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ab Aalto University, Finland

Abstract

Good scientific practice (GSP) refers to both explicit and implicit rules, recommendations, and 

guidelines that help scientists to produce work that is of the highest quality at any given 

time, and to efficiently share that work with the community for further scrutiny or utilization. 

For experimental research using magneto- and electroencephalography (MEEG), GSP includes 

specific standards and guidelines for technical competence, which are periodically updated and 

adapted to new findings. However, GSP also needs to be regularly revisited in a broader light. 

At the LiveMEEG 2020 conference, a reflection on GSP was fostered that included explicitly 

documented guidelines and technical advances, but also emphasized intangible GSP: a general 

awareness of personal, organizational, and societal realities and how they can influence MEEG 

research. This article provides an extensive report on most of the LiveMEEG contributions and 

new literature, with the additional aim to synthesize ongoing cultural changes in GSP. It first 

covers GSP with respect to cognitive biases and logical fallacies, pre-registration as a tool to avoid 

those and other early pitfalls, and a number of resources to enable collaborative and reproducible 

research as a general approach to minimize misconceptions. Second, it covers GSP with respect to 

data acquisition, analysis, reporting, and sharing, including new tools and frameworks to support 

collaborative work. Finally, GSP is considered in light of ethical implications of MEEG research 

and the resulting responsibility that scientists have to engage with societal challenges. Considering 

among other things the benefits of peer review and open access at all stages, the need to coordinate 

larger international projects, the complexity of MEEG subject matter, and today’s prioritization 

of fairness, privacy, and the environment, we find that current GSP tends to favor collective and 

cooperative work, for both scientific and for societal reasons.

Keywords

Magnetoencephalography (MEG); Electroencephalography (EEG); Good scientific practice

1. Introduction

The generation of scientific knowledge, which is the purview of science and the humanities, 

relies on scientists and researchers using appropriate tools and techniques, appropriate 

processes and methods, and appropriate ways of thinking and reasoning. All these elements 

of scientific work have been developed and refined over centuries of discovery to ensure 

that the generated knowledge lives up to ever-evolving current standards. Rules, guidelines, 

and principles that codify this way of work are referred to as good scientific practice 

(GSP). The details vary between disciplines, but generally GSP serves to uphold and 

continue methodological progress, to make sure results are reliable, and to avoid scientific 

misconduct.

In magnetoencephalography (MEG) and electroencephalography (EEG), here collectively 

referred to as MEEG, the first guidelines for good practice were published for EEG 

by Donchin et al. (1977). They represented the findings of an international committee 

formed to provide publication criteria, which the committee members first discussed among 
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themselves and then opened up for public discussion during a conference. It was here that 

the recommendation was recorded to, among other things, report age, sex, and handedness 

of all participants – something still done to this day. Since then, this has been a common 

pattern: new or additional guidelines have often emerged from international meetings or 

societies where scientists consider, for example, the need for standardization in light of new 

methods, techniques, or findings.

Currently, the most recent effort in the MEEG community to coordinate and promote GSP at 

all stages of the research cycle has come from the Organization for Human Brain Mapping. 

Their COBIDAS MEEG white paper (Pernet et al., 2020) lists current standards and good 

practices for data acquisition, analysis, reporting, and sharing. Together with numerous other 

guidelines that have emerged over the years (Donchin et al., 1977; Pivik et al., 1993; Picton 

et al., 2000; Handy, 2005; Luck, 2005, 2014; Duncan et al., 2009; Gross et al., 2013; Keil et 

al., 2014; Kappenman and Luck, 2016; Hari and Puce, 2017; Kane et al., 2017; Hari et al., 

2018), they support scientists and researchers in minimizing known pitfalls and adhering to 

best practices during the various stages of research.

Such documents are even more important now that the field is becoming increasingly 

interdisciplinary, and not all colleagues will have had the opportunity to be trained in all 

relevant technologies (Pernet et al., 2020). Furthermore, recent concerns about reliability in 

neuroimaging research (Button et al., 2013; Poldrack et al., 2017), more pressingly referred 

to as a “replication crisis” (Shrout and Rodgers, 2018), have highlighted the importance of 

community standards – not just their existence, but also the community’s own awareness of, 

and adherence to, such standards. Therefore, the field of neuroimaging in general is actively 

and effectively working towards consolidating GSP within its community (Poldrack et al., 

2020).

The virtual LiveMEEG conference on “Good scientific practices in EEG and MEG 

Research” was held on October 5–9, 2020, with the aim of bringing together MEEG experts 

to discuss essential aspects of GSP for the entire lifecycle of MEEG research projects. 

Importantly, what emerged from this meeting was that not everything that is deemed 

important is captured by current or previous standards – nor, indeed, could it be: there 

are many subtleties and approaches that do not lend themselves to being standardized per 

se. Instead, this different type of GSP enables a more general reflection on the way we 

think and act, with respect to both the work itself and the broader scientific environment. In 

particular, “open science” is seen as one fundamental aspect of modern GSP. This refers to 

a general approach which aims to make all products of scientific work publicly available. 

Among other things, this makes science less isolated, more community-driven, and allows 

the results to be fully reproduced and verified by colleagues (Garrett-Ruffin et al., 2021; 

Clayson et al., 2022). As we shall see, this approach is gaining traction, and many modern 

recommendations follow almost naturally from this general, open mindset.

Our two-fold aim here is to review existing and developing guidelines and resources for 

GSP, and to capture those LiveMEEG contributions that widened our understanding of 

what GSP means. GSP is not merely about adhering to established protocols and avoiding 

mistakes: it involves a more general awareness of personal, organizational, and societal 
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realities, of the structures that surround and influence us all, and of the future that we 

ourselves wish to see on the path of scientific progress. This work aims to help foster that 

awareness.

1.1. How to use this paper

Part of the nature of general principles is that they can be formulated broadly. We do this 

at the beginning of each section, and use the subsections and subsubsections to provide 

increasingly detailed GSP that illustrate these principles. To that end, each section first 

summarizes the general considerations addressed in that section, and briefly introduces its 

subsections. These subsections deal with more detailed but still generally relevant GSP, 

while any deeper sections address concrete issues and provide specific suggestions. As such, 

the reader can use the higher levels to navigate the paper, and choose to read those lower 

levels as they see fit. The three main sections of this paper, following this introduction, 

relate to: GSP relevant to the early, e.g., planning and pre-planning stages of MEEG 

research (Section 2); issues that arise and GSP that can help during data collection, analysis, 

and reporting (Section 3); and finally, considerations and GSP that go beyond the work 

itself, and touch upon ethical and social aspects that surround it (Section 4). The reader is 

encouraged to look into the referenced literature in any relevant section, as well as Appendix 

Table A1 for further resources.

2. Early considerations for MEEG projects

Some general principles of GSP come into play even before the first instrument is picked up. 

These include GSP specifically related to planning and pre-planning stages of a project, as 

well as GSP that is not specific to any one stage, but rather reflects a general approach to the 

project as a whole.

During pre-planning stages, among other things, one may be considering the outcomes 

of previous experiments and how they may be followed up on, or brainstorming about 

experimental variables and manipulations. Here, it is important to be aware of the limits of 

one’s own ability to properly seek out, perceive, and arrange the relevant facts. Section 2.1 

deals with GSP related to this. It emphasizes the importance of awareness, and of availing 

oneself of the expertise of others early on. This latter point also applies to planning stages, 

where there are a number of benefits of sharing project ideas with others, both before and 

after they have been finalized. To that end, Section 2.2 explains the various facets of public 

pre-registration. Finally, open science was mentioned in the introduction as a fundamental 

approach to the organization and conducting of scientific projects. Open science requires 

a commitment that impacts all stages of research, but many tools, guides, and examples 

already exist to support this, some of which are outlined in Section 2.3.

2.1. Human factors

Scientists are trained to form beliefs about the world and test their theoretical and 

experimental hypotheses with objectivity. However, even expert humans are fallible, as they 

can be victims of their own biases and, consequently, make logical errors. GSP can help 

mitigate these errors by making researchers aware of them, by explicitly accounting for 
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biases in data analysis and representation, and by enforcing careful planning of experiments, 

with attention to the logical implications of given observations.

2.1.1. Cognitive biases, their manifestation, and ways to mitigate them—
Cognitive biases pervade all levels of thinking and reasoning, from low level perceptual 

processes to social representations. Because cognitive capacities are limited, humans 

allocate resources sparingly and create mental shortcuts (heuristics) that are prone to 

oversights and biases (Gigerenzer, 2008). Of note here are the biases that cause researchers 

to perceive or understand information incorrectly during data analysis and viewing, and end 

up drawing inaccurate conclusions. We illustrate a few effects and mention strategies to help 

overcome these biases.

At the perceptual level, researchers have to grapple with sensory errors and visual illusions 

both when reading and when creating visual data representations. The limits and strengths 

of the visual system for extracting information from such visual representations are well 

studied, and detailed guidelines exist: see Franconeri et al. (2021) for a recent review.

A prominent example in the field of brain imaging in general, and MEEG in particular, 

is the question of color mapping. Because human perception of color categories is neither 

linear nor equal across the color wheel (Bae et al., 2014), the choice of how to represent 

continuous data with color is not trivial. The rainbow color map, widely used in the field, 

unfortunately does not take perceptual limitations into account and can lead to perceiving 

inaccurate steps in the data, or meaningless categorical boundaries (Cooper et al., this issue; 

Borland and Taylor II, 2007). Instead, there are now perceptually uniform colormaps that 

ensure that the linear representation of data is correctly perceived by human observers. See 

Cooper et al. (this issue), for a review and suggestions. Another example is how results 

can be distorted when not visualized properly, hiding underlying patterns in the raw data 

(Chambers et al., 2018; Ware, 2019; Allen et al., 2021). Therefore, it is recommended to 

present more complete visual representations such as box and density plots that reflect the 

entire distribution of the underlying data rather than focusing on its central tendency (Hintze 

and Nelson, 1998; Rodu and Kafadar, 2021).

Beyond individual perceptual errors, other types of errors can occur when viewing data in a 

social context. A well-known example is the “curse of knowledge” effect, whereby personal 

experience and familiarity with a method, theory, or set of results make the presenter 

assume more knowledge in the audience than there actually is Xiong et al. (2020). This 

is almost always the case when researchers present their own work, and may thus lead 

to a miscommunication between presenter and observer. This disparity may be further 

increased due to the fact that, on the observer’s side, their high-level experiences influence 

their interpretation and even low-level perceptual processing of objective information. This 

can affect the reading and understanding of MEEG data, especially when it is likely that 

an experimental result strongly supports or refutes one’s own theoretical predictions. In 

combination with the confirmation bias, the same viewer may be inclined to ignore data 

features that refute their own theoretical views. There is a plethora of higher-order cognitive 

biases that affect decision making at many levels. Commenting on all of them is beyond 

the scope of the present article, but their powerful effect on perception and understanding is 
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important to consider at all stages of a research project. The interested reader could consult 

references such as Baron (2006) or the seminal works of Tversky and Kahneman (1974).

Finally, social factors also influence the socio-cultural structure of scientific investigation, 

and influence scientific progress in a way that may be biased toward theories and 

representations of the most-represented social groups. The majority of publications in 

MEEG research come from Western institutions that recruit so-called W.E.I.R.D. (Western, 

Educated, Industrialized, Rich, and Democratic) participants, putting into question whether 

these study results generalize to a larger population (Henrich et al., 2010). Researchers must 

keep this in mind when reading past work, designing new studies, and describing their 

own experimental conclusions. Lack of diversity and inclusion is prevalent in academia, 

and the MEEG field is no exception to this (Schrouff et al., 2019). Gender bias, as well 

as marginalization and underrepresentation of racial, ethnic, and cultural minorities, affect 

women, BIPOC (black, indigenous, and other people of color) and people with disabilities, 

not only as students and scientists, but also in participant samples. Some relevant resources 

and concrete actions to mitigate gender bias and inequity at individual and institutional 

levels in academia have been collected recently (Schreiweis et al., 2019; Llorens et al., 2021; 

Levitis et al., 2021). As suggested by Dworkin et al. (2020), Zurn et al. (2020) we have 

included a citation diversity statement at the end of the manuscript for the awareness of 

citation bias in the literature. In the field of EEG, recent studies have begun to address the 

fact that standard EEG electrodes are not designed to accommodate coarse and curly hair 

common in individuals of African descent (Etienne et al., 2020; Choy et al., 2021). This is 

an important reminder that systemic bias can also occur through instrumentation.

2.1.2. Logical thinking and fallacious reasoning: an example—Cognitive biases 

affect perception, cognition, and reasoning in science, but fallacious conclusions can also be 

reached due to a failure to fully understand and account for the logical implications of an 

experimental work. Logical thinking is at the heart of conceiving hypotheses and designing 

experiments. Experimenters need to take certain steps at the outset to forestall later mistakes 

when drawing conclusions from results. See Sinnott-Armstrong and Simmons (2021) for a 

list of common fallacies in MEEG data.

Some common mistakes can be illustrated by misinterpretations of Libet and collaborators 

(Libet et al., 1983). In this now infamous EEG experiment, participants were positioned in 

front of a clock face, and were instructed to freely move their fingers or wrists at a time of 

their choosing. When they did decide to move, they were asked to report the time when the 

decision was made. As such, the experiment yielded three points in time: the self-reported 

time of the conscious will or decision to move (W), the measured time that movement 

indeed took place (M), and correlated brain activity in the EEG in the form of a readiness 

potential (RP). They found that the readiness potential RP occurred before the reported time 

of W, which in turn occurred before M. Libet’s findings have been replicated often, but there 

are still raging debates about their interpretation, the role of the neural activity (RP) and W 

in producing M, and any relation of these findings to free will. Unfortunately, these debates 

continue to involve several fallacies that could have been avoided by following these simple 

recommendations.
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First, spell out all theories or hypotheses that might explain possible experimental findings. 

Overlooking an option can lead to a fallacy called false dichotomy. For example, 

commentators on Libet et al. (1983) often assumed that one of only three options must 

be true: (a) W causes M, but nothing causes W (Libertarianism); (b) W causes an RP, which 

causes M (Backwards Causation); or (c) RP causes M, but W does not cause M (Libet’s 

conclusion). Libet’s followers rejected the Libertarian claim, because they assumed that 

every event has a cause. They also rejected Backwards Causation, because W occurs later 

than RP, and causes never come after their effects. They concluded that RP causes M, but W 

does not cause M. What they failed to consider was the Commonsense view that RP causes 

W, and then W in turn causes M—that is, activity in the brain causes choices, which cause 

actions. To overlook such a plausible option is called false dichotomy because it is false to 

assume that one member of the original set of alternatives must be true.

Second, think carefully about which theories or hypotheses are logically compatible with 

others. Forgetting that both of two supposed alternatives might be true can lead to a fallacy 

called affirming a disjunct. Some readers of Libet et al. (1983) seem to reason that either 

RP causes M or W causes M, so, if RP causes M, then W does not cause M (cf Sinnott-

Armstrong, 2011). However, this reasoning is fallacious because RP and W might both 

cause M, such as when RP, W, and M form a chain of causes across time.

Third, define the precise category that the conclusion will cover and include stimuli or tasks 

for all variations within that category. Failing to include a subclass of the phenomenon can 

lead to a fallacy called hasty generalization. An experiment using a specific kind of action 

cannot justify a conclusion about all actions, especially when the studied acts are atypical. In 

particular, Libet’s subjects arbitrarily chose when to flex their wrists with nothing at stake. 

What Libet found about these arbitrary, simple, trivial acts might not hold for important 

human actions that are based on conscious deliberation and require complex sequences. If 

one wants to draw a conclusion about all actions, one must be sure to include diverse kinds 

of actions in the experimental data itself.

How can one know whether one has included enough kinds of test alternatives, considered 

enough theories, and specified competitors that cannot both be true? The best way to 

minimize the chances of these and other mistakes is to seek early feedback from others, 

especially those who disagree with one’s views and assumptions. This includes people from 

other fields and backgrounds. Working together instead of alone is of great benefit: today’s 

team science activities have shown these advantages (see examples in Section 2.3).

2.1.3. Example strategy to minimize biases and errors—Experiencing cognitive 

biases or logical fallacies and having them influence research at least in part may be 

inevitable, but it is possible to diminish their impact on research practices by learning about 

them and by using concerted “slow” critical thinking skills (Kahneman, 2013). Appendix 

Table A1 has a few current references on ways to characterize and circumvent biases and 

errors.

One possible strategy is to organize a “premortem meeting” with fellow researchers 

before starting a new project (Klein, 2007). This exercise involves simulating a future 
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meeting, assuming the project has failed, and then working backwards from that outcome 

to determine what could have caused that “failure”. This meeting can include a focused 

conversation about existing biases and beliefs within the group that might influence 

the work, and then use imaginative exercises to collaboratively solve these issues. As 

researchers plan and implement their study, it is important to keep track of which methods 

are being chosen and why (see also Section 2.2. below). At this stage, researchers are 

encouraged to document which rationales may be biased and how. Skepticism is healthy in 

science; listening to data is critical, and trying to understand both how data do, or do not fit 

in with existing theories is GSP. A useful set of guidelines come from Abelson’s MAGIC 
Criteria (Abelson, 1995), which can be used to understand the Magnitude, Articulation, 
Generality, Interestingness, and Credibility of statistical claims in research. For the many 

reasons listed in the chapter, once researchers are comfortable operating within a scientific 

paradigm, it becomes especially challenging to shift their beliefs. But in order to progress 

science fairly, they must be willing to do so.

2.2. Pre-registration

The primary purpose of GSP during the planning stage of a scientific project is to ensure the 

correct outcome of that project, i.e., that valid conclusions can be drawn from the collected 

data. All phases of the project must be considered and aligned for this to be possible. 

Beyond the aspects mentioned above in Section 2.1, the many factors involved in MEEG 

projects make for a complex web of interdependent decisions that need to be taken. Pre-

registration, i.e. the practice of defining and (eventually) publicly disclosing experimental 

plans before data are collected and/or analyzed, can help in this process in at least two ways 

that we describe below, before highlighting different pre-registration procedures and tackling 

possible concerns.

First, MEEG analysis pipelines are particularly complex, combining a multitude of pre-

processing and analytical steps, each of which involves numerous parameters. Together, 

these result in a large number of combinations to choose from. This problem is known in 

the literature as the “garden of forking paths” (Gelman and Loken, 2013). Given that it is 

difficult to test the independent contribution of each combination (see Section 3.4.4), novice 

and even expert neuroscientists are often left with not knowing how strongly a given effect 

(or the absence thereof) depends on their analysis choices. Without detailed planning in 

advance, researchers often make data-dependent choices, which undermines to some extent 

the logic of statistical tests designed for a priori set hypotheses (Gelman and Loken, 2013; 

Luck and Gaspelin, 2017). Pre-registration helps researchers to carefully plan the analysis 

“path” that best fits the goals of the experiment.

Second, sometimes, the only valid conclusion is a null result. Unexpected, ambiguous, or 

null results are an essential part of scientific discovery. However, the academic incentive 

system rewards conclusive results and concise stories with publications in “high-impact” 

journals. “Negative” results are often not publishable, resulting in the infamous “file drawer” 

problem (Rosenthal, 1979) and the effort of the researcher remaining unrecognized. This 

mismatch between the academic incentive system and the reality of scientific work (“getting 

it published” rather than “getting it right”; Nosek et al., 2012) leads to publication bias 
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and unreliable practices in published work. This is reflected, for example, in a peculiar 

prevalence of p-values just below the critical (yet arbitrary) cut-off of 0.05 (Masicampo 

and Lalande, 2012) and inflated effect sizes in published studies (Button et al., 2013). A 

move towards increased transparency can help mitigate publication bias, selective reporting, 

and suboptimal research practices, and reward accurate work instead of striking results. 

Pre-registration is one option to make this happen. Initial evidence suggests that the research 

quality of pre-registered studies is judged higher than that of traditional publications 

(Soderberg et al., 2021), while a comparison of registered versus conventional reports 

revealed a striking imbalance of 44% versus 96% of positive findings, respectively (Scheel 

et al., 2021).

2.2.1. Different types of pre-registration—As mentioned above, pre-registration is 

the practice of defining and disclosing experimental plans before data are collected or 

analyzed. Such (public) disclosure of plans allows for them to be scrutinized and updated 

before they are executed, essentially inviting peer review not just at the final stages of the 

research project (i.e., publication) but throughout the entire lifecycle of the scientific work. 

This is facilitated by online platforms that allow pre-registration of work during preliminary 

stages and allow revision of the initial protocol (see Appendix Table A1). Another recently 

suggested format for this purpose is “prereg posters”, i.e., conference posters that present 

planned scientific projects (Tibon et al., 2018; Brouwers et al., 2020). We use the term 

“unlocked pre-registration” to refer to this process of depositing planned work in the public 

domain and calling for feedback from fellow researchers. At this preliminary stage, the 

project’s experimental design and analytical approaches are openly discussed, reviewed, and 

adjusted in the general scientific arenas. These aspects of the project remain “unlocked” 

and are subject to changes following peer feedback. Regardless of the platform used, 

presenting research plans prior to data collection allows researchers to receive feedback 

on their hypotheses, design, and analyses from colleagues, a process that will likely improve 

the study.

Once the protocol is finalized, it is amenable to a formal pre-registration, i.e. a time-stamped 

protocol on a public website (see Appendix Table A1) which describes the experimental 

and analytical procedures of the study in detail. We use the term “locked pre-registration” 

to indicate that, at this point, the protocol is finalized in principle and that any deviation 

will have to be clearly justified and documented in the final research paper. This type of 

pre-registration can help emphasize the planning phase of a study (also as an educational 

resource for trainees), increase procedural transparency, and serve to publicly take credit for 

an ongoing study, hypothesis, or theoretical model even before the results are in.

A study protocol can also be locked via the submission of a “Registered Report”. This is 

a published article format that was pioneered by the journal Cortex in 2013 (Chambers, 

2013) and has since been implemented by more than 250 journals (Nosek et al., 2018; 

Chambers and Tzavella, 2022). In contrast to the pre-registration options discussed above, 

study protocols submitted as Registered Reports systematically undergo editorial triage and 

peer-review before data collection starts. In the case of “in principle acceptance” (stage 

1), the journal commits to publishing the final report irrespective of whether the results 

match the initial hypotheses. In a second phase, following data collection and analysis (stage 
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2), the full study is submitted and reviewed again, with guaranteed publication as long as 

the approved protocol was followed (with changes sufficiently documented and justified). 

Registered Reports are beneficial for individual researchers as they motivate and facilitate 

thorough and careful planning, and provide the opportunity to receive expert feedback on 

the research plan before data collection. They further ensure acceptance for publication, 

independent of statistically significant results. For the scientific community in general, they 

increase the transparency of the scientific process, reduce suboptimal scientific practices 

(although the impact of pre-registration alone on such practices is debated (Devezer et al., 

2020; Rubin, 2020)), and reduce publication bias in the scientific literature.

2.2.2. Potential concerns regarding pre-registration—Despite the benefits of the 

pre-registration approaches outlined above, there are some commonly raised concerns. 

First, “publicly pre-registered protocols might be scooped”. However, with locked pre-

registrations and Registered Reports, the time-stamped official report provides proof of 

when the study was originated by the researcher, and should therefore alleviate these 

concerns. In this respect, pre-registration could be particularly beneficial for research teams 

working in competitive fields or with fewer resources.

Second, “the project’s progress incurs a delay”. Namely, for Registered Reports, the review 

process for stage 1 might add months before data collection can start, which might not be 

feasible for short project durations or for projects investigating an acute phenomenon. In this 

case, other forms of pre-registration discussed above (posters, locked pre-registration on a 

dedicated website) might be more appropriate. However, when time permits, this can also be 

turned into a benefit, as it shifts some of the heavy load from the publication phase to the 

planning phase.

Third, “proficiency is required for all types of pre-registration”. Coming up with a detailed 

analysis protocol, especially for complex methodologies like MEEG, requires considerable 

experience in making informed decisions and utilizing existing pipelines (perhaps from 

other laboratories; Paul et al., 2021). Nevertheless, pre-registration can still benefit trainees 

and inexperienced researchers, with support from their mentors and supervisors. For 

instance, they can gain the necessary expertise by starting with a replication of a previously 

published study, where experimental and analysis parameters are more easily derived. 

Moreover, the complete preprocessing pipeline (and some of the analyses) can be performed 

on pilot data, obtained prior to pre-registration. Standardized study pipelines (see Table 1), 

templates (e.g., Section 3.6.2), and guidelines (e.g., Paul et al., 2021) are also excellent 

means to narrow down the possibilities in MEEG analysis (a few more examples are also 

discussed in Section 3.6). Thus, a research lifecycle that includes pre-registration provides 

methodological and research training opportunities, even prior to the pre-registration step.

Finally, some might worry that “such a strict format would hinder the creative process of 

science”. It is important to note that locked pre-registrations and Registered Reports do not 
prevent exploratory analyses or reporting of unexpected findings. The only requirement is 

that any addition or change to the original protocol is adequately labeled as such, so as to 

keep track of the original idea and analysis plan in the published report.
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Despite their merits, pre-registration and Registered Reports are not the only answer to the 

replication crisis, nor do they guarantee scientific integrity. However, together with other 

good practices such as standardized pipelines and open data and code, they are an important 

tool for improving the transparency and credibility of published science.

2.3. Reproducibility and collaboration: some examples and resources

GSP surrounding open science and reproducibility aims to produce results that can be 

verified by others (Niso et al., 2022). “Reproducible research” here refers to different 

but related concepts (Box 2), which all increase the reliability of the observations and 

conclusions, in the sense that they are independent of who makes them. This goes hand 

in hand with open practices, which make the processes and materials public. Numerous 

resources exist to aid researchers in implementing open science and to conduct reproducible 

research, some of which are listed below in this section.

Working reproducibly and openly is not just a matter of deontology, or higher morals. 

There are also “selfish reasons” to pursue reproducibility (Markowetz, 2015). For one, it 

promotes careful bookkeeping so that not just others, but also researchers’ “future self” will 

be able to understand the work done in as much detail as possible, as easily as possible. 

Ensuring open access to pipelines as early as possible is also a good way of obtaining 

feedback from the community, and therefore detect potential mistakes or errors and fix them 

earlier. Furthermore, working openly and reproducibly helps write papers more efficiently, 

especially results sections (Markowetz, 2015), provides a citation advantage (Piwowar and 

Vision, 2013; Clayson et al., 2021), facilitates compliance with publishing guidelines (Nosek 

et al., 2015), increases job competitiveness (Nosek et al., 2022), expands networks (and, 

consequently, chances of collaboration), and more (McKiernan et al., 2016; Allen and 

Mehler, 2019). As such, these practices do require more upfront work, which may make 

them seem like they are slowing down the research process, but they pay off in the long run 

for the individual researcher as well as for the field. It is important however, to remember 

that the incentive structure needs to change so that the adoption of these practices becomes 

larger and its burden is not only the younger generation’s responsibility (Allen and Mehler, 

2019).

2.3.1. Open Science Framework (OSF)—OSF is a general platform that supports 

collaboration and reproducibility by providing tools for efficient collaborative work and the 

coordination of different actors across a wide range of activities. For example, it allows 

researchers to manage, document, and share all the products of their workflow, possibly 

including the pre-registration of the initial idea, code repositories, and intermediary reports, 

up to the preprint of the final report. OSF is a free online platform developed by the non-

profit organization Center for Open Science. This and other resources and general-purpose 

tools are listed in Appendix Table A1.

2.3.2. The Turing Way—The Turing Way (TTW, Community et al., 2019, also see 

Appendix Table A1) provides instructional resources on how to conduct reproducible 

and replicable work. TTW is an open-source, community-developed online collection 

of guides to reproducible, ethical, inclusive, and collaborative data science. Here we 
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highlight a selection of TTW guides. (1) Guide for Reproducible Research provides general 

recommendations for implementing reproducible research practices, such as storing and 

sharing the project’s computational environment, using a version control system, and 

testing the code. (2) Guide for Project Design covers how to effectively plan and design 

a research project. For example, it illustrates how to write a roadmap of the project’s 

goals, resources, and needed actions, how to structure a project’s repository (e.g., folder 

organization), and how to clearly set up contribution pathways when working openly. (3) 

Guide for Communication offers recommendations for communicating research to wider 

audiences (e.g., through blog posts, podcasts, or social media), or to a specialized public 

(e.g., during posters and conferences talks), in an inclusive and accessible way. (4) Guide for 
Collaboration provides advice on how to set up remote collaborative projects, while working 

openly and encouraging diversity. In order to prevent human conflicts overshadowing 

collective endeavors, one of these recommendations is to include a Code of Conduct that 

explains how contributors are expected to behave (and what to do if these expectations 

are violated). (5) Guide for Ethical Research discusses the main concepts and institutions 

associated with ethical research, and provides examples through real-world case studies. 

These guides are continuously updated by the community, to accelerate the inclusion of new 

reproducibility practices and GSP.

2.3.3. #EEGManyLabs—The #EEGManyLabs project (Pavlov et al., 2021) is a large-

scale, international replication effort. Concerns regarding the replicability of psychological 

phenomena have been spreading to multiple subfields of psychological science (Open 

Science Collaboration, 2015). The scale of the replication crisis in MEEG research has 

yet to be defined but, given the relatively noisy data, challenges to acquire data from 

large numbers of participants, and the analytical flexibility in MEEG analysis, MEEG 

research is unlikely to be free from replicability concerns. In response to this, the ongoing 

#EEGManyLabs project (Pavlov et al., 2021) aims to replicate over 20 of the most 

influential psychophysiological EEG findings, in at least three laboratories each with largely 

increased statistical power. To ensure high quality, each replication effort takes advantage of 

the Registered Reports format (see Section 2.2), uses standardized operating procedures and 

analysis pipelines, and passes internal review by the advisory board and original authors.

This extensive commitment to collaborative and open research is expected to increase 

collective confidence in EEG research, inspire new standards for reporting EEG findings, 

provide researchers with a large open database of raw data and analysis pipelines for further 

exploration, and an effect sizes catalog of various commonly studied EEG phenomena, 

including ERPs, in order to support the design and initiation of novel research. Besides the 

direct outcomes, the project aims to facilitate a shift towards collaborative psychological 

science and neuroscience. Studying increasingly subtle EEG effects requires large sample 

sizes, which are generally not easily achievable in a single lab. For EEG research to continue 

to thrive in the 21st century, multi-site high-powered studies are required, improving 

statistical power, reproducibility/replicability, and generalizability.

In addition to #EEGManyLabs, similar collaborative efforts have emerged in the past several 

years, for example, multi-site replication initiatives by Nieuwland et al. (2018), Nave et 

al. (2020), and Whiteford et al. (2020), or a recent Many Analysts initiative to invesigate 
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effects of variability in the pre-processing and analysis pipeline (EEGManyPipelines). So 

far, they are still only sporadic, but may be the beginning of a more widespread trend. These 

initiatives and resources are listed in Appendix Table A1.

2.3.4. ERP CORE—The ERP CORE (Compendium of Open Resources and 

Experiments; Kappenman et al., 2021 see also Appendix Table A1) is a freely available 

online resource providing stimulus presentation scripts, data recordings, analysis pipelines, 

and results for 6 well-known event-related potential (ERP) paradigms. As such, it provides 

an example of a project that has successfully replicated influential ERP experiments and 

made all material freely available.

The replicability of MEEG research can be increased by taking advantage of information 

about optimal design and analysis provided by prior studies. However, ground truth is not 

typically known, making it difficult to know if the methods from a given prior study are 

actually optimal and generalizable. The ERP CORE was created to provide a reference point 

for future research by taking widely replicated MEEG paradigms, optimizing them, and 

providing information about them that can be used as solid ground for subsequent studies.

This open resource contains stimulus presentation scripts, data from 40 neurotypical 

individuals, and data analysis scripts for six common MEEG paradigms that are designed 

to isolate seven common ERP components: N170, mismatch negativity, N2pc, N400, P3b, 

lateralized readiness potential (LRP), and error-related negativity (ERN). These effects have 

been replicated so many times that the question is not whether they exist, but rather how best 

to obtain them. The specific versions of the paradigms in the ERP CORE were developed 

in collaboration with multiple experts with the goal of creating optimized versions that 

produce valid and reliable effects with approximately 10 minutes of data collection per task. 

Moreover, the online resource includes extensive information about data quality and effect 

sizes that can be used as a reference for comparison with new studies and to conduct power 

analyses. Finally, data-driven recommendations have been provided for time windows and 

electrode sites that are optimal for quantifying amplitudes of each component, which can 

be used to provide a priori analysis parameters for future research. This may be particularly 

useful for investigators acquiring MEEG data with low density/portable systems.

The individual ERP CORE tasks can simply be inserted without change into other studies 

(e.g., large-scale clinical studies that include an ERP measure) or used as a starting point 

for new tasks. The data processing pipelines can be used without change to provide a priori 
analysis methods or used as a starting point for new analyses. The relatively large existing 

dataset can be used to test new hypotheses (e.g., regarding correlations among components) 

or to assess how new analysis methods work across a variety of paradigms.

3. Collecting, analyzing, reporting, and sharing

Where the previous section considered planning and pre-planning stages, this section 

considers the actual execution of the work: the collection, analysis, and publication of data 

and results. For such work, there exists a category of GSP that is very specific to the exact 

procedures that are being performed, and the reader is encouraged to follow them where 
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appropriate. We will cite some of them here. However, as the main focus of this paper is on a 

more general form of GSP, this section will primarily contain broader considerations.

One key element of GSP is the understanding that hardly any decision with respect to a 

research project can be made without this decision affecting other aspects: experimental 

design, data collection and storage methods, signal processing steps, analysis pipelines, 

documentation, and reporting all interact with each other.

With respect to data collection, Section 3.1 discusses the availability of open acquisition 

protocols, considerations with respect to clinical recordings, the sharing of data, and the 

option of not, in fact, recording any data at all, depending on the needs of the project. 

Section 3.2 deals with software, providing help and resources both when writing code from 

scratch, and when choosing which MEEG software to use. Both newly written code and the 

choice of toolbox can have an impact on later steps in the project. Next, this section covers 

various aspects of data analysis: Signal processing (Section 3.3), statistics (Section 3.4), 

and machine learning (Section 3.5). Here, high-level GSP primarily emphasizes the general 

understanding of each method and its assumptions, especially considering its dependencies 

and interactions with respect to experimental design. Finally, Section 3.6 addresses standards 

surrounding data organization, analysis, and reporting. Making use, and contributing to the 

development, of such standards enable, among other things, easier sharing, collaboration, 

and (mass) analysis during a project, and accurate documentation and reporting afterwards.

3.1. Data collection

Data collection is often the next step after the project has been properly planned. Below, 

we describe GSP related to stimulus presentation, present open acquisition protocols 

for scientific studies, and introduce some relevant considerations for research studies in 

clinical settings. Of course, not every scientific project requires acquiring new data. Open 

repositories (where pre-recorded datasets can be downloaded free of charge) or carefully 

designed simulations can allow some projects to go without recording any data at all. 

Therefore, we will also present some examples of MEEG open data repositories and tools 

for data simulations. Thus, in general, GSP for data collection serves not just to record the 

cleanest possible data, but also to carefully consider what the needs of a project are, what 

data and procedures may already be openly available and verified, and which products of the 

current work may be of use to others.

3.1.1. Stimulus presentation and synchronization—In MEEG experiments, the 

main experimental manipulation is usually done in software, e.g., by presenting different 

stimuli to the participants. For stimulus presentation and response registration, a wide array 

of software solutions is available, including online platforms. In the context of GSP, it is 

important to be aware that even the same software may perform differently on different 

hardware with respect to a number of parameters, including latency and jitter. Therefore, 

the main recommendation here is to properly measure and document these parameters. This 

recommendation extends to all data that is simultaneously recorded, since any differences 

in timing between modalities may need to be corrected for during analysis. Bridges et al. 
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(2020) provide timing measurements for a number of stimulus presentation packages, but 

also stress the importance of making one’s own measurements.

Besides stimuli, responses, and the MEEG itself, MEEG experiments may additionally 

record audio, video, motion capture, eye tracking, and any other modality deemed relevant. 

This can result in complex set-ups where each modality is recorded by a different device, at 

a different sampling rate, in a different format, and relying on a different internal clock. As a 

result, time stamps, latency, and jitter may vary for all of these modalities. Both for analysis 

and later reproducibility, it is important to measure these differences, and correct for them 

where possible. The three most common ways for measurement and/or synchronization are 

the following.

The most accurate method employs dedicated hardware capable of recording and/or 

comparing multiple sources of data simultaneously. For example, such a device can acquire 

physical measurements of visual and auditory stimuli using photodiodes and microphones, 

respectively, and compare their timings. Such physical measures may also be recorded 

directly by some MEEG amplifiers as auxiliary channels, allowing even jittered offsets to be 

corrected post hoc.

When no direct hardware connection can be made between data streams, one alternative is to 

introduce external triggers that can be recorded by all modalities separately. This creates one 

identifiable point in time along which modalities can be aligned. Note that, because clocks 

may drift, the procedure may need to be repeated at set intervals.

The lab streaming layer (LSL) (Stenner et al., 2021) (see Appendix Table A1) presents a 

software-only solution to synchronizing different modalities. This is a free and open source 

software framework that allows for the transmission and collection of any number of data 

streams across one or more devices on a local network. One of its features is automatic 

data synchronization, and an increasing number of manufacturers of electrophysiological 

hardware support LSL by providing real-time access to their data in this open format. 

However, LSL does not know the age of the sample when it is first recorded, or the delay 

between the hard- and software: therefore, at least an initial hardware-based measurement of 

this delay is still recommended.

Also note that calibration test results represent research data in their own right, and the 

results of teams using different combinations of hardware and software can provide valuable 

information about optimal configurations for certain kinds of tasks. This is particularly 

important in experimental protocols being implemented in multiple testing sites. To make 

optimal use of this information, software and hardware configurations need to also be 

documented in detail, as discussed in Section 3.6.

3.1.2. Open acquisition protocols and MEEG data collection—Open acquisition 

protocols provide an open-science approach to optimizing the procedures and methods 

around data collection. MEEG recordings contain brain activity of interest, but these signals 

are tiny and are mixed with a variety of biological and nonbiological noise sources that 

can dwarf the neural signals. Substantial effort and ingenuity are required to extract reliable 

Niso et al. Page 16

Neuroimage. Author manuscript; available in PMC 2024 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and meaningful brain signals from the noise. Open acquisition protocols help formulate and 

communicate some of the required procedures.

The most important step in dealing with noise is to record the cleanest possible data 

(Sinha et al., 2016). Post hoc solutions may exist, but the most straightforward signal 

processing method for reducing noise — filtering — can cause significant distortion of 

the signals in the time domain, shifting latencies and even producing artificial peaks and 

oscillations (Tanner et al., 2015; Widmann et al., 2015; Yael et al., 2018). Traditionally, 

some sources of noise in EEG recordings were reduced by abrading the top layer of the 

scalp and adding conductive gel or solution to improve the low-impedance contact between 

the electrode and the living tissue of the skin. Today many researchers use high-impedance 

systems for reasons of speed and safety. Unfortunately, these systems are prone to an 

increase in skin potentials and other sources of low-frequency noise, especially when the 

recording environment is warm, which can in turn reduce the statistical power of the study 

(Kappenman and Luck, 2010). Another important technical factor is an impedance mismatch 

between an active EEG recording sensor and the reference electrode, which increases the 

amplification of non-EEG signals. Many other factors also impact the noise level, such as 

muscle tension, movements, perspiration, and nearby electronic devices. Thus, we are trying 

to record a needle of brain activity in a haystack of noise.

To promote optimal methods for clean data recording, a group of researchers has published 

a detailed EEG recording protocol that provides a precise description of the “special sauce” 

that they developed over decades for maximizing the signal-to-noise ratio (SNR) (Farrens 

et al., 2020). For example, participants are asked to vigorously comb their scalps prior to 

electrode application, and the electrode wires are oriented during electrode application to 

minimize lead tension and movement artifacts. Details like these do not typically appear 

in Method sections of journal articles. A revised version of the protocol is also available 

with modifications designed for safe testing during the COVID-19 pandemic (Simmons and 

Luck, 2020). In addition to sharing these tried and tested methods, this protocol also serves 

as a model for other researchers who wish to publish their protocols. It is published on 

Protocol Exchange (see Appendix Table A1) — a free protocol repository that also provides 

an automatic way to create a digital object identifier (DOI) and indexing on Google Scholar. 

Other researchers are strongly encouraged to publish their recording protocols, which should 

increase transparency and reproducibility as well as spreading more effective recording 

methods.

In recent years, several scientific publications have provided guidelines for the collection 

of MEG data (Bagic et al., 2011; Gross et al., 2013; Hari et al., 2018). In the clinic, 

patients present their own confounds and contaminants that must be accounted for, discussed 

in detail in the next section. Recently, (Mosher and Funke, 2020) provided practical 

guidelines for the preparation of MEG instruments and patients or subjects for routine 

operations. Among other things, this acquisition protocol highlights localization as a crucial 

issue in multiple ways. Recording individual locations of the electrodes and, importantly, 

head position indicator coils, e.g. using a polhemus stylus, is crucial for accurate source 

localization. Also the “location” of the participant’s head as a whole needs special attention: 

it must be deep inside the helmet, and must not be allowed to “slump” out, lest proper 
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brain coverage is lost and unrecoverable. Other considerations for MEG data collection are 

covered in more detail in Mosher and Funke (2020).

3.1.3. The clinical setting and intracranial data collection—In the clinical setting, 

recordings collected from patients provide unique opportunities not only to diagnose disease 

but also to advance our understanding of healthy brain functioning. However, working 

with patients requires special considerations. For smooth clinical operations, researchers 

must respect the patient’s comfort, contemplate costs, and ensure the collection protocol is 

designed and followed properly; otherwise, not only is rescheduling the patient difficult, but 

the very act of rescheduling places undue stress on the patient, who may assume that some 

serious finding in their data has necessitated a second exam. For outpatients (i.e., patients 

not admitted to a hospital), the procedures otherwise follow the same GSP as for common 

acquisition protocols given above. For inpatients (i.e., hospitalized patients) additional 

considerations are required, particularly for patients with surgery for the implantation of 

invasive electrodes.

Intracranial EEG (iEEG) signals are collected for the investigation and treatment of various 

pathological conditions including epilepsy, Parkinson’s and tumors. Epilepsy, in particular, 

often requires the placement of dense arrays of electrodes subdurally (electrocorticography: 

ECoG) or intracerebrally (stereoelectroencephalography: SEEG) over diverse cortical 

regions. In contrast with non-invasive techniques, intracranial recordings present several 

advantages such as: (1) enhanced SNR, (2) focal recordings directly from the neuronal 

source, (3) minimal signal distortion due to the skull and other tissues (Fahimi Hnazaee et 

al., 2020), and (4) the possibility to record from deep brain structures (Buzsáki et al., 2012; 

Parvizi and Kastner, 2018). In addition to SEEG or ECoG, some centers add microwire 

electrodes to benefit from signals with higher spatial and temporal resolution that give a 

precious and rare access to multi and putative single neuron activity in humans. Microwires 

are very sensitive and their use requires special attention at all steps of the acquisition, 

from the implantation to the recording. For detailed recommendations on microelectrode 

manipulation and technical settings, see Lehongre et al. (this special issue).

Research with iEEG data provides a unique opportunity to address pathophysiological, 

physiological or cognitive questions, but because of their invasiveness, iEEG implantations 

are performed only with the strongest consideration for the standard of care for the 

patient. This requires carefully selected research protocols, i.e., protocols where iEEG 

has a significant and specific benefit relative to non-invasive techniques and are suitable 

to the patients’ abilities. The “inpatient” collection setup is technically very challenging, 

from obtaining patient consent (explaining the procedures) to data acquisition, and requires 

limited interference with clinical procedures. The recruitment of participants is therefore 

limited, requiring multiple months/years or the involvement of multiple centers in order 

to accumulate an adequate number of patients. For physiological/cognitive studies, the 

patient’s pathology and medication regimen can affect the recorded activity relative to a 

healthy participant. Cognitive impairments can make the task difficult, frustrating the patient 

and impairing the protocol. The brain coverage of iEEG electrodes is individualized, focal, 

and sparse, and thus can complicate group studies (for further details see Dubarry et al., in 

the same issue).
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Therefore, a close collaboration between clinical staff and researchers is key to collecting 

high-quality iEEG data. Optimally, clinicians themselves are involved in the research 

protocols, and staff are dedicated to interfacing between clinicians and researchers (Mercier 

et al., in the same issue).

Simultaneous recordings of iEEG, scalp EEG, and/or MEG capitalize on the strengths 

of each respective technique to describe the underlying brain activity accurately (high 

SNR) and comprehensively (overall view). First, from a clinical perspective, simultaneous 

recordings of iEEG with EEG and/or MEG can provide complementary information 

regarding the epileptogenic zone (Santiuste et al., 2008; Kakisaka et al., 2012; Gavaret 

et al., 2016). Second, in basic research, iEEG has sometimes been considered as capturing 

the “ground truth”, thus providing methodological advances for evaluating how known 

cortical activity is captured by non-invasive methods (Koessler et al., 2015; Pizzo et al., 

2019; Seeber et al., 2019). Finally, in systems and cognitive neuroscience research, the 

analysis of signal fluctuations evoked by individual stimuli in depth and surface recordings 

can be exploited as a crucial source of information for refining our understanding of the 

neural activity underlying specific cognitive processes (Dalal et al., 2009; Dubarry et al., 

2014). Thus, understanding the relationship between surface signals and the spatiotemporal 

configuration of the underlying cortical sources is central to both basic fundamental and 

clinical research.

However, introducing scalp EEG and/or MEG simultaneous recordings to an already highly-

constrained recording setup for iEEG creates a large number of important considerations. 

For scalp EEG, the presence of the surgical dressings can be challenging, and the set-up 

may require constant regelling of scalp electrodes and addition of physiological adhesive 

to ensure that scalp electrodes remain in place and operational. Signal analysis must also 

take into account the dramatic changes in electric field caused by the implants, their 

burrholes and craniotomies, which create large skull discontinuities (Dalal et al., 2009; 

Kirchberger et al., 1998). For MEG, conducting simultaneous recordings with iEEG requires 

a dedicated MEG facility housed in a clinical setting. The complex setup presents obvious 

physical constraints (e.g., fitting bulky iEEG electrode connectors within the MEG dewar) 

and significant technical challenges that occur when introducing metallic materials into a 

shielded MEG environment. Because the patient is away from the clinical monitoring unit, 

the exam must be carried out within a limited period of time, usually not more than one 

hour. Furthermore, MEG signal quality can be drastically affected by the presence of the 

iEEG electrodes and equipment (e.g., cables, connectors). To date there is only one group 

that has achieved the simultaneous acquisition of MEG, EEG and iEEG signals (Dubarry et 

al., 2014; Gavaret et al., 2016).

In summary, simultaneous intracranial and scalp recording sessions require complex 

logistics and organization between clinical staff, patient, technologists/research engineers, 

and clinicians to ensure smoothness of procedures and minimization of time spent outside 

of the clinical monitoring unit (see also Mercier et al., in the same issue). Planning such 

recordings should therefore only be considered when clearly motivated by the research 

hypothesis and strongly supported by the clinical staff. Nonetheless, recordings in the 
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clinical setting provide a unique opportunity to research various aspects of brain activity, 

with potentially significant benefits to understanding the human brain.

3.1.4. Open MEEG data repositories—Data sharing is important for solid scientific 

progress (Gorgolewski and Poldrack, 2016; Poldrack et al., 2017, 2020). While significant 

resources have been invested in neuroimaging studies worldwide, the number of projects 

which publicly share their data remains limited. Over the last years, some initiatives have 

emerged to openly share MEEG datasets. These repositories foster reproducibility of results 

and help to answer specific explorative scientific questions not originally conceived at the 

time of data collection and study design, increasing data usage and longevity. Furthermore, 

they allow data aggregation, attaining larger sample sizes which could be used to increase 

statistical power and for approaches involving artificial intelligence (see Section 3.5). Open 

repositories also facilitate data access to researchers with less funding opportunities and 

resources, giving back to society part of the value invested. Some examples of open 

MEEG repositories are: Human Connectome Project (HCP) (Larson-Prior et al., 2013), The 

Open MEG Archive (OMEGA) (Niso et al., 2016), The Cambridge center for Ageing and 

Neuroscience (Cam-CAN) (Shafto et al., 2014; Taylor et al., 2015), The Temple University 

Hospital EEG Data Corpus (TUH EEG Corpus) (Obeid and Picone, 2016), and OpenNeuro 

(Markiewicz et al., 2021). See more resources in Appendix Table A1.

3.1.5. Simulating data—Up to this point we have discussed data obtained by recording 

brain activity from actual (human) participants or patients. However, there are a number of 

reasons why the generation of so-called synthetic, toy, or simulated data may sometimes be 

preferable to data from live participants.

One practical reason concerns the cost of data collection. Recording real data requires 

the development and validation of specific experimental paradigms, time to record from a 

sufficient number of participants, and the acquisition of all necessary supportive material 

including human resources. Simulating data can be much more efficient, especially given the 

dedicated simulation tools available today. A combination may also be useful, for example 

when testing planned analysis pipelines on simulated data prior to implementing actual data 

collection.

Another reason why it may be preferable or even necessary to use simulated data instead 

of real data is that only simulated data can provide a fully known ground truth. To verify 

the accuracy of a method, its results need to be compared to a known truth. Unfortunately, 

with MEEG recordings no such ground-truth ideal of brain activity is available. Therefore, 

researchers often construct synthetic data in such a way that its ground truth is known, 

allowing the idiosyncrasies of a method to be properly evaluated.

A number of software packages have recently become available for creating simulated data 

using a number of fundamentally different methods. For example, generative-adversarial 

neural networks can mimic existing EEG data (Hartmann et al., 2018). Such neural 

networks take previously recorded real data and generate new synthetic data that cannot 

be distinguished from the original data it is based on. As such, the resulting data does not 

contain a known ground truth, but can be used for data augmentation, data recovery, or 
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up-sampling. The Virtual Brain, on the other hand, uses interconnected neural mass models 

based on differential equations to simulate the low-level dynamics of clusters of neurons 

(Sanz Leon et al., 2013). This results in a potentially highly detailed ground truth. However, 

the most common method of MEEG data simulation employed in the past decades relies on 

a simplified forward model which describes MEEG as a combination at the scalp of activity 

projected from a limited number of generally independent sources in the brain. Following 

this approach, the simulation of MEEG data requires the generation of a number of source 

activations, the linear mixing of these source activations to obtain scalp activations, and the 

optional addition of noise. By generating these three factors themselves, scientists can be 

sure to know the ground truth of the data. Previously, researchers often wrote their own code 

for such simulations, limiting standardization and reproducibility. However, one recent free 

and open-source MATLAB-based EEG data simulation toolbox, SEREEGA, is based on this 

common method and provides a standardized, reproducible framework to simulate data in 

this fashion (Krol et al., 2018). See Appendix Table A1 for a selection of these and other 

MEEG simulation tools.

Note that any simulation approach is, itself, a method that makes certain assumptions. As 

such, it is a tool that provides certain functionality, but cannot guarantee any particular 

quality or appropriateness of the outcome. Each simulation needs to be performed for a 

particular purpose, requires different parameters, and makes specific demands with respect 

to different kinds of validity. As is the case with all tools and methods, it remains crucial to 

carefully consider a simulation’s parameters and their appropriateness for the particular task 

at hand. For example, when a method that assumes linearity in the data performs accurately 

on simulated data that has been constructed using a linear model, it has not been proven 

that this method will transfer well to real data, which may not exhibit the same linear 

characteristics. That said, simulation is a powerful tool, as it gives full control over the data. 

An appropriate simulation can provide a standardized way to objectively and reproducibly 

validate and evaluate the tools we develop and use.

3.2. Software strategies for GSP

Computer software is at the core of any MEEG data analysis project. Be it code that 

scientists write from scratch, or software toolboxes that support them, the main purpose 

of GSP at this level is generally to promote its reliability. However, correct and readable 

code plays a key role in reproducibility as well. A further set of GSP is relevant when 

using other, published software. In this section, we first highlight a few key principles that 

scientists can benefit from when designing code, and then briefly review how today’s most 

widely used software toolboxes have developed and engage in GSP. In general, GSP for the 

proper writing and use of software can help provide clarity and transparency to the research 

process, aid reproducibility, and verify the robustness of results.

3.2.1. Designing code for correctness and reproducibility—A core ingredient of 

a scientific experiment is to document, in detail, what steps have been performed, so that 

they may be reproduced. When the number of steps is small, the Methods section of an 

article may contain them in full. However, journal page limits ensure that this is frequently 

not the case in modern MEEG studies, requiring Methods to be summaries that omit many 
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important details so as to not cloud the ‘big picture’. This leaves the programming code 

itself as the authoritative source of the exact analysis procedures used in the collected 

data. With modern programming languages and tools, code can serve this purpose well, 

if it is consciously written to do so. If, however, the programmer’s focus is solely on 

obtaining the desired output, without regard for transparency in how results are obtained 

(e.g., documentation, easy to follow program flow, version control), chances are high that 

the results will not be reproducible, or maybe even wrong (Miller, 2006; Casadevall et al., 

2014; Pavlov et al., 2021).

Much has been written already on the topic of how to produce code that clearly 

communicates analysis steps, and is applicable to stimulus presentation and experimental 

control scripts. The reader is encouraged to look at the writings of van Vliet (2019) and 

Wilson et al. (2014). The most important thing is to have the mindset that scientific 

code is not done until it is well organized. This has little to do with technical skills. 

Rather, this is about proper “housekeeping”: making sure unneeded code and files are 

archived and removed from the main project, making sure everything is named properly, 

long and convoluted scripts are cut up into commented modules that are easier for others 

to understand, etc. As the analysis advances and new code is written, clutter inevitably 

accumulates. Fortunately, there are tools for organizing files containing code, such as 

version control systems (see Appendix Table A1). With some discipline, these tools allow 

keeping track of every change made to the code, and allows efficient collaboration at scale. 

Furthermore, more and more analysis toolboxes such as those presented below offer script 

generators to improve reproducibility and generate code that is easy to understand and adapt 

(Es et al., 2021), which reduces the burden on the researcher.

3.2.2. Software toolboxes for MEEG data analysis—A number of comprehensive 

software toolboxes exist for analyzing MEEG data. When considering reproducibility, the 

choice of an analysis environment to work in should not be made lightly, as this decision 

may commit the data analyst for not only the current project but also future studies. 

Regardless, some points to consider are the required (and available) level of programming 

skill and financial resources, the availability of a graphical user interface, and the availability 

of local software support and expertise. However, ultimately, not all toolboxes are equally 

well-suited for all types of analyses or modalities (EEG, MEG, fMRI…). Although the most 

common analysis methods are implemented in most toolboxes, some offer more advanced 

algorithms in one or another environment, and more advanced projects may require applying 

methods available across several toolboxes. In that case, care should be taken in assuring 

that all technical information is handled properly across environments. Monitoring and 

seeking advice from the community via the relevant user forums is advisable.

Table 1 highlights current differences and summarizes the most relevant features of five of 

the most commonly used MEEG analysis environments to date. These toolboxes are under 

constant and active development, and the developers cooperate to reimplement each other’s 

methods and reflect on the best ways to do so (e.g., Jaiswal et al., 2020, or Delorme et al., 

2022). These toolboxes all implement standard and advanced analyses, and enforce GSP in 

some way, but each with their own peculiarities, inherited from the laboratory traditions, 

equipment, software environments and applications for which they were developed (see Box 
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3). Attention to these specifics may aid the decision for which toolbox(es) to optimally use 

for a given project.

In line with current GSP (see Section 3.2.1), these toolboxes can generate scripts and 

reports. In particular, reports that mix code and human readable narratives are handy tools 

that allow saving the results and the code that generated them in one document, easily 

accessible, and readable with any document viewer. If these reports expose all (including 

default) parameters and software versions, they can readily be used to reimplement an 

analysis with minimal burden, even in a relatively distant future. This feature is particularly 

important because backward compatibility with previous versions can hardly be ensured. 

At the time of publication, archiving of code and reports on to a public repository, ideally 

with a permanent digital object identifier (DOI), is a desirable step that greatly facilitates 

reproducibility.

Given that each toolbox is likely to have its own idiosyncrasies and unique implementation 

even for ‘standard’ methods, it is GSP to perform the same analysis pipeline in different 

toolboxes and compare their outcomes in order to avoid results being affected by such 

issues. When the same analyses across toolboxes support the same conclusion, this 

strengthens the robustness of the results.

3.3. Signal processing

Signal processing is the step in the research lifecycle that extracts from the raw data the 

key information needed to answer the scientific question being asked. Previously published 

GSP primarily concerns the nature of the pitfalls or limitations with respect to various 

methods, and the recommendations to avoid them. However, these vary largely depending 

on the specifics of the methods and characteristics of the recordings. Therefore, given the 

ever-growing number of tools routinely used to (pre)process MEEG data and the wide range 

of experimental protocols in the field, a systematic exploration and exhaustive account of 

GSP for all MEEG signal processing is not practically feasible (although a number of 

guideline documents exist, listed in Section 1). Instead, this section offers general high-level 

recommendations for better planning and designing the signal (pre)processing components 

of an MEEG study.

First, the goal of the study (i.e., the question it seeks to resolve) dictates a possible set of 

signal processing methods. From this set, the analysis methods should be chosen before 
finalizing the experimental task design (e.g., see Section 2.2). This ensures that collected 

data can be optimally examined with the projected tools. For example, if the plan is to 

examine slow oscillatory components in the signal, or run detrended fluctuation analysis 

on the data, it is crucial to make sure the temporal windows that will be analyzed are 

long enough to allow for such analyses, or that the data themselves are collected using 

appropriate analog filtering. Although it is possible to consider one’s analysis options based 

on the properties of the available data, this approach might result in “p-hacking” (Simmons 

et al., 2011) and other biases mentioned in previous sections.

Second, it is very important to understand how different signal processing tools transform 

the data, and what the transformed signal reflects or measures. This does not mean 
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that everyone should master the mathematical and implementation details of the signal 

processing tools they use, but it is important to develop an intuitive understanding of these 

tools and to be aware of the parameters and default settings associated with the various 

processing steps in the pipeline (e.g., what filter parameters were used and why). The 

minimal level of understanding of a tool should include an appreciation of its limitations or 

pitfalls. A case in point is the importance of understanding the limitations and specificities 

of distinct connectivity metrics. For example, problems associated with metrics sensitive to 

zero-phase lag coupling, and the potential limitations that arise with methods thought to 

overcome these very issues, can be understood without formal training in mathematics, but 

this is not obvious from the outset and requires practice (Palva et al., 2018).

Moreover, an issue that is sometimes overlooked is the feasibility of connecting various 

processing steps into one signal processing pipeline, and the order in which multiple 

operations are performed. Simple examples include the importance of computing time-

frequency maps in single-trial data before averaging across trials when investigating induced 

responses (Tallon-Baudry and Bertrand, 1999). Likewise, it is important to verify whether 

certain pre-processing steps (down sampling, filtering, ICA etc.) preclude the subsequent 

application of specific signal processing tools (Cohen, 2014).

Third, when choosing certain methods, it is important to consider implicit assumptions 

about data properties and whether these are warranted. As an example, choosing to only 

compute power in a given frequency band (e.g., theta-band) without examining the full 

power spectrum is usually based on the assumption that the data actually exhibit specific 

oscillations at that frequency. This assumption can be confirmed by examining the entire 

spectrum for a peak at the frequency range of interest. As a matter of fact, several methods 

can verify the presence of oscillations and distinguish them from the background 1/f 

component of MEEG data, for example using Empirical Mode Decomposition (EMD, Quinn 

et al., 2021), Fitting Oscillations and One-Over-F (FOOOF, Donoghue et al., 2020) or 

Irregular Resampling Auto-Spectral Analysis (IRASA, Wen and Liu, 2016), as reviewed by 

Gerster et al. (2021).

Fourth, similar to replicating results using different toolboxes (as mentioned in Section 

3.2.2), conducting the same analysis using alternative signal processing methods can be a 

useful approach to test for robustness of an observed effect and potentially to troubleshoot 

analyses. Obviously, attempting to replicate (or compare) findings using multiple methods 

requires time and effort, and it cannot be done for all analysis steps. However, it can be 

a useful practice that can be applied to a few key steps in the pipeline. Examples include 

using more than one source estimation technique (or more than one implementations of the 

same technique, cf. Westner et al., 2022), or using both wavelet-based and Hilbert-based 

implementations of spectral analyses metrics. Likewise, exploring a range of values for the 

parameters of a given analysis rather than sticking to default values can be a way to probe 

the robustness of the results as a function of parameter settings. If small changes in the 

parameters lead to substantial changes in the results, one should not systematially dismiss 

the results as unreliable, but rather view this as a warning call for further investigation.
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A fifth, generally important habit to develop in connection with signal processing is 

frequent data visualization. As often as possible, the output of intermediate analysis steps 

throughout the signal processing pipeline should be plotted and carefully examined. This 

can be achieved by using modular coding approaches with opportunities to examine the 

output of each signal processing stage (see also Section 3.2.1). This also facilitates rapid 

trouble-shooting and in some cases might even trigger new ideas for data analyses.

Finally, the recent proliferation of studies using machine learning (ML; e.g., brain decoding) 

has generated a lot of interest and excitement in MEEG. However, the rise of “data-driven 

neuroscience” should not occlude the fact that assumptions made about the data and the 

implicit knowledge of the experimental paradigm both dictate analysis choices and/or 

parameter tuning (e.g., choice of extracted features, task design, or target classes in decoding 

studies using supervised learning, etc.). Data-driven approaches are not more “objective” 

methods, and their rise is not a sign that hypothesis-driven neuroscience has come to an end: 

both approaches complement each other. The best practices and pitfalls of MEEG signal 

processing in the context of ML analytics are largely the same as those that apply when 

exploring data from other domains. Among other things, one should watch out for violations 

of the strict separation between training and test data (e.g., avoid feature preprocessing that 

induces dependencies across the whole dataset) Section 3.5. presents more recommendations 

for the use of machine learning for MEEG data analysis.

3.4. Statistics

In experimental MEEG data analysis, statistics are mostly considered as an inference tool. 

Given a particular experimental design, statistics help experimenters decide whether or not a 

given treatment affects measurements, or if two groups have significantly different signals in 

a given region of interest (electrode, time window, frequency band, anatomical location…). 

It is one of the challenges of GSP to keep these inferential statistics valid across the various 

situations in which they are used. Relevant topics are extensively covered in textbooks on 

statistics. Here, we address GSP with respect to four more general statistical aspects of 

emerging MEEG analyses.

3.4.1. Data-driven and permutation-based analysis—Over the last few decades, 

statistics have become a tool for data-mining in exploratory (or so-called data-driven) 

analysis and whole-brain inference, where mass univariate statistics (Groppe et al., 2011) 

and multivariate analysis (Cichy et al., 2014; King and Dehaene, 2014) deal with the 

challenges of multidimensional MEEG data. These new use cases have stimulated a number 

of changes in GSP. A well-known example is the adaptation of decision thresholds to the 

number of tests being performed (the so-called multiple comparisons problem). Performing 

tests across the entire data space increases the chances of reporting false positives. Methods 

such as family-wise error rate (FWER) or false discovery rate (FDR) prevent this type 

of inflation. Among those methods, non-parametric permutation-based approaches (Maris 

and Oostenveld, 2007; Smith and Nichols, 2009; Sassenhagen and Draschkow, 2019) 

currently outperform other methods (Hayasaka and Nichols, 2003; Nichols and Hayasaka, 

2003; Puoliväli et al., 2020). For decoding approaches and out-of-sample generalizability, 

permutations have also been used for a data-driven robust estimation of “chance level” 
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(Combrisson and Jerbi, 2015), adapting for choices of cross-validation schemes (i.e., how 

to split testing and training sets) and decoders. For a comprehensive introduction to non-

parametric (permutation-based) statistical testing in MEEG, the reader is referred to Maris 

and Oostenveld (2007).

3.4.2. Simulations for prospective power analysis—It was recently argued that 

neuroscience studies are often underpowered (Ioannidis, 2005; Button et al., 2013; Szucs 

and Ioannidis, 2017), resulting in inflated and unreplicable effect sizes. It may also waste 

resources, as experiments are being conducted without ensuring that proper power can be 

achieved. To avoid this, actual effect sizes are currently being measured and registered with 

projects such as ERP CORE, or #EEGManyLabs (see Section 2.3.3). In order to evaluate 

the detectability of an effect of a particular size in a given experiment, simulations are 

important. As already noted (Section 3.1), simulations can generate data containing effects 

and noise of known amplitudes, making it possible to assess statistical power as a function 

of e.g. sample size. In a recent simulation-based study, Chaumon et al. (2021, this issue) 

examined how the expected spatial properties of sources of MEG activity affect statistical 

power. This study clearly showed that spatial variability in the source of the signal and the 

type of contrast measurements strongly affect statistical power. Thus, taking into account 

individual anatomical variability of expected active regions in a given dataset is key in 

experimental MEEG studies, since the number of samples (trials and participants) that are 

required to achieve a given level of statistical power vary several fold between areas with 

lower spatial variability (e.g., in the precentral sulcus) compared to regions with higher 

spatial variability (e.g., lateral occipital cortex). Specific MEEG simulation toolboxes (Krol 

et al., 2018), or dedicated statistics simulation toolboxes (Lakens and Caldwell, 2021) can 

be used for prospective power analysis. If hypothesis testing is conducted under a Bayesian 

approach, simulations can help set a maximum sample size for a Sequential Bayes Factor 

design. In this design, the researchers run their analysis pipeline after data from each 

participant (or batch of several participants) are collected. Data collection ceases when there 

is strong evidence for either H1 or H0, or when the maximum sample size has been reached 

(Schönbrodt and Wagenmakers, 2018).

3.4.3. Quantifying data quality—A fundamental challenge in MEEG research – where 

signals are typically tiny relative to noise – is to obtain the highest-quality data, i.e., precise, 

reliable measurements of the brain signal of interest. Remarkably, however, the field does 

not have a standard and widely-used approach to quantify data quality in a given study. In 

most published papers, there is simply no way to objectively evaluate how “clean” the data 

are. Two approaches have recently been developed to address this issue in the context of 

averaged event-related electrical activity (but could easily be applied to magnetic data).

One of these approaches takes traditional metrics of “reliability” from psychometrics (Rust 

and Golombok, 2014) and applies these metrics to ERP amplitude or latency measures (e.g., 

Olvet and Hajcak, 2009; Pontifex et al., 2010). In psychometrics, reliability is typically 

defined as the proportion of the total variance across participants that is the “true score 

variance” (true differences between participants, as opposed to differences due to noise in 

the data). This approach is particularly useful in individual differences research, which asks 
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how well a neural measure correlates with some other measure (e.g., with a symptom score). 

The correlation between two variables is straightforwardly limited by the psychometric 

reliability of the individual variables. Thus, an MEEG measure must be reasonably reliable 

to be used in correlational analyses. This approach has two limitations, however (see Luck 

et al. 2021). First, it provides a single reliability value for an entire group of participants 

and provides no information about the data quality for individual participants. Second, the 

reliability value depends on the amount of true score variance present in the group of 

participants, making it difficult to generalize across subject populations.

The second approach to quantifying ERP data quality is called the standardized 
measurement error (SME) (Luck et al., 2021), and it is an extension of the general concept 

of the standard error of measurement. The SME value for a given participant quantifies the 

precision of an ERP amplitude or latency score for that participant (i.e., the extent to which 

you would expect to obtain a similar score if you repeated the experiment multiple times for 

that participant). Unlike psychometric reliability values, the SME is computed individually 

for each participant. However, SME values can be aggregated across participants to quantify 

the overall data quality of a given experiment and to estimate the impact of noise on the 

effect size and statistical power of the experiment. The SME can also be combined with a 

new power calculator that takes into account the number of trials as well as the number of 

participants (Baker et al., 2020), making it possible to predict the effects of changing the 

number of trials in future experiments with the same basic paradigm. A basic version of the 

SME is now automatically provided when averaged ERPs are created by ERPLAB Toolbox 

(an EEGLAB plugin; Lopez-Calderon and Luck, 2014), and example code is provided for 

more complex applications (Stewart and Luck, 2020). An important limitation of the SME is 

that it is limited to amplitude and latency measures obtained from averaged waveforms and 

cannot be applied to single-trial analyses.

3.4.4. Multiverse analysis—Section 2.2 already mentioned the “garden of forking 

paths”, i.e. the almost innumerable possible variations in recording, pre-processing, and 

analysis pipelines (Gelman and Loken, 2013). This has, for example, recently been 

documented in a case analysis of the N400 ERP component (Šoškić et al., 2021) (see 

also Section 3.6.2.). Of 132 analyzed N400 papers, each reported an idiosyncratic approach 

to acquisition, pre-processing, and analysis, with some methodological decisions being so 

diverse that almost no two studies took the same approach. The results from any one specific 

pipeline could be misleading: for example, it has been shown that sample size (Boudewyn et 

al., 2018), EEG recording systems (Melnik et al., 2017), electrode impedance (Kappenman 

and Luck, 2010), filters (Tanner et al., 2015), statistical analysis (Luck and Gaspelin, 2017), 

and other methodological decisions (Šoškić et al., 2019; Sandre et al., 2020) can all affect 

study outcomes.

One of the approaches to addressing this issue (Hoffmann et al., 2021) which has recently 

been put forward is multiverse analysis, which involves applying a variety of pre-processing 

and analysis pipelines to a given dataset and comparing the results of all pipelines, allowing 

a more complete and a better theorizing of the constructs of interest (Steegen et al., 

2016). Recently, this approach was implemented in a few methodological studies of ERP 

Niso et al. Page 27

Neuroimage. Author manuscript; available in PMC 2024 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



components (Šoškić et al., 2019; Sandre et al., 2020; Clayson et al., 2021), but this GSP can 

help as well in studies which are not primarily concerned with methodology issues.

3.5. Machine learning for MEEG data analysis

Artificial Intelligence (AI) is an ever-growing, transdisciplinary field impinging on many 

disciplines, including neuroscience. AI has produced some impactful applications in the 

MEEG field (Cichy et al., 2014; Hassabis et al., 2017; Lotte et al., 2018). This is particularly 

true for one of its emerging subfields (Bolt et al., 2021), machine learning (ML): see, for 

example, Lemm et al. (2011) for an introduction to ML for brain imaging. However, its 

transdisciplinarity combined with the complexity of physiological signals, inevitably could 

lead to important misinterpretations (Wang, 2019). Therefore, we here focus on a number of 

general issues and GSP with respect to ML as a tool for analyzing MEEG data.

ML generally employs data-driven algorithms which find patterns in data without any expert 

input – or indeed, without any constraints. These algorithms thus optimize their outcome 

regardless of the data’s (neurophysiological) nature, leading to possibly unpredictable 

behavior (Hedderich and Eickhoff, 2021; Roberts et al., 2021). For example, unreliable 

or even false outcomes may arise in experimentally noise-contaminated data, as the 

algorithm may find noise to be a stronger predictor than cortical activity. This is because 

noise in MEEG data is not always random: it may be systematically correlated to the 

conditions of interest, leading the algorithm to use it to improve its performance outcome. 

Such artifact-based outcomes may seem reliable, but turn out to be meaningless for the 

neurophysiological effect one is trying to characterize.

Conversely, ML-based methods can produce unstable outcomes when they do not have 

enough data. Notably, deep learning-based MEEG analyses (Roy et al., 2019; Zhang et al., 

2021) require a substantial amount of data to ensure powerful analyses, which is hardly met 

by the current datasets available (Hinss et al., 2021). When increasing sample sizes, care 

must also be taken to increase diversity in terms of participants, environments, and recording 

systems, in order to prevent the so-called “algorithmic injustice” (Birhane, 2021) which may 

otherwise result from data-driven methods.

While the availability and ease of use of ML algorithms is on the rise, e.g., through the 

Scikit-learn toolbox and resources (Pedregosa et al., 2011), the products of these algorithms 

often remain opaque. Their black-box nature makes it highly likely that their results are not 

interpreted correctly due to a poor understanding of the origin of their outcomes. Certain 

mathematical methods or functions, e.g., backward models in multivariate classification, 

have low to no neurophysiological interpretability and can lead to misinterpretations 

regarding the spatiotemporal origin of the neural signals of interest (Haufe et al., 2014). 

To ensure that the results are reliable, researchers should verify that algorithmic outcomes 

are neurophysiologically interpretable.

The above issues stress why signal (pre-)processing pipelines should also be used with a 

good understanding of their basic assumptions and effects on data so as to keep ML-based 

algorithm prerequisites fulfilled. As an example, and a case-study to be avoided in the 

Brain-Computer Interface community (Roy et al., 2019), there are algorithms reaching very 
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high classification rates thanks not to brain activity, but to muscle and/or ocular artifacts 

present in the same data. Here, experimental bias as well as (inappropriate) data processing 

and poor evaluation of algorithm outcomes lead to uninterpretable results in terms of brain 

activity. Aside from signal processing, experimental design may also need to be adapted 

for ML algorithms. For example, dataset slicing (mentioned in Section 3.3.) requires some 

conditions to be met (e.g., independence kept between the training and testing sets). Yet, 

some paradigms (e.g., block designs Lemm et al. (2011)) or data processing techniques 

introduce dependency between samples or across the whole dataset, thus violating these 

assumptions.

One project that deals with the above-mentioned issues is the Mother Of All BCI 

Benchmarks (MOABB; see Appendix Table A1), which intends to promote valid and 

reproducible BCI research through algorithm availability, benchmarking, ranking, and freely 

available datasets.

3.6. Current efforts for data standardization, analysis, and reporting

As mentioned in the introduction, one aim of this paper is to foster a general understanding 

of GSP that goes beyond previously established best practices. However, even general 

principles are sometimes best aided using specific tools. Here we discuss a small selection 

of current standards that provide a more specific, hands-on approach specifically for data 

organization and methods reporting, which have become more important in this era of open 

science.

Data storage and organization is currently largely performed in an idiosyncratic manner, 

sometimes differently even within the same lab. It is GSP, however, to organize all data in 

a consistent and structured way following the FAIR guiding principles (Wilkinson et al., 

2016), where data should be Findable, Accessible, Interoperable and Reusable. This allows 

different analysis methods to have standardized access to it, while sharing and documenting 

it becomes easier and less prone to errors. Importantly, it also benefits the experimenters 

themselves when they revisit their data at later points in time.

Even with access to the same data, it may not be possible to fully reconstruct a study, as 

journal articles generally do not include complete and detailed MEEG methods descriptions 

(Clayson et al., 2019; Šoškić et al., 2021). This would not be a pressing issue if results 

were robust to variations in the recording, pre-processing, and analysis pipeline. However, as 

mentioned in Section 3.4.4, this is not the case.

It is for these reasons that several initiatives have emerged in the neuroimaging community 

to deal with dataset organization, description, and reporting, three of which are introduced in 

this section. In the spirit of open science, these new initiatives have taken the form of living 

documents to keep up with ever-evolving perspectives of GSP, as well as the development 

of new tools and analyses. Additionally, these tools all make use of the more recent option 

to provide rich supplementary materials to help researchers achieve the level of clarity that 

cannot easily be met through methods descriptions in journal articles.
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3.6.1. Data organization: BIDS—The Brain Imaging Data Structure (BIDS) is 

a community-led standard for organizing, describing, and sharing neuroimaging data 

(Gorgolewski et al., 2016). This standard facilitates data sharing and the development of 

analysis tools in the neuroimaging community. As an evolving standard, BIDS already 

supports multiple neuroimaging modalities including MRI (Gorgolewski et al., 2016), 

MEG (Nisoet al., 2018), EEG (Pernet et al., 2019 iEEG (Holdgraf et al., 2019), and PET 

(Norgaard et al., 2021). The BIDS specification includes concrete details for folder and file 

naming, the choice of data formats, and the representation of metadata to be both human 

and machine-readable. Multiple accompanying data examples, and tools make it easy for 

researchers to incorporate BIDS into their current workflows, maximizing reproducibility, 

enabling effective data sharing, and ultimately supporting good data management practices 

(see Appendix Table A1). In particular, there are numerous tools to deal with MEEG 

data: (1) BIDS converters included in MEEG analysis packages; (2) general tools for 
data querying and related operations, e.g., PyBIDS (Yarkoni et al., 2019) and BIDS-

MATLAB (Gau et al., 2022); and (3) BIDS analysis tools, e.g., BIDS Apps, which are 

containerized analysis pipelines that take BIDS-formated datasets as their input and produce 

derivative data (Gorgolewski et al., 2017). Presently, the BIDS Derivatives specifications 

are under active development, setting the principles for organizing and describing outputs 

of processing pipelines, thus broadening the BIDS standard beyond “raw” neuroimaging 

data. BIDS is an open and inclusive community, and new members may start contributing 

to the initiative through the BIDS Starter Kit (see Appendix Table A1 for links to useful 

resources).

3.6.2. Templates for reporting: ARTEM-IS—As described above, achieving the level 

of detail sufficient to adequately replicate an MEEG study has proven to be a challenging 

task. Metadata templates that require precise numerical/categorical data to be filled can 

help to reduce error. Not only is template metadata clearer than verbal descriptions, but the 

standardized data format enhances searchability and simplicity for future metascience, data 

sharing, and reuse (Gau et al., 2019; Styles et al., 2021).

One such template is ARTEM-IS: an Agreed Reporting Template for EEG Methodology - 

International Standard (Šoškić et al., 2020; Styles et al., 2021). Its content and structure is 

based on an analysis of social and technical challenges in methods reporting, with special 

attention to errors and omissions in the existing literature, as identified through systematic 

reviews. For example, in the Šoškić et al. (2021) analysis of ERP methodology reporting, 

100% of papers contained at least some omissions and 46% of papers contained at least 

some ambiguities in their described procedures. The data items identified in this review 

were used to create an evidence-based ARTEM-IS template customized for ERP research, 

that breaks down error-prone reporting items into smaller, clearer questions in a branching 

structure. By its design, this template requires data to be entered in a particular format, 

thereby improving the accuracy of documentation and standardizing the format of the 

reported details. The result is a living, version-controlled document. The pilot version of 

this template presented at the 2020 LiveMEEG conference consisted of 93 fields designed 

to capture ERP methodology up to the point of statistical hypothesis testing, in a loosely 

formated spreadsheet (Styles et al., 2020). Through community effort, at the time of writing 
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in 2022 the template for methodology has been greatly refined and is currently being 

integrated into a structured format making up the backend of a webapp based on the model 

of COBIDAS Guidelines Checklist (see the section below and Appendix Table A1).

Inspired by the learned lessons of checklist adoption in aviation and surgery (Styles et al., 

2021), ARTEM-IS also includes a Statement, which is a call to action, describing how if 

the community of MEEG practitioners want to: (1) improve clarity; (2) improve accuracy; 

(3) enhance documentation; and (4) deliver broad benefits, (5) community effort will be 

necessary. A link to the complete ARTEM-IS statement can be found in Appendix Table 

A1. Signatories to the statement are invited to participate in the further development of the 

ARTEM-IS template, and other similar initiatives in all fields of science are welcome to 

adopt the principles outlined in the ARTEM-IS Statement.

3.6.3. Data analysis and sharing: COBIDAS MEEG—As already noted, MEEG 

communities have proactively championed GSP, with specialist society journals being the 

most common format for sharing them (e.g., Donchin et al., 1977; Pivik et al., 1993; Picton 

et al., 2000; Duncan et al., 2009; Gross et al., 2013; Kane et al., 2017; Hari et al., 2018). 

The Organization for Human Brain Mapping (OHBM) has developed GSP white papers 

in neuroimaging, which are collectively referred to as COBIDAS – an abbreviation for 

the “Committee on Best Practice in Data Analysis and Sharing”. There is a version for 

MRI-based methods (Nichols et al., 2017) and for MEEG (Pernet et al., 2018, 2020).

COBIDAS MEEG guidelines first discuss pitfalls for data acquisition, analysis, and sharing 

for resting state and task-related studies. In general, the COBIDAS Committee believes that 

guidelines should not be prescriptive, as data (pre)processing pipelines vary by analysis 

method. However, the guidelines do include a set of Tables in the Appendix that list 

parameters that should be reported when preparing manuscripts and grants. Experimenters 

can pick and choose which of these tables are relevant at a given time. An used-friendly, 

Python-based checklist for MEG or EEG studies supports this process. This is a complement 

to an already existing eCOBIDAS App for MRI-based data (see Appendix Table A1). 

Importantly, COBIDAS MEEG is consistent with other neurophysiological guidelines, e.g., 

International Federation for Clinical Neurophysiology (IFCN) (Kane et al., 2017), and uses 

BIDS-consistent terminology.

COBIDAS MEEG guidelines differ in 3 main ways from existing MEEG guidelines. First, 

they specifically include practices of reproducibility and data sharing. Second, they were 

prepared as a living document with 2 branches: (1) a WordPress blog for feedback and 

comments (see Appendix Table A1), which remains open for the next incarnation of the 

guidelines; (2) an Open Science Framework version-controlled White paper (Pernet et al., 

2018). Third, the target population is much broader than for previous guidelines and now 

also includes not only neuroimagers/neurophysiologists, but also the hardware and software 

engineers and physicists who write MEEG papers, theses, grants, and prepare Registered 

Reports and clinical trials, as well as those who review and evaluate them.

Some problematic issues discussed in COBIDAS MEEG are: (i) omitted critical data 

acquisition details (see also Šoškić et al. 2021) from manuscripts and grants; (ii) the 
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distortion issue if data are acquired with a physically-linked ear or mastoid reference; 

(iii) inadequate treatment of statistical power and related issues, e.g., minimal effect size 

estimation for features of interest, use of independent data from existing literature and/or 

pilot data for choosing regions/sensors of interest; (iv) protocols for rejecting artifactual 

trials, where trials need to be added to the original design to compensate for the loss of 

statistical power; (v) display items, e.g., figures, that do not adequately show variability 

measures, scales, or topography; (vi) inconsistent use of terminology – particularly pertinent 

for ERPs and canonical MEEG frequency bands, which may change over the lifespan; (vii) 

underspecified or omitted results of statistical analyses – including model assumptions, test 

statistics, effect sizes, and statistical maps for mass-univariate and multivariate analyses 

(Šoškić et al., 2021).

4. Beyond the signal

Each scientific discipline has its own distinctive “way of doing things”, and the more 

specialized a scientist becomes, the more they notice the devil in the details. Much more 

could be written about optimizing experimental designs, data collection, signal processing, 

or any other specific aspect of the MEEG research cycle, but this is beyond the general 

scope of this article. In fact, in this section, we take a further step back to focus on social 

and ethical aspects of our discipline in particular, and science more generally, because these 

aspects, too, should be addressed by GSP.

The general principle is one of caring: for our work, participants, societies, environments, 

and ourselves. As our branch of science deals directly with human beings, we have a duty 

of care for the duration that they are with us in the laboratory, and for as long any effects 

may linger. Our concern for human well-being however should extend beyond participants 

to all those potentially affected by our research, including our own selves and our wider 

social communities. This section will provide some perspectives on how a step back from 

scientifically focused details can improve our work, our field, our society, and more. 

Section 4.1 addresses how neuroscience may influence societies for good or for bad, as 

neurotechnology becomes increasingly capable and attracts increasing commercial interest. 

A critical, philosophical look on some aspects of progress in neuroscience is outlined in 

Section 4.2, emphasizing the need to question the very nature of the work, and ensure 

its relevance. In Section 4.3, slow science is discussed, a movement and way of thinking 

that aims not just to fight the symptoms of current issues, but to rethink academia in a 

broader light. Finally, Section 4.4 touches upon the ever-relevant, broader environmental 

considerations that need to be part of all decision making.

4.1. Social responsibilities and neuroethics

Hume (1739) famously argued for the distinction between “is” and “ought”, separating 

factual judgements from moral ones, and reinforcing the division of scientific disciplines 

in “pure” and “applied” sciences (Proctor, 1991; Kincaid et al., 2007). There was, and 

still persists, an idea that these “pure” sciences can be “value-free”, or isolated from 

any moral considerations (Douglas, 2014). Irrespective of this larger philosophical debate, 

GSP requires an awareness of the moral implications and potential (mis)uses of scientific 
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findings, even when no immediate application is being investigated. With direct-to-consumer 

neurotechnology becoming increasingly available to the general public (Ienca et al., 2018), 

and with large international social media and tech companies investing in neurotechnology 

(Moses et al., 2019; Musk, 2019), the possible ethical, legal, and societal implications of 

neuroscientific research are currently more pressing than ever.

BCIs, in particular, allow neural correlates of mental states to be identified and used in real 

time (Wolpaw and Wolpaw, 2012), and are a major focus of current consumer applications. 

With this technology, among other things, neuroprosthetics can be developed to support the 

motor-impaired (Wolpaw et al., 2002), and the devices we use every day can be made to 

automatically adapt to our mental states (Zander and Kothe, 2011). However, it has also 

been shown that information can be obtained from brain activity that people did not intend 

to communicate, or did not wish to reveal (Schultze-Kraft et al., 2016; Zander et al., 2016). 

As such, neurotechnology may present a danger to the privacy of thought (Mecacci and 

Haselager, 2019). Furthermore, it is possible for a BCI-based device to actively attempt 

to manipulate a human participant’s mental state, or to extract specific information from 

their brain activity, potentially without their knowledge or consent (Fairclough, 2017; Krol 

et al., 2020). This approach is, for example, the basis of the “guilty knowledge test”, 

which attempts to identify incriminating response patterns in a criminal suspect’s evoked 

brain activity (Rosenfeld et al., 2008). It is not always clear whether such tests currently 

violate any existing rights, such as those that protect against unreasonable searches or 

self-incrimination (Pardo and Patterson, 2013). However, what is legal is not necessarily 

morally right, and regulatory law generally lags behind new scientific developments. In 

the meantime, we should thus consider whether or in what way our work might be used 

to violate not just existing laws, but also any generic humane principles or human rights 

that do not yet exist, but ought to exist. The right to mental integrity is one such proposed 

right that MEEG researchers may inadvertently violate, or allow others to violate (Ienca and 

Andorno, 2017). With this in mind, the Republic of Chile recently became the first country 

in the world to pass a specific “neurorights” law (Strickland and Gallucci, 2022). Other 

issues related to neuroscience concern the potential of “brain hacking” (Ienca and Haselager, 

2016), the influence of neurotechnology on our sense of agency (Haselager, 2013), and the 

societal impact of cognitive enhancement (Hyman, 2011), to name a few.

As such, neither neuroscience in general, nor MEEG research in particular, exists in moral 

isolation: indeed, neuroethics has a long history of thought on this topic. Scientists and 

researchers are encouraged to identify and discuss the potential ethical, legal, and societal 

implications of their research in their publications. In this vein, the Organization for 

Economic Co-operation and Development (OECD) recently adopted the Recommendation 

on Responsible Innovation in Neurotechnology (OECD, 2019), which contains nine 

principles aimed at guiding researchers to minimize societal risks. Among other things, 

it asks researchers to consider the multidimensional societal implications that their work 

may have, to anticipate potential misuses, and to assess the safety of new neurotechnological 

developments. This process can be supported by, for example, the five criteria introduced by 

Mecacci and Haselager (2019) related to accuracy, reliability, informativity, concealability, 

and enforceability, suggesting that we answer such questions as: Can this technology we are 

developing be used without the knowledge of the subject? Can it be used against their will? 
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Here, the issues may not be obvious: even “classic” evoked potentials such as the P300 may 

be abused to extract information from the brain of unwitting participants (Martinovic et al., 

2012) using methods such as cognitive probing (Krol et al., 2020).

Accepting that moral judgment of our work is unavoidable, we can proactively 

integrate ethical and societal considerations in our research and curricula, and look 

at neurotechnology not as a means (e.g., to gather data) but as an end: we can use 

the possibilities afforded by this technology to actively and explicitly “promote human 

flourishing” (Kellmeyer, 2018).

4.2. The map and the territory

Collecting clean data, computing accurate scores, and optimizing decision boundaries are 

some of the cornerstones of current scientific practice. However, results without a theory 

to interpret them are of limited interest, and there is currently a glaring need for robust 

psychological theories for progress in the cognitive sciences.

“... In that Empire, the Art of Cartography attained such Perfection that the map of 

a single Province occupied the entirety of a City, and the map of the Empire, the 

entirety of a Province. In time, those Unconscionable Maps no longer satisfied, and 

the Cartographers Guilds struck a Map of the Empire whose size was that of the 

Empire, and which coincided point for point with it. The following Generations, 

who were not so fond of the Study of Cartography as their Forebears had been, saw 

that that vast map was Useless, and not without some Pitilessness was it, that they 

delivered it up to the Inclemencies of Sun and Winters” (Borges, 1946)

This text of Borges was used by Umberto Eco for an essay on the impossibility of drawing a 
map of the empire on a scale of 1 to 1 (Eco et al., 1995). There Eco argues that, once folded, 

the map may not depict the folded map itself and may thus be unfaithful and useless. This 

reminds us of Heisenberg’s uncertainty principle, in the sense that the potential accuracy of 

our knowledge is fundamentally limited. Eco goes on to state that when the map is installed 

it does not represent the map itself over the territory. This is a sort of Russell’s paradox 

applied to maps: a normal map cannot map itself. In other words: (a) every 1:1 map always 

reproduces the territory unfaithfully; (b) when the map is realized, the empire becomes 

unreproducible; and (c) every 1:1 map of the empire decrees the end of the empire as such 

and therefore is the map of a territory that is not an empire.

If we replace the word empire with the word brain, we come closer to the topic of interest 

here, and recall that we do not study the brain, but different representations of the brain. 

Paraphrasing Eco, recording all individual neurons of the brain, may decree the end of the 

scientific study of the brain as such and therefore a scientific field that is not concerned 

with the brain, but with something else that is qualitatively different from it (e.g., individual 

neurons), and that misses its higher order emerging properties (e.g., the mind).

This literary and philosophical escapade brings us to examine notions of orders of 
magnitude in science. In general one can observe an increase in the number of almost 

everything (but the questions): from single case (or single cell) studies to Big Data, with an 

increase in all numbers (of brains, of bytes, of CPUs), do we truly understand the brain – 
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not mentioning the mind – any better by just increasing numbers? Or can we learn to ask 

different scientific questions from Big Data, to solve deeper questions in a way we have not 

done previously?

These questions bring up the role of theory in scientific investigation. EEG and MEG 

as used in cognitive sciences rest on two fundamental theoretical domains. On the one 

hand, the MEEG physics is well understood and electro-magnetic fields are accurately 

predicted from the underlying neural sources (Ilmoniemi and Sarvas, 2019). Computational 

models with varying levels of detail therefore match observed MEEG fields with remarkable 

accuracy (see, e.g., Fig. 1 in Wendling et al. (2016)), or simulation frameworks such as 

the Human Neocortical Neurosolver, (Neymotin et al., 2019). On the other hand, cognitive 

MEEG studies are concerned with explaining psychological phenomena and, in this realm, 

build on much weaker and controversial theories. The “theory crisis” in psychology (Eronen 

and Bringmann, 2021) and beyond is limiting progress here, and arguably a fundamental 

cause of the replication crisis. A rigorous method for theory construction (e.g., Borsboom et 

al., 2021) is needed and should be part of our GSP, just like legends and annotations on maps 

make the art of cartography much more than merely capturing every detail of the world in an 

objective, but meaningless, way.

4.3. Rethinking our narratives: the challenge of “slow science”

Even as the open science movement participates in improving research quality, notably by 

developing GSP, the underlying causes of the need for such GSP in the first place remain 

largely unquestioned. In this section, some aspects of the culture of speed, the main research 

culture in academia, are described. As demonstrated with several examples, adopting the 

perspective of slow science can help challenge our research culture in a deeper way.

4.3.1. The negative consequences of the culture of speed and the limited 
response of the open science movement—Publication numbers in academia have 

exploded as more scientists are publishing more papers per capita than in the past 

(Bornmann and Mutz, 2015). Our current system, in which research is awarded in a way 

that favors this acceleration, shapes research practice dramatically. In particular, it favors a 

“culture of speed”: incentivizing data accumulation with no time for reflection, fostering a 

competition that obstructs collaboration, requiring time to write grant applications instead 

of actually doing science. It also has negative consequences for research quality: the use 

of metrics to decide grant funding or hiring encourages abuse (Smaldino and McElreath, 

2016) and strategic gaming (Chapman et al., 2019), and decreases trust in publication quality 

(Vazire, 2017). Importantly, it also substantially impacts researchers’ mental health, with 

increased levels of stress and frustration as a consequence of lack of time, work-overload, 

often coupled with fixed-term contracts, in uncaring work environments (see Shaw and Ward 

2014) for an overview of this topic).

Critically, this culture of speed creates strong incentives against the GSP presented in 

this document, which can lead to questionable research practices that have led to the 

replication crisis. The open science movement is the most widely accepted response to 

the replication crisis, and a strong remedy against questionable research practices. However, 
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by itself, it has a limited impact on these incentives. The incentives it offers to encourage 

openness, integrity, and reproducibility, and the tools it provides to solve current problems 

(reviewed in this paper and else-where, e.g., Renkewitz and Heene, 2019), may not suffice to 

address the roots of the culture of speed. Without a deeper reflection on these roots, newly 

created incentives may become tomorrow’s new metrics, enabling “open science washing” 

or turning GSP into a list of boxes to tick to get one’s work published or funded. As 

an example, the way in which the open science movement participates in the creation of 

new publication types (preprints, registered reports), contributing to the rise in publication 

numbers mentioned above, currently remains largely unquestioned. Despite offering positive 

steps towards more transparency and better scientific practice, it fails to address the origins 

of the problem.

4.3.2. What do we do? A slow science perspective—The slow science philosophy 

offers a broad response to the culture of speed (Stengers, 2013). Slow science aims to 

transform research and teaching into a “sustainable collective praxis” (Salo and Heikkinen, 

2018). This movement emphasizes the collective aspects of science rather than protecting 

one’s own ideas, fostering reflection about practices and the relevance of research questions. 

By definition, slow science promotes more open science, where the goal is not to try to ‘fix’ 

but to rethink academia.

Importantly, slow science is not about forcing scientists to slow down their publication pace, 

even though some explicitly suggested this might be a desirable option (Frith, 2020). It is 

also not about returning to some idealized golden age where scientists could focus deeply 

on their work, immune from the needs of society and productivity imperatives. Instead, slow 

science is about resisting the culture of speed and the idea of “wasting time” with futilities 

(Stengers, 2013). There is a need to question those narratives and how time pressure and 

time fragmentation (Ylijoki and Mäntylä, 2003) affects creativity and critical thinking on 

top of jeopardizing wellbeing (Maestre, 2019). For instance, overwork and multitasking are 

traditionally celebrated, and work-life balance and mental health have yet to be taken more 

seriously (Berg and Seeber, 2015). To foster those discussions and reflections, there have 

to be spaces where one can imagine and experiment with alternatives to the current system, 

even at a local level.

Initiatives already exist for paving the slow science way (see links in Appendix Table 

A1). Some examples are research frameworks that have emerged from group discussions 

at conferences: the San Francisco Declaration on Research Assessment (a.k.a. DORA) 

promotes ways of evaluating researchers that go beyond publication metrics, or the HIBAR 

Research Alliance, that aims to make research and innovation more integrated and aligned 

with society’s critical problems. These initiatives have already been acknowledged by 

several institutions (see their respective lists of signatories or members). Other initiatives 

include discussion groups where scholars from different disciplines discuss and rethink 

academia and imagine a healthier research culture. Among them are such groups as Slow 

Science in Belgium or the Better Science initiative in Switzerland. Both groups have been 

closely working with their host universities to improve their working conditions or offer 

training programs. Finally, some researchers have created independent institutes: the Ronin 

Institute that promotes research outside traditional institutions, or IGDORE, the Institute 
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for Globally Distributed Open Research and Education, whose objective is to improve the 

quality of science, science education, and scientists’ quality of life. Close to this philosophy, 

the Learning Planet Institute is exploring new ways of doing research, learning, or teaching 

while connecting with other parts of the society (industries, citizens, etc.). These institutes 

show how hybrid research, both inside and outside academia, is a viable option to consider, 

challenging the traditional pipeline in academia.

These existing networks, discussion groups, and more radical alternatives are all concrete 

examples that individual scientists can, at their level, promote healthier research practices 

and improve conditions. These examples should encourage scientists to explore other 

practices, question their relationship to academia, and start conversations with colleagues. 

For instance, the Wellcome Foundation developed a discussion kit, the Café Culture 

Initiative, to foster discussions about reimagining the research culture and working together.

In a nutshell, more needs to be done than just ‘fixing academia’ or improving scientific 

practice. Narratives, research frameworks, and practices need to be actively rethought. As 

summarized by Lancaster et al. (2018, p. 10), “Making science better is not just about 
“creating better incentives”, but a collective cultural shift beyond viewing competition and 
individualistic success as the sole defining feature of science.”

4.4. GSP for environmental sustainability

Finally, there remains an important aspect of GSP that we have not discussed. Current 

scientific practices, like many human activities, are on an unsustainable long-term path. The 

current ecological collapse (The Intergovernmental Platform on Biodiversity and Ecosystem 

Services (IBPES) report, Díaz et al., 2019) and climate change (Intergovernmental Panel 

on Climate Change (IPCC) reports) is leading planet Earth to a disastrous state. GSP 

for the future therefore includes immediate sustainable practices in all fields of science. 

To this end, many collective actions are taking place around the world. Over the past 

decade, most academic institutions and research foundations have created departments and 

initiatives dedicated to studying and acting for environmental sustainability on campuses 

and in research centers (see Appendix Table A1). These institutions, along with academic 

grassroots collective initiatives, are important local actors that could change GSP by setting 

local research agendas on more sustainable paths (Rae et al., 2022). As preliminary as these 

actions may be, they signal that the scientific community is progressively moving towards 

incorporating environmental considerations in the definition of GSP.

5. Discussion

This paper summarized select contributions to the 2020 LiveMEEG conference, which 

brought together international experts to discuss current progress and perspectives on good 

scientific practice in MEEG research. Virtual sessions and panels covered GSP across 

all stages of the research lifecycle, as well as broader topics beyond experimental work, 

such as societal responsibilities and research culture. Strikingly, a common theme emerged 

regarding the value of collaborative work. Many contributors emphasized the benefits to be 

had from reaching out beyond office, lab, and institutional walls, and beyond disciplines; 

from leveraging each other’s competence, resources, and perspectives.
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Indeed, there were many explicit suggestions of tools and methods for collaborative work. 

For example, collaborative meetings where scientists support each other to overcome human 

biases at early stages of experimental planning are proposed; pre-registration explicitly 

invites community feedback at early stages of the research process; different labs are 

encouraged to work together to reproduce findings and provide resources to the community; 

guides are being developed to cultivate further collaborative projects; and scientists across 

disciplines are reimagining science and academia in the current century.

Of course, not all work can be done collectively. Yet, even from those GSP perspectives 

that do not explicitly deal with shared work, a general theme of collaboration emerges – 

a common collaborative mindset, as it were, from which many different GSP guidelines 

emerge almost naturally. This mindset encourages scientists to see themselves not 

(primarily) as solitary experts in their specific field, but as part of a larger movement that 

ultimately shares the same goals of renewing truth and understanding. In essence, scientists 

are encouraged to either seek out collaborators where possible and appropriate, or otherwise 

imagine invisible or future collaborators who are eager to join or continue – but not usurp – 

the project.

The mere idea of having collaborators, imaginary or otherwise, almost automatically leads 

to practices that enable transparency, open science, and reproducibility. That is, assuming 

that the project at some point will be joined by or passed on to someone else provides 

clear, almost automatic incentives to uphold GSP: collaborators must be able to access 

previous work, understand the full experimental philosophy, retrace analysis steps, and 

verify outcomes. As such, all efforts made towards reproducibility, be it by following known 

protocols, by providing annotated data, legible code, or full open resources, are in essence 

collaborative endeavors, anticipating potential collaborators. Even scientific publication and 

citation practices can be seen as a continuous collaboration across time and space, building 

upon previous work and creating new work for others to continue to build upon. Finally, 

future collaborators should, wherever possible, be saved from the disappointment of finding 

an avoidable flaw in the work on which they are building their own, emphasizing the need 

for GSP also in the methodological details.

Now a key challenge for the shift towards a fully collaborative culture in MEEG is the 

need for coordination. Scientists have too long been trained to think and act individually, 

or in small mentor-advisee pairs, and generally lack training in cooperative action. Leading 

or contributing to a collective effort is in no way as easy and simple as conducting an 

individual project. This is perhaps where other areas of science and society can aid the 

MEEG community.

Thus, the collaborative mindset links perfectly with traditional GSP, but it also encourages 

scientists to “think big” in terms of developing new GSP, and guides collective efforts in 

open communities to develop worldwide standards, movements, and cultures. In summary, 

the many LiveMEEG 2020 contributors have shown that going forward, the search for 

“Eureka!”, or “I have found it”, is best envisioned as an endeavor to, instead, reach “we have 

found it” – “Eurékamen!”
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Appendix. Table A1

Table A1

Example resources for Good Scientific Practice in MEEG research.

This article is based on the contributions of the LiveMEEG 2020 
online conference

 LiveMEEG conference livemeeg2020.org Program and recorded sessions

Early considerations for 
MEEG projects

Human Factors 

 Wikipedia’s list of 
cognitive biases

en.wikipedia.org/wiki/
List_of_cognitive_biases

A collaborative listing with over 100 
documented (not all strictly distinct) 
cognitive biases

 The cognitive bias 
cheat sheet

betterhumans.pub/cognitive-bias-cheat-
sheet-55a472476b18

A highly viewed (non academic) blog 
post structuring all cognitive biases of 
Wikipedia’s list of cognitive biases, with an 
appealing visualization.

 Coursera MOOC by 
Sinnott-Armstrong

coursera.org/instructor/~932346 An in depth practical introduction to 
arguments, proper reasoning and logical 
thinking

 Rain Cloud Plots github.com/RainCloudPlots/
RainCloudPlots

A a multi-platform tool for robust data 
visualization

Preregistration 

 OSF registries osf.io/registries Pre-registration platform of OSF

 Clinical trials clinicaltrials.gov Pre-registration platform

 As Predicted aspredicted.org Pre-registration platform

 Guidelines for ERP 
preregistration

10.1016/j.ijpsycho.2021.02.016 Guidelines for ERP preregistration

Reproducibility 

 The Turing Way the-turing-way.netlify.app/welcome Open source community-driven guide 
to reproducible, ethical, inclusive and 
collaborative data science

 ERP CORE erpinfo.org/erp-core Compendium of Open Resources and 
Experiments

 #EEGManyLabs osf.io/yb3pq A large scale crowdsourced replication 
project

 EEGManyPipelines eegmanypipelines.org Project involving many independent 
analysis teams to investigate how analysis 
approaches affect results

 MOABB (Mother of all 
BCI Benchmarks)

github.com/NeuroTechX/moabb Platform to build a comprehensive 
benchmark of popular BCI algorithms 
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applied on an extensive list of freely 
available EEG datasets

 BNA Credibility bnacredibility.org.uk A community working together to increase 
the credibility of research

General purpose 
platforms for open 
research 

 Open Science 
Framework (OSF)

osf.io A popular, general purpose platform for 
collaborative project tracking, organization, 
storage, and referencing

 Center for Open 
Science

cos.io A non profit organization committed 
to increase openness, integrity, and 
reproducibility of research.

 Zenodo zenodo.org An open data platform supported by the 
European Comission to advance their open 
data policy

 FigShare figshare.com Platform to upload any file format and 
make research outputs citable, shareable 
and discoverable

 GitHub github.com is a provider of lnternet hosting for software 
development and version control using Git.

 GitLab gitlab.com is a web-based DevOps lifecycle 
tool that provides a Git repository 
manager providing wiki, issue-tracking and 
continuous integration and deployment

Collecting, analyzing, 
reporting, and sharing

Data Collection 

 EEG recording protocol protocolexchange.researchsquare.com/
article/pex-974/v2

Protocol for Reducing COVID-19 
Transmission Risk in EEG Research

 LSL labstreaminglayer.readthedocs.io Lab Streaming Layer (LSL) is a system for 
the unified collection of measurement time 
series in research experiments

Stimulus presentation 

 Psychophysics toolbox psychtoolbox.org A free set of Matlab and GNU Octave 
functions for stimulus presentation in vision 
and neuroscience research.

 PsychoPy psychopy.org Free cross-platform package allowing to 
run a wide range of experiments in the 
behavioral sciences.

 Pavlovia pavlovia.org Platform to run, share, and explore 
behavioural experiments online

Simulations 

 EEGSourceSim osf.io/fmuae MATLAB-based toolbox providing 
individual head models and corresponding 
atlases to simulate noise, SSEP, and 
multivariate autoregressive signals.

 SEREEGA github.com/lrkrol/SEREEGA MATLAB-based general multipurpose 
toolbox to simulate event-related EEG 
activity, also available as EEGLAB plugin.

 simBCI gitlab.inria.fr/sb/simbci MATLAB-based toolbox focusing on 
testing BCI classification methods.

 SimEEG audiospeech.ubc.ca/research/brane/brane-
lab-software

MATLAB-based toolbox with a focus on 
simulating interacting brain signals. Now 
integrated with Brainstorm

 The Virtual Brain thevirtualbrain.org Python-based platform to simulate whole-
brain dynamics using structurally connected 
network models.
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Data Sharing 

 Open Brain Consent open-brain-consent.readthedocs.io/en/
stable

Sample consent forms to facilitate data 
sharing in neuroimaging which have been 
previously approved by ethic committees in 
different institutions

 BIDS bids-standard.org The Brain Imaging Data Structure

MEEG data repositories 

 HCP-YA humanconnectome.org/study/hcp-young-
adult

Human Connectome Project healthy young 
adults

 CamCAN cam-can.org The Cambridge center for Ageing 
and Neuroscience (Cam-CAN). It 
contains epidemiological cognitive, and 
neuroimaging including rest and task 
resting-state MEG data

 Donders Repository data.donders.ru.nl An institutional data sharing repository with 
more than 150 published neuroimaging 
MEG and EEG datasets

 OpenNeuro openneuro.org A free and open platform for sharing MRI, 
MEG, EEG, iEEG, ECoG, and ASL data 
following BIDS

 OMEGA mcgill.ca/bic/resources/omega The Open MEG Archive. A continuously 
expanding repository that contains 
MEG, EEG, anatomical MRI volumes, 
demographic and questionnaire information 
on hundreds of participants

 BioFIND doi.org/10.1101/2021.05.19.21257330 A multi-site, multi-participant 
magnetoencephalography resting-state 
dataset to study dementia

 CHBMP doi.org/10.1101/2020.07.08.194290 Open multimodal neuroimaging and 
cognitive dataset from 282 healthy 
participants

 MOUS doi.org/10.1038/s41597-019-0020-y A 204-subject multimodal neuroimaging 
dataset to study language processing 
(MRI+MEG)

 Temple University 
EEG corpus

isip.piconepress.com/projects/tuh_eeg/
html/downloads.shtml

Electroencephalography (EEG) Resources

 List of open datasets in 
ephys

github.com/openlists/
ElectrophysiologyData

List of openly available 
electrophysiological data, including EEG, 
MEG, ECoG/iEEG, and LFP data (by Tom 
Donoghue)

Software 

 Brainstorm neuroimage.usc.edu/brainstorm Brainstorm main page

 EEGLAB sccn.ucsd.edu/eeglab EEGLAB main page

 FieldTrip fieldtriptoolbox.org/ FieldTrip

 MNE-python mne.tools MNE-python

 SPM fil.ion.ucl.ac.uk/spm SPM

 MMVT mmvt.mgh.harvard.edu visualization tool for multimodal imaging

 MNELAB pypi.org/project/mnelab MNELAB is a graphical user interface for 
MNE

Cloud computing 
platforms 

 brainlife brainlife.io Free and open-source cloud platform for 
secure neuroscience data analysis.

 Neuroscience Gateway 
(NSG)

nsgportal.org High Performance Computing (HPC) for 
neuroscience researchers
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 The Canadian Open 
Neuroscience Platform 
(CONP)

conp.ca The Canadian Open Neuroscience Platform 
(CONP)

Statistics 

 Standardized 
Measurement Error

doi.org/10.18115/D58G91 Standardized Measurement Error (SME) 
demo scripts

 Super Power aaroncaldwell.us/Superpower R package to simulate factorial designs and 
empirically calculate power

 Super Power Book aaroncaldwell.us/SuperpowerBook Book describing the capabilities of the 
SuperPower R package

 simstudy cran.r-project.org/web/packages/simstudy Simulation of Study Data

 simr github.com/pitakakariki/simr Power Analysis of Generalised Linear 
Mixed Models by Simulation

 Nilearn nilearn.github.io Tool for Statistics for NeuroImaging in 
Python

 Scikit-Learn scikit-learn.org Tool for Machine Learning in Python

Standards 

 BIDS bids-standard.org The Brain Imaging Data Structure (BIDS), 
for describing and organizing neuroimaging 
data

 BIDS Specification bids-specification.readthedocs.io It included BIDS core specification as well 
as many modality-specific extensions

 BIDS Starter Kit github.com/bids-standard/bids-starter-kit A community-curated collection of 
tutorials, wikis, and templates to get started 
with BIDS

 MNE-BIDS mne.tools/mne-bids/stable/index.html BIDS converter for MEEG data as part of 
the MNE-Python software

 data2bids fieldtriptoolbox.org/reference/data2bids BIDS converter for MEEG data as part of 
the FieldTrip toolbox

 bids-matlab-tools github.com/sccn/bids-matlab-tools BIDS converter for EEG data as part of the 
EEGLAB toolbox

 Brainstorm BIDS tools neuroimage.usc.edu/brainstorm/
ExportBids

BIDS converter for MEEG data as part of 
the Brainstorm toolbox

 BIDS examples github.com/bids-standard/bids-examples A set of BIDS-compatible datasets with 
empty raw data files

 pybids github.com/bids-standard/pybids Python library to centralize interactions 
with datasets conforming BIDS

 bids-matlab github.com/bids-standard/bids-matlab This repository aims at centralising 
MATLAB/Octave tools to interact with 
datasets conforming to BIDS

 BIDS Apps bids-apps.neuroimaging.io Portable neuroimaging pipelines that 
understand BIDS datasets

 COBIDAS MEEG cobidasmeeg.wordpress.com Blog describing the COBIDAS MEEG best 
parctices

 eCOBIDAS remi-gau.github.io/eCobidas electronic Python-based user-friendly 
checklist for COBIDAS

 ARTEM-IS osf.io/w4nt6 Template designed to supplement a paper or 
a preregistration and make reporting EEG 
methodology easier and more accurate by 
providing specific fields for specific details

Preprint servers 

 OSF preprints osf.io/preprints Preprint server in OSF

 bioRxiv biorxiv.org Preprint server for biology

 medRxiv medrxiv.org Preprint server for health sciences
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 PsyArXiv psyarxiv.com Preprint server for the psychological 
sciences

 arXiv arxiv.org Open-access archive for scholarly 
articles in multiple fields (e.g. 
physics, mathematics, computer science, 
quantitative biology, quantitative finance, 
statistics, electrical engineering and systems 
science, and economics)

 NeuroLibre neurolibre.org Preprint server for interactive data analyses

Beyond the signal

Slow Science Perspective 

 DORA initiative sfdora.org The Declaration on Research Assessment 
(DORA) recognizes the need to improve the 
ways in which researchers and the outputs 
of scholarly research are evaluated

 HIBAR Research 
Alliance

hibar-research.org Highly Integrative Basic and Responsive 
(HIBAR) research to contribute to solving 
society’s critical problems

 Ronin institute ronininstitute.org New model for scholarly research 
recognizes the value of people outside of 
traditional academia

 Slow Science in 
Belgium

slowscience.be An interuniversity platform for discussion 
on academia’s future

 Better Science betterscience.ch Contributes to a rethinking of the current 
paradigm of quantifiable scientific and 
scholarly work

 IGDORE igdore.org Institute for Globally Distributed Open 
Research and Education (IGDORE) aims 
to improve the quality of science, science 
education, and quality of life for scientists, 
students and families

 Learning Planet 
Institute

learningplanetinstitute.org Promotes learning, research, collective 
intelligence, and creativity to help with the 
complex challenges of the changing world, 
as a learning-society revolution

 Café Culture wellcome.org/what-we-do/our-work/
research-culture/hosting-your-cafe-culture-
discussion

Platform to discuss about the challenges in 
research culture, reflect on a better culture 
and solutions for change

Ecological responsibility 

 Sustainability network 
of the Max Planck 
Society

nachhaltigkeitsnetzwerk.mpg.de A leading network on sutainability studies

 Tyndall tyndall.ac.uk A major european research center on 
climate change

 Labos1point5 labos1point5.org Research initiative to reduce the Green 
House Gas emissions of research in the 
public sector

 OHBM environment 
action group

ohbm-environment.org OHBM’s initiative to reduce the impact of 
neuroimaging reserach on the environment

 NoFlyClimateSci noflyclimatesci.org Grassroots academic initiative of scientists 
who decided to fly less and push for climate 
initiatives through their institutions

 Scientists4Future scientists4future.org International network of scientists 
supporting the global climate movement 
by providing facts and materials based on 
reliable and accepted scientific data
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Box 1.

Evolving GSP

GSP is under constant evolution. Current GSP may not be appropriate in the future, as 

new methods highlight limitations of current practice. Some examples are:

1. GSP for gamma-band oscillatory activity measurements has evolved 

dramatically after the discovery of a microsaccadic spike artifact in the 

EEG (Yuval-Greenberg et al., 2008) with energy in the gamma frequency 

range. This spike artifact led researchers to now routinely monitor saccadic 

eye movements prior to drawing conclusions regarding high-frequency brain 

activity recorded from the scalp.

2. Traditionally acceptable statistical practices in neuroimaging consisted of 

selecting regions of interest for further analysis with the same contrast that 

was used to report effect sizes in publications. This is now a well-known case 

of problematic circularity in data analysis (Kriegeskorte et al., 2009; Vul et 

al., 2009). Similarly, the failure to account for multiple comparisons in mass 

univariate data analysis (shown with irony by Bennett et al. (2009), or by 

Nichols and Hayasaka (2003)) has become completely unacceptable.

3. Wrong uses of powerful methods often emerge, especially if these are 

successful and widely used. For instance, the cluster-based correction for 

multiple comparisons (Maris and Oostenveld 2007) seems to imply a spatio-

temporal extent of the effect under investigation and has been used for this 

purpose. However, this extent depends on an arbitrary threshold, and should 

not be used to localize effects in space or time, as has been reminded recently 

(Sassenhagen and Draschkow, 2019).

4. Similarly, increasing the number of factors in a statistical analysis (e.g., 

ANOVA) causes an exponential increase in the number of main effects and 

interactions being tested, which can dramatically increase the familywise 

Type I error rate (Cramer et al., 2016; Luck and Gaspelin, 2017). As a result, 

previous advice to include electrode/sensor as a factor in statistical analyses 

(Luck, 2005) has been replaced by advice to collapse across electrodes/

sensors unless this factor is important for testing the scientific hypotheses 

(Luck, 2014).
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Box 2

Reproducible research defined

The recent reproducibility crisis in neuroimaging (Button et al., 2013; Poldrack et al., 

2017) has highlighted the importance of conducting reproducible research (Poldrack 

et al., 2020) and stressed its value in GSP. While reproducibility is often used as an 

umbrella term in the literature, here we would like to provide more specific definitions 

for each of the dimensions of the process: reproducibility, replicability, robustness, and 

generalizability, as introduced by Community et al. (2019). Scientific work can be 

defined as reproducible when the same results can be systematically observed if the 

same analytic steps are carried out on the same dataset as the original study. Research is 

considered replicable if the same analysis performed on a different dataset (e.g., another 

group of participants) outputs qualitatively similar results. Robust scientific work occurs 

when the same dataset is used with a different analysis pipeline that nonetheless tackles 

the same research question as the original work (e.g., the original code in Python is 

translated to R, or when the same pipeline is run using different analysis toolboxes) 

and similar results are obtained. Finally, generalizable work combines new but similar 

datasets, with new but similar analysis pipelines, to produce similar results.
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Box 3.

MEEG analysis software in brief

Prior to computers becoming tools for MEEG analysis, “paper and pen” EEG data 

analysis was the norm. Acquisition hardware used to print time-courses on long rolls 

of graph paper or z-folding paper, from which amplitudes and even frequencies were 

measured with a ruler. Experimental data were noted in tables and statistical analyses 

performed by hand. Computers became popular for MEEG data analysis in the later parts 

of the 20th century. Numerous toolboxes were created to enable complex data analysis of 

high-density MEEG datasets at a speed that earlier users could not have dreamt of.

But with the computing power available today, it is easy to hunt for significant effects in 

the data, and ease-of-use can hide a method’s underlying complexity. Therefore, leading 

MEEG toolboxes have all developed strategies to safeguard against most common errors. 

Below, we examine some widely used toolboxes for MEEG analysis. All five toolboxes 

can run complete analysis pipelines, are free and open source, and methods originally 

developed with one toolbox are usually ported and usable in the others.

EEGLAB (Delorme and Makeig, 2004) is of the first, and currently the most-cited 

open-source toolboxes for EEG analysis. It was created at the Swartz Center for 

Computational Neuroscience at the University of California San Diego by Scott Makeig 

and Arnaud Delorme in the MATLAB scientific programming language (support for 

Octave starting in 2021). It is largely developed around independent component analysis 

(ICA), introduced to EEG by Makeig et al. (1997). ICA is a popular blind source 

separation method for both artifact rejection and data analysis (see also Martínez-

Cancino et al., 2021). EEGLAB can incorporate independent components as virtual 

channels for both standard and ICA-specific source-level analyses. GSP: A simple 

graphical interface guides users through sequential processing steps. No programming 

experience is required, but scripts can easily be created for more flexibility. An open 

ecosystem of plug-ins allows the incorporation of new methods.

FieldTrip (Oostenveld et al., 2011) is developed by a team led by Robert Oostenveld at 

the Donders Institute (Radboud University, Nijmegen, the Netherlands). This complete 

MEEG toolbox, also supporting human and animal invasive electrophysiology, is 

particularly well suited to oscillatory data analysis and source modeling. Its cluster-based 

permutation statistical analysis framework (Maris and Oostenveld, 2007) is the current 

gold-standard method to correct for multiple comparisons in MEEG data analysis. A 

unique feature of this toolbox is its ability to handle trials of varying duration. GSP: The 

systematic separation of configuration parameters and data promotes a robust structure 

and aids reproducibility. Its command-line interface is suitable for experimenters with 

basic MATLAB experience, as well as more advanced users.

Brainstorm (Tadel et al., 2011, 2019) was originally created in MATLAB by Baillet et 

al. (2000) at the Laboratoire de Neurosciences Cognitives et Imagerie Cérébrale (LENA) 

in Paris. It has been entirely revamped, further developed, and professionally managed 

by François Tadel since 2008 in Paris, and in Sylvain Baillet’s team at the Montreal 

Neurological Institute at McGill University in Montreal (Tadel et al., 2011, 2019), with 
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large contributions from John Mosher (University of Texas Health Science Center at 

Houston) and Richard Leahy (University of Southern California). Among others, it can 

handle MEG, fNIRS, scalp, and intracranial EEG within the same protocol. Its sophistical 

graphical interface includes an advanced pipeline generator and a modular “process” 

ecosystem that allows incorporating virtually any analysis method into its environment, 

including e.g. FieldTrip and MNE-python. GSP: Powerful tools allow data exploration 

and visualization, and a database engine transparently handles data files.

MNE-Python (Gramfort et al., 2013) is the most recent addition to this toolbox list, 

based on the older MNE-C Minimum Norm Estimate (MNE) (Gramfort et al., 2014; 

Hämäläinen and Ilmoniemi, 1994). Alexandre Gramfort (Inria Saclay-Île-de-France 

Research center, Paris) leads the development. It can handle MEG, EEG, iEEG (ECoG 

and DBS), EKG, EMG, and fNIRS among others, and interfaces with the Scikit-learn 

Python toolkit for machine learning analyses (Pedregosa et al., 2011). Its further 

ecosystem provides powerful analysis and visualization tools, including dipole fitting, 

linear methods, beamformers, and nonlinear approaches, and interfaces with Freesurfer 

(Dale and Sereno, 1993; Dale et al., 1999; Fischl, 2012). GSP: The object-oriented 

interface ensures a match between methods and data types, and a lively contributor 

community fosters further developments and improvements.

Finally, SPM (Statistical Parametric Mapping) was originally developed for the analysis 

of positron emission tomography (PET) and subsequently fMRI data by Friston et al. 

(2007). In addition to PET and fMRI, SPM allows analysis of MEEG data (Litvak et 

al., 2011) using the general linear model (GLM) and a Bayesian framework for source 

reconstruction. It furthermore supports analyses of effective connectivity and fitting 

biophysically realistic neural mass models to MEEG data using dynamic causal modeling 

(DCM; Kiebel et al., 2008). It maintains GSP with support for both a graphical user 

interface, and scripting analyses for transparent data processing pipelines.
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Highlights 2.1.

Human factors

• Perceptual and cognitive biases influence how researchers perceive, interpret, 

and communicate data and ideas. Awareness is the first step towards 

mitigation.

• Careful planning and reasoning can help reduce logical fallacies concerning 

hypotheses, relevant theories, and conclusions.

• Collective exercises such as a “premortem meeting” can help highlight pitfalls 

and correct mistakes before they are made during an experimental project.
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Highlights 2.2.

Pre-registration

• Pre-registration is the practice of publicly disclosing and archiving 

experimental plans before data are collected and/or analyzed.

• Pre-registration procedures can be broadly classified as either “unlocked” 

(publicly available research plans that might still undergo modifications) 

or “locked” (finalized research plans, which should be followed precisely 

throughout the execution of the project).

• Pre-registration has been argued to lead to better scientific practices through 

increased transparency of the scientific process, peer-review at early stages of 

the project, and reduced publication bias.

• Potential concerns or limitations such as “scooping”, increased project 

durations, or reduced applicability for trainees, should be carefully considered 

but are often mitigated when planning is done carefully.
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Highlights 2.3.

Reproducibility and collaboration

• Tools exist to help prepare experiments in such a way to emphasize 

reproducibility, replicability, robustness, and generalizability (Box 2).

• Open Science Framework is a discipline-agnostic, general-purpose platform 

for collaborative, open work.

• The Turing Way is a community-driven guide to reproducible, ethical, 

inclusive and collaborative data science.

• #EEGManyLabs is a large-scale Initiative for the replication of some of the 

most influential EEG papers.

• ERP CORE is an open resource to reproduce and replicate common ERP 

experiments.
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Highlights 3.1.

Data collection

• Careful attention to data collection is crucial as conditions during data 

collection can affect data quality, with different contexts and different 

modalities having different requirements.

• It is important to verify the visual and temporal accuracy of the stimulus 

presentation and its recording, since this is often the main component in an 

experiment.

• Recording clean data requires specific steps that can be, and have been, 

collected and published in open acquisition protocols.

• Intracranial measurements provide unique benefits but are limited to clinical 

settings, where special attention must be given to patient care and other 

factors.

• Open repositories promote the reproduction of results and data reuse, 

increasing long-term value of invested efforts.

• Sometimes a project is best served by using simulated data instead of real 

recordings, e.g., when a known ground truth is needed.
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Highlights 3.2.

Analysis software strategies

• Code is often the only authoritative source of exact experimental procedures, 

so well-written code greatly aids reproducibility as well as correctness.

• Choosing a software environment to analyze MEEG data requires considering 

the local lab environment, programming capabilities, and the needs of the 

experiment being performed.

• Toolbox environments evolve over time, and different implementations of the 

same procedure can have different outcomes. It is important to document the 

precise version of any software package or coding environment, and to verify 

results in different toolboxes when in doubt.
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Highlights 3.3.

Signal processing

• The method used to answer an experimental question sets specific data 

requirements and should therefore be chosen before designing the experiment.

• Data analysts should understand all signal transformation steps, assumptions, 

limits and pitfalls of the used methods, as well as the properties of the data 

itself.

• Running the same analysis with several signal processing alternatives and 

visualizing the intermediate analysis steps can help assess the robustness of 

experimental results.
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Highlights 3.4.

Statistics

• Current uses of statistics for univariate and multivariate data-driven 

approaches require adapting significance thresholds.

• Simulations can help prospective statistical power analyses to aid 

experimental design.

• Metrics exist to evaluate the data quality of event-related MEEG studies.

• Multiverse analysis can be used to address the issue of the ‘garden of forking 

paths’ in MEEG research.

Niso et al. Page 69

Neuroimage. Author manuscript; available in PMC 2024 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights 3.5.

Machine learning

• ML algorithms are increasingly popular in MEEG contexts, in particular for 

data-driven analyses.

• ML algorithms will always provide an outcome, but its relevance and 

accuracy depend on the quality and meaning of the input data, and may be 

difficult if not impossible to evaluate neurophysiologically.

• Data preprocessing and experimental design need to take into account known 

ML pitfalls when ML-based methods are to be used.
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Highlights 3.6.

Data standardization, analysis, and reporting

• Data standardization helps data organization, sharing, and analysis.

• Standards in the form of ‘living documents’ can address ever-evolving issues 

and perspectives.

• The Brain Imaging Data Structure (BIDS) is a community-led standard for 

organizing, describing and sharing neuroimaging data.

• ARTEM-IS provides a template and tool for comprehensive reporting.

• COBIDAS MEEG provides guidelines and checklists covering all parts of 

MEEG projects, specifically including reproducibility and data sharing.
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Highlights 4.

Beyond the signal

• No scientific discipline is free of moral implications, and MEEG research 

must consider established and proposed rights to e.g. mental integrity.

• Technological innovations and increases in quantity are not goals in and of 

themselves: questions, hypotheses, and theories remain paramount.

• The culture of speed creates wrong incentives that favor quantity over quality 

and competition over collaboration, leading to a stressful and uncaring work 

environment.

• A slow science perspective can help to rethink academica instead of merely 

fixing it.

• GSP must take environmental aspects into account.
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