/CHASE.2019.00015.

[219] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “Software Bots,” IEEE Software, vol. 35, no. 1, pp. 18–23, Jan.
2018, doi: 10.1109/MS.2017.4541027.

[220] S. Gasson, “Rigor in Grounded Theory Research: An Interpretive Perspective on Generating Theory
from Qualitative Field Studies,” The Handbook of Information Systems Research, 2004.

[221] D. I. K. Sjoeberg et al., “A survey of controlled experiments in software engineering,” IEEE Transactions
on Software Engineering, vol. 31, no. 9, pp. 733–753, Sep. 2005, doi: 10.1109/TSE.2005.97.

	1 Introduction
	2 Background
	2.1 Software maintenance design
	2.2 Collaboration in software development
	2.3 Software design studies
	2.3.1 Studying Professional Software Design Workshop
	2.3.2 Beyond the SPSD workshop

	2.4 Meetings in software development
	2.4.1 The daily stand-up meeting
	2.4.2 Software design meetings
	2.4.3 Recurring meetings in software development
	2.4.4 Distributed and hybrid meetings in software development
	2.4.5 Tool support for meetings

	2.5 Information studies
	2.5.1 Information needs
	2.5.2 Information capture

	2.6 Knowledge management and knowledge capture
	2.7 Design rationale

	3 The topics that are discussed in RSSMDMs
	3.1 The meeting participants
	3.2 The meeting setting
	3.3 Methodology
	3.4 The topics that were discussed
	3.5 The kind of work addressed in the meetings
	3.6 The overall purpose of the discussions the participants held
	3.7 The relationship between the kind of work and the purpose of the discussion
	3.8 Additional observations
	3.9 Topic recurrence
	3.10 Summary

	4 Prior Information Shared during RSSMDM
	4.1 Methodology
	4.1.1 What to consider as prior information and what not
	4.1.2 Classifying prior information

	4.2 What kinds of information are shared?
	4.3 Information shared in relation to the work done
	4.4 Importance of prior information sharing in RSSMDM
	4.5 Shared spontaneously or upon request?
	4.6 Are requests for information answered?
	4.7 Who shares the information?
	4.8 Prior information from other people
	4.9 Are tools used to obtain prior information?
	4.10 Implications for research, practices, and tools
	4.10.1 Implications for research
	4.10.2 Implications for practice
	4.10.3 Implications for tool support

	5 Outflow Captured during RSSMDMs
	5.1 Methodology
	5.1.1 What to consider as discussion outflow and what not
	5.1.2 Classifying discussion outflow

	5.2 The kinds of discussion outflow that were captured
	5.3 Kinds of discussion outflow captured more often
	5.4 Understanding why discussion outflow is not always captured
	5.5 Kinds of discussion outflow captured in relation to the work done and the discussions held
	5.6 Tools and artifacts used to capture discussion outflow
	5.7 Tools used more frequently to capture discussion outflow
	5.8 What do participants do with tools during the meeting?
	5.9 The participants that capture discussion outflow
	5.10 Implications for research, practice and tool support
	5.10.1 Implications for research
	5.10.2 Implications for practice
	5.10.3 Implications for tool support

	6 Threats to Validity
	7 Conclusions
	7.1.1 Major findings
	7.1.2 Contributions
	7.1.3 Future work

	REFERENCES

