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Carbonaceous particles in the atmosphere consist of two major components

- graphitic or black carbon (sometimes referred to as elemental or free carbon)

and organic material. The latter can either be directly emitted from sources

(primary organics) or produced by atmospheric reactions from gaseous precursors

(secondary organics). We define soot as ~he total primary carbonaceous material,

i.e., the sum of graphitic carbon and primary organics. In this paper we

present data on the concentrations of particulate carbon in a number of locations

in the United States and estimate the contribution of soot to the carbonaceous

aerosol in urban atmospheres.

The complex set of questions concerning the origin and the chemical and

physical characterization of carbonaceous particulates has been central to the

program of the Atmospheric Aerosol Research group at Lawrence Berkeley Laboratory

(LBL) since the group's beginning in 1972. As a result of our research, we

advanced the hypothesis that much of the carbonaceous material in urban environ­

ments is soot (primary material). The preliminary results on the origin and

nature of carbonaceous particles were first reported at the First Annual NSF

Trace Contaminants Conference at Oak Ridge National Laboratory in August 1973,1

just one year after the start of our research. Additional results strengthening

this hypothesis were reported in several publications from 1973 to 1975. 2

Following is a brief review of our recent work.

SAMPLING AND EXPERIMENTAL METHODS

Because relatively few consistent studies of ambient carbonaceous particles

have been conducted, in 1977 we established an ongoing routine sampling program

at seven sites across the United States. The data consist of information obtained

from 24-hour samples (collected every morning Monday through Friday) and
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multi-day samples collected over weekends. For the purpose of data analysis,

these two data sets can be separated. Table I lists the routine sampling

sites with the beginning date of sampling,

Table I. LBL aerosol sampling sites.

Site

Lawrence Berkeley Laboratory

BAAQMD monitoring station

SCAQMD monitoring station

Argonne National Laboratory

DOE Environmental Measurements
Laboratory

National Bureau of Standards

Denver Research Institute

Location

Berkeley, California

Fremont, California

Anaheim, California

Argonne, Illinois

Manhattan, New York

Gaithersburg, Maryland

Denver, Colorado

Date of first sample

1 June 1977

IS July 1977

19 August 1977

22 January 1979

22 November 1978

23 January 1979

IS November 1978

The samples are collected in parallel on prefired quartz fiber and Milli-

pore filter membranes. The flow rates employed are in the range of 0,6-2,2

cubic meters of air per square centimeter of active filter area per 24-hour

sampling period. The Millipore filter is used for X-ray fluorescence (XRF)

elemental analysis and an optical attenuation technique developed in this

laboratory. 3 The latter technique gives a measurement that is proportional

to the amount of light-absorbing (black) carbon present on the filter. 4 Other

analyses are total carbon determination and temperature-programmed evolved gas

(C02) analysis combined with optical attenuation measurement (called thermal

analysis).5

The LBL optical attenuation method 3 compares the transmission of a 633-nm

He-Ne laser beam through a loaded filter relative to that of a blank filter,

The loaded filters are placed in the beam with the loaded side toward the laser.

After multiple scattering through the filter substrate, the light is collected

by an f/l lens and focused on a photomultiplier tube. The data presented in



3 LBL-10881

this paper were obtained from particles collected on Millipore filters, but the

optical attenuation measurement can be made with a wide variety of filter media.

This technique is based on a principle similar to that of the opal glass method

used by Weiss et al. 6 and measures the absorbing rather than the scattering

properties of the aerosol. For fixed optical constants, a quantitative re1ation-

ship between the optical attenuation and the black carbon content can be written

as:

(Cblack] = (11K) x ATN , (1)

where ATN = -100 In(1/1
0
)' I and 1

0
are the transmitted light intensities for

the loaded filter and for the filter blank.

Besides the black carbon, particulate material also contains organic

material which is not strongly optically absorbing. The total amount of particu-

late carbon is then:

(2)

A fundamental characterization of a particulate sample can be given by its

attenuation per unit mass of total carbon, i.e., its specific attenuation, 0:

ATN
a - [C ] = K x [Cblack]/[Ctot] .

tot
(3)

The determination of specific attenuation therefore gives an estimate of black

carbon as a fraction of total carbon.

The proportionality constant K, which is equal to the specific attenuation

7
of black carbon alone, was recently shown to have an average value of 20. This

value was obtained by determining the optical attenuation of 25 samples for which

the absolute concentration of black carbon was known.
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The validity of the above procedure for estimating the fraction of black

carbon from the specific attenuation value can be illustrated by the following

example, involving a direct analysis for total carbon and black carbon by thermal

analysis, Thermal analysis is used to obtain total carbon, black carbon,

organic carbon, and carbonate carbon, A schematic representation of the thermal

analysis apparatus used in our studies is shown in Fig, 1. The main components

of this apparatus are a quartz tube and a temperature-programmed furnace, The

tube is mounted axially inside the furnace, The particulate sample, collected

on a prefired quartz filter, is placed in the quartz tube so its surface is per­

pendicular to the tube axis, The tube is constantly supplied with pure oxygen,

The excess oxygen escapes through an axial opening at the end of the tube, while

the remainder of the oxygen (and other gases evolved during analysis) passes

through a nondispersive infrared analyzer at a constant flow. In addition to the

variable temperature furnace, the apparatus also contains a constant temperature

furnace, usually kept at about 850°C, The segment of quartz tube inside the

constant temperature furnace is filled with a copper oxide catalyst, The purpose

of the catalyst is to ensure that carbon-containing gases evolved from the sample

are completely converted to CO2, This is especially important at relatively low

temperatures when complete oxidation to CO 2 does not occur.

The actual measurement consists in monitoring the CO2 concentration as a

function of the sample temperature, The result is a "thermogram" - a plot of

the CO
2

concentration vs, temperature, The area under the thermogram is propor­

tional to the carbon content of the sample. The carbon content is quantitated

by calibrating with a calibration gas (C02 in oxygen) and by measuring the flow

rate through the system, This calibration is crosschecked by analyzing samples

of known carbon content. The thermograms of ambient and source aerosol samples

reveal distinct features in the form of peaks or groups of peaks that correspond
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to volatilization, pyrolysis, oxidation, and decomposition of the carbonaceous

material,

To determine which of the thermogram peaks corresponds to black graphitic

carbon, the intensity of the light beam produced by a He-Ne laser is monitored

by a photomultiplier and displayed by the second pen of the chart recorder,

simultaneously with the measurement of the CO2 concentration, In actual experi­

ments the light penetrating the filter is collected by a quartz light guide and

filtered by a narrow band interference filter to eliminate the effect of the

glow of the furnaces, An examination of the CO2 and light intensity traces

enables the assignment of the peak or peaks in the thermograms corresponding to

the black carbon because they appear concomitantly with the decrease in sample

absorptivity,

In Fig, 2, a complete thermogram of an ambient sample is shown, The lower

trace represents the CO2 concentration vs. the sample temperature, while the

upper curve corresponds to the light intensity of the laser light beam that

reaches the detector during the temperature scan. Inspection of the thermogram

shows that a sudden change in the light intensity occurs concomitantly with the

evolution of the CO2 peak at about 470°C. The light intensity 10, after the

470°C peak has evolved, corresponds to that of a blank filter. This demonstrates

that the light-absorbing species in the sample are combustible and carbonaceous.

We refer to these species as black carbon. The carbonate peak evolves at about

600°C; and as carbonate is not light absorbing, it does not change the optical

attenuation of the sample. In addition to black carbon and carbonate, the

thermogram in Fig. 2 also shows several distinct groups of peaks at temperatures

below ~ 400°C that correspond to various organics.

The thermogram in Fig. 2 was obtained with a 1.46-cm-diameter disc cut

out of a sample collected on prefired quartz fiber filters. The temperature
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ramp rate was 10°C/minute. The integrated area under the CO2 trace is propor-

tional to the total carbon concentration. For this sample the total carbon

2concentration, determined by thermal analysis, was 17.9 wg (C)/cm. The black

carbon, determined from the thermogram, composes 14% of the total carbon. This

value can be crosschecked by using the optical attenuation and total carbon

data. The specific, attenuation for this sample determined in a separate measure-

ment is 0 = ATN/C = 3.00. The estimated percentage of black carbon (as a per-

cent of total C), determined from measurement of optical attenuation and total

carbon only is 100 x 3.0/20.0 = 15%. This value is in excellent agreement with

the percentage of black carbon determined directly from the CO 2 thermogram.

RESULTS AND DISCUSSION

Total Carbon and Optical Attenuation

Figure 3 shows the variations of 24-hr total carbon (weekends excluded)

at the Fremont, California, site. These data cover the period from July 1977

to January 1980. The 24-hr histogram superimposed on the bar diagram represents

the monthly averages.

It is evident from Fig. 3 that there are significant day-to-day variations

in total carbon. The maximum and minimum daily concentrations differ by an

order of magnitude. The monthly averages are at peak values during the November-

December periods of each year. The variations in optical attenuation for the

same samples are represented in Fig. 4. The pattern of ATN values resembles

that of total carbon and shows similar seasonal variations. The specific attenu-

ation (ATN/C) variations represented in Fig. 5 are much less pronounced and

show no clear seasonal variations. Similar features of total C, ATN, and ATN/C

are also observed at the Berkeley (Figs. 6-8) and Anaheim sites.

At the New York (Figs. 9-11), Gaithersburg (Figs. 12-14), and Argonne

(Figs. 15-17) sites, daily and monthly variations of total C and ATN are much
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less pronounced than at the three West Coast sites. The ATN/C values at these

sites do not show any systematic seasonal trend.

Correlations Between Total Carbon and ATN

Statistical analysis of the data shows that there is a strong correlation

(r > 0.85) between optical attenuation and total particulate carbon at every

site studied. 8 ,9 Furthermore, a study of a number of source samples shows that

there is also a strong correlation between optical attenuation and total carbon

for these samples. The correlations between optical attenuation and total

carbon for the three California sites, Argonne, and source samples are sho\ffi

in Fig. l8(a-e).9

Results obtained from ambient samples imply that the fraction of graphitic

soot to total particulate carbon is approximately constant under the wide range

of conditions occurring at a given site. On specific days, however, there can

be large variations in the ratio, reflecting the variations in the relative

amounts of organic and black carbon. The least squares fit of the data shows

regional differences which are related to the fraction of black carbon due to

primary emissions. These differences would suggest an increase in the relative

importance of the primary component for samples collected respectively at

Berkeley, Fremont, Anaheim, and Argonne.

Concentrations of Black Carbon

Determination of specific attenuation, 0 = ATN/C, enables a straightforward

estimation of black carbon. From relation (3) one can calculate black carbon as

a percentage of total carbon, and the concentration of black carbon in ~g/m3.

Table II lists the average specific attenuation (0) and black carbon (BC) percen­

tages for all samples (including multi-day samples) analyzed to date. In addi­

tion to the average values, the highest and lowest values are given. Based on

this estimate, on the average 20% of the total carbon is black carbon. This
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fraction can on occasion be as high as 56% or as low as 6%. The latter occurs

as a rule when total carbon concentrations are low.

Table II. Specific attenuation (0) and black carbon (BC) (% of total C) from
ambient samples.

Average Highest Lowest
Site Dates on file # es 0 % BC 0 % BC 0 %

New York Nov 78 - Apr 80 439 5.44 27% 11.1 56% 2.8 14%

Argonne Jan 79 - Mar 80 438 4.30 22% 9.1 46% 1.1 6%

Gaithersburg Jan 79 - Mar 80 381 4.33 22% 8.0 40% 1.8 9%

Denver Nov 78 - May 79 141 3.23 16% 5.7 29% 1.4 7%

Anaheim Aug 77 - Jan 80 852 3.70 19% 9.6 48% 0.8 4%

Fremont Jul 77 - Mar 80 924 3.55 18% 8.3 42% 1.6 8%

Berkeley Jun 77 - Apr 80 998 4.09 20% 9.2 46% 1.2 6%

Table III lists the concentrations of total particulate carbon and estimated

concentrations of black carbon in ~g/m
3 for the samples as Table II.same

Table III. Carbon concentrations 3(]lg/m ).

Average Highest Lowest
Site C Be C BC C BC

New York 15.2 4.2 53.1 12.6 3.4 0.6

Argonne 8.1 1.7 25.1 5.2 3.1 0.2

Gaithersburg 6.1 1.4 17.6 5.6 2.3 0.3

Denver 9.8 1.6 30.8 5.3 4.1 0.2

Anaheim 16.6 3.1 112.9 17.4 3.1 0.3

Fremont 12.0 2.1 75.6 9.2 3.4 0.3

Berkeley 6.7 1.3 31.7 5.2 3.0 0.3

Concentrations of Soot

Soot contains not only black carbon but also various organic material.

Because the organic soot component does not absorb light, the specific attenua-

tion of soot is much less than 20, the 0 value of pure black carbon. Table IV

lists the average and extreme values of specific attenuation and the black

carbon fraction of a number of source samples.
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Table IV. Specific attenuation (0) and black carbon (BC) CO of total C)
of source samples.

Average Highest Lowest
Source # samples 0 % BC 0 % BC 0 % BC

Parking garage 12 5.4 27% 7.7 39% 2.25 11%

Diesel 6 5.6 28% 5.7 29% 3.5 18%

Scooter 9 5.1 26% 6.1 31% 4.2 21%

Tunnel 63 6.3 32% 12.5 63% 3.7 19%

Natural gas 6 2.6 13% 3.3 17% 1.9 10%

Garage and tunnel 5.85 29%

The percentage of soot in ambient carbonaceous particulates can be estimated

by comparing the oofsources with that of ambient samples. The fraction of soot

is given by

[Sao t ] 1[C] := o b' 10am lent source (4)

Table V lists the mean specific attenuation of ambient samples (weekends

excluded) in order of decreasing 0 and soot fractions obtained by using

relation (4) and a := 5.85.source

Table V. Mean specific attenuation of ambient samples.

Site # samples - SDEV Soot (%)0

New York 211 5.69 1. 34 97

Gaithersburg 155 4.72 1. 51 81

Argonne 221 4.35 1. 64 74

Berkeley 513 4.28 1.47 73

Anaheim 444 3.99 1. 71 68

Fremont 461 3.74 1. 2S 64

Denver 42 3.47 1.49 S9

Based on this estimation, the New York City carbonaceous aerosol is essen-

tially primary soot. A different value of 0 would certainly change thesource
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It is logical that samples from this location have the highest soot

estimated soot percentage. However, New York City's average soot content would

nevertheless remain the highest, irrespective of the actual numerical value of

osource

content because the site is representative of a heavily traveled street canyon.

Fremont and Anaheim samples have on the average the smallest soot content, as

may be expected, because both si tes represent receptor sites. According to the

above estimate, Denver has the smallest specific attenuation value. It is pos­

sible that high-altitude combustion results in increased emissions of primary

organics; however, we note that the number of samples from this location is

small compared to that from other sites, so these results should be taken with

caution.

It is instrucUve to present the specific attenuation data in the form of

histograms representing their frequency of occurrence. Histograms for New York

and Fremont (Fig. 19) show that the occurrence of high specific attenuation

samples is much greater for New York than for Fremont. Histograms for other

sites are shown in Figs. 20 and 21.

Secondary Organics

Results in Table V suggest that the West Coast sites have an organic compo­

nent that occurs in excess of sources or source-dominated organics. This excess

should be equal to the secondary organic material, which can be conveniently

identified by the thermal analysis method.

We have already described how thermal analysis can be used to obtain the

total carbon, black carbon, organic carbon, and carbonate carbon. The greatest

strength of this method, however, is its ability to "fingerprint" source-produced

carbonaceous particles and their contribution to the ambient aerosols. As an

illustration, in Figs. 22 and 23 we show the thermograms of a sample collected

in Manhattan (high 0) and one collected in Berkeley (low o. The two thermograms
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are substantially different. COTIml0n features of both samples are the black

carbon and the group of peaks below ~ 250°C, corresponding to volatile organic

compounds. However, the Berkeley sample clearly shows the presence of at least

two peaks (marked by asterisks in Fig. 23) which are absent in the thermogram of

the New York sample. These peaks are not observed in samples collected in a

highway tunnel and a parking garage and can be shown to correspond to secondary

species.

Experiments performed in our laboratory with solvent-extracted samples have

shown that the volatile organic species « 250°C) are easily removed with cyclo-

hexane, a nonpolar solvent. This observation, combined with the fact that these

low-temperature peaks are seen in source samples, suggests their predominantly

primary origin.

Secondary Organics and Ozone

It is clear from the results described so far that the ratio of black carbon

to total carbon may vary on specific days. However, no large systematic differ-

ences are found as a function of the ozone concentration, which is viewed as an

indicator of the photochemical activity.9 This is graphically demonstrated in

Fig. 24, which shows the distribution of the ratios of the optical attenuation to

total carbon content for ambient samples from all the California sites taken

together, subdivided according to peak hour ozone concentration. Clearly there

is no trend for high-ozone days to be characterized by aerosols which have a

significantly reduced black carbon fraction. This places a low limit on the

importance of secondary organic particulates formed in ocrrelation with the

ozone concentration.
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