UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Where Does Systematicity Come From

Permalink
https://escholarship.org/uc/item/285643f5

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 15(0)

Author
St. John, Mark F.

Publication Date
1993

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/285643f5
https://escholarship.org
http://www.cdlib.org/

Where Does Systematicity Come From?
Effects of Training Corpus Structure and Attention
on Systematic Generalization

Mark F. St. John
Department of Cognitive Science
University of California, San Diego

La Jolla, CA 92093-0515
stiohn@cogsci.ucsd.edu

Abstract

Human language and memory are only quasi-system-
atic. They are composed of context free
(systematic) mappings, context sensitive mappings,
and idiosyncrasies. Consequently, generalizations to
novel stimuli may be systematic if they result from
the context free mappings or may become
“regularized” toward known stimuli if they result
from the context sensitive mappings. Two factors
that affect the degree of systematicity are the struc-
ture of the training corpus and the amount of atten-
tion or vigilance paid to the task. More systematic
training corpora and more attention produce more
systematic responses and fewer specific context sen-
sitive regularizations. A simple PDP model is used
to demonstrate these phenomena. A 3-layer feedfor-
ward network learns an auto-associative mapping.
Untrained stimuli are tested to see if the model
will respond with the systematic generalization or
with a specific regularization by activating the out-
put pattern for the nearest trained neighbor.

For the leamning of most cognitive skills,
generalization is critically important. Language
leaming is the paramount case. Based on leaming
from a finite corpus, children must generalize to the
infinite set of sentences in their language. Fodor &
Pylyshyn (1988) argue that this massive generaliza-
tion ability is due to the nature of language: its sys-
tematicity. Systematicity is here defined as the qual-
ity that each word refers to the same concept regard-
less of context. A systematic language is composed
of independent form-meaning pairs. Novel sentences
and propositions can be made simply by recombining
these independent pairs. So, if a child can under-
stand "Ricky played a trick on Lucy,” then she
should be able to understand "Lucy played a trick on
Ricky." To learn a systematic language is to learn
the form-meaning pairs and a grammar for relating
the structure of the forms to the structure of the
concepts. How might such learning take place? If
induction of such functions is even possible, what
sorts of processing architectures and stimuli can in-
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duce them? If it is only possible to a degree, what
are the limits and what factors modulate that limit?

In spite of the elegance of the systematicity
characterization of language, many argue that real
language is systematic only to a first approxima-
tion. At a closer inspection, many aspects of lan-
guage are unsystematic. For example, Goldberg
(1992) and Pinker (1989) identify a number of verbs
that are unsystematic yet productive in the construc-
tions they permit. For example, "Lucy told Ethel
the news" is acceptable, but "Lucy whispered Ethel
the news"” is not, despite the semantic similarity of
the verbs. Pinker (1989) has pointed out that there
are discernible semantic subclasses of verbs that do
or do not permit the ditransitive construction, and
novel verbs in these subclasses are productive.

Similar points have been made with regard
to forming the past tense of English verbs
(Rumelhart and McClelland, 1986) and pronouncing
regularly and irregularly spelled English words
(Seidenberg and McClelland, 1989).

A complex relationship, such as English
spelling to pronunciation or English sentences to
meanings, can be characterized as a set of context
free (systematic) mappings, context sensitive map-
pings, and idiosyncrasies. I will call such relation-
ships quasi-systematic.  Perhaps all levels of lan-
guage are best characterized in this way.

One concern is how quasi-systematic rela-
tions are learned and how trained examples are pro-
cessed. Does it require learning a systematic func-
tion and a set of restrictions, or can the complexity
be leamned all of a piece? A second concern, and the
concern to be addressed here, is how generalization
cases are processed. Specifically, given a novel exam-
ple, will a context free, context sensitive, or idio-
syncratic mapping be chosen to produce a response?
What factors of training, processing, and cognitive
architecture affect the response?

In a distributed processing model, such as a
PDP model, processing depends on similarity: novel
test instances are processed like the trained instances
to which they are most similar. In sophisticated
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models, all trained instances contribute to process-
ing the novel instance according to their similarity.
Systematic training materials produce systematic
gencralizations because each of the features of a test
instance will be similar to the features of many
training instances. Therefore, each feature will be
familiar and well supported for processing and re-
membering. The use of a similarity metric during
processing and generalization is well worked out in
research on concept categorization and recognition
(Medin & Schaffer, 1978; Shepard, 1987; Nosofsky,
1988).

Brousse and Smolensky (1989) examined the
effects of training corpus systematicity on generali-
zation in a PDP model. They showed that a highly
systematic training corpus could produce gencraliza-
tions t0 a huge test corpus that maintained that sys-
tematicity. They also showed that novel stimuli
that violated strong context sensitive dependencies
found in the training corpus would be misprocessed
to better comrespond with those dependences. For
example, a network was trained to associate English
4-letter words with themselves through a narrow in-
formation channel (an autoencoder). Novel test pat-
terns that violated English orthography were often
"regularized” to fit English.

"Regularization" is used in the literature to
describe the modification of test examples to fit pre-
viously leammed regularities which correspond to
what I am calling the context sensitive mappings.
What is often missing in these discussions is the re-
alization that there are other possible mappings, in
particular, the context free, systematic mapping.
The systematic mapping, in the spelling autoencoder
would be veridical reproduction of each novel exam-
ple, rather than regularization to known examples.

A similar phenomenon arises in story com-
prehension. During recall, details are partly remem-
bered and partly reconstructed from background
knowledge (See Graesser, 1981 for a review). Even
though atypical details show better discrimination
in recognition tests, reconstruction from experience
and guessing produce better overall recall and recog-
nition for typical details. According to systematici-
ty, any novel story should be represented, stored,
and recalled equally well. According to quasi-syste-
maticity, however, the recognition and recall of nov-
el stories whose details contradict experience will
be regularized to better fit with experience.

This sort of regularization can also be seen
during comprehension. Erickson and Mattson (1981)
gave subjects questions like, "How many animals of
each kind did Moses take on the arc?" Most subjects
readily answered "two," despite their knowledge,
when later questioned, that Noah was the correct
Biblical figure. Subjects’ knowledge of the arc sto-
ry apparently overrode their knowledge of Moses.
The meaning of Moses was regularized to the mean-
ing of Noah.

What I aim (o investigate is how quasi-sys-
temalicity in the training corpus affects when novel
stimuli are generalized in a systematic way and
when they are regularized.

Attention

A critical objection, or addendum, to these ideas is
that processing bizarre sentences and answering trick
questions can, in fact, be done. It just requires a lit-
tle extra attention. People certainly can read and un-
derstand sentences like "Lucy whispered the news to
Ethel." Peoplc also quickly gain immunity to trick
questions once they become wary and begin to pay
closer attention. People can also proofread with
some success by paying close attention.

Erickson and Mattson (1981) found that re-
organizing the questions to make the violations
more prominent, led more subjects to notice the in-
congruity.  Conversely, reduced attention to the
text should decrease the notice of incongruities. In
the extreme, speed readers spend littde time and at-
tention on the details of a text and may be plagued
by misunderstandings if the text is difficult (cf.
Just and Carpenter, 1987). Taken together, these
studies suggest that a relative lack of attention will
produce specific regularizations, while close atten-
tion will produce more systematic, and veridical,
processing.

Attention in language processing can take
several forms. Selective attention operates as a fil-
ter to a limited capacity processor. Vigilance oper-
ates as greater care and closer inspection of the stim-
uli -- greater processing power. The concem here is
with the vigilance form of attention. In this
scheme, processing is inherently somewhat noisy.
Difficult stimuli will sometimes be processed incor-
rectly because of this noise and responded to as if it
were similar but better known stimuli -- they will
be regularized. Attention boosts the processing sig-
nal so that even these difficult stimuli may be pro-
cessed correctly.

To demonstrate these points, let's consider
a very simple case: the processing of simple binary
patterns.  Such simple patterns are far removed from
the complexities of real language, perhaps most im-
portantly, removed from language's hierarchical
structure.  Yet, this simple case allows several
points to be made clearly.

Simulation 1 - Systematicity and context
sensitive regularity

The task of the model is auto-association, that is, to
reproduce an input pattern over a set of output
units. This task can be thought of as a very simple
version of many cognitive tasks such as comprehen-
sion from words to concepts, concept categorization,
perception, or recognition memory (where the
strength of the response is a measure of familiari-
ty). The input/output patterns, and the correspond-



ing model, consist of two banks of units with one
unit tumed on in each bank. So, the pattern 11 cor-
responds to turning on the first unit in bank 1 and
the first unit in bank 2. Pattern 12 corresponds (0
turning on the first unit in bank 1 and the second
unit in bank 2. There are 100 such possible patterns.
Table 1
Training Stimuli

11

2.1 22

31 3.2 33 3+4

4.1 42 43 444 45 410

51 52 53 5+4 55 510
10e1 102 103 104 105 10-10

The model is trained on a subset of these
100 patterns, and then tested on the untrained pat-
terns for its ability to generalize. The set of trained
patterns is shown in table 1. The trade-off between
systematic generalization and specific regularization
is investigated by manipulating the number of simi-
lar training patterns and their systematicity. 110
should show poor systematicity but strong specific
regularity because of the paucity of 1X training in-
stances. 2¢10 and 310 should show increasingly bet-
ter systematicity because of the increasing number of
systematic neighbors.

The architecture is a feedforward auto-en-
coder. Both banks of input units are fully connected
to the hidden layer, and the hidden layer is fully con-
nected to the output layer (See figure 1). The hid-
den layer contained 15 units. The model was trained
on the corpus in table 1 for 2000 epochs. The learn-
ing rate was .01 and momentum was .9. Weights
were changed after each full epoch.

Results The model learned the training stimuli per-
fecdy. The question is how the model generalizes
to the untrained cases. Performance was quite
good. For the cases 12 through 1-10, the model ac-
tivated 1+X, the systematic response, most strongly
for 7 of the 9 cases, with an average activation of
.79. Only one nonsystematic was made for all of

Output

Input

Figure 1. Architecture of the network.
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the 2+X or 3+X cases. For illustration in table 2,
the systematic responses were averaged and shown as
X+10. The average nonsystematic response for each
unit is also shown for each unit. The ratio of sys-
tematic activations to specific regularity activations
increases from 1¢X through 3eX: .79/.65 1.22,
.83/.29 = 2.86, .60/.19 = 3.16.

Both nonsystematic responses in the 1¢X
cases involved greater activation of 1e1 than of
1¢X. Even when the systematic response is stron-
ger, the average activation of 1e1 is rather high.
These "ghosts" of trained stimuli are smaller for
2¢X and 3+X because of the greater systematicity
among their training cases. Ghosts show up even
more strongly if we present just a partial pattern to
the input. The model completes the pattern with
the ghosts of the trained stimuli. These ghosts, of
course, represent the effects of the specific, context
sensitive, regularities.

Table 2
Output Activations to Novel Stimuli
pattern 1 2 3 4 5 6 7 8 910
1-10 65 0 0 0 0 0 0 0 0.79
2:10 200 0 0 0 0 O O O .83
3-10 0505070 0 0 0 0 0.60
410 0 0 0 0OO O 0 0 0.9

The effect of the size of the training corpus
on systematicity was also tested. A fresh network
was trained on the subset of the training corpus cre-
ated by removing the 6°X through 10X stimuli
(See table 1.). The model produced the systematic
generalizations on 67% of the generalization cases,
compared to 87% when trained on the original cor-
pus. The corpus can be reduced further by removing
X6 through X<10. A fresh network trained on this
smallest corpus of 17 stimuli generalized systemati-
cally on only 50% of the test cases.

Discussion  These data demonstrate three points.
First, with the largest most systematic corpus, the
trained model produces systematic generalizations
for nearly every test case: 20 out of 23 test cases.
This strongly systematic performance depends on the
systematicity of the training corpus. Smaller, less
systematic corpora reduced the systematic generaliza-
tions and increased the specific context sensitive reg-
ularization generalizations.

Second, the nonsystematic responses which
the model produces are not random. Rather, they fit
specific regularities found in the corpus. For exam-
ple, the response to 19 is 11, which was the only
1-X training instance. These specific regularities
show up strongly in pattern completion, or
"inference,"” tests. In a sense, these specific regulari-
ty ghosts are always lurking in the background,
ready to appear when the systematic response is



weak or absent.

These results fit with the concept of identi-
ty and associative constraints proposed by St. John
(1992). Constraints pertain to the mapping from in-
put to output patterns.  Identity constraints are
those constraints or mappings that specify a one to
one mapping between input and output patterns or
between forms and meanings: "Lucy" means Lucy,
and in the current simulations, 1 means 1, and so
on. Identity constraints provide the building blocks
for systematicity by specifying the independent
form-meaning pairs. Associative constraints are all
the other constraints. They encode regularities be-
tween pairs, and they are useful for drawing infer-
ences and pattern completion.

Both identity and associative constraints are
always leamed, but their relative strength depends
upon the structure of the whole training corpus.
Systematic corpora produce strong identity con-
straints because identity constraints are the only con-
straints that hold between the input and output.
For example, for the pattern 10-10, each integer pre-
dicts itself, but there is no predictability betwecen in-
tegers. To process this instance correctly, the model
must learn the identity constraints. On the other
hand, the associative constraint from le to <1 is
strong because given le, <1 is perfectly predictable.
The associative constraints from 2¢ to *1 and 2 are
each less strong because given 2+, each output pat-
tern is only partially predictable.

Third, the model’s responses are not all-or-
none systematicity or regularization. Instead, re-
sponses are graded. When the identity constraints
are relatively strong and the test item is similar to a
number of trained items, as is the case for the 3X
items, the activation of units which cormrespond to
the systematic response are strong, and the ghost ac-
tivations which correspond to the specific regulari-
ties are very weak. Conversely, when the identity
constraints are relatively weak and the test item is
similar to few trained items, as is the case for the
1-X items, responses are only moderately systematic
and the specific regularities are moderately strong.

Simulation 2 - Attention
How does vigilance attention affect processing? Can
it improve systematic generalization? Our intuition
is that it can. But first, we need to consider how re-
sponses are actually made. In the previous simula-
tions, responses were reported as activation levels.
These activation levels can be converted into re-
sponse probabilities according to the Luce choice
rule (Luce, 1963; McClelland, 1991). The probabili-
ty of any response is set to the ratio of activation of
the unit corresponding to that response divided by
the sum of the activations of all responses.

An alternative is to make processing in the
network itself probabilistic (McClelland, 1991).
One method that McClelland suggests is to add
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noise to the input signal. The idea is that preprocess-
ing of the stimulus itself produces noise.

Next, the input signal is modulated to im-
plement attention.  Under normal processing, the
noisy input signal is attenuated. Under close atten-
tion, the noisy input signal is magnified. The activa-
tions of input units are set 1o be

(1) Ai = (Ii + OL * noise) * attention
where I, is the value of the input pattern (0

or 1), noise is a random number normally distribut-

ed between -1 and 1, a is a parameter that deter-
mines the magnitude of the noise, and attention is a
parameter that determines the magnitude of atten-
tion. Processing then proceeds deterministically as
normal, but the strongest output activation is now
taken to be the actual response. The Luce choice rule
is not applied.

Attention modulates the sum of the input
signal plus noise because it is assumed here that the
input to the model is already corrupted by noise.
There is no means for attention to preferentially
weigh the signal. Instead, its job is to maximize
performance given an already corrupted input.

Results The network was trained on the full corpus
in table 1 wirhout noise and with the attention pa-
rameter set to 1.0. For testing the generalization
cases, o in (1) was set to 0.5. Under low attention
(attention = 0.5), for 1-X, nonsystematic generaliza-
tions were produced on 85% of test trials. For 2¢X
and 3°X, nonsystematic generalizations were pro-
duced on 13% of test trials each. When the atten-
tion parameter was boosted to 1.0, the number of
nonsystematic generalizations dropped. For 1X,
nonsystematicities were produced on 50% of test tri-
als. For 2¢X and 3<X, nonsystematicities were pro-
duced on 8% of test trials each.

The nonsystematic generalizations produced
by the network occurred only on generalization test
cases. As in the first simulation, these responses
corresponded to activating the specific regularity.

The noise and attention parameters can be
manipulated to produce different levels of systema-
ticity, but the basic effects of training set (1+X vs.
2¢X and 3°X) and low versus high attention re-
main. The particular systematicity levels do not cor-
respond to any specific experiment, rather, they sim-
ply demonstrate the effects of the training set and
attention parameters. Detailed simulation of data is
left for future work.

Discussion ~ This simulation makes two points.
First, the responses due to noise in the input signal
were not random, instead they looked like responses
to trained stimuli; they were regularizations. This
finding is intriguing since the noise is random. Con-
sider the 110 case. Normally, the associative con-
straints from 1 to <1 is suppressed by the identity



constraint from <10 to <10. When the input pattem
is perturbed by noise, it becomes more similar to a
large number of patterns. The activation of 10 is
reduced and the suppression of ¢l is also reduced, al-
lowing it to become more activated by 1. Though
this explanation is sensible, much careful work re-
mains to fully understand why random noise produc-
es these nonrandom effects.

The second point is that noisy input signals
produced more regularizations when attention is
low. The difference was not due to a relative in-
crease in the amount of noise compared to the signal
since attention modifies the noise and signal equal-
ly. Instead, the explanation lies in the dynamics of
the network. Specifically, it lies in the non-linear
activation function of the hidden and output units.

When the net input to a unit falls in the
middle of the unit’s dynamic range, differences are
preserved. On the other hand, when the net input to
a unit falls near either extreme of that unit’s dynam-
ic range, differences between input values are attenu-
ated (See figure 2.). Under attentive, vigilant pro-
cessing, when the attention parameter is set to 1.0,
processing occurs over the middle of each unit’s dy-
namic range, so the signal remains clear despite any
background noise. However, when attention is low,
processing occurs over the insensitive lower extreme
of each unit’s range, so the signal becomes murky.
A murky signal, apparently, does not produce a
strong systematic response, so the default specific
regularity response shows up.

General discussion

The phenomenon of systematicity in language and
thought has been used to argue for a general purpose,
context free, symbol-system cognitive architecture
(Fodor & Pylyshyn, 1988). Systematicity, it is ar-
gued, requires a symbol-system architecture.  So
how would a symbol-system account for results
like those found here? If novel instances are pro-
cessed systematically, where would the specific regu-
larity ghosts and regularizations come from? These
phenomena are not based on superficial perceptual
similarity. ~ Rather, they are based on seman-
tic/pragmatic similarity that occurs deep within the
cognitive system. To explain on-line comprehension

activation

net input

Figure 2. Effect of a non-linear activation function.
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regularizations, such as the Moses question, would
seem to require part of the input, Moses, to be pro-
cessed partially and then abandoned or rejected, per-
haps on pragmatic grounds but still outside of sub-
jects’ awareness.  Regularizations in recognition
memory require an explanation of why a systematic
processor would permit partial matches to memory
probes to influence recognition judgements.

But perhaps systematicity is not a fundamen-
tal property of the cognitive system. Perhaps in-
stead, it is a more-or-less achievable characteristic
of certain large corpora. The idea these simulations
support is that the cognitive system is a distributed
processor that may achieve quasi-systematic perfor-
mance under appropriate conditions.

Two conditions were explored. First, the
corpus must itself be systematic. Each feature of
the stimuli must be paired with every other feature
so that no context sensitive regularities can be in-
duced. The closer the corpus comes to this criterion,
the more systematic will be the network’s generali-
zation performance.

When the corpus systematicity requirement
is not met, the network will induce specific regulari-
ties, associative constraints, between stimulus fea-
tures. If these regularities are strong, the network
will respond to novel stimuli according to these spe-
cific regularities. It will produce the responses it
leamed from trained stimuli. It will regularize.
These specific regularities are also valuable for draw-
ing inferences and completing incomplete stimuli
with default values.

Larger more systematic corpora produce
more Systematic generalizations because they
strengthen the identity constraints relative to the as-
sociative constraints. Yet even in these large corpo-
ra, when nonsystematic responses occur, they tend to
be the specific regularity responses and they occur in
spaces of the corpus where the associative con-
straints are stronger.

More nonsystematic responses are produced
when noise is added to the input signal. Adding
background noise to the model is sensible for three
reasons: 1) noise is likely to be a quality of the
brain, 2) noise provides a mechanism for choosing re-
sponses, and 3) noise sets the stage for effects of at-
tention. Interestingly, the nonsystematic responses
produced under normally distributed noise condi-
tions are not random but correspond again to specific
regularities. Noise, then, lowers the degree of syste-
maticity. A fun phonological example is the
"telephone game" where a sentence is whispered
down a line of people. By the end, the sentence has
often changed dramatically.

Finally, modulations of attention can atten-
uate the effect of noise and return the network’s re-
sponding to a higher degree of systematicity. In
combination with a non-linear activation function,
attention can boost a signal nearly obscured by



noise. The view of attention used here is processing
power or vigilance to the task.

Several different methods of implementing
attention have been used with connectionist models.
Cohen, Dunbar, and McClelland (1990) added a con-
stant to the units’ net input. This change moves the
input to a sharper part of the activation function.
Here, attention is a multiplier of the input. Servan-
Schreiber, Printz, and Cohen (1990) directly changed
the slope of the activation function. Though differ-
ent in detail, each produces the same essential effect
of sharpening the decision threshold of units.

These results come from a very simple and
abstract function-leaming task. How might these
results be extended o more complex cognilive
tasks? The exiension to language comprehension has
been discussed in St. John and McClelland (1990)
and St. John (1992, simulation 2), The inputs might
be sequences of words and the outputs might be
their corresponding events. When the corpus is sys-
tematic, novel sentences will be understood system-
atically. Each word maps straightforwardly onto
its associated meaning. However, when specific reg-
ularities are present in the corpus, such as semantic
regularities, the model may misinterpret a novel sen-
tence to be the closest known meaning. These misin-
terpretations will occur more frequently when pro-
cessing is too rapid or scanty. Less well attended in-
formation will be processed less well and
potentially overridden by specific regularizations
from better processed parts of the sentence. Of
course, natural language is tremendously complex,
so these ideas are simply suggestive. But the phe-
nomena referred to in the introduction indicate that
these ideas may be important to understanding lan-
guage comprehension.

For recognition memory, the corpus corre-
sponds to the training set. During testing, the out-
put corresponds to a familiarity judgement. The
closer the output matches the input, the stronger the
familiarity score. For novel stimuli, systematic re-
sponses will match the input, produce high familiari-
ty scores, and will therefore correspond to false
alarms. Research in our lab shows that in a recogni-
tion memory task using systematic training corpora,
subjects produce a large number of such false alarms,

The results described here are exploratory,
but potentially very useful for explaining the quasi-
systematicity found in language and memory. Two
factors found to affect the degree of systematicity
are the degree of systematicity in the training corpus
and the amount of attention paid to the task.
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