
Topology Exploration with Hierarchical Landscapes

Dogan Demir1,2 Kenes Beketayev2,4∗ Gunther H. Weber2 Peer-Timo Bremer3 Valerio Pascucci1

Bernd Hamann4
1Scientific Computing and Imaging Institute, School of Computing, University of Utah

2Computational Research Division, Lawrence Berkeley National Laboratory
3Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

4Institute for Data Analysis and Visualization, Computer Science Department, University of California, Davis

Abstract

Topological landscapes have been proposed as a visual metaphor
for contour trees that does not require an understanding of the the-
ory involved in defining contour trees. The idea is to create a rep-
resentative terrain with the same topological structure as a given
contour tree. This representation exploits the natural human ability
to interpret topography and results in an intuitive visualization of
otherwise abstract information. However, topological landscapes
still suffer from some of the same limitations as traditional contour
tree visualization. Most notable is the fact that for complex func-
tions landscapes can quickly become highly complex, exceeding
the limits of human comprehension as well as the available com-
puting resources.

To address this challenge, we propose a new framework for the dy-
namic creation and visualization of hierarchical topological land-
scapes. Our system provides an interactive visualization of complex
functions by utilizing a hierarchical decomposition of the contour
tree as well as focus+context type interactions. For three dimen-
sional data, we link the landscape display to flexible isosurface ex-
traction in order to correlate terrain features with their correspond-
ing three dimensional counterparts. We demonstrate the utility and
versatility of our approach on a variety of both low and high dimen-
sional data sets.

CR Categories: I.3.M [Computer Graphics]: Miscellaneous—
Scalar Field Visualization H.5.2 [Information Interfaces and Pre-
sentation]: User Interfaces—Graphical User Interfaces (GUI)

Keywords: scalar field visualization, topological landscapes,
graphics user interface

1 Introduction

Topological information has proven useful in a wide variety of ap-
plications ranging from volume rendering [Weber et al. 2007b] to
combustion analysis [Bremer et al. 2011]. The contour tree, in par-
ticular, has been used extensively in data analysis and visualiza-
tion [Carr et al. 2003; Bajaj et al. 1998; van Kreveld et al. 1997;
Mizuta et al. 2004] as it encodes the nesting behavior of all con-
tours of a scalar function. However, interpreting contour trees re-
quires some intermediate level understanding of Morse theory and
related concepts. As a result they are not well suited for the major-
ity of users, and topological landscapes [Weber et al. 2007a] have
been developed to convey the same information in a more intuitive

∗e-mail:kbeketayev@lbl.gov

manner. A topological landscape is a two dimensional terrain with
the same level set structure as a given contour tree and harnesses
the human ability to interpret topographic information.

In the original algorithm [Weber et al. 2007a] the layout of the ter-
rain is directly coupled to the 4-8 style subdivision of the SOAR
terrain rendering scheme [Lindstrom and Pascucci 2002], which
imposes significant constraints. The resulting terrain requires a
large number of triangles for even moderately sized contour trees
and provides no ability to selectively refine particular areas. Fur-
thermore, to match the human intuition, it uses an expensive re-
parameterization step to correlate the area a feature covers with an
importance metric, i.e., its volume.

Subsequent work has focused on applying these concepts to high-
dimensional data [Harvey and Wang 2010; Oesterling et al. 2010],
and proposes an alternate means of landscape layout schemes via
tree maps [Harvey and Wang 2010]. The tree map based layout is
more flexible than the original technique and directly incorporates
any given area assignment. However, it can create triangles with
extreme aspect ratios making the resulting landscape difficult to in-
terpret.

Instead, we propose a new dynamic layout scheme that enables us
to render deep hierarchies with a large number of critical points in-
teractively. Our approach is based on converting a contour tree into
a hierarchical branch decomposition and representing each branch
as a rectangular box in the landscape. Boxes are placed recursively,
according to a first fit packing approach that preserves the topologi-
cal correctness, avoids unnecessarily fine triangulations, and scales
the boxes according to the given area constraints. Subsequently,
all boxes are seamlessly triangulated using a modification of the
SOAR algorithm [Lindstrom and Pascucci 2002]. Both the layout
and the triangulation are performed on-the-fly, which enables dy-
namic changes to the landscape. We utilize this additional flexibil-
ity to provide a focus+context type interaction, as well as a multi-
resolution adaptation.

Our contributions in detail are:

• Introducing a layout method that dynamically places and sizes
boxes eliminating the need for re-parametrization;

• Extending the SOAR framework to triangulate various sized
boxes with fewer elements and without the need to constrain
their placement;

• Enabling dynamic and interactive changes to the terrain to
support focus+context style zooming;

• Linking topological landscapes to isosurface extraction to
drive a traditional scalar field exploration; and

• Testing the new technique on a variety of real-world applica-
tion data sets.

2 Related Work

2.1 Contour Trees

Contour trees capture the topological evolution of an isosurface for
varying isovalue of a scalar function. Nodes correspond to critical
points where the number of contours, i.e., connected components
of the isosurface, changes [Carr et al. 2003].

Contour trees of even moderately-sized data sets can be quite com-
plex. The branch decomposition of the contour tree [Pascucci et al.
2009] is an efficient data structure for encoding a multi-resolution
representation of the contour tree. It decomposes the contour tree
into a set of branches, each being a extremum-saddle pair. Using
this data structure, it is possible to traverse the contour tree effi-
ciently up to a desired level of detail.

Traditionally, the contour tree is visualized as a graph [Heine et al.
2011; Pascucci et al. 2009]. This graph-based visualization eas-
ily becomes cluttered and often is hard to understand for novices.
Mizuta et al. [2006] introduced the contour nest, which focuses
on the nesting properties of isosurfaces. The topological land-
scapes [Weber et al. 2007a; Harvey and Wang 2010] metaphor is
another intuitive contour tree representation that has been applied
to high-dimensional data [Harvey and Wang 2010; Oesterling et al.
2010].

Flexible isosurfaces [Carr and Snoeyink 2003] utilize the corre-
spondence between connected isosurface components and contour
tree arcs to increase the expressiveness of isosurface visualizations.
Utilizing this method, it is possible color contours distinctively,
show only a subset of contours for a given isovalue, or use different
isovalues for individual contour components. Weber et al. [2007b]
apply similar concepts to transfer function design in volume ren-
dering.

2.2 Terrain Rendering

Edge bisection [Lindstrom et al. 1996] is a widely adopted ap-
proach for generating landscapes from hierarchical structures. Pre-
vious work has focused on generating a valid, crack-free trian-
gulation, while adjusting resolution dynamically for performance.
ROAM [Duchaineau et al. 1997] improved this method by using a
top-down instead of a bottom-up approach. SOAR [Lindstrom and
Pascucci 2002] builds on a variety of improvements [Röttger et al.
; Blow 2000] to the ROAM algorithm making it possible to use a
dynamic error threshold based on virtually any type of error metric,
while generating a continuos, crack-free terrain.

2.3 Box layout

The problem of finding the most efficient box layout within a
bounded region arises in several application domains. For our appli-
cation, we need to layout child boxes of varying sized correspond-
ing to child branches within a rectangular region of a parent branch.
In the original topological landscapes method [Weber et al. 2007a],
all boxes have the same size (before re-parametrization), arranged
in a spiral around the center of parent. Sorting child branches by
their saddle value ensures preservation of the topology of the un-
derlying dataset. Harvey and Wang [2010] use treemaps to generate
the layout from the hierarchy. However in their paper they explore
only layouts with hierarchy nodes with two children (since they use
the contour tree and not the branch decomposition). We generalize
this layout by considering a basic bin packing algorithm, which is a
well-studied packing solution approximation [Coffman et al. 1997].

3 Contour Tree Computation

We construct dynamical landscapes from the branch decomposition
of a contour tree. We compute the contour tree using the algorithm
by Carr et al. [2003] and subsequently convert it into a branch de-
composition [Pascucci et al. 2009].

When computing join and split tree (as a part of the contour tree
computation), we need to enumerate neighbors for each point of
the input data. For two or three dimensional data on a rectilinear
grid, we use minimal tetrahedral subdivision [Carr et al. 2001] and
an alternating 4-/8 or 6-/18-neighborhood to triangulate the domain.

Higher dimensional data is usually not specified on a regular grid,
since with increasing dimensionality, the number of samples would
quickly exceed practical bounds. Instead, it is given as an arbi-
trary point cloud. In that case, edges between vertices are defined
by computing a set of neighbors for each vertex of a given point
cloud [Harvey and Wang 2010; Oesterling et al. 2010]. In our im-
plementation, we use the k-nearest-neighbors for high-dimensional
point could data. We choose the parameter k by careful examina-
tion of the values between 2 ∗ d and 3d− 1, where d is a number of
dimensions. Correa and Lindstrom [2011] provide a more in-depth
discussion of alternatives.

We approximate the volume of each branch by counting all regu-
lar points corresponding to it. During contour tree calculation, we
keep track of all regular points getting merged into a particular arc,
and we transfer this information to the branch decomposition. We
also compute a volume of the leaf part of each branch by counting
the regular points of the branch that have function values between
those of the extremum and the closest saddle. For example, if an ex-
tremum is a maximum, we take a saddle with the highest function
value, see Figure 1.

4 Dynamical Landscape Creation

Given a contour tree, our approach dynamically creates the corre-
sponding landscape in a hierarchical fashion proceeding in three
basic steps: First, we convert the tree into a hierarchical branch
decomposition, assign an importance metric to each branch, and
create a corresponding hierarchy of boxes. Second, we create a
topology preserving layout of the box hierarchy using a modified
first-fit box packing scheme. Finally, we use an augmented SOAR
algorithm to create a crack-free triangulation for interactive render-
ing.

4.1 Nested Box Hierarchy

Given a fully augmented contour tree we use the algorithm of Pas-
cucci et al. [2009] to create a hierarchical branch decomposition.
As shown in Figure 1, this decomposition results in a hierarchi-
cal set of branches in which each branch (except the root) attaches
to its parent at its saddle value. Each branch represents a single
mountain or valley with its children creating smaller nested terrain
features. In the landscape each branch will be represented as a box
with child boxes nested within. Thus, the hierarchy determines the
global structure of the terrain. As in the original algorithm we typ-
ically use persistence as metric to create the decomposition as it
corresponds to an L∞-optimal simplification. However, similar to
Harvey and Wang [2010] we could use other metrics or branch or-
derings to construct landscapes with different nestings.

Given a decomposition we compute four parameters for each
branch: its peak/valley value; its saddle value; its volume
above/below the highest/lowest saddle; and its volume below/above
the highest/lowest value. The first two parameters determine the

generic shape used for each box. More specifically, a branch with-
out children is represented as a square box with a single interior
vertex where the edge of the box is drawn at the height of the sad-
dle value and the center vertex at the peak/valley height. Similarly,
a branch containing children will draw its edge at the saddle value
but its peak as a smaller box on the interior, see Figure 1. The
exception to this rule is the root branch that typically represents its
maximum as a peak and the global minimum by the landscape edge.

(a) (b)

Figure 1: Two brach decompositions with the corresponding land-
scapes. (a) The two base elements of our landscapes are a leaf box
shown in blue and a box with children shown in pink. In the second
case the area of the box vs. the area of the peak is determined by
the volume of the corresponding branch below and above the sad-
dle. (b) A slightly more complex example of a branch decomposition
with multiple children.

The second two parameters describing the corresponding volume
in the original domain are used to determine the area a given box
should cover. Modulating the areas is important as users implicitly
connect the overall size of a terrain feature with its importance. We
use the volume as the natural measure to correspond to the area but
any other property such as hypervolume or surface area can be used.
Given a branch b with a total volume v, its target area Vb is:

Vb = vd/2 +
∑
c∈C

Vc,

where d is the dimension of the domain and C is the set of children
of b. The factor vd/2 compensates for the perceptual difference in
judging relative areas compared to relative (hyper-) volumes. For a
branch with children, the target area of its peak/valley box is deter-
mined by the third parameter: the (scaled) volume above/below the
highest/lowest saddle. In this manner we ensure that a parent box
is always large enough to contain all children and that the relative
sizes among branches are preserved.

To simplify the subsequent layout and rendering, we subdivide the
parent box into a power of two grid and restrict child boxes to con-
form to this grid, see Figure 2. While this quantization introduces a
certain error with respect to the ideal target area it significantly re-
duces the complexity of the box placement and allows for a simple
triangulation scheme. The area error can be reduced by increasing
the grid resolution, see Figure 2, at the cost of more triangles to
display.

4.2 Box Packing

Given the box hierarchy with the corresponding target areas the al-
gorithm proceeds hierarchically starting with an arbitrary sized box
for the root branch. Given a box, we first determine the grid resolu-
tion and box sizes necessary to approximate the area of all children
up to a user defined threshold. To this end, we compute the edge
length of a child box with respect to its parents box as:

Lchild =

⌈√
Gparent

Vchild

Vparent

⌉
,

Figure 2: The children of a box are placed on a grid within the
parent area. The resolution of the grid determines how closely the
final area of the children approximate their target area values. In
this figure we show the parent grid in the background. As the res-
olution of grid is increased by the algorithm, box sizes (shown in
solid outline) approximate better their target area values (shown in
dotted outline).

where Gparent denotes the total number of cells of the parent. We
then compute the corresponding edge length with respect to the en-
tire landscape as:

Pchild = Lchild

√
P 2
parent

Gparent
.

Assuming the entire terrain is drawn in the unit box, then P 2
child

should be equal to the volume ratio Vchild/Vroot. Hence, we com-
pute the area error εchild as the ration between the desired area ra-
tios and the current approximate ratio:

εchild =
Vchild

Vroot
∗ 1

P 2
child

.

If for any child the error is above a user defined threshold we sub-
divide the parent grid and recompute the error. Since we are in-
terested in creating a small triangle count we typically start with a
parent grid of size four which we then refine if necessary. If the
additional computation cost becomes a problem, we can start at a
higher resolution grid. The error is computed relative to the root
box in order to avoid accumulating errors for deeper levels of the
hierarchy.

Finally, we find that accepting an increasing amount of error for
branches deeper in the hierarchy greatly reduces the overall trian-
gle count without significantly impacting the overall appearance.
Hence, we use two error thresholds, minimal Tmin and maximal
Tmax, between which we interpolate based on the current hierarchy
level. More specifically, when rendering level lcur of a hierarchy of
maximal depth lmax the error threshold is computed as:

Tcur = Tmin +
lcur
lmax

(Tmax − Tmin)

We use Tmin = 1.5, Tmax = 200.

Once the final integer valued sizes are computed, we recursively
create a layout of boxes using a modified first fit packing algo-
rithm [Scott]. By precomputing appropriate edge lengths, the lay-
out problem reduces to placing integer sized boxes within a given
larger box. However, a straightforward first-fit packing algorithm
produces an unappealing layout heavily biased towards one of the
box corners, see Figure (a).

Moreover, even though by construction the sum of the target areas
of all children is lower than the area of the parent, the actual boxes
may not all fit. This problem can be alleviated by using an infi-
nite bin size with a subsequent rescaling as shown in Figure 3(b).

(a) (b) (c)

Figure 3: Packing. (a) Applying straightforward first-fit bin packing yielding a landscape in which boxes originate from top-left corner of
the parent. This method may not accommodate all the children if the resolution is too small or there are more children than the number of
available grid cells. (b) Results of the same algorithm where the bin dimensions are infinite. Box sizes are small and they do not go beyond
the parent boundaries. (c) Final algorithm in which we use four bins pivoted around the center of the parent with infinite dimensions. Boxes
are shrunk proportionally until they all fit within the parent.

Figure 4: Boxes are packed first-fit using four bins with infinite
size pivoted around the center of parent box (shown in shaded in
the background). Each box is assigned to one bin in round-robin
order, arranging boxes in a spiral around the center guaranteeing
topological correctness. If necessary, children are uniformly shrunk
to fit within the parent.

However, the layout remains sub-optimal. More importantly, such
a layout does not preserve the topology of the terrain, one of the pri-
mary goals of the topological landscape. In particular when using
the terrain to explore isocontours of a three dimensional data set,
maintaining the correct nesting behavior is important. Hence, we
extend the original layout algorithm of Weber et al. [Weber et al.
2007a] to fit uneven sized boxes. The original scheme places chil-
dren in a spiraling layout around the center of the parent box, which
guarantees the topological correctness of the terrain. We emulate
this behavior by creating our infinite sized bins pivoted around the
center of the parent box. We then sort children by saddle value and
place them in round robin fashion into the four bins, see Figure 4. In
rare cases, the children will spill outside their parent box, in which
case we rescale all children to fit. The final layout is created on-the-
fly and produces a well centered and visually pleasing layout that
preserves the topology and provides a good approximation for the
areas, shown in Figure 3(c).

4.3 Rendering

The goal of the rendering algorithm is to create a crack-free display
of the terrain with a triangle count as low as possible while avoiding
extreme aspect ratios. We use a modified SOAR algorithm [Lind-
strom and Pascucci 2002] to create a conforming triangulation for

each box depending only on the existence and placement of its chil-
dren. Starting from the grid used for the layout we flag each grid
point covered by a child node (see Figure 5(a)). We then propagate
these flags upward in the SOAR hierarchy to determine the small-
est conforming SOAR mesh that would render the children at grid
resolution (see Figure 5(b)). The original algorithm proceeds by
drawing this mesh using a single triangle strip. However, in our
case the children will be responsible for drawing their own area and
thus we break the triangle strip whenever we enter a child box and
discard the corresponding triangles. Note that the children may not
draw a mesh at the same resolution as their parent. However, as the
grid values are constant all along the edge of the children the result-
ing T-junctions do not cause problems. An example of a resulting
mesh is shown in Figure 5(c).

5 Focus+Context Exploration

As discussed above, contour trees of common data sets often con-
tain thousands of branches and displaying the corresponding terrain
will quickly exceed the capabilities of current graphics hardware.
Even if such a terrain would be rendered, smaller branches in the
lower levels would become virtually invisible or might create very
high yet tiny spikes. To address this problem, we once again exploit
the hierarchical nature of the branch decomposition and only ren-
der branches up to either a given persistence or a given hierarchy
level. We also allow the user to zoom into any given child branch to
provide a focus+context type interaction to easily explore the entire
branch decomposition, see Figure 6. We note that both the layout
and the triangulation are created on-the-fly.

5.1 Linking Landscapes to Flexible Isosurfaces

Finally, to correlate the dynamical landscape to 3D data set, we
utilize flexible isosurfaces [Carr and Snoeyink 2003]. Flexible iso-
surfaces allow us to match the colors for contours in the 3D visu-
alization to the regions in the terrain corresponding to them. We
have implemented a version of flexible isosurfaces in VisIt. How-
ever, unlike the original version, we do not employ a continuation
method. Instead, we store the branch IDs for each vertex in the data
set. When extracting an isosurface, we perform a transfer function
lookup to identify the branch corresponding to each isosurface tri-
angle, and associate this information with the triangle. This method
allows us to color triangles by contour ID, and filter triangles, when
hiding the contour.

(a) (b) (c)

Figure 5: Triangulating the grid. (a) For each location in the grid we store the ID of the box that overlaps with it and the boolean flags for
SOAR refinement. In the figure IDs are shown as numbers within circles. In this figure, the box has ID 6 therefore at all grid locations that
overlap with the box, the IDs are set to 6. Grid locations with empty circles contain a non-occupied value. Green circles show the initial
boolean flags, blue circles show the boolean flags turned on by upwards propagation within SOAR hierarchy. Gray circles show flags that
are off. (b) This scheme generates an artifact-free triangulation. We use triangle lists instead of two triangle strips as proposed in original
SOAR [Lindstrom and Pascucci 2002] to discard triangles that completely overlap with child boxes. In this figure, triangles over the orange
child box are discarded. (c) Screenshot from a final rendering of one of our test data sets with one parent box with a peak (on the left) and a
child (on the right). We take advantage of the fact that all boxes have the same value on the edges, therefore in triangulation space, continuity
between the parent and the child box is not required. This allows boxes to be triangulated and rendered completely independently.

Figure 6: Focus+context exploration. When marking the cyan box on the left for further exploration, we darken rest of the landscape and
enlarge the selected box. Boxes are interactively repacked to a lot more screen space to the focused box. By construction, the children of the
highlighted box maintain their relative sizes.

6 Applications and Results

In this section, we demonstrate the utility of our technique on sim-
ple (hydrogen atom, nucleon) and complex, real-world (3D chemi-
cal, 5D performance optimization, turbulent combustion) data sets.

Hydrogen data set. Figure 7 shows the landscape for the hydro-
gen atom data set, which is the probability distribution of an elec-
tron in an H2 atom residing in a strong magnetic field. The figure
clearly shows all the major components we expect to see: two lobe
components (dark gray and yellow) and a center component (gray)
located inside a toroidal ring component (brown). Choosing dif-
ferent isovalues and examining corresponding contours, correlated
to the landscape via colors, provides general idea about the data
set. Instantly we encounter a problem with occlusion of the mid-
dle component by the toroidal ring. To resolve this, we use a focus
feature that allows us to hide a selected landscape element and cor-
responding component, in this case the toroidal ring, to clarify the
view, see Figure 7. This feature also can be used to focus on a com-
ponent, while hiding the rest. These constitute powerful interactive
exploration capabilities of our framework.

Nucleon data set. Figure 8 shows a similar analysis for the nucleon
data set obtained by simulating a two-body distribution probability
of a nucleon in the atomic nucleus “16O” when a second nucleon is

known to be positioned at distance of 2 Fermi. We can see two blob-
like inner contours and one outer contour, all having large volumes.
To reveal two blobs inside the outer contour, we hide this outer com-
ponent (right column). Sweeping isovalues shows that first one, and
then the other blob merge with the outer component. Subsequently
there are two new components that encapsulate all maxima of the
data set. Comparing the volumes of all components found so far
brings a rather non-obvious result—the maximum inside one of the
new components has comparable value with former three minima
components, which is not obvious from isosurface visualization.

Analysis of free energy function in porous materials. To further
demonstrate the utility of our framework, we consider a more com-
plicated chemical data set and show the ability of our framework
to aid in its analysis. It is based on the analysis of zeolites, a well
recognized class of crystalline porous materials that are commonly
used as membranes and adsorbents. We are interested in the energy
function of a trapped CH4 molecule as function of location, as it
shows absorption sites (energy minima) and possible locations of
the guest molecule. Prior work focused on energy states and tran-
sitions between them. In contrast, we use topological landscapes
and flexible isosurface to approximate spatial locations of diffusion
pathways of the CH4 guest molecule inside the periodic LTA ze-
olite box. The energy landscape in Figure 9 shows the absorption
sites and energy barriers between them (saddles) that correspond to

Figure 7: Hydrogen atom data set. (Left) View of the landscape
together with linked isosurfaces below. (Right) Hiding the green
brown peak that corresponds to the ring contour shows the center
contour corresponding to the main peak.

void channels and cages. By linking to a flexible isosurface view,
we show spatial locations for the minima (second image). Using
the landscape view, we identify the saddle value for which minima
within a cage merge. The resulting isosurface (third image) shows
locations, corresponding to minimal energy configurations between
the absorption sites, i.e., the location of “channels” between absorp-
tion sites. The saddle to the global maximum coincides with the
boundary of the cages. The corresponding isosurface (right image)
marks the region that the trapped molecule cannot escape, unless
the material is subjected to very high temperatures.

Auto-tuning data set. Our high-dimensional data example is based
on a study of auto-tuning strategies for HPC systems [Williams
et al. 2011] with the goal of designing an auto-tuner for large com-
plicated algorithm runs. This study uses a lattice Boltzmann mag-
netohydrodynamics algorithm and its performance evaluation on
different HPC systems to explore the available parameters to tune.
We analyze the results generated on the “Hopper” system at Na-
tional Energy Research Scientific Computing center (NERSC).

Each point in data set corresponds to a fixed configuration of avail-
able optimization options. The space of input auto-tuning parame-
ters consists of the following five variables: number of processes
{8,16,24,48,96,192}, unrolling depth {16,...,512}, virtual vector
length {1,...,16}, data-level parallelism {1,...,16}, pre-fetch option
{+VL, +128}. The output function is measured as an average per-
formance of the algorithm for each parameter combination, given
in floating point operations per second per core.

Initial observation of the landscape in Figure 10, generated for the
data set, finds several configurations that are locally optimal, which
might suggest some configurations that potentially can be fixed
and thrown out of the analysis, reducing significantly run-time of
the auto-tuner. We were able to narrow down the configuration
(48,512,16,8), which encompasses two regions—an outer big one
and big cluster of the solutions inside the inner higlighted white
box. This box occupies a large volume (97%), hence we are able
to further focus into it without missing much information.

Figure 8: Nucleon data set. (Left) General view of the landscape
together with linked isosurface. We see only outer blue component
that occludes two inner blobs. (Right) Hiding outer blue component
resolves the occlusion.

Figure 10: Auto-tuning data set. General view of the landscape,
with highlighted box that corresponds to the configuration that en-
compasses big cluster of locally optimal solutions.

Turbulent combustion data set. Finally, Figure 11 shows one
time step of the premixed turbulent combustion simulation ana-
lyzed in [Bremer et al. 2011]. The landscape shows the contour
tree of fuel consumption and areas of high fuel consumption are
considered burning cells. The terrain clearly delineates clusters of
high maxima indicating groups of cells. Moreover, the shape of
the individual hills shows some interesting characteristics not eas-
ily accessible with other techniques. While some clusters show a
“crown” of maxima with similar function values, some show rather
flat plateaus typically at medium levels of fuel consumption. These
are likely areas of slowly dying burning cells in which all original
peaks have been smoothed by diffusion type processes. Addition-
ally, some clusters show single high spikes with low area indicating
cells in which a single or a small number of maxima that are in the
process of splitting and forming a new cell. As shown by the multi-
ple zoom levels the data is highly complex and similar observations
would be difficult to obtain using a graph version of the contour
tree.

7 Conclusions and Future Work

We have presented dynamic, hierarchical landscapes that make it
possible to explore large scale data sets using a topological land-
scape metaphor. The increased flexibility supports an improved

Figure 9: Chemistry data set. The left image shows the landscape view revealing the cages (associated with minima) in the data set. The
next image shows isosurfaces for the minima in the data set, i.e., absorption sites for the trapped moleculse. The third image shows contours
that separate the minima within a cage. The right image shows the isosurface separating the cages that the trapped molecule cannot leave.

Figure 11: Three levels of the topological landscape of fuel consumption in a turbulent combustion simulation. (Left) The entire domain
showing four intensely burning cells and one low intensity region, likely a dying cluster. (Middle) Zooming into the region highlighted in
white reveals a number of well separated sub-cells again with some lower intensity flat regions. Note the small spikes in some of the cells
indicating new cells forming as maxima split from their surrounding cells. (Right) A further zoom level reveals a highly nested group of
maxima at very similar function value representing the “crown” of the burning cell highlighted in the middle image.

layout and coupled with focus+context animation and linking to
flexible isosurface, this layout makes it easier to explore compli-
cated data sets. In the future, we plan to utilize this framework to
visualize time-dependent data, which poses the challenge of chang-
ing the layout smoothly over time while maintaining correct topo-
logical properties. We also plan to explore using our technique for
other terrain rendering applications.

Acknowledgements

This work was supported by the Director, Office of Advanced Sci-
entific Computing Research, Office of Science, of the U.S. DOE
under Contract Nos. DE-AC02-05CH11231 (Berkeley Lab.), DE-
AC52-07NA27344 (Livermore Lab.) and DE-FC02-06ER25781
(The Univ. of Utah) and the use of resources of the NERSC.

Disclaimer

This document was prepared as an account of work sponsored by
the United States Government. While this document is believed to
contain correct information, neither the United States Government
nor any agency thereof, nor the Regents of the University of Cali-
fornia, nor any of their employees, makes any warranty, express or
implied, or assumes any legal responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufac-
turer, or otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the United States Gov-

ernment or any agency thereof, or the Regents of the University
of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Gov-
ernment or any agency thereof or the Regents of the University of
California.

References

BAJAJ, C. L., PASCUCCI, V., AND SCHIKORE, D. R. 1998. Visu-
alization of scalar topology for structural enhancement. In Proc.
IEEE Visualization’98, 51–58.

BLOW, J. 2000. Terrain rendering at higher levels of detail. In
Proc. 2000 Game Developers Conference.

BREMER, P.-T., WEBER, G. H., TIERNY, J., PASCUCCI, V., DAY,
M. S., AND BELL, J. B. 2011. Interactive exploration and anal-
ysis of large scale turbulent combustion using topology-based
data segmentation. IEEE Trans. Vis. Comput. Graph. 17, 9,
1307–1324.

CARR, H., AND SNOEYINK, J. 2003. Path seeds and flexible
isosurfaces using topology for exploratory visualization. In Proc.
Data Vis’03, 49–58.

CARR, H., MÖLLER, T., AND SNOEYINK, J. 2001. Simplicial
subdivisions and sampling artifacts. In Proc. IEEE Vis’01, 99–
106.

CARR, H., SNOEYINK, J., AND AXEN, U. 2003. Computing
contour trees in all dimensions. Comput. Geom.—Theory and
Apps 24, 2, 75–94.

COFFMAN, E. G., GAREY, M. R., AND JOHNSON, D. S. 1997.
Approximation algorithms for bin packing: A survey. In Approx.
Algs. PWS Publishing Company.

CORREA, C. D., AND LINDSTROM, P. 2011. Towards robust
topology of sparsely sampled data. IEEE Trans. Vis. Comput.
Graph. 17, 12 (dec).

DUCHAINEAU, M. A., WOLINSKY, M., SIGETI, D. E., MILLER,
M. C., ALDRICH, C., AND MINEEV-WEINSTEIN, M. B. 1997.
ROAMing terrain: Real-time optimally adapting meshes. In
Proc. IEEE Vis’97, 81–88.

HARVEY, W., AND WANG, Y. 2010. Topological landscape en-
sembles for visualization of scalar-valued functions. Computer
Graphics Forum 29, 3, 993—1002.

HEINE, C., SCHNEIDER, D., CARR, H., AND SCHEUERMANN,
G. 2011. Drawing contour trees in the plane. IEEE Trans. Vis.
Comput. Graph. 17, 11, 1599–1611.

LINDSTROM, P., AND PASCUCCI, V. 2002. Terrain simplification
simplified: A general framework for view-dependent out-of-core
visualization. IEEE Trans. Vis. Comput. Graph 8, 3, 239–254.

LINDSTROM, P., KOLLER, D., RIBARSKY, W., HODGES, L.,
FAUST, N., AND TURNER, G. 1996. Real-time continuous
level of detail rendering of height fields. Proc. of SIGGRAPH’96,
109–118.

MIZUTA, S., SUWA, Y., ONO, T., AND MATSUDA, T. 2004. De-
scription of the topological structure of digital images by contour
tree and its application. Tech. rep., Institute of Electronics, In-
formation and Communication Engineers.

MIZUTA, S., ONO, T., AND MATSUDA, T. 2006. Contour nest:
A two-dimensional representation for three-dimensional isosur-
faces. In Proc. Volume Graph., 67–70.

OESTERLING, P., HEINE, C., JÄNICKE, H., AND SCHEUER-
MANN, G. 2010. Visual analysis of high dimensional point
clouds using topological landscapes. In Proc. IEEE Pacific
Vis’10, 113–120.

PASCUCCI, V., COLE-MCLAUGHLIN, K., AND SCORZELLI, G.
2009. The toporrery: Computation and presentation of multi-
resolution topology. In Math. Found. of Sci. Vis., Comput.
Graph., and Massive Data Explor., Springer-Verlag, 19–40.

RÖTTGER, S., HEIDRICH, W., SLUSALLEK, P., AND SEIDEL, H.-
P. Real-time generation of continuous levels of detail for height
fields. In Proc. WSCG’98 Conference, V. Skala, Ed.

SCOTT, J. Packing lightmaps. www.blackpawn.com/texts/
lightmaps.

VAN KREVELD, M. J., VAN OOSTRUM, R., BAJAJ, C. L., PAS-
CUCCI, V., AND SCHIKORE, D. 1997. Contour trees and small
seed sets for isosurface traversal. In Symposium on Computa-
tional Geometry, 212–220.

WEBER, G. H., BREMER, P.-T., AND PASCUCCI, V. 2007. Topo-
logical landscapes: A terrain metaphor for scientific data. IEEE
Trans. Vis. Comput. Graph. 13, 6, 1416–1423.

WEBER, G. H., DILLARD, S. E., CARR, H., PASCUCCI, V., AND
HAMANN, B. 2007. Topology-controlled volume rendering.
IEEE Trans. Vis. Comput. Graph. 13, 2, 330–341.

WILLIAMS, S., OLIKER, L., CARTER, J., AND SHALF, J. 2011.
Extracting ultra-scale lattice Boltzmann performance via hier-
archical and distributed auto-tuning. In Proc. Supercomputing
Conference.

www.blackpawn.com/texts/lightmaps
www.blackpawn.com/texts/lightmaps

