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Instrumental variable estimation in a survival context

Eric J. Tchetgen Tchetgen1, Stefan Walter2, Stijn Vansteelandt3, Torben Martinussen4, and 
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1Departments of Biostatistics and Epidemiology, Harvard University

2Department of Epidemiology & Biostatistics, University of California, San Francisco

3Department Applied Mathematics, Computer Science and Statistics, Ghent University

4Department of Biostatistics, University of Copenhagen

Abstract

Bias due to unobserved confounding can seldom be ruled out with certainty when estimating the 

causal effect of a nonradomized treatment. The instrumental variable (IV) design offers, under 

certain assumptions, the opportunity to tame confounding bias, without directly observing all 

confounders. The IV approach is very well developed in the context of linear regression and also 

for certain generalized linear models with a non-linear link function. However, IV methods are not 

as well developed for regression analysis with a censored survival outcome. In this paper, we 

develop the instrumental variable approach for regression analysis in a survival context, primarily 

under an additive hazards model, for which we describe two simple methods for estimating causal 

effects. The first method is a straightforward two-stage regression approach analogous to two-

stage least squares commonly used for IV analysis in linear regression. In this approach, the fitted 

value from a first -stage regression of the exposure on the IV is entered in place of the exposure in 

the second-stage hazard model to recover a valid estimate of the treatment effect of interest. The 

second method is a so-called control function approach, which entails adding to the additive 

hazards outcome model, the residual from a first-stage regression of the exposure on the IV. 

Formal conditions are given justifying each strategy, and the methods are illustrated in a novel 

application to a Mendelian randomization study to evaluate the effect of diabetes on mortality 

using data from the Health and Retirement Study. We also establish that analogous strategies can 

also be used under a proportional hazards model specification provided the outcome is rare over 

the entire follow-up.

Keywords

Instrumental variable; Unobserved confounding; Aalen additive hazards model; Two stage 
regression; Control function; Cox proportional hazards model

Unmeasured confounding is an important possible source of bias when estimating the effect 

of a nonrandomized intervention, treatment or exposure, such as in epidemiologic 
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observational studies. In recent years, epidemiologists have slowly expanded their analytic 

toolbox to address unobserved confounding, by adopting the instrumental variable (IV) 

design, an approach for analyzing non- experimental data. The IV approach has historically 

been favored by economists but has until recently received less attention in epidemiology.1,2 

A valid IV is a pre-exposure variable associated with the exposure of interest, and only 

associated with the outcome through its association with the exposure. Thus, a valid IV must 

not influence the outcome through a pathway other than through the exposure (the 

exclusion-restriction assumption), and, although correlated with the exposure, the IV must 

be independent of unobserved confounders of the exposure-outcome association. A valid IV 

may be hard to find in practice, but when successfully selected to meet these criteria, an IV 

can sometimes be used to account for unobserved confounding bias.1–4

Instrumental variable methods are particularly well developed in the context of linear 

models,4,5 and similar methods are likewise well developed for regression analysis with 

certain nonlinear link functions (e.g. log, logit, probit).5–7 Right-censored survival outcomes 

are common in epidemiologic practice, and hazard regression is typically used to model 

such outcomes. The Cox proportional hazards model is perhaps the most popular regression 

framework for survival data.8 Aalen’s additive hazards model offers a flexible alternative for 

modeling associations on the hazard scale.9 An important appeal of additive hazards models 

is that, unlike proportional hazards, a hazards difference is a collapsible effect measure. 

Specifically, collapsing over a continuous regressor in an additive hazards model can under 

fairly reasonable assumptions, recover a marginal additive hazards model (see eAppendix 

for a detailed discussion of collapsibility of the Aalen model). In this paper, we exploit the 

collapsibility of additive hazards to develop two straightforward approaches for IV 

estimation with a censored survival outcome. The first approach is a straightforward two-

stage regression approach analogous to two-stage least squares commonly used for IV 

estimation in linear models.5 The current context is somewhat different from that of standard 

two-stage least squares in that, to estimate the treatment effect, here the fitted value from the 

first-stage regression of the exposure on the IV is substituted for the exposure in a second-

stage additive hazards model, rather than in a standard linear regression model. The second 

proposed approach is a so-called control function approach,5 which entails adding to the 

additive hazards regression model for the exposure effect, the residual from a first-stage 

regression of the exposure on the IV also known as a control function. Formal conditions are 

given justifying each strategy, and several extensions of the methods are also given. The 

new methods are illustrated below in a novel application to a Mendelian randomization 

study of the causal association between diabetes diagnosis and mortality using data from the 

Health and Retirement Study.10 Several additional results are relegated to the Supplemental 

Appendix. There, we establish that when the disease outcome is rare, in the sense that its 

cumulative incidence remains low over the follow-up period under consideration, then 

analogous two-stage regression and control function strategies may be used under a Cox 

proportional hazards model. We also describe a straightforward sensitivity analysis 

technique to assess the extent to which a violation of the exclusion restriction might affect 

the proposed methods to make IV inferences under an additive hazards model, and the 

methods are easily extended to the Cox model when appropriate.
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Two-stage regression approach

Suppose that one has observed independent and identically distributed data on (T*, A, Z) for 

n persons, where A is a treatment, Z is the IV, T is the time to event outcome and T* = 

min(T, Y) with Y the potential censoring time. Unless stated otherwise, we assume that Y is 

independent of (T, A) conditional on Z. To introduce the causal model of interest, suppose 

that the effect of the IV Z on the outcome T is unconfounded, but the effect of A on T 

remains confounded whether one conditions on Z or not. Let U denote the unobserved 

confounder of the effect of A on T, so that conditioning on U recovers the causal effect of A 

on T. To further ground ideas, we will suppose the data are generated under the Aalen 

additive hazards model

(1)

where h (t|A, U, Z) is the hazard function of T evaluated at t, conditional on A, U and Z, and 

the functions (b0 (·), ba (·), bu (·,·)) are unrestricted. The model states that conditional on U, 

the effect of A on T encoded on the additive hazards scale is linear in A for each t, although, 

the effect size ba (t) may vary with t. The model is quite flexible in the unobserved 

confounder association with the outcome bu (·,·), which is allowed to remain unrestricted at 

each time point t and across time points. In the Mendelian randomization study we will 

consider below, A represents binary diabetes status measured at baseline (1 if diabetic and 0 

otherwise), T is time to death, and Z is a genetic risk score for diabetes, which combines 

several genetic variants previously established to predict diabetes risk. The approach is 

described in additional detail below. More generally, A could be continuous, such as, say, 

body mass index (BMI), in which case the above Aalen model assumes linearity of the 

conditional hazards difference at each t. The null hypothesis of no causal effect of A (BMI or 

diabetes status) on T (mortality) is encoded by ba (t) = 0 for all t. An important sub-model to 

consider is the constant hazards difference model obtained by setting

(2)

where ba is an unknown constant. Note that the model assumes no interaction between A and 

U. Collapsibility over U makes ba (t) interpretable as a marginal causal hazards difference 

(upon standardization with respect to the population distribution of U), which is an 

appealing feature of the model since it would indeed be uncomfortable to come up with an 

effect size that is interpretable only conditional on the unobserved U. The baseline hazard 

function b0 (t) is a priori unrestricted. Finally, the right-hand side of equation (1) does not 

depend on Z, even though the left-hand side of the equation conditions on Z, so that the 

model encodes explicitly the assumption that Z and T are conditionally independent given 

(U, A), i.e. the exclusion restriction condition, necessary for a valid IV analysis.11 In 

practice, additional pre-exposure covariates X (e.g. age, sex, education, etc.) may be 

observed, and one may wish to account for such covariates in an IV analysis. In order to 

ease the presentation, we will first describe the proposed methodology without covariates, so 

as to more easily focus on key ideas; later, we will describe how the methods can be 

modified to incorporate such covariates.
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Until otherwise stated, suppose that A is continuous, e.g. body mass index (BMI). Then, in 

addition to equation (1), one may specify a standard linear model for A :

(3)

We do not further specify the distribution of Δ, and we allow for U and Δ to be conditionally 

associated given Z, i.e. COV (Δ,U|Z) ≠ 0, inducing confounding by U. Throughout, we will 

assume that cz ≠ 0 so that there is a non-null association between Z and A. However, just as 

with the usual IV analyses, cz may not have a causal interpretation, in the event of 

unobserved confounding of the effect of Z on A. We must, however, assume that any 

unobserved common cause of Z and A is independent of U. Let M = m(Z) = E(A|Z) = c0 + 

czZ. In words, M is the predicted mean value of the treatment variable as a function of the 

IV, the usual first-stage of two-stage least-squares IV analyses.

The proposed two-stage approach for IV in a survival context is based on the following 

result, which provides an analytic expression for the conditional hazard model h̃(t|Z), of T 

evaluated at t, conditional on Z, under model restrictions (1) and (3)

RESULT 1

Under assumptions (1) and (3), and assuming that U is independent of Z, one obtains

(4)

with b̃0 (t) a baseline hazard function.

Result 1 states that under assumptions (1) and (3), as well as the assumption of 

independence of U and Z, the hazard function of T at t conditional on Z is linear in M = 

m(Z). Suppose for a moment that, contrary to fact, M = E(A|Z) were observed, thus rendering 

model (4) a standard Aalen additive hazards model with covariate M. Inference about B(t) = 

(b̃0 (t), ba (t))T for such a model has been well studied and can be obtained using the R 

package TIMEREG.12 Let B*(t) denote Aalen’s least squares estimator of B(t) under model 

(4) which we provide in the Appendix for completeness and which can be computed using 

TIMEREG. The proposed two-stage approach entails, in the first-stage, estimating M with 

M̂, the fitted value of the ordinary least-squares regression of A on Z, i.e. M̂ = ĉ0 + ĉzZ, 

where (ĉ0, ĉz) is the ordinary least-squares estimator of (c0, cz). The second-stage then 

involves obtaining Aalen’s least-squares estimator B̂*(t) of B(t), defined similarly to B*(t), 

with M̂ substituted for M. Estimation under assumption (2) is also easily accommodated in 

TIMEREG.12,13 However, some care is generally required to obtain valid inferences about 

the regression parameter B(t), because one must acknowledge in computing standard errors 

and confidence intervals, the additional uncertainty due to the first-stage estimation of M. 

Standard errors obtained in R will fail to appropriately account for this extra variability and 

thus will tend to understate uncertainty. A simple remedy is to perform either the jackknife 

or the nonparametric bootstrap, either of which will produce more accurate estimates of 

standard errors.14 For completeness, we also provide (in the eAppendix) an analytic 

expression of a consistent estimator of the corrected standard error of B̂*(t).
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Occasionally, the first-stage ordinary least-squares estimate (ĉ0, ĉz) may be obtained from a 

sample that is independent of that used for the second-stage estimation of (4). In this type of 

split-sample IV design,15 uncertainty in the first-stage estimation can essentially be ignored, 

but inferences must be interpreted conditional on the external sample. A major issue in IV 

estimation appears when the association between the IV and the treatment is weak, the so-

called problem of weak instruments.16 When the IV is weak, standard confidence intervals 

may not have adequate coverage and estimates may be sensitive to small violations in the 

exclusion restriction.17,18 For this reason, it is important in practical situations to assess the 

strength of the first-stage association between Z and X. In case of a weak IV, split sample IV 

is well known to be robust to weak IV bias in the context of linear models in the sense that 

the bias is guaranteed to be towards the null of no causal effect.15 The split sample IV may 

also be as effective to address weak IV bias in the present context.

Control function approach

In this section, we consider an alternative approach to two-stage regression. Consider the 

sub-model of (1) that further specifies the influence of the unobserved confounder U on the 

hazard function:

(5)

where Δ is the residual error defined in (3), ε (t) is a random error independent of (Δ, Z), 

which may not have mean zero, and the unknown function ρ0 (t) is a priori unrestricted. The 

model makes explicit the dependence between Δ and U, encoded in a nonnull value of ρ0 (t) 

≠ 0, and induces confounding bias. The residual error ε(t) introduces additional variability to 

ensure that the relation between U and Δ is not assumed deterministic; other than 

independence with (Δ, Z), the distribution of ε(t) is otherwise unrestricted (up to certain 

regularity conditions provided in the Appendix). Let  denote the observed hazard 

function of T given (A, Z), evaluated at t. Then, we have the following result:

RESULT 2

Under assumptions (1), (3) and (5) one has that

(6)

for b̄0 (t) a baseline hazard function.

Result 2 provides an explicit parametrization of the hazard function of T conditional on A 

and Z, under assumptions (1), (3) and (5). This result shows that an appropriate model 

specification of  is essentially obtained upon replacing bu(U, t) with ρ0 (t)Δ, and by 

allowing the baseline hazard function b̄0 (t) to differ from b0 (t). Intuitively, the residual Δ 

captures any variation in the hazard function due to unobserved correlates of A, not 

accounted for in M. These unobserved correlates must include any confounders of the A − Y 

association, and so Δ can be used as a proxy measure of unobserved confounders. For this 

reason, "ρ0 (t) Δ” is referred to as a control function, akin to the control function sometimes 

used in IV estimation of linear and nonlinear models.5 For estimation, we propose to use Δ̂ = 
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A − M̂ as an estimate of the unobserved residual Δ that we use to fit an additive hazards 

model, with regressors (A, Δ̂) under (8). Such an additive hazards model can be estimated 

using the methods and statistical software described in the previous section, and the 

nonparametric bootstrap applies equally as an approach to appropriately account for 

uncertainty due to in-sample estimation of Δ. In situations where a split-sample IV design is 

adopted, the first sample estimation uncertainty can essentially be ignored. Furthermore, as 

in the previous section, the first-stage sample does not need to include outcome data. 

However, unlike in the previous section, the second-stage sample must have data collected 

on the IV, the exposure and the outcome for all observations, because it is necessary in the 

control function approach to calculate the residual A − M̂.

Binary exposure

The control function approach can also be used in the context of a binary or discrete 

exposure. In the simple case of binary A, the methods described in the previous section 

apply upon estimating M using binary regression, e.g. logitM =logitm (Z) =logitPr(A = 1|Z) 

= c0 + czZ. The approach can be motivated under a modified set of assumptions to account 

for binary A. Suppose that

(7)

where ε(t) is an independent error, and A and Z are binary. The assumption is best 

understood if  is linear in U, in which case the assumption amounts to a 

location shift model for the density of U conditional on A and Z, i.e. (A, Z) are associated 

with U only on the mean scale. The assumption is certain to hold, say, if U were normal with 

constant variance, but the model also allows for a more flexible distribution.

RESULT 3

Assuming Z is a valid binary IV and both assumptions (1) and (5) hold, one has that

(8)

for b̃0 (t) a baseline hazard function, and

The model of equation (8) is again an Aalen additive hazards model which can be estimated 

in a manner analogous to the control function approach described in the previous section for 

a continuous exposure. Although the result assumes binary Z, we may nonetheless use 

model (8) with continuous Z, under an additional assumption that E {bu(U, s)|A, Z} is linear 

in Z.

Covariate Adjustment

Suppose that one has collected a vector of pre-exposure confounders X of the effects of (Z, 

A) on Y. In this section, we show how the proposed IV methods are easily modified to 
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incorporate X. Formal justification for the approach is relegated to the Appendix. The first-

stage regression model can be formulated as followed to make explicit the dependence on X,

(9)

where cx encodes the regression association of X with A conditional on Z, and Δ is assumed 

to be independent of Z given X. In the Appendix, we show that, under certain assumptions, 

the second-stage regression obtained in Result 1 can be modified to account for X using the 

more general Aalen model

(10)

with  and  encoding the effect of X on the hazard of T at t, 

conditional on M on the additive hazards scale. Two-stage estimation using the above 

regression models can be implemented in R using the same procedure as previously 

described, without additional difficulty. The control function approach can also be modified 

along the same lines, by fitting the regression model

(11)

instead of (8). Formal justification for this modification can be obtained for continuous A by 

replacing assumption (5) with

(12)

where ε (t) is a random error independent of (Δ, Z, X). Our previous assumption that 

censoring is independent of T conditional on A and Z will need to be extended to require that 

censoring is independent of T conditional on A, Z and X.

In the eAppendix, we formally establish that, under a rare disease condition, analogous two-

stage regression and control function methods likewise apply in the context of Cox 

proportional hazards model. Intuitively, when the outcome is rare, the joint distribution of 

the instrumental variable, the unobserved confounder and the exposure in view, is nearly 

stable across risk sets, so that the IV assumptions are ensured to hold within each risk set, 

and the exclusion restriction is satisfied within each risk set. Then, a Cox regression analysis 

is essentially equivalent to a loglinear regression for the risk of the outcome performed 

repeatedly over the follow-up period, among persons that remain at risk for the outcome. 

The framework then essentially reduces to IV for loglinear regression analysis, for which 

two-stage regression has previously been shown to apply under analogous assumptions as 

considered here.17

Empirical illustration

The prevalence of type 2 diabetes mellitus is increasing across all age groups in the United 

States possibly as a consequence of the obesity epidemic.18,19 In addition, no decline has 

been observed in the excess mortality among persons suffering from diabetes relative to 

persons without diabetes.20 Obtaining an unbiased estimate of the mortality risk associated 
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with diabetes is key to predicting the future health burden in the population and to 

evaluating the effectiveness of possible public health interventions.

In order to illustrate the proposed instrumental variable approach for survival analysis, we 

used data from the Health and Retirement Study, a cohort initiated in 1992 with repeated 

assessments every 2 years. We used externally validated genetic predictors of type 2 

diabetes as IVs to estimate effects on mortality among HRS participants. The Health and 

Retirement Study is a well-documented nationally representative sample of persons aged 50 

years or older and their spouses.10 Genotype data were collected on a subset of respondents 

in 2006 and 2008. Genotyping was completed on the Illumina Omni-2.5 chip platform and 

imputed using the 1000G phase 1 reference panel and filed with the Database for Genotypes 

and Phenotypes (dbGaP, study accession number: phs000428.v1.p1) in April 2012. Exact 

information on the process performed for quality control is available via Health and 

Retirement Study and dbGaP21.21 From the 12,123 participants for whom genotype data 

was available, we restricted the sample to 8,446 non-hispanic white persons with valid self-

reported diabetes status at baseline. Self-reported diabetes in the Health and Retirement 

Study has been shown to have 87% sensitivity and 97% specificity for Hemoglobin A1c 

defined diabetes among non-Hispanic white HRS participants.22 For deaths occurring 

between 1998 and 2008 the date of death was confirmed through the National Death Index. 

Mortality status for 2008–2010 was obtained by interviewing surviving relatives. Follow-up 

was determined as years since sampling of DNA (2006 or 2008 respectively). The current 

analysis was determined exempt by the Institutional Review Board at the Harvard School of 

Public Health.

We used the control function approach discussed previously to estimate the relationship 

between diabetes status (coded 1 for diabetic and 0 otherwise) and mortality. As genetic 

instruments, we used 39 independent single nucleotide polymorphisms previously 

established to be significantly associated with diabetes.23

For comparison, we first performed an observational analysis, which entailed fitting a 

standard Aalen additive hazards model for diabetes. Next, we implemented the proposed 

control-function instrumental variable approach, which is appropriate for binary endogenous 

variables, while the two-stage approach is strictly justified only for continuous endogenous 

variable. In addition to the first-stage residual, we also adjusted for possible effect 

heterogeneity of the degree of selection bias by including an interaction between the first-

stage residual and the first-stage risk score. All regression models further adjusted for age, 

sex and the top four genomewide principal components to account for possible population 

stratification. Inferences were based on 5000 nonparametric bootstrap samples.

Participants were, on average, 68.5 years old (standard deviation [SD]=10.4 years old) at 

baseline and 1,891 self-reported that they had diabetes (22.4%). The average follow-up time 

was 4.10 years (SD = 1.10). In total we observed 644 deaths over 34035 person-years. The 

39 SNPs jointly included in a first-stage logistic regression model to predict diabetes status 

explained 3.4% (Nagelkerke R2) of the variation in diabetes in the study sample, and were 

strongly associated as a set with the endogenous variable (Likelihood ratio test Chi-square 
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statistic = 176.75 with 39 degrees of freedom, which corresponds to a significance value 

<10−6).

Table 1 shows results from both observational and IV analyses. In the observational 

analysis, being diabetic was associated with an increase in the hazard rate of beta=0.03 (95% 

Confidence Interval [CI]=0.025 to 0.035) per person-year. This means that, over the course 

of the follow-up, an average of 3 additional deaths occurred for each year of follow-up in 

each 100 persons with diabetes alive at the start of the year, compared with each 100 

diabetes-free persons alive at the start of the year, conditional on age and sex. The genetic 

IV approach produced a notably larger effect associated with diabetes, with a diabetes-

associated increase in the mortality rate of beta = 0.08 [95%CI=0.075 to 0.090] per person-

year, nearly three times the rate estimated by the observational additive hazards model. We 

obtained further evidence of negative confounding bias reflected in the observed association 

between the first-stage residual and mortality rate (beta=−0.023 [95%CI=−0.028 to −0.017], 

as well as with marginal evidence of confounding bias heterogeneity, beta=−0.024 

[−0.052,0.001]. We also note that a split-sample IV analysis was obtained using external 

first-stage regression coefficients,23 the results were essentially identical and are therefore 

omitted.

The assumption that all 39 SNPs that define the IV affect a person’s time from baseline to 

death only through baseline diabetes status may not be entirely credible, even if all 39 SNPs 

only affect mortality through diabetes. This is because there is likely to be a nonnegligible 

direct effect from one of the SNPs to diabetes incidence among persons who are diabetes-

free at baseline. This would constitute a violation of the so-called exclusion restriction and 

therefore would invalidate our genetic IV for assessing the mortality effects of baseline 

diabetes. Nonetheless, although possibly positively biased under the alternative hypothesis, 

the two-stage regression estimator could still be interpreted as a valid test of the null 

hypothesis of no association between diabetes disease (whether baseline or time-updated) 

and mortality. In addition, there may be further pleiotropic effects of at least one of the 

SNPs through a pathway not involving diabetes, which would constitute an even more 

serious violation, as it would also invalidate our IV analysis as a valid test of a causal 

association between diabetes and death. In light of these possible limitations, the reader 

should interpret these analyses with care and only as an empirical illustration of the 

methods. In the eAppendix, we provide R code used to implement the HRS analysis.

Discussion

A well-known result about standard 2SLS for IV estimation in linear models is that the 

approach is completely robust to a mis-specified model for the first-stage regression.5 In 

contrast, in principle, the first-stage regression in the current setting must be correctly 

specified in order for either of the proposed methods to be valid. This highlights the 

importance of performing routine regression diagnostics for the first-stage model. An 

important exception occurs for two-stage regression under the null hypothesis of no causal 

effect of A, in which case model mis-specification of the first-stage regression does not 

directly impact the validity of IV inferences about the causal effect of A. This local 

robustness property, however, does not apply to the control function approach. In the 
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eAppendix, we further describe a straightforward modification of the two-stage regression 

approach, which is guaranteed to be consistent even when the first-stage regression is mis-

specified and whether the null hypothesis of no causal effect of A holds or not. We briefly 

describe the approach, which entails substituting an estimate of the risk set-specific first-

stage regression M(t) = m(Z, t) = E(A|Z, T* > t) for M in the second-stage Aalen regression 

model. Note that under independent censoring E(A|Z, T* > t) = E(A|Z, T > t). In the 

eAppendix, we formally establish that, after making this substitution, the second-stage 

Aalen estimator will be consistent for the causal effect of A whether the first-stage model is 

correct or not, provided a separate linear model is used to estimate m(Z, t), using standard 

ordinary least squares analysis among person at risk at time t. Furthermore, if the cumulative 

risk for the failure-time outcome remains low over the follow-up, one may pool the first-

stage regression across all person-time contributions to estimate a common regression model 

independent of t. This is because the rare-disease assumption would ensure that the 

regression fit remains relatively stable over the follow-up.

In certain settings, both A and Z may be time-updated, in which case„ the methods described 

above may not directly apply. Instrumental variable estimation of the joint effects of time-

updated exposures presents several challenges, and methods to appropriately handle such 

challenges are beyond the scope of the paper. To the best of our knowledge, methodology is 

currently lacking for such settings under either an additive hazards model or a Cox 

proportional hazards model. However, IV methods to evaluate the joint effects of a time-

updated exposure are available for the semi-parametric accelerated failure time model of 

Robins.24 Unfortunately estimation of semiparametric accelerated-failure-time models can 

be computationally burdensome in practice, because they often require artificial censoring of 

subjects with observed event time. In the point-exposure case, alternative IV methods have 

been proposed under a structural proportional hazards model,25,26 which do not require 

artificial censoring and which do not rely on a rare disease assumption. However, in contrast 

with the methods developed herein for a proportional hazards model, earlier proposals are 

limited to either binary instrumental variable or binary exposure variable.25,26 Furthermore, 

existing methods for Cox regression are primarily aimed at estimating a so-called complier 

causal effect and rely for identification on a monotonicity assumption about the effect of the 

IV on the exposure, an assumption we do not make in the current paper (also see Nie et al27 

for a related approach for estimating the complier survival curve.)

The methods proposed here address an important gap in the IV literature. Previous, 

motivations of IV for hazard regression appropriate for binary or continuous exposures and 

IV have relied on less plausible assumptions or placed overly stringent restrictions, and thus 

may be less relevant for routine application. For example, in a recent proposal, MacKenzie 

and colleagues28 use an instrumental variable to estimate a Cox proportional hazards model 

subject to additive unobserved confounding. Specifically, they focus on a so-called additive 

multiplicative hazards model,29,30

(13)

with the key restriction
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(14)

where T(a) is the potential outcome of T under treatment a. The model combines features of 

both the Cox model and the Aalen model, since it includes both an additive effect of U and a 

multiplicative effect of A. The restriction (14) ensures that the marginal hazard model of 

T(a) follows a Cox proportional hazards model. MacKenzie and colleagues note that this 

restriction is generally satisfied if bu(U, t) can be written d(t)U + ln mgfU {d(t)}, for some 

function d(t), where mgfU stands for the moment-generating function of U. Under such 

unobserved confounding, MacKenzie and colleagues show that a valid IV can be used to 

recover a consistent estimator of ba. Although interesting, this model may be more contrived 

than it initially seems, because, supposing that U were observed, assumptions (13) and (14) 

imply that the conditional hazard function of T(a) at time t given U depends only on the 

value of U, but further depends on the underlying distribution of the unobserved confounder. 

For instance, if U were normally distributed , we would have 

. The model would then imply that the density of T 

conditional on (A, U) is made to depend explicitly on the parameters  of the density of 

the covariate U. Such a parametrization is nonstandard and somewhat artificial in the sense 

that it would not naturally be entertained by an analyst if U were in fact observed.

The control-function approach described in this paper may also be seen as an extension of 

the two-stage residual inclusion approach of Terza et al.31 In order to ease a comparison 

between the two methods, it is helpful to restate the key assumption underlying their 

approach using our notation. This is best achieved by simply replacing equation (5) with the 

more restrictive model:

(15)

obtained by setting ε(t) ≡ 0 for all t, thus essentially assuming the relationship between U 

and Δ is deterministic. This assumption may be unrealistic in most health-related 

applications, since it essentially rules out the existence of any other (unobserved) cause of A, 

that, like Z, may not be directly related to the outcome, i.e. that Z includes all existing IVs. 

Allowing for ε(t) in equation (5) avoids this type of restriction. It is also notable that 

assumption (15) may be overly restrictive for binary (or discrete) A, since the distribution of 

the residual Δ is completely determined by the mean M = m(Z) of A given Z, and therefore 

the IV assumption that Z is independent of U is not compatible with the model. In this paper, 

we have provided an alternative formulation of the control function approach for binary A, 

which circumvents this difficulty.

Very recently, Li et al32 published a paper in which they independently derive the special 

case of Result 1, under the additional assumption of a constant hazards difference (2). 

Therefore, the current paper provides a number of generalizations beyond the result of Li et 

al, who not only considered a more restrictive additive hazards model, but also formally 

addressed only the situation of a continuous endogenous variable.
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APPENDIX

Proof of Result 1

We consider a more general model that allows for covariates X. In this vein, suppose that 

conditional on (U, X, Z), the hazard function of T follows the semiparametric Aalen model

The corresponding survival function is given by

which induces the following survival function at time t conditional on (X, Z) upon 

marginalization with respect to (A, U):

where

In the absence of covariates, one recovers the result given in the text, where

More generally, in the presence of covariates, one obtains the additive hazard function:
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which reduces to equation (10) under linear specification of the above function, i.e.

Proof of Result 2

To allow for covariates, suppose the following Aalen additive hazards model holds:

and further assume (9) and (12) hold, then:

The corresponding survival function is then given by

This in turn induces the conditional survival curve given (A, X, Z)

with corresponding hazard function

where
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Proof of Result 3

Under assumptions (1) and (5) one has that

where

and we use the fact that for binary A and Z,

and

by the independence property of the IV with U. We may conclude that
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with

proving the result.
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Table 1

Observation and IV analysis of HRS data to estimate the effect of baseline diabetes status on Mortality under 

an Aalen additive hazards model.

Beta* 95% CI

Observational Analysis**

  Diabetes Status (Yes vs. No) 0.031 (0.027,0.035)

IV Survival Models**

  Diabetes Status (Yes vs. No) 0.082 (0.075,0.089)

  First Stage Residual −0.023 (−0.028,0.017)

  First Stage Residual by Estimated Diabetes Risk status Interaction −0.024 (−0.052,0.001)

*
Difference in the hazards of death.

**
All models adjust for age, gender and top four genome wide principal components to control for possible population stratification

Epidemiology. Author manuscript; available in PMC 2016 May 01.




