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Abstract

Isomer Population Control in Solid-Density Targets using Compact Laser-Plasma
Accelerators

By

Robert Edward Jacob

Doctor of Philosophy in Engineering-Nuclear Engineering

University of California, Berkeley

Professor Carl Schroeder, Co-chair

Professor Lee Bernstein, Co-chair

Nuclear isomers impact a broad range of scientific and technical fields, from radio-medicine
to stellar nucleosynthesis. Direct manipulation of isomer populations can enable a powerful
new technique for mitigating spent-nuclear fuel, as well as enable new approaches to nuclear
batteries. This work introduces a novel technique for the direct manipulation of isomer popu-
lations utilizing the enhanced nuclear level density (NLD) at high excitation energies, known
as the nuclear quasicontinuum. Following excitation into the quasicontinuum, additional cou-
pling of spin can occur through real or virtual photon transfer mediated by nuclear-plasma
interactions (NPIs). Laser-plasma accelerators (LPAs) provide energetic, ultra-short pulse
electron beams. This work discusses an experimental proof-of-concept study of manipulating
isomer populations in Bromine nuclei using LPA-sourced < 100 fs electron beams. A com-
parison of bremsstrahlung photon and electron irradiation cases is evaluated to determine the
presence of electron-nuclear interaction contributions to isomer populations. Additionally,
the potential for LPAs to be used as sensitive probes of NLD models and photon strength
functions in an effort to characterize the nuclear quasicontinuum is explored.



i

Contents

Contents i

List of Figures iii

List of Tables vi

1 Introduction 1
1.1 Driving interests in understanding isomer population manipulation . . . . . 1
1.2 Physical sources of long isomer lifetimes . . . . . . . . . . . . . . . . . . . . 2
1.3 Manipulation of isomer populations . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Efforts in photon driven excitation of isomer states . . . . . . . . . . 5
1.3.2 Indirect population of isomer states . . . . . . . . . . . . . . . . . . . 6

1.4 The need for new methods of isomer population manipulation . . . . . . . . 6

2 The Nuclear Quasicontinuum and Nuclear-Plasma Interactions 8
2.1 Characterizing non-discrete nuclear states at high excitation energies . . . . 8
2.2 Nuclear level density models . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Fermi gas Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1.1 Defining the level density parameter and spin distribution

width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Constant Temperature Model . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Back-shifted Fermi gas Model . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Generalized Superfluid Model . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Microscopic level density models . . . . . . . . . . . . . . . . . . . . . 16

2.3 Gamma strength functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Lorentzian models for gamma strength functions . . . . . . . . . . . . 18

2.3.1.1 Double and Pygmy resonances . . . . . . . . . . . . . . . . 19
2.3.2 Microscopic models for gamma strength functions . . . . . . . . . . . 19

2.4 Nuclear-Plasma Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Nuclear excitation by electronic transition . . . . . . . . . . . . . . . 20
2.4.2 Nuclear excitation by electron capture . . . . . . . . . . . . . . . . . 21
2.4.3 Inelastic electron scattering . . . . . . . . . . . . . . . . . . . . . . . 22



ii

2.4.4 Photo-excitation by Bremsstrahlung . . . . . . . . . . . . . . . . . . 22
2.4.5 Modifications to isomer lifetime in plasmas . . . . . . . . . . . . . . . 23

2.5 Coupling nuclear-plasma interactions into the quasicontinuum . . . . . . . . 24

3 Lasers, plasma, and laser-plasma accelerators 25
3.1 Gaussian laser pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Plasma fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Modelling plasma behavior . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Electromagnetic waves in a plasma . . . . . . . . . . . . . . . . . . . 33
3.2.3 Intense laser pulses in plasma . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Laser-plasma accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Linear plasma waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Non-linear plasma waves . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Hundred-Terawatt Thomson laser platform . . . . . . . . . . . . . . . . . . . 41

4 Isomer population in Bromine nuclei 48
4.1 Experimental motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Identification of isomer signals . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Calculation of populated nuclei . . . . . . . . . . . . . . . . . . . . . 55
4.3.3 TALYS calculations for photo-excitation . . . . . . . . . . . . . . . . 57
4.3.4 Comparison of electron and photon irradiation cases . . . . . . . . . . 59

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Conclusion 65

Bibliography 65



iii

List of Figures

1.1 Schematic for decay of 242Am into 238Pu with half-lives indicated [6]. Here, β−
refers to beta decay, α refers to alpha decay, and EC refers to the electron capture
decay process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Level scheme of 242Am nucleus near the ground state, with the red arrows indi-
cating excitation out of the 242mAm state into the next available state at 52.7 keV
[6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Schematic abbreviated level scheme for 242Am, showing the 242mAm isomer excited
into the quasicontinuum, followed by decay into the ground state [6]. . . . . . . 10

3.1 Gaussian electric field radial dependence plotted at multiple z for w0 =20 µm
and λ=800 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Intensity distribution resulting from a Gaussian electric field radial dependence
plotted at multiple z for w0 =20 µm and λ=800 nm. . . . . . . . . . . . . . . . 27

3.3 Electric field envelope plotted against the carrier frequency oscillations for a Gaus-
sian laser pulse with ω0 = 2.36 rad/fs and ∆tFWHM = 40 fs. . . . . . . . . . . . 28

3.4 Linear plasma wave behavior plotted as function of the co-moving variable kpeξ
for a0 = 0.5, with Ez/E0, δn, and a

2 shown. . . . . . . . . . . . . . . . . . . . . 40
3.5 Quasi-linear plasma wave behavior plotted as function of the co-moving variable

kpeξ for a0 = 1.0, with Ez/E0, δn, and a
2 shown. . . . . . . . . . . . . . . . . . 40

3.6 Non-linear plasma wave behavior plotted as function of the co-moving variable
kpeξ for a0 = 2.0, with Ez/E0, δn, and a

2 shown. . . . . . . . . . . . . . . . . . 41
3.7 Overhead generalized description of the HTT laser system. Laser seeding and

amplification occur in the room on the right side of image, with the target chamber
on the left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Schematic description of the HTT laser amplifier chain. Detailed are the three
independent laser arms, with adjustable on-target arrival times. The listed cur-
rent/future components were accurate at the time of the experiment, but are not
representative of the system at the time of publication. . . . . . . . . . . . . . . 43

3.9 Histogram of 2500+ successive shots measuring the amplified drive laser energy. 44
3.10 Scan data showing the laser profile near focus, with representative CCD images

shown at the top. The beam at focus is 20 µm, for a calculated intensity of ≈ 1019

W/cm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



iv

3.11 Scan data showing the laser temporal FWHM as a function of compressor grating
spacing, with representative FROG traces at the top. For both instruments, a
FWHM pulse duration of 40 fs is measured, with an offset indicative of measure-
ment geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.12 Long-term consecutive LPA electron beam spectrum data showing consistency
over 1000 shots at 1 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Abbreviated nuclear level scheme for 79Br, with lifetimes, energies, and spin states
given. The solid blue arrow represents a direction photo-excitation from the
ground state into the isomer, while the dashed red arrows represent excitation
into the quasicontinuum followed by de-excitation into the isomer state [14]. . . 49

4.2 Schematic representation of the photon irradiation experimental configuration.
The laser, shown in red, is focused in the gas jet, driving the LPA. The resulting
electron beam, blue, co-propagates towards the magnet assembly. The 0.46 T
dispersion magnet allows for geometric selection of the bremsstrahlung energy
endpoints, while the 0.75 T secondary magnet bends the remaining electrons
away from the detector, into a plastic shield not pictured. The LANEX screen
located between the magnets is removable, providing a diagnostic tool for the
electron beam energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Schematic representation of the electron irradiation experimental configuration.
The laser, red, is focused in the gas jet, driving the LPA. The resulting electron
beam, blue, co-propagates towards the magnet assembly. The 0.46 T dispersion
magnet allows for geometric selection of the electron energies which strike the
target. The LANEX screen located downstream of the dispersion magnet is
removable, providing a diagnostic tool for the electron beam energy. . . . . . . . 52

4.4 Electron energy spectrum showing the measured electron spectrum. The inset
plot is an example CCD image with the center-line energy axis provided. As the
screen was placed at 40◦ angle relative to the laser axis, the energy distribution
across the image is warped and requires complex analysis. This angle offset is the
cause of the diagonal shadow of the bremsstrahlung converter bar. . . . . . . . . 53

4.5 Shot-accumulated 2D histogram for the 20 seconds following each shot. The
79mBr decay signal can be seen at 207.6 keV, which can be seen to decay away
over the 20 second counting period. The 80mBr decay signal can be seen as a
constant background near 85.8 keV, as result of the significantly longer half-life.
Note the curved detector response following rapid biasing after each shot. . . . . 54

4.6 Post-irradiation continuous 2D histogram for many hours. The 80mBr decay signal
can be seen near 85.8 keV, which can be seen to decay away with the characteristic
4.42 hour half-life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



v

4.7 Example process for the calculation of total isomer population N0. The left plot
shows the time-selection from the 2D histogram to generate the y-axis projection
shown in the top right. The isomer signal peak for 79mBr is circled in red, and
magnified on the bottom right. The number of beige-green bins, m, is iterated
through to calculate the peak counts, light blue, above the background signal,
orange. In Equation 4.1 the total bin value is referred to as Ci and the background
signal is BGi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 Grid of TALYS default NLDs and γSFs used to calculate isomer activation ratios
for the photo-excitation case using the stainless steel bremsstrahlung converter. 58

4.9 Shifted ρ(E, J) distributions at 30 MeV in 79Br. . . . . . . . . . . . . . . . . . . 59
4.10 Simulated spectra at the LaBr3 active target comparing the internally generated

bremsstrahlung from the electron beam, bremsstrahlung from the stainless steel
bar, and the internal electron scattering spectrum. All calculated with FLUKA
for an electron beam centered at 35 MeV with a flat width of 2 MeV. . . . . . . 60

4.11 Simulated electron energy deposition for an electron beam centered at 35 MeV
with a flat width of 2 MeV in the LaBr3 active target. Color bar calibrated for
eV/Br atom/pC of electron beam charge. . . . . . . . . . . . . . . . . . . . . . . 61



vi

List of Tables

4.1 Activations/Shot for isomer decay peaks . . . . . . . . . . . . . . . . . . . . . . 57



vii

Acknowledgments

I’d like to thank my advisor Dr. Carl Schroeder for his invaluable guidance and men-
torship during the course of my graduate degree. Our discussions, both technical and non-
technical, are always appreciated. Your enthusiasm for our work is infectious and helped me
to grow my own love for science, but you also made sure to remind me of the importance of
maintaining a healthy work-life balance. Despite being totally unaware of the awesome field
of laser-plasma accelerators beforehand, you gave me an opportunity to join the BELLA
center. I will be forever grateful for that opportunity, as my experience at Berkeley has been
transformative for me as a student, a scientist, and as an individual.

Thank you to my advisor Dr. Lee Bernstein for giving me the opportunity to work
on such an intellectually stimulating project in exploring nuclear physics with laser-plasma
accelerators. Working together on this project instilled in me a deep fascination with applied
nuclear physics, and I look forward eagerly to the work that lies ahead. Your technical
expertise, general insight, and endless optimism are greatly appreciated, always providing
motivation to keep pushing forward.

Many thanks to the staff of the BELLA Center, with which I’ve had the honor of working
closely with. Thank you to Dr. Cameron Geddes for your mentorship, and for motivating an
attitude of excellence in the laboratory. Thank you to Dr. Jeroen van Tilborg, your passion
for experiments and knowledge of laser systems is inspiring. Thank you to Dr. Qiang Chen
and Dr. Benjamin Greenwood for sharing your depth of knowledge and experience with
me, and for making HTT a great place to do science. Thank you to Zak Eisentraut, Mark
Kirkpatrick, and the BELLA engineering team for sharing your technical expertise, insight,
and making good science possible.

A special thank you to Dr. Tobias Ostermayr and Dr. Hai-En Tsai for their mentorship
early in my graduate career. By sharing your knowledge, experience, and wisdom, you
prepared me for the difficulties of experimental science. Your determination and resolve in
approaching complex problems is inspirational, and I strive to emulate that in my future
endeavors. I fondly remember the long days in the lab we shared during experimental
campaigns, where I learned the value of appreciating the brief moments of success following
many hours of hard work.

Thank you to my dissertation and qualifications committees for their efforts in shepherd-
ing me through the graduate school process. The successful completion of this dissertation
is due in part to your guidance, patience, and expertise.

Thank you to the MANE Department at Rensselaer Polytechnic Institute for providing
me a strong undergraduate education. Thank you to Dr. Yaron Danon for convincing me
to pursue a doctorate. I was initially quite hesitant due to the commitment, but I am very
glad I took your advice.

Thank you to all of the friends who supported me along the way, for the laughs and
for lending an ear when needed. Thank you Griffin Melnick, for sticking with me for the
long haul. Across 9 years, from Troy, NY to the SF Bay Area, you’ve been a constant in
my life and I am grateful for you friendship. Thank you to Curtis Berger and Kyle Jensen,



viii

for making graduate school all the more enjoyable. Whether it be discussing experiments,
science, our cats, playing games, struggling at the driving range, or anything else, I look
forward to more time in your company.

Thank you to my parents Virginia and Karl, who both worked very hard to provide me
the opportunities that led here. I couldn’t have done it without your support, and I love you
both. Thank you to my brother John, for your support and for being a great friend.

And finally, I must express my immeasurable love and gratitude for my fiancée Nicole,
who has supported me throughout this entire journey. You’ve helped me navigate the most
difficult times, and helped me celebrate the happiest moments. Your patience with me
during this entire process is recognized and greatly appreciated. And now, I look forward
with giddy anticipation to life with you and our feline boys, Pascal and Charles. Together,
we can handle whatever comes our way.

The author gratefully acknowledges fruitful discussions with Ross Koningstein. This work
was supported by the U.S. Department of Energy, National Nuclear Security Administration,
Defense Nuclear Nonproliferation R&D (NA-22) and the Office of Science, Office of High
Energy Physics, under Contract No. DEAC02-05CH11231, and by a generous philanthropic
gift from Google LLC.



1

Chapter 1

Introduction

1.1 Driving interests in understanding isomer

population manipulation

Nuclei can be excited to energies above their ground state. A small fraction of these nuclei
exhibit lifetimes on the second, hour, day, and year timescales. Together, these metastable
states known as nuclear isomers are characterized by a characteristic energy above the ground
state, E, an orbital angular momentum component, J , parity, π, and a characteristic half-
life, τ1/2. Isomers are utilized in a broad scope of applications. Various medical imaging
techniques utilize isomers as controlled radiation sources, such as 99m

43Tc, which comprises
roughly ≈ 85% of nuclear medical procedures [1]. Other current uses for nuclear isomers
include environmental monitoring and industrial radiation sources. Advances in science and
technology allow for more applications of nuclear isomers and including but not limited to
advanced radio-medicine, nuclear batteries for power storage, advanced radiation detectors,
and quantum computing applications [2, 3].

The ability to directly manipulate isomer populations may provide a powerful tool for
re-purposing a fraction of spent nuclear fuel. Formed by neutron capture in thermal reactors,
242mAm acts as a gateway to much longer lived isotopes [4]. With its lifetime of τ1/2 ≈ 141
years, 242mAm poses a challenge as it requires active storage monitoring for hundreds of years
[5]. If the 242mAm state could be depopulated into the 242Am ground state, its β-decay into
242Cm, followed by α-decay into 238Pu, could be hastened significantly. This decay tree is
illustrated in Figure 1.1. By transitioning from the 242mAm state into the 242Am ground
state, the lifetime becomes τ1/2 = 16.01 hours [6]. This transition would drastically reduce
storage requirements, but more significantly it would create a source of 238Pu, which is used
as a source isotope in radio-isotope thermo-electric generators (RTGs) for providing electrical
power during space operations. 238Pu is an ideal candidate for these devices as an α-emitter
with minimal neutron and gamma contributions, and a τ1/2 = 88.7 years [7]. Currently,
United States domestic production of 238Pu at Oak Ridge National Laboratory’s High Flux
Neutron Generator is targeting 1.5 kg of isotope by 2026 [8]. Previously fielded RTGs have
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Figure 1.1: Schematic for decay of 242Am into 238Pu with half-lives indicated [6]. Here, β−
refers to beta decay, α refers to alpha decay, and EC refers to the electron capture decay
process.

used several kilograms of fuel material per unit, so interest in enhanced production through
isomer manipulation is present.

In the astrophysical setting isomers are thought to play an important role in stellar
nucleosynthesis, especially around A ≈ 80 [9, 10]. Recently, further work by Misch et al.
has been performed in analyzing the importance of “astromers” in stellar reaction rates [11].
In this work the effect of long-lived isomers on the s-process is discussed as a function of
system temperature, with isomeric states requiring treatment as separate species below a
given “thermalization temperature”. Additionally, the role of astromers in the r-process is
explored, with results suggesting that disparities between ground state and isomer lifetimes
may have significant consequences on radioactive heating [11]. This analysis highlights the
importance of understanding isomer feeding pathways and the effects of isomer populations
on heavy isotope formation in stellar environments.

1.2 Physical sources of long isomer lifetimes

These long-lived isomers are attributed to a multitude of nuclear structure effects. Of
primary interest to this work are spin-isomers, where the isomeric state has a significant spin
difference, ∆J , relative to lower lying states. Similarly, K isomers result when de-excitation
of the isomeric state requires a large change in the K quantum number, or the projection of
the nucleus’s rotation axis on its axis of symmetry. K isomers are seen in highly deformed,
non-spherical nuclei. Another type, shape isomers, result when local energy minima in
the nuclear potential exist at states of large nuclear deformation [12]. For the case of spin
isomers it is instructive to undergo a qualitative analysis of transition rates through multipole
electromagnetic radiation emission using the Weisskopf estimates, as evaluated by Krane [13].
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Transition rates, λ, in units of s−1, are given for electric transitions as a function of atomic
mass, A, and the transition energy in MeV, E, in Equation 1.1. Multipole order is denoted
with an integer on the left-hand side of the equation. For example, λ(E1) refers to an electric
dipole transition rate while λ(E2) refers to an electric quadrupole transition.

λ(E1) = 1× 1014A2/3E3,

λ(E2) = 7.3× 107A4/3E5,

λ(E3) = 34A2E7,

λ(E4) = 1.1× 10−5A8/3E9.

(1.1)

Similarly, transition rate estimates are presented in Equation 1.2 for magnetic transitions:

λ(M1) = 5.6× 1013E3,

λ(M2) = 3.5× 107A2/3E5,

λ(M3) = 16A4/3E7,

λ(M4) = 4.5× 10−6A2E9.

(1.2)

During a nuclear transition total angular momentum must be conserved, and can be rep-
resented as Ii = L + If , where L is the order of the multipole operator, and Ii and If are
the angular momentum of the initial and final nuclear states, respectively. For de-excitation
through gamma emission, it is taken that a multipole of order L will radiate a photon
with Lh̄ angular momentum [13]. Additional attention must be paid to change in parity,
∆π, between the initial and final states as this further restricts the type of transitions that
can occur. The parity rules for both electric and magnetic dipole transitions are shown in
Equation 1.3, which indicate that electric transitions are parity-preserving for even L and
parity-changing for odd L order multipoles. The opposite is true for magnetic transition:

π(EL) = −1L,

π(ML) = −1L+1.
(1.3)

Within this framework, a qualitative analysis of indicates that increasing L, or ∆J , signifi-
cantly reduces the transition rate between states, with electric transitions generally favored
for a given L. Increasing E leads to increased transition rates, however L is the dominant
factor in determining transition rates.

It is readily seen that long-lived spin-isomers can be attributed to the suppressed transi-
tion rates of higher order L multipoles, as lifetime is inversely proportional to the transition
rate. An example relevant to this work is the ground state 3/2+ 79Br nucleus and its next
available level, the 207.64 keV, 9/2+ isomer 79mBr [14]. For a nucleus in the 79mBr state
to de-excite to the ground state, a ∆J = 3 transition with ∆π = 0 must occur. Using
the Weisskopf estimate for the most probable M3 transition, λ(M3) ≈ 0.088, which corre-
sponds to an estimated half-life of τ1/2 ≈ 7.85 seconds. This value is representative of the
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experimentally observed τ1/2 = 4.85 seconds. For this case, there is good agreement between
Weisskopf estimates and experimental results. Weisskopf estimates represent single-particle
transitions and do not account for collective behavior. Observed state lifetimes can differ
significantly from those predicted by Weisskopf estimates: the well known K isomer in 180Hf
being a prime example [15].

1.3 Manipulation of isomer populations

Advanced applications of nuclear isomeric states require the ability to manipulate their
populations directly, either populating or depopulating them. In the simplest case, direct
population of an isomeric state could be achieved by photon capture on a nucleus, assuming
the photon has the correct energy and angular momentum to populate the target isomeric
state. Unfortunately, this is difficult to achieve in practice as a result of the uncertainty
principle relating lifetime and state energy width, as shown in Equation 1.4 [16, 17],

∆E∆t ≥ h̄

2
, (1.4)

where ∆E is the energy width of a state, while ∆t is the lifetime of the state. This relation
describes a fundamental principle of nuclear states; it implies a long-lived state, with large
∆t, must have a narrow energy width, or a small ∆E. Stated in reverse, a short-lived state
must have a large energy width. It is in this relation that direct access of long-lived nuclear
isomer states finds its first hurdle. By definition, an isomer must have a large ∆t with an
accompanying small ∆E, or access window to the state. This makes direct population of
isomers with functionally long lifetimes prohibitively difficult.

An example relevant to this work is the direct population of the 79mBr isomer, which
has a measured half-life τ1/2 = 4.85 seconds [14], with an accompanying ∆E of ≈ 10−17 eV
per Equation 1.4 that is many orders of magnitude of precision below any currently known
photon source. A more favorable case, such as the de-population of the 242mAm isomer by
excitation into the next available state followed by de-excitation via gamma emission to the
ground state, is shown in Figure 1.2. The target level has a known lifetime of ≈ 10−9 seconds
with a corresponding ∆E of ≈ 10−7 eV, which remains an unfeasible target for direct access
using photon sources. Even without consideration for angular momentum, the relations
imposed by Equation 1.4 mean that direct manipulation of isomer populations using photon
irradiation is exceedingly difficult.
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Figure 1.2: Level scheme of 242Am nucleus near the ground state, with the red arrows
indicating excitation out of the 242mAm state into the next available state at 52.7 keV [6].

1.3.1 Efforts in photon driven excitation of isomer states

Direct photon excitation of isomer states is difficult to achieve due to energy width con-
straints and typical large spin differences between ground and isomer states. This has driven
interest in indirect population of isomer states by accessing higher energy feeding bands,
which could decay into the desired isomer state. There have been efforts to experimentally
explore these non-resonant (γ, γ′) reactions by Carroll et al. [18]. They suggest the nuclei
studied may have enhanced (γ, γ′) feeding into low-lying isomer states for incoming photons
with energies between 3 and 4 MeV, with no conclusive evidence for additional strong feeding
channels opening up above 6 MeV [18]. This non-resonant approach has yet to be proven as
an effective tool for use in applications. Additionally, applied use of this approach requires
specific knowledge of feeding levels in a given candidate nucleus, which provides a challenge
in itself.

Other efforts seek to use optical frequency photons to populate isomer states. This
approach is limited to nuclei which have very low-lying isomer states, as optical frequency
photons are limited to few eV, as opposed to the more typical keV and MeV scales seen
in nuclear excitation mechanisms. With its recently observed radiative decay [19], 229mTh
drives strong interest as a ”nuclear clock” isomer. With a very low energy isomer predicted
to exist near ≈ 7.8 eV, there have been efforts to excite this state directly using optical
photons generated by an electron undulator [20]. Additional efforts have focused on using
optical photons to excite atomic states, which can then resonantly couple into the nucleus
and populate the isomer state through the inverse electronic bridge mechanism, however
these experiments are inconclusive [21].
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1.3.2 Indirect population of isomer states

Many of the techniques used in studying nuclear isomers rely on indirect access to iso-
meric states using particle beams to probe nuclear reaction pathways, with some fraction
of the products populating isomer states. Studies performed using non-relativistic (≈ 6
MeV/Nucleon) particle beams rely on multi-particle transfer and inelastic reactions in tar-
get nuclei which result in a large number of possible products, a fraction of which may
represent an isomer state [15]. Fusion-evaporation reactions on heavier nuclei targets may
populate an isomer state in the fused nucleus or emit particles, often neutrons, with the
resulting nucleus populating an isomer state. Partial fusion reactions, also called projectile
breakup reactions, use a similar process but rely on the beam nucleus to break up before
the fusion reaction occurs, which allows for larger amounts of spin to be coupled into the
resultant nuclei [12]. Inelastic scattering using non-relativistic heavy beam nuclei on heavy
target nuclei is another technique used for studying very high spin states [12]. Additional
work has been performed using relativistic beams (≈ 1 GeV/Nucleon) coupled with magnetic
separators for reaction fragments to discover isomer states in heavy nuclei [15].

Isomers can also be formed as a result of nuclear fission and the decay of its products. For
medical applications, most 99mTc is sourced from 99Mo formed by thermal fission reactions
in 235U fuel pellets. With a τ1/2 = 66 hours, 99Mo decays into 99mTc. This production
process also generates the medically significant isotopes 131I and 133Xe [22]. There are efforts
exploring the 98Mo(n, γ)99Mo reaction using high-flux neutron sources for medical isotope
production, however they have yet to be proven more effective than fission sources [23]. Work
examining 100Mo(γ,n)99Mo reactions using laser-plasma accelerator sourced bremsstrahlung
photons up to 1.7 GeV has also been performed [24].

1.4 The need for new methods of isomer population

manipulation

Advanced applications for isomers, such as use in batteries, will require new techniques for
manipulating isomer state populations. Per Tavares and Terranova [2], suitable candidates
for nuclear isomer batteries include α, β, and γ emitters. In the cases of α and β emitters,
the nuclei is transmuted and the previously populated isomer state is inaccessible. With
proper shielding and design, γ emitting isomers provide an exciting source of potentially
rechargeable nuclear batteries. For this application goal to be feasible, techniques for popu-
lating and depopulating such isomer states are required. Direct photon excitation into isomer
states remains an unlikely approach, given the strict requirements for spin and energy of the
incoming photon. Non-resonant photon excitation methods require advanced knowledge of
nuclear feeding levels on a per nucleus basis and have yet to be demonstrated as a precise tool
for driving applications. Fission sources and energetic particle beam approaches are insuf-
ficiently precise, as the inherent stochastic characteristics of these interactions require that
potentially undesirable reaction pathways are present. Optical excitation methods, either di-
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rectly or indirectly, may eventually be a powerful tool for nuclei with appropriately low-lying
isomers, but are inherently limited in scope of application by their very low energies.

It is clear that alternative methods to isomer population manipulation should be ex-
plored. While present methods provide powerful research and discovery tools, precise access
to isomer states represents a necessary step for the development of advanced applications
for nuclear isomers. In this work, we introduce and discuss the concept of indirect isomer
population manipulation through the nuclear quasicontinuum utilizing the enhanced energy-
spin coupling provided by nuclear-plasma interactions (NPIs), as enabled by the ultra-short
electron bunches generated by laser-plasma accelerators. Chapter II introduces the nuclear
quasicontinuum, the theoretical models used to characterize it, and nuclear-plasma interac-
tions. Chapter III introduces laser-plasma accelerators as a concept and will detail how these
platforms enable unprecedented probing of the nuclear quasicontinuum. Additional content
will detail the experimental platform that enables the operation of these laser-plasma ac-
celerators. Chapter IV details experimental work performed with Bromine nuclei, and the
analysis of those results. A conclusion contextualizes those results within a larger scope, and
lays the groundwork for future efforts.
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Chapter 2

The Nuclear Quasicontinuum and
Nuclear-Plasma Interactions

2.1 Characterizing non-discrete nuclear states at high

excitation energies

In searching for an alternative method of manipulating isomer populations in nuclei, it
is necessary to understand the fundamental interactions that dictate how nuclei transition
between states. In the quantum description of nuclei and their excited states, we can ascribe
an observed state to the cumulative wave function of all constituent particles. In this frame-
work, a transition between states in a nucleus represents a change in the cumulative wave
function, or ψi → ψf , where ψi is the initial state and ψf is the final state. It is instructive
to model the transition rates between two states, ψi and ψf , in a generalized form. Fermi’s
golden rule provides this description,

T (Eγ, Ex) = [< f |V (Ei − Ef )|i >]2 × ρ(Ef ), (2.1)

where T (Eγ, Ex) is the transition rate between states via a photon of Eγ to a state with an
excitation energy above ground Ex. This Ex term is distinct from the difference between
the initial and final energies, Ei and Ef , to include transitions between excited states. The
transition between states is captured by the V (Ei −Ef ) term, which represents the nuclear
matrix element of the transition operator [13]. This operator term is stronger for more similar
states, with transitions between less similar states being suppressed. For our case of photon
emission or capture, this behavior is demonstrated by the Weisskopf estimates presented
in Chapter I, where larger spin differences between states exponentially decrease expected
transition rates. In its full form, [< f |V (Ei − Ef )|i >]2 provides the transition probability
between states ψi and ψf as mediated by the transition operator. The right-hand term ρ(Ef )
represents the density of available states at the final energy. Examination of this equation
suggests simply that transitions between similar states in regions of high state density are
enhanced, while transitions between dissimilar states into regions of low state density are
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suppressed. Transition rates are particularly sensitive to adjustments in the matrix operator
V , as result of its second order contributions.

In working with discrete states in a nucleus, the framework provided by Fermi’s golden
rule may not be the best tool for calculating transition rates between states. However,
known discrete levels in nuclei are limited to what can be experimentally measured. Missing
states can be estimated for use in calculations, such as those performed by TALYS [25].
This approach is suitable in regions where discrete levels are expected, but as excitation
energy increases the density of levels increases as well. This increasing density of states can
make discrete modelling of states a cumbersome approach, and calls for new mathematical
treatment. Per Guttormsen et al. [26], the density of available levels can range from 103−107

for nuclei of A ≈ 50 − 180 at the neutron separation energy, Sn. Further increasing with
excitation energy, it is clear that discrete levels are not useful for modelling nuclear excitation
and transitions.

In working with high energy excitation of nuclei, the concept of the nuclear quasicontin-
uum becomes a powerful tool. In this framework, the nuclear states are considered densely
packed enough to be overlapping at a given energy, removing the need for discrete identifi-
cation. Instead, two concepts are used to model transitions through the nuclear quasicon-
tinuum. These are the nuclear level density (NLD) and gamma strength (γSF ) functions.
Nuclear level density models provide a continuous function describing the distribution of
states as a function of excitation energy, spin, and parity in levels/MeV. Gamma strength
functions attempt to model the probability of a transition occurring between any two states,
through photon absorption or gamma decay. Together these concepts model the likelihood
of transitions between potential states in the nuclear quasicontinuum as a function of energy,
spin, and parity of the initial and final states. Additionally, the quasicontinuum allows for
calculating nuclear reaction cross sections without knowledge of discrete states [25]. Suf-
ficient characterization of the nuclear level densities and gamma-strength functions for a
given nucleus allow for the potential of intentional excitation of the nucleus into regions
of the quasicontinuum that may preferentially decay into a desired isomer state, or in the
reverse case, provide a wide target for exciting an isomer state into the quasicontinuum so
that it may decay into the ground state, as illustrated in Figure 2.1. This will be explored
later in Chapter II.
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Figure 2.1: Schematic abbreviated level scheme for 242Am, showing the 242mAm isomer
excited into the quasicontinuum, followed by decay into the ground state [6].

2.2 Nuclear level density models

The density of states term, ρ(Ef ), in Equation 2.1 can be cast as the nuclear level density
component in modeling the nuclear quasicontinuum. It is necessary to provide NLD models
for calculating transition rates. In this section, we will review the general conceptualization
as well as the specific NLD models utilized in the calculations discussed later in this work.
All calculations are performed with TALYS, a software package used to analyze and predict
nuclear reactions using a combination of measured data and theoretical models [25]. In
discussing prominent NLD models, it is necessary to establish a common definition for the
mathematical treatment used in TALYS calculations [25]. Note, in this section Π is used to
reference parity, while π is reserved for the mathematical constant. Per Koning et al. [27],
it is useful to define the total level density around a given excitation energy, Ex, as;

ρlevels(Ex) =
∑
J

∑
π

ρ(Ex, J,Π), (2.2)

where J is the spin and Π is the parity of a given level. This is directly related to the total
state density to account for degeneracy in the magnetic quantum number, M , by:

ωstate(Ex) =
∑
J

∑
Π

(2J + 1)ρ(Ex, J,Π), (2.3)

which includes the necessary (2J + 1) factor. This work will discuss the six models utilized
in TALYS, which includes three phenomenological models and three microscopic models.
For nuclear level densities taken from phenomenological models the total level density is
factorized as

ρ(Ex, J,Π) = P (Ex, J,Π)R(Ex, J)ρlevels(Ex), (2.4)
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where P (Ex, J,Π) is the parity distribution and R(Ex, J) is the spin distribution. For all
three phenomenological models and one microscopic model, an equipartition of P (Ex, J,Π) =
1/2 is assumed.

Common to all of the NLD models to be presented is an exponentially increasing level
density with excitation energy. This is attributed to the combinatorial nature of excited
states in nuclei. With an increased number of particles, the number of potential available
states increases drastically [26]. These effects are more pronounced with increasing Ex as
pairing and collective effects are suppressed. Of particular interest to this work are the
enhanced NLDs at 10’s of MeV. The implications of this will be discussed later in Chapter 2.

2.2.1 Fermi gas Model

The Fermi gas Model treats (FGM) the nucleus as being composed of two Fermi gasses,
one of protons and the other of neutrons [28]. Within this framework, the nucleons inhabit
single particle levels within the nuclear potential they create, up to the Fermi energy. If
additional energy is added to the system nucleons will inhabit single particle levels above
the Fermi energy, leaving vacancies below it. This approach assumes equally spaced levels,
with no consideration for collective levels [25]. Following this framework, the total Fermi gas
state density for a two-fermion system can be expressed as [27]

ωtotal
F (Ex) =

√
π

12

exp 2
√
aU

a1/4U5/4
, (2.5)

which contains the level density parameter a and an effective excitation energy U . Theoret-
ically, a is represented as

a =
π2

6
(gp + gn), (2.6)

where gp and gn are the level spacing near the Fermi energy. Prior models calculated these
values as proportional to (2J + 1)−1 [29], but more recent work assumes energy dependence
and utilize experimentally determined values, where possible [25]. The expression for the
effective excitation energy

U = Ex −∆, (2.7)

contains the factor ∆ which is adjustable parameter intended to provide a correction for
breaking paired nucleons in odd-even nuclei and the observed effects this has on state dis-
tribution [30, 27]. Following the derivations presented by Ericson [31], assuming an equipar-
tition in parity and an assumed spin distribution of the form

Rf (Ex, J) =
2J + 1

2σ2
exp

[
−(J + 1/2)2

2σ2

]
, (2.8)

an energy, parity, and spin dependent expression for the Fermi gas level density can be found
in the form of Equation 2.4,

ρF (Ex, J,Π) =
1

2

2J + 1

2
√
2πσ3

exp

[
−(J + 1/2)2

2σ2

] √
π

12

2
√
aU

a1/4U5/4
, (2.9)
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where the introduced factor σ2 is the width of the angular momentum distribution for the
level density. When summed across possible parity and spin states, Equation 2.9 assumes a
form analogous to Equation 2.2,

ρtotF (Ex) =
1√
2πσ

√
π

12

exp
(
2
√
aU
)

a1/4U5/4
, (2.10)

which can be related to the total density of states as presented in Equation 2.5 and takes
the form,

ρtotF (Ex) =
ωtot
F (Ex)√
2πσ

, (2.11)

where nuclear level density is a function of three components. The level density parameter
a, spin-distribution width σ2, and the pairing correction term ∆ provide the defining char-
acteristics for the FGM. Together these terms allow for inclusion of shell-effects based on
energy dependent phenomenological definitions of a and σ2 [25].

2.2.1.1 Defining the level density parameter and spin distribution width

The parameters a and σ2 are used within multiple NLD models and will be defined here
for reference. The definition of a is

a(Ex) = ã

(
1 + δW

1− exp (−γU)
U

)
, (2.12)

following work done by Ignatyuk et al. establishing a as a function of excitation energy [32].
In this form, ã is the asymptotic level density parameter ã = a(Ex → ∞), δW is the shell
correction factor, and γ is a damping parameter. Together δW and γ determine the strength
of shell effect modifications to the level density and how strongly they scale with increasing
Ex on a per nuclei basis, respectively. In this form, ã can be enhanced or hindered with
increasing Ex as the sign of δW can be determined individually for a given nuclei to match
experimental results.

Lastly, the spin distribution width σ2 is derived from the angular momentum states in
single particle states projected onto a nucleus’s symmetry axis, with an inclusion for energy
dependence [33, 34]. The width is

σ2
F (Ex) = I0

a

ã

√
U

a
, (2.13)

where the spherical moment of inertia I0 is defined as

I0 = 2/5
m0R

2A

(h̄c)2
, (2.14)
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with R = 1.2A1/3 as the nuclear radius and m0 the mass of the neutron. With this definition,
Equation 2.13 can be simplified to

σ2
F (Ex) = 0.01389

A5/3

ã

√
aU, (2.15)

which defines the spin distribution as a function of atomic mass, excitation energy, and shell
effects. Recalling Equation 2.7, this form of σ2

F is undefined for small Ex. Stricter definitions
of σ2

F exist for low excitation energies (< Sn), but do not require review here as the focus of
this work exceeds the energy thresholds in question [25].

2.2.2 Constant Temperature Model

Introduced by Gilbert and Cameron [35], the Constant Temperature Model (CTM) serves
to provide a low Ex correction to the Fermi gas Model to better match experimentally
observed neutron and proton resonance data. Following this approach, an exponential law
of the form

N(Ex) = exp

(
Ex − E0

T

)
(2.16)

represents the cumulative discrete levels in a nucleus, with T the nuclear temperature and
E0 an adjustable parameter for matching experimental results. Taking the derivative of this
with respect to excitation energy yields the total level density,

ρtotCTM(Ex) =
1

T
exp

(
Ex − E0

T

)
, (2.17)

in a form that allows for fitting to experimental data by adjusting T and E0. For the
implementation of this model in level density calculations, Equation 2.17 is utilized below
some matching energy Em, where at the FGM is implemented with Equation 2.10 [25, 35].
Per the matching condition

ρtotCTM(Em) = ρtotFGM(Em), (2.18)

careful determination of Em is required to ensure best fitting of T and E0 to experimental
data. Additional inclusion of pairing effects is achieved for the FGM contributions above
Em by utilizing a modified definition of the energy shift ∆ in Equation 2.7. In the CTM
implementation, the energy shift is defined as

∆CTM = χ
12√
A
, (2.19)

with the pairing coefficient χ as defined below.

χ =


0, odd-odd

1, odd-even

2, even-even

(2.20)
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As noted by Gilbert and Cameron, the CTM model allows for pairing effects through the
χ coefficient in the FGM regime, with the experimental coefficients T and E0 allowing
individual nuclei to be experimentally fit at low Ex. However, they note difficulty in achieving
the Em matching condition for certain light nuclei and nuclei near shell closures [35].

2.2.3 Back-shifted Fermi gas Model

In working to improve the Fermi gas Model for representing nuclei with inclusion for
pairing effects, Dilg et al. [36] introduced an alternative definition for the effective excitation
energy defined in Equation 2.7 as

U = Ex −∆BFM , (2.21)

where ∆BFM is a pairing corrected energy shift defined as

∆BFM = χ
12√
A

+ δ, (2.22)

with δ as an adjustable parameter and χ capturing pairing effects through the following
definition [25].

χ =


−1, odd-odd

0, odd-even

1, even-even

(2.23)

The Fermi gas Model level density, as defined in Equation 2.10, diverges as Ex → 0
preventing its use for low Ex. Work done by Grossjean and Feldmeier [37] and adjusted by
Demetriou and Goriely [38] resulted in a modified Fermi gas Model of the nucleus that pro-
vides a continuous expression for level density at low Ex with pairing effects. As implemented
in TALYS [25], this expression takes the form

ρtotBSFGM(Ex) =

(
1

ρtotF (Ex)
+

1

ρ0(t)

)−1

, (2.24)

where

ρ0

(√
U

a

)
=

exp (1)

24σ
2a2 exp

a2(√U

a

)2
 , (2.25)

which includes the previously defined level density parameter a. In this form, the Back-
shifted Fermi gas Model (BSFGM) provides an alternative to the CTM which preserves the
general exponential shape of the Fermi gas Model at low Ex, with additional consideration
of pairing effects.
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2.2.4 Generalized Superfluid Model

The Generalized Superfluid Model (GSM) was formulated to intrinsically implement par-
ticle pairing correlations into NLD calculations, following the framework of Bardeen-Cooper-
Schrieffer (BCS) theory [39, 40]. This framework introduces the transition temperature, Tc,
below which a superfluid state is assumed with strong pairing correlations having significant
effect on level densities. Above Tc the nucleus loses its superfluidity and is modelled using
the Fermi gas model with a modified effective excitation energy U which includes the conden-
sation energy, Econd, that arises from the BCS theory [40, 25]. An extensive mathematical
treatment of the GSM can be found by Ignatyuk [39] and in the TALYS manual [25], but
will be omitted here in favor of highlighting key components. Of critical importance is the
transition temperature,

Tc = 0.567∆0, (2.26)

where ∆0 is the pairing correlation factor. Together these terms require a reduced Tc as the
atomic mass number A increases.

∆0 =
12√
A
. (2.27)

Using these definitions, the transitional excitation energy Uc can be defined as

Uc = acT
2
c + Econd, (2.28)

where ac is the critical level density parameter, similar to that defined in Equation 2.12, and
the condensation energy is defined as

Econd =
3

2π2
ac∆

2
0, (2.29)

which includes a second order dependence on the pairing correlation factor. Together, these
terms suggest that pairing effects strongly effect level densities at low energies in smaller
nuclei. With increasing A, these pairing effects are restricted to decreasing transition tem-
peratures. The quicker transition to FGM behavior can be attributed to reduced pairing
effects in large nuclei, as nucleons are farther apart on average. For U ≤ Uc, the total level
density expression takes the form of

ρtotGSM(Ex) =
1√
2πσ

exp(S)√
D

, (2.30)

where S is the thermodynamic entropy and D is the determinant taken from the saddle
point approximation in applying BCS theory [39, 25]. For U > Uc, the total level density
takes a form similar to Equation 2.10, with a modified definition of the effective excitation
energy U using Econd to wrap in pairing contributions and their scaling with A. Moretto
et al. [41] analyzed experimentally measured low energy level densities in rare-earth nuclei
and actinides, with results suggesting strong evidence for the theorized Tc factor from the
BCS model properly capturing even-odd effects and the breakdown in pairing strength with
increasing energies.
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2.2.5 Microscopic level density models

In addition to the phenomenological models detailed above, there are microscopic level
density models based on Hartfree-Fock calculations [42]. These calculations attempt a gen-
eralized fit for many measured nuclei with A > 36 using a Skyrme force model of the nuclear
potential [43]. In this model the nuclear potential is simplified to an averaged potential of
many nucleons, with individual nucleons populating levels within the averaged potential.
Within TALYS there are three microscopic level density models available in the form of
pre-tabulated values [25]. The first of these microscopic tables fit 1888 experimental nu-
clei using the Skyrme force and BCS theory for pairing correlations [42]. Further work
was done to improve these calculations using a Hartree-Fock-Bogoliubov plus combinatorial
method, which allows for inclusion of energy, spin, and parity dependence on level density,
with enhancement from collective modes such as vibrational or rotational states [44]. These
calculations were further improved upon using a Gogny force model in-place of the Skyrme
force used previously [45]. This transition allows for better treatment of discrete levels at
low energies and collective effects. Using this updated approach, Hilaire et al. [46] calculated
level densities which account for energy dependent pairing, shell, and deformation in nuclei
with improved implementation of collective state enhancements.

With NLDs tabulated for each nuclei, TALYS determines the level density used in a
calculation with the equation

ρ(E, J,Π) = exp
(
cHF

√
Ex − δ

)
ρHFM(Ex − δ, J,Π), (2.31)

where the resultant level density ρ can be modified from the table value, ρHFM , by two
parameters δ and cHF [25]. The pairing shift parameter δ provides an adjustable offset for
the energy column in the ρHFM table. The constant cHF provides an adjustable multiplicative
factor, the effect of which inherently scales with Ex per Equation 2.31. Together these factors
are intended to provide a tool for better fitting the microscopic NLD values to experimental
values.

2.3 Gamma strength functions

In the general form, nuclear transition rates can be understood using Fermi’s Golden Rule,
shown in Equation 2.1. With the previous section discussing the nuclear level density term,
ρ(Ef ), and the various phenomenological and microscopic models used in calculations, it is
time to shift focus to the other term in Equation 2.1. In its full form, [< f |V (Ei − Ef )|i >]2,
the transition operator term represents the likelihood of a transition occurring between two
states via the transition V (Ei − Ef ). Within bound nuclei, excited nuclei with insufficient
energy for a nucleon to exceed the nuclear potential, this probability term is proportional
to the gamma strength function [26]. The gamma strength function represents the averaged
likelihood of a nucleus to absorb or emit a photon of a given energy, to or from a specified
energy. This approach is especially useful in regions where discrete levels are unknown or
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are largely unidentifiable, due to increased nuclear level densities, such as those observed in
the nuclear quasicontinuum. For transitions out of higher energy states (> Sn) that exist
within the quasicontinuum, low multipole E1 and M1 transitions are dominant [47]. For
the purposes of this work in discussing the photo-excitation of nuclei and transition into
isomeric states, the focus of discussion is on transitions involving photons, either excitation
by photon absorption or de-excitation by photon emission. However, it is crucial to note
that gamma strength functions also affect the likelihood of other outgoing channels such as
(γ, n) reactions where photon absorption is necessary for the transition to occur.

Before introducing individual gamma strength function models, it is necessary to provide
the generalized form in which they are used, as presented in theory and implemented within
TALYS calculations [25]. The strength function is denoted as fXl(Eγ), with X representing
the multipole type and l the multipole order as introduced with the Weisskopf estimates for
the single particle model of electromagnetic transitions in Chapter 1. In this presentation,
the fE1(Eγ) strength function represents the most likely E1 transition from quasicontinuum
states. This strength function is related to the transition cross section σXl(Eγ) for absorption
of a photon with Eγ by

fXl(Eγ) = KXl
σXl(Eγ)

E2l−1
γ

, (2.32)

where the transition cross section can be summed over multipole type and order to determine
the total averaged photon absorption cross section given by Equation 2.33,

σγ(Eγ) =
∑
Xl

σXl(Eγ). (2.33)

In this form, the total photon absorption cross section accounts for all potential spin and
parity changes. The term KXl is a multipole order correction defined as

KXl =
1

(2l + 1)π2h̄2c2
. (2.34)

Historically, absorption of high energy photons was experimentally observed through (γ, n)
reactions, which are assumed to dominate the cross section and thusly the gamma strength
function [48, 25].

De-excitation through photon emission is conceptualized separately with its own formal
definition of the downward strength function based on (n, γ) reactions populating excited
states below Sn [25]. In utilizing the Hauser-Feshbach statistical model [49] for determin-
ing competition between decay pathways, TALYS relates the specific photon transmission
coefficient TXl to the strength function via the expression

TXl(Eγ) = 2πfXl(Eγ)E
2l+1
γ , (2.35)

where Eγ is the energy of the photon emitted during decay. In calculating the total photon
transmission coefficient, a summation of all possible initial and final spin, parity, and energy
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states is performed below Sn. The total photon transmission coefficient is

Tγ =
∑
J

∑
Π

∑
Xl

|J+l|∑
I′=|J−l|

∑
Π′

∫ Sn

0

dEγTXl(Eγ)ρ(Sn − Eγ, I
′,Π′)F (X,Π′, l), (2.36)

where J and Π are the initial state spin and parity, while I ′ and Π′ are the final state spin and
parity. The multipole selection rule function F (X,Π′, l) is valued at 1 only for transitions
that satisfy the parity rules presented in Equation 1.3, and 0 for all other cases [25]. This
lower energy portion of the gamma strength function is rooted in experimental observed
(n, γ) reaction cross sections [49, 48].

The absorption and emission gamma strength functions are unified through the Brink-
Axel Hypothesis, which suggests that photon emission or absorption strengths are inde-
pendent of excitation energy, spin, and parity [50]. The general validity of the Brink-Axel
Hypothesis is still a focus of contemporary research. Per Guttormsen et al. there are ex-
perimental validations for certain γ photon energies in heavier nuclei, but some experiments
with lighter nuclei (A < 100) are not consistent with the Brink-Axel Hypothesis [50]. Re-
cent experimental work with 238Np nuclei suggest the gamma strength function maintains
Ex independence through both the quasicontinuum and levels lying below Sn [51]. Similar
conclusions were reached by Markova et al., probing Sn nuclei at 16 MeV [52]. This agree-
ment becomes less clear in lighter nuclei, per Campo et al., with efforts to probe 64Ni and
65Ni nuclei below Sn showing general agreement with large fluctuations in feeding strengths
to low lying levels [53].

2.3.1 Lorentzian models for gamma strength functions

There are a handful of phenomenological models used in calculating gamma strength
functions, with the original models based on the concept of the Giant Dipole Resonance
(GDR) as presented by Brink and Axel [54, 55]. The GDR is generally attributed to collective
motion of nucleons, with the protons oscillating together through the neutron mass. This
phenomenon has been well characterized for many nuclei, with the center of the resonance
often lying between 15-20 MeV [56]. The resonant nature of this oscillator results in a gamma
strength characterized with a Lorentzian form like that shown in Equation 2.37 [25].

fXl(Eγ) = KXl
σXlEγΓ

2
Xl

(E2
γ − E2

Xl)
2 + E2

γΓ
2
Xl

. (2.37)

In this form σXl is the strength, EXl is the center energy, and ΓXl is the width of the GDR.
Note that primary contributor to the total gamma strength ftot(Eγ) is the fE1 component.
This Lorentzian model was later expanded upon by Kopecky and Uhl to include a nuclear
temperature correction for low energy E1 excitations [47]. This modified Lorentzian is

fE1(Eγ, T ) = KE1

(
EγΓ̃E1(Eγ)

(E2
γ − E2

Xl)
2 + E2

γΓ̃E1(Eγ)2
+

0.7ΓE14π
2T 2

E5
E1

)
σE1ΓE1, (2.38)



CHAPTER 2. THE NUCLEAR QUASICONTINUUM AND NUCLEAR-PLASMA
INTERACTIONS 19

with the energy-dependent damping width Γ̃E1(Eγ) defined in Equation 2.39 [25]:

Γ̃E1(Eγ) = ΓE1

E2
γ + 4π2T 2

E2
E1

. (2.39)

Both of these definitions invoke the nuclear temperature T as defined by Kopecky et al.,
which introduces a non-zero temperature dependent gamma strength enhancement at low
Ex, and provides an adjustable parameter for fitting experimentally observed values [57]:

T =

√
En + Sn −∆− Eγ

a(Sn)
. (2.40)

Note the inclusion of the pairing correction term ∆ and the level density parameter a, as de-
fined in Section 2.2, provides adjustable parameters to emulate pairing and shell effects. With
implementation of this temperature correction factor, better agreement between calculated
values and experimental values was found in spherical nuclei [57]. There have been further
modifications to the Lorentzian model of gamma strength functions. One such modification
was introduced by Goriely, who implemented a modified low energy correction in an effort
to better match data in heavy nuclei, for the purpose of exploring r-process nucleosynthesis
[58].

2.3.1.1 Double and Pygmy resonances

For the case of deformed nuclei, the GDR often displays a double-humped behavior
gamma strength function that can be modelled using the sum of 2 Lorentzian distributions
as shown in Equation 2.41 [59, 25]:

fE1(Eγ) =
2∑

i=1

f i
E1(Eγ, σ

i
E1, E

i
E1,Γ

i
E1). (2.41)

Following extensive experimental and theoretical efforts, the presence of an enhanced E1
gamma strength has been noted below Sn in many nuclei [60]. This enhancement can be
attributed to the presence of a Pygmy resonance, and can be modelled in a manner similar
to Equation 2.41 [25].

2.3.2 Microscopic models for gamma strength functions

Similarly to the NLD models discussed prior, there have been extensive efforts in develop-
ing microscopic models for gamma strength functions. The first extensive set of calculated
gamma strength functions was presented by Goriely and Khan, using a Skyrme-Hartree-
Fock BCS with quasi-particle random phase approximation (QRPA) model [61]. Following
the development of the microscopic NLD models, Goriely et al. provided tabulated values
for calculations utilizing the Bogoliubov force and temperature dependent frameworks [62].
There are alternative microscopic models available in TALYS [25], but the primary focus of
the work discussed later in this document is the Brink-Axel Lorentzian model.
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2.4 Nuclear-Plasma Interactions

In most cases atomic transitions and nuclear transitions are treated separately due to
their different energy scales. With atomic levels largely limited to the eV-keV range, there
are few cases for energetic overlap when considering that nuclear levels predominantly exist
within the 10’s of keV to many MeV energy range. However, there are some nuclei that have
very low lying excited states, such as the 229mTh isomer discussed in Chapter 1 and the 78.6
eV isomeric state in 235U [19, 63]. The latter of these isomers drove interest in exploring
atomic-nuclear interactions.

The theory of nuclear excitation by electronic transition (NEET) was introduced by
Morita in 1973 within the context of finding a novel method for the chemical separation
of 235U nuclei from bulk Uranium [64]. The NEET mechanism requires that the electron
cloud of the nucleus in question be partially ionized. It is in this requirement that the
term nuclear-plasma interactions (NPIs) arises. In the simplest case, a single electron is
ionized and higher-lying electron de-excites to fill the vacancy. This de-excitation requires
the release of energy in the form of a real or virtual photon to carry the change in atomic
binding energy, ∆EB. The release of a real photon with the energy ∆EB is referred to as x-
ray emission. Alternatively, a virtual photon can couple into a less bound electron, resulting
in Auger emission. In place of these interactions, Morita presents a third alternative in which
the virtual photon couples into the nucleus via an electromagnetic interaction, resulting in
the population of an excited state. Following analysis of the hybrid atomic-nuclear wave
functions as mediated by Coulombic interactions between atomic electrons and the nucleus,
the calculated probability of the NEET mechanism populating the isomeric state in 235U
was determined to be ≈ 2 × 10−9. Morita notes this probability is well below that of x-ray
emission and Auger emission, but should be observable in experiments [64].

Experimental results published by Izawa and Yamanaka in 1979 reported successful ob-
servation of the NEET interaction in 235U following repeated exposure to a 1 J, 100 ns laser.
The authors reported an integrated reactivity < σNEETv >≈ 10−20 cm3 s−1, or an estimated
1 isomer excitation per 235U nucleus per second [65, 63]. Experiments by Arutyunan et al.
using an electron beam for plasma generations reported a significantly lower isomer popula-
tion rate of < 10−5/235U/s [66]. Using a much less intense laser than Izawa and Yamanaka,
Bounds and Dyer reported an isomer population rate of < 10−7/235U/s [67]. The inconsis-
tencies in these reported values was explored by Harston and Chemin, who re-contextualized
these experiments within the framework of four possible nuclear-plasma interactions [63].

2.4.1 Nuclear excitation by electronic transition

Introduced prior, NEET is time-inverse of the bound internal conversion (BIC) decay
mechanism exhibited by some nuclei. Within this framework, the NEET interaction is
resonant when the atomic ∆EB is very close to the excitation energy of a given state. The
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excitation energy coupled into a ground state nucleus is

Ex = E0 +∆EB, (2.42)

where E0 is the ground state energy. This formalism can be used for excitations out of
a lower lying excited state, by replacing this E0 term with the appropriate energy. The
resonance condition is satisfied when

Estate − E0 = ∆EB + δ, (2.43)

where Estate is the excitation energy of a given state, and δ is an energy mismatch term
which accounts for atomic level broadening in perturbed environments, such as in a plasma
[68]. As investigated by Morita, the 235U nucleus has two pertinent examples [64]. A direct
excitation of the ground state into the 26 minute isomer would require an energy of ≈ 30 eV,
which corresponds to the 29.7 eV electronic transition between the 6d3/2 and 6p3/2 orbitals.
However, it was determined later that this isomer has an Ex = 76 eV [69]. The other case,
deemed more probable by Morita, is the excitation of the 13.1 keV excited state followed
by de-excitation into the isomer state. This initial Ex is close to the atomic 3d3/2 → 2p3/2
transition with ∆EB = 13.44 keV [64]. Outside of these matched transitions, predicted
NEET contributions are minimal. Modernized calculations by Harston and Chemin for the
idealized theoretical NEET interaction rates in 235U indicate a strong dependence on the
plasma temperature, with a broad range of 10−9 < λNEET < 1 s−1 representing the extremes
as affected by reasonably achievable plasma temperatures of 20 keV and 100 keV [63]. A
reassessment of the theoretical approach to calculating NEET interaction rates was later
performed by Harston, with comparison to existing experimental data for 189Os, 197Au, and
237Np nuclei. They find numerical agreement with prior assessments that predict low NEET
interaction rates, with a maximum probability in 189Os of ≈ 3.6× 10−8 [68].

2.4.2 Nuclear excitation by electron capture

As NEET is the inverse BIC decay, a similar analog was introduced for internal conversion
(IC) decay by Goldanskii and Namiot [70]. The process known as nuclear excitation by
electron capture (NEEC) can occur when the atom captures a free electron and couples the
remaining energy into exciting the nucleus. This excitation energy coupled into a ground
state nucleus is

Ex = E0 + (Ee
free − Ee

B), (2.44)

where Ee
free is the free electron’s energy and Ee

B is the energy of the bound electron. The
resonant excitation condition for NEEC is then

Estate − E0 = Ee
free − Ee

B + δ, (2.45)

where the free electron’s energy provides a looser constraint than that presented in Equation
2.43. This NEEC mechanism was later explored by Cue et al. within the context of heavy
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ion beams capturing electrons from solid targets [71]. They predicted a NEEC rate ≈ 1000×
that of the NEET rate seen in comparable environments. The inherently increased number of
available electron capture resonances would intuitively suggest a stronger NEEC contribution
than compared to NEET, which requires strict energetic overlap between atomic and nuclear
transitions. However, Chemin and Harston later calculated estimated NEEC rates for 235U
nuclei and found that NEEC rates should be ≈ 10−11 s−1, a value significantly lower than
their calculated NEET rates in the same conditions [63]. They found that the orbitals
which dominate electron capture in various charge states of U atoms within the plasma
environment did not satisfy the necessary resonance conditions for exciting the nucleus.
The relative contributions of the NEEC and NEET mechanisms can vary in other nuclei as
nuclear and atomic levels can differ in satsifaction of the stringent NEET resonance condition.
Experimental results published in 2018 claimed the first observation of the NEEC mechanism
in 93Mo, but the strength of the NEEC contribution was later brought into question following
analysis of experimental uncertainties with respect to photon background [72, 73].

2.4.3 Inelastic electron scattering

Sufficiently high energy electrons can undergo inelastic electron scattering (IES) with
the nucleus through an electromagnetic interaction. In these scattering events, energetic
electrons often excite collective states in nuclei, with the potential for inducing particle
emission when excitation energies exceed threshold [74]. The excitation energy imparted to
a ground state nucleus, Ex, can be determined by

Ex = E0 + (Ee
i − Ee

f ), (2.46)

where Ee
i is the electron’s initial energy and Ee

f is the electron’s final energy. This process
is well studied, and comprehensive reviews are available [74, 75]. In analyzing the NEET
results published by Arutyunyan et al. using an electron beam induced plasma on 235U,
Harston and Chemin estimated an effective reaction rate of λIES ≈ 10−16 s−1, well below
that estimated for either NEET or NEEC contributions [66, 63].

2.4.4 Photo-excitation by Bremsstrahlung

The nucleus can absorb a photon and be excited into excited states, as discussed in
Chapter 1. Within the realm of nuclear-plasma interactions, the presence of plasma electrons
generates a bremsstrahlung background which acts as a source for photo-excitation of excited
states. The excitation energy imparted into a ground state nucleus is

Ex = E0 + Eγ, (2.47)

where Eγ is the energy of the photon. Harston and Chemin analyzed the contributions from
bremsstrahlung photo-excitation in the Arutyunyan et al. electron beam experiments [66]
and the Izawa and Yamanaka [65] laser-plasma experiments. They found that contributions
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from photo-excitation were similar in magnitude to those from IES, with a calculated < 10−17

s−1 in the laser experiment and < 10−7 s−1 in the electron beam experiment [63].

2.4.5 Modifications to isomer lifetime in plasmas

The presence of NPIs has an interesting effect on the lifetimes of isomeric states in nuclei.
The enhanced decay of isomer states as function of environmental plasma temperature was
explored by Gosselin and Morel as mediated by NPI mechanisms [76]. Of particular note
is the enhanced decay of isomer states in nuclei where a favorable spin level is present
right above the isomer state. When this level has a spin state with a preferential decay to
levels below the isomer, per the single particle estimates discussed in Chapter 1, a significant
enhancement in the effective decay rate of the isomer is expected. One example nuclei is 93Mo,
for which they calculate an enhanced decay rate ≈ 105−107× that of the unperturbed isomer
decay in plasma with temperatures > 1keV [76]. The population into this next available
state is mediated by NEEC and photo-excitation, which are moderated by their time reversed
processes IC decay and gamma decay, respectively. This work was later expanded to include
the contributions from NEET interactions in 93Mo nuclei by Gosselin et al. [77]. In this
work, the inclusion of the NEET mechanism further enhanced the decay rate of the isomer
state, especially at plasma temperatures < 1 keV.

This affect has notable implications for astrophysical processes, as well as high-energy
density experiments in the laboratory environment. The implications of modified isomer
lifetimes in astrophysical settings have been explored, with interest in impacts on stellar
nucleosynthesis, especially around A ≈ 80 [9, 10]. Work by Misch et al. analyzed the impacts
of isomer decay enhancement in stellar reaction rates as function of plasma temperature [11].
Misch et al. determined the presence of thermalization temperatures in the s-process, below
which isomers must be treated uniquely due to sufficiently long lifetimes. Above these
thermalization temperatures, NPI enhanced decay rates of isomers make them effectively
indistinguishable from their base nuclei. Their extension of this analysis to r-process stellar
nucleosynthesis determined that disparate lifetimes between isomers and ground states in
neutron-rich nuclei could have significant impact on radioactive heating, and that these
effect must be considered as the thermalization temperatures for relevant nuclei were above
those expected in relevant stellar conditions [11].

The effect of NPI enhanced decay rates may be observable in experiments using short
pulse high-intensity lasers to drive high-energy density environments. Of particular note
is the extension of these effects to inertial confinement fusion experiments (ICF), which
regularly drive high density interactions with plasma temperatures > 1 keV [78].
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2.5 Coupling nuclear-plasma interactions into the

quasicontinuum

The works pertaining to NPIs discussed thus far focus on low-lying states in heavy nuclei.
Within this scope, the availability of resonant NEEC or NEET interactions is limited by both
the atomic levels and low nuclear level densities for low Ex. In moving beyond this scope, it
is necessary to determine how potential NPI rates can be increased. With modifications to
the atomic level distribution already affected by the ionization state requisite of the plasma
environment, it is then necessary to look at modifying the nuclear level density contribution
to the resonance conditions.

As discussed earlier, nuclear level densities increase exponentially with Ex. The enhanced
level density at high Ex presents a region which should provide significant enhancements to
NEEC and NEET interaction rates. In the framework presented by this work, nuclei excited
to high Ex find themselves surrounded with many states of similar energy and differing
spin. If a nucleus can be excited and subjected to a plasma-like environment within the
ns-fs lifetime of quasicontinuous states, a window for enhanced NPI rates exists [79]. This
provides a novel concept for the induced population or depopulation of isomer states in
nuclei. Optimized manipulation of isomer population in given nuclei following this scheme
has several fundamental requirements. First, nuclear level density and gamma strength
functions must be well characterized. Second, an understanding of the NEET and NEEC
rates must be developed using these enhanced nuclear level densities with a complex analysis
of the excitation and de-excitation pathways, as dictated by the gamma strength function.
Third, a source for exciting and inducing these reactions in the laboratory environment
must be determined. Chapter 3 of this work focuses on introducing and establishing laser-
plasma accelerators as a novel source for experimental observation of NPIs. These sources
can provide multi-MeV, < 100 fs electron or photon bunches at high repetition-rates, which
we suggest can provide the necessary conditions for probing NPIs, nuclear level densities,
and gamma strength functions in the nuclear quasicontinuum.
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Chapter 3

Lasers, plasma, and laser-plasma
accelerators

3.1 Gaussian laser pulse

In the laser-plasma accelerator (LPA) scheme, an intense laser pulse is required for driv-
ing plasma density structures. Typically, the ideal laser pulse is modelled as Gaussian in
space and time. Adapting derivations presented by Träger et al. [80], the radially depen-
dent electric field of a cylindrically symmetric, Gaussian laser pulse of wavelength λ which
propagates along the z-axis is

E(r) = E0 exp

(
− r2

w2(z)

)
, (3.1)

where r is the radial distance from the center of the laser pulse and w the waist size defined
as

w2(z) = w2
0

[
1 +

(
λz

πw2
0

)2
]
, (3.2)

with w0 is the characteristic minimum waist at z = 0. The root mean square (RMS) of
the laser intensity distribution is w(z)/2 for this Gaussian description with the standard
deviation σ = w/2, given I ∝ |E|2. The longitudinal electric field evolution is

E(r, z) = E0
w0

w(z)

(√
2r

w(z)

)m

Lm
l

(
2r2

w2(z)

)
× eimφ exp

[
i

(
Φ(z) +

kr2

2R(z)

)]
, (3.3)

where k = 2π/λ is the wave number and Lm
l is the Laguerre polynomial dictated by the

indices m and l, which can be adjusted to represent different spatial modes of the laser. The
remaining expressions for Φ(z) and R(z) are defined as

Φ(z) = −(2l +m+ 1) tan−1

(
z − z0
zR

)
, (3.4)
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R(z) = z

(
1 +

z2R
z2

)
, (3.5)

where the Rayleigh range, zR, is invoked. The Rayleigh range, defined as zR = πw2
0/λ

represents a beam evolution parameter which determines the distance from focus at which
radial size of the beam has increased by a factor of

√
2 [80]. Together these expressions

form a generalized definition for a Gaussian laser pulse. For the ideal case of a fundamental
Gaussian mode with l = m = 0, assuming z0 = 0, the electric field can be simplified to

E(r, z) = E0
w0

w(z)
exp

(
−r2

w2(z)

)
exp

(
i

[
kz − tan−1

(
z

zR

)
+

kr2

2R(z)

])
, (3.6)

which contains information of the electric field’s magnitude and phase evolution. The electric
field as a function of r and integer steps of zR is plotted in Figure 3.1. Moving out of focus
with increasing z, the electric field amplitude decreases and widens radially r. The physical
consequences of this are apparent when examining the resulting intensity distribution, as
I ∝ |E|2, shown in Figure 3.2. At focus, the intensity is maximized and decreases rapidly
with increasing r. At z = zR, the peak intensity is halved, and is flatter along r.

Figure 3.1: Gaussian electric field radial dependence plotted at multiple z for w0 =20 µm
and λ=800 nm.
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Figure 3.2: Intensity distribution resulting from a Gaussian electric field radial dependence
plotted at multiple z for w0 =20 µm and λ=800 nm.

Equation 3.6 is a useful expression for understanding the electric field evolution for a single
wavelength, however, ultra-short laser pulses require broad spectral distributions. In a form
similar to the uncertainty principle presented in Equation 1.4 relating nuclear state lifetimes
and state energy widths, the relation for a coherent wave packet assuming a Gaussian shape
with optical frequency full-width half maximum ∆ν and FWHM temporal duration ∆τ is

∆ν∆τ ≥ 0.441, (3.7)

which defines the bandwidth limits for ultrashort laser pulses [80]. For a 40 femtosecond
Gaussian laser pulse centered at 800 nm, commonly used for driving LPAs, Equation 3.7
suggests a minimum bandwidth FWHM of 11.03 THz, or a wavelength FWHM of 23.5 nm.
With this in mind, it is necessary to then to model the laser envelope, independent of specific
wavelengths. The electric field strength of the laser envelope can be modelled as

E(t) = A(t) cos (Φ0 + ω0t), (3.8)

where A(t) is the envelope function multiplied by a harmonic wave function of the carrier
frequency ω0, which can be assigned to the center wavelength of the pulse [80]. The Φ0 term
is referred to as the carrier-envelope phase, and it determines the relationship between the
peak electric field of the envelope and that of the carrier frequency oscillation. For A(t)
which vary slowly relative to the oscillation time of the carrier frequency, this phase term is
less relevant. For the systems discussed in this work, laser pulses with a FWHM duration of
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∆tFWHM ≈ 40 fs centered at 800 nm, the oscillation time of 2.67 fs is small relative to the
total pulse duration. For a Gaussian pulse the temporal intensity evolution is related to the
electric field envelope function by

I(t) =
1

2
ncϵ0A(t)

2, (3.9)

where n is the index of refraction, c is the speed of light, and ϵ0 is the vacuum permittivity.
Assuming a Gaussian intensity function of the form

I(t) = I0 exp

(
−2

(t− t0)
2

σ2

)
, (3.10)

where σ is the standard deviation of the electric field proportional to ∆tFWHM by

∆tFWHM = 2
√

2 ln (2)σ, (3.11)

the envelope electric field in Equation 3.8 can be computed. The normalized electric field
envelope is plotted with the carrier frequency oscillations in Figure 3.3 for a laser pulse with
∆tFWHM = 40 fs and carrier wavelength of 800 nm.

Figure 3.3: Electric field envelope plotted against the carrier frequency oscillations for a
Gaussian laser pulse with ω0 = 2.36 rad/fs and ∆tFWHM = 40 fs.
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In discussing intense laser pulses in the context of laser-plasma interactions, it is useful
to introduce a normalized coefficient for comparison [81]. The peak laser strength parameter
a0 is defined for a linearly polarized field as

a0 =
eA⃗

mec2
≃ eE⃗

ωmec
, (3.12)

which results in a unit-less value accounting for the laser field strength and frequency. Here
the laser vector potential A⃗ is introduced as an alternative method for representing the
electric field defined as E⃗ = −∂A⃗/∂ct [81]. The physical interpretation of this parameter
is simple, taken as the ratio of an electron’s transverse momentum, as driven by the laser
field, to its rest mass energy. For a0 ≈ 1 or greater, the electron motion is relativistic and
requires treatment as such. In keeping with Gaussian laser pulses, a0 is related to the peak
laser intensity, I0, by

a20 ≈ 7.3 · 10−19(λ[µm])2I0

[
W

cm2

]
, (3.13)

with a dependence on laser wavelength.

3.2 Plasma fundamentals

Before discussing the mechanisms behind laser-plasma accelerators, it is necessary to
discuss the fundamental characteristics of plasma. Consisting of charged particles whose
behavior is dictated by collective electromagnetic interactions, the plasma state requires
that the potential energy between two adjacent particles is significantly less than their kinetic
energy. This constraint is necessary such that collective effects dominate over single particle
interactions. For example, in a system of ionized Hydrogen atoms, the electrons must remain
energetic enough to, on average, remain unbound to the positively charged nuclei. If the
electron population’s energy is insufficient to remain unbound, then neutral gas atoms will
form and the collective electromagnetic effects that define the plasma state cannot occur.

Following discussions by Kruer and Fitzpatrick [82, 83], a system of charged particles
will consist of a superposition of the electric fields generated between all particles. For the
purpose of modelling such systems, this is prohibitively expensive. It is then necessary to
characterize the distance at which the influence of a single charged particle is effectively
shielded from the bulk, due to the response of other, nearby charged particles. Consider
a positive charge q placed into a uniform plasma environment consisting of static ions and
mobile electrons. In solving for the electrostatic potential of the charge q in the presence of
mobile electrons, the range at which this potential is mitigated can be found. This range is
called the Debye length and is defined as

λD =

√
kbTe
4πne2

, (3.14)
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where n is the density of mobile electrons, e is the elementary charge, and kb is Boltzmann’s
constant. This definition also invokes the electron temperature Te, which refers to the ther-
modynamic temperature that defines the Maxwell-Boltzmann distributions often utilized in
plasma physics. Note the use of CGS units which will remain consistent through Sections 3.2
and 3.3, which simplifies handling of the discussed equations. Equation 3.14 can be recast
in the form of

λD =
vTe

ωpe

, (3.15)

where vTe is the electron mean thermal defined as vTe =
√
kbTe/me, and ωp is the plasma

frequency. The plasma frequency is fundamental parameter for plasma, and is defined as

ωp =

√
4πniZ2

i e
2

mi

, (3.16)

where mi is the mass, ni is the density, and Zi is the charge state of species i in the plasma.
These dependencies require that different species will behave on different time scales. For
the case of electrons, this expression becomes

ωpe =

√
4πne2

me

, (3.17)

where me is the mass of the electron. The electron plasma frequency often corresponds to
the fastest collective behavior in a plasma system, mediated by the low-mass electrons. The
plasma period, reciprocal of the electron plasma frequency, is defined as

τpe =
2π

ωpe

. (3.18)

Together, τpe and λD are the minimum temporal and spatial parameters for which inter-
actions can be attributed to plasma behavior. Examples of plasma behavior which satisfy
these conditions can occur in response to internally generated electromagnetic fields, ther-
malizing collisions between both like and dissimilar species, and influence from external
electromagnetic fields [82, 83]. From these equations it can be noted that understanding a
plasma system requires characterizing the plasma temperature and density, as together these
properties dictate the fundamental interactions that occur within the plasma.

3.2.1 Modelling plasma behavior

In beginning to model bulk plasma behavior, tracking all individual particles is a logical,
if not difficult, starting point. As presented by Kruer [82], the Vlasov equation details the
evolution of the particle distribution in phase space, fi(x⃗, p⃗, t), for species i. This distribution
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encompasses the evolution of the phase space density. Assuming no destruction or introduc-
tion of particles in the plasma, applying the continuity equation and relativistic equations
of motion for charged particles yields the Vlasov equation,

∂fi
∂t

+
p⃗c

γ
· ∇x⃗fi +

dp⃗

dt
· ∇p⃗fs = 0, (3.19)

with
dp⃗

dt
=

qs
msc

[
E⃗(x⃗) +

p⃗

γ
× B⃗(x⃗)

]
, (3.20)

where fi(x⃗, p⃗, t) evolves with time as the result of the plasma’s momentum, spatial distribu-

tion, and responses to electric, E⃗, and magnetic, B⃗, fields. Here p⃗ = γv⃗/c is the relativistic
momentum for velocity v⃗ and Lorentz factor γ = (1 + p2)1/2. When coupled with Maxwell’s
equations, the Vlasov equation allows one to track the temporal evolution of a smooth
fi(x⃗, p⃗, t) distribution function, detailing the collective behavior of a collionless plasma. Full
evolution of the 6D phase space distribution is not necessary for understanding many behav-
iors observed in plasma, leading to the need for alternative approaches. One such approach
requires taking moments of the Vlasov equation with respect to momentum, in an effort to
construct a fluid model for each species in a plasma. The first two moments are

ni =

∫
fidp⃗, (3.21)

niu⃗i =

∫
p⃗fidp⃗, (3.22)

where n is the number density and u⃗i is the fluid momentum. In the regime of laser-plasma
accelerators, where the mean electron plasma momentum is relativistic with a temperature
spread on the order of the ionization potential in gas, ≈ 10 eV, a cold plasma approximation
is useful in providing closure for the moments of the Vlasov equation. In this approximation,
the plasma phase space distribution can be treated as

fi (x⃗, p⃗, t) = ni(x⃗)δ(p⃗− u⃗i), (3.23)

which treats the plasma electron distribution as singly energetic. Note that a warm, rela-
tivistic plasma model can be utilized, and has been developed by Schroeder and Esarey [84].
Taking the moments of the Vlasov equation using this distribution yields the cold plasma
fluid equations. The first result of this process is the fluid continuity equation,

∂n

∂ct
+∇ · nu⃗

γ
= 0 (3.24)

where γ = (1 + u2)1/2 is the Lorentz factor for the fluid momentum. This equation details
the temporal evolution of the density of the bulk fluid, n, as a function of the relativistic
fluid momentum. Note, the species indicator i has been dropped, as the focus is placed on
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the plasma electron fluid most relevant to laser-plasma accelerator dynamics. The second
result is the fluid momentum equation,

∂u⃗

∂ct
+
u⃗

γ
∇x · u⃗ =

q

mc2

[
E⃗(x⃗) +

u⃗

γ
× B⃗(x⃗)

]
(3.25)

which details the temporal evolution of the fluid accounting for bulk flow and electromagnetic
fields.

As a result of the cold plasma distribution assumed in Equation 3.23, a plasma-pressure
term is missing from Equation 3.25, which invokes the next moment of the Vlasov equation.
Truncation of these successive moment dependencies is necessary, and can be treated with
assumptions on the thermal behavior of the plasma fluid. In treating the pressure term, there
are two limits to evaluate. Consider a wave-like phenomena with a characteristic frequency
ω and wave number k. In the case where ω/k << vT i, in which the phenomena to be
evaluated moves much slower than the thermal velocity of the species i. In this limit, the
plasma thermalizes at a rate much faster than propagation of the wave, meaning temperature
difference effects can be neglected. The isothermal equation of state,

pi = niTi, (3.26)

provides a valid solution for the pressure term in this limit, as it states that the pressure in
a plasma species i is directly a function of its density and constant temperature. Or simply,
the pressure term in Equation 3.25 becomes directly proportional to changes in the density
distribution of the plasma. The second limit evaluates the opposite case where ω/k >> vT i,
in which the wave propagates through the plasma faster than the plasma can thermalize.
The adiabatic equation of state,

pi = Knϱ
i , (3.27)

where K is a constant, and ϱ = (2 +N)/N with N the number of degrees of freedom in the
system. For the laser-plasma interactions discussed later, the ω/k << vT i limit is never valid,
as the plasma waves have a phase velocity of approximately c. For these interactions where
the frequency of electron thermal collisions is significantly lower than ωpe, a 1D adiabatic
compression of the plasma electron density is assumed, as thermal motion cannot couple the
plasma wave motion into other dimensions. Physically, the electron velocity driven by the
plasma wave is much greater than thermal motion, and the plasma-pressure term can be
neglected, which truncates the moments required. This cold plasma assumption is critical
in obtaining closure of the fluid equations.

Together, the Vlasov equation or the fluid equations, supplemented by Maxwell’s equa-
tions, provide a description of plasma behavior each through distinct lens. The Vlasov equa-
tion provides a particle phase space distribution model of plasma behavior. This approach
is necessary for analyzing behaviors resulting from phase space distribution perturbations,
and cases where kinetic interactions are of interest. However, this approach is computa-
tionally expensive and unnecessarily detailed for bulk plasma behavior. In the other case,
the fluid model treats each species of the plasma as a bulk fluid, and provides insight into
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collective phenomena without detailed consideration for kinetic effects. This fluid approach
will provide the framework for discussing laser-plasma interactions in the next section.

3.2.2 Electromagnetic waves in a plasma

The response of the bulk plasma to the presence of an external electric field is critical to
understanding the behavior of a laser pulse propagating through plasma. From derivations
presented by Kruer [82], the simplest case is that of a non-magnetized, neutral plasma in
the presence of an oscillatory electric field

E⃗(x⃗, t) = E⃗(x⃗) exp (−iωt), (3.28)

with ω > ωpe assumed. This assumption allows for treatment of the ions as a stationary
background, due to the mass dependency in Equation 3.16. The motion of the electron
fluid in the presence of oscillatory electric field can be analyzed using Maxwell’s equations,
yielding the dispersion relation

ω2 = ω2
pe + c2k2, (3.29)

which reveals a critical condition for the propagation of E⃗(x⃗, t) in a plasma. For ω > ωpe,
the wave number k remains real, indicating that the electromagnetic wave can pass through
the plasma. In this case, the electron fluid cannot move quickly enough to hamper the
wave. However, for ω < ωpe, k becomes imaginary, indicating that the wave will reflect or
attenuate. In this scenario, the electron fluid can move quick enough to shield the wave and
hinder its propagation. Recalling Equation 3.17, the critical density, ncrit, can be solved for
a given wavelength of light by setting ω2 = ω2

pe. The resulting expression,

ncrit =
1

λ2
(2πc)2

ϵ0me

e2
≈ 1.12 · 1021

λ[µm]2

[
#

cm3

]
, (3.30)

is useful for determining the critical density for a given wavelength of light. For a laser with
λ = 800 nm, ncrit ≈ 1.75 · 1021 cm−3.

3.2.3 Intense laser pulses in plasma

Moving beyond the simple case presented above, it is crucial to consider the response of
a plasma to the presence of an intense, spatially dependent laser pulse. Following Kruer [82],

the response of an electron fluid to spatially varying electric field, E⃗(x⃗, t) = E⃗ sin (ωt) for
ω > ωpe, can be examined using a nonrelativistic fluid momentum equation. By averaging
over rapid oscillations in the electric field and accounting for up to 2nd order contributions
from E⃗, the force equation becomes

me
∂u⃗s

∂t
= −eE⃗s − e2

4meω2
∇E⃗2(x⃗), (3.31)
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in which two distinct terms arise. This treatment of averaged motion is the envelope approx-
imation. The first term, eE⃗s, is simple oscillatory motion of the electrons over in the electric
field which cancels out due to sinusoidal nature of the electric field oscillations. Dropping
this leaves the second term known as the ponderomotive force, highlighted in Equation 3.32,
which acts to push the electron fluid away from gradients of increasing intensity.

F⃗pond = − e2

4meω2
∇E⃗2(x⃗). (3.32)

This expression can be restated in a form conducive for interpretation of applications involv-
ing high-intensity lasers. By inserting the laser strength parameter as defined in Equation
3.12, the ponderomotive force can be read as

Fpond = −mec
2

4
∇a2. (3.33)

These expressions give the linear limit (a0 << 1) for the ponderomotive force, and represent
the fundamental interaction which enables laser-plasma acceleration schemes [82, 81]. A more
rigorous derivation can be performed using the relativistic cold plasma model in Equation
3.25, which yields (

∂2

∂t2
+ ω2

pe

)
δn

n0

=
c2

2
∇2a2, (3.34)(

∂2

∂t2
+ ω2

pe

)
E⃗

E0

= −ωpec

2
∇a2, (3.35)

where the electron plasma density perturbation, δn, and resultant electric field, E⃗, are driven
by the ponderomotive force.

3.3 Laser-plasma accelerators

3.3.1 Linear plasma waves

Originally proposed by Tajima and Dawson in 1979, the laser-plasma accelerator (LPA)
concept has since seen significant development in both theory and experiment [85]. This
initial work suggests utilizing high intensity lasers to drive electron density perturbations in
a plasma. These perturbations result in the formation of strong electric fields, theoretically
many times stronger than those sustained by traditional accelerator cavities [81]. With
100 MeV/m formerly a significant technical target for RF cavity accelerators, and recent
experimental cavities reaching up to 200 MeV/m, the observed ≈ 100 GeV/m accelerating
fields in LPAs represents an exciting new regime for accelerator physics [86, 87, 81]. Derived
by Dawson [88], the cold nonrelativistic plasma wave-breaking field limit,

E0

[
V

m

]
=
cmeωpe

e
≃ 96

√
n0[cm−3], (3.36)
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where n0 is the unperturbed electron plasma density, gives insight into the strong accelerating
fields that LPAs can generate. Physically, this can be derived by examining the electric field
produced by two infinite sheets of charged particles with charge density n0 separated by
the plasma skin depth, c/ωpe. With one sheet consisting of positive immobile ions and the
other electrons, an electric field representative of that supported by electron plasma waves is
generated. Using Poisson’s equation in 1D, E = 4πen0c/ωpe is found, and can be rearranged
to yield Equation 3.36. For a readily achievable n0 ≈ 1018 cm−3, accelerating gradients near
100 GeV/m are expected. These fields are formed following electron density perturbations
driven by the ponderomotive force. Using the fluid equations these density perturbations,
δn/n0 = (n−n0)/n0, can be modelled in the a20 << 1 limit with the following set of equations,(

∂2

∂t2
+ ω2

pe

)
δn

n0

=
c2

2
∇2a2, (3.37)

(
∂2

∂t2
+ ω2

pe

)
ϕ =

ω2
pea

2

2
, (3.38)

where ϕ = eΦ/mec
2 is normalized electrostatic potential in the wake formed by the laser

pulse and n is the perturbed electron density [81, 89, 90]. Examination of Equation 3.37 is
instructive, as the time evolution of the density perturbation on the left-hand side is directly
driven by the ponderomotive force term on the right-hand side. Note the laser strength
parameter a has dropped the a0 subscript, as the time evolution term in Equations 3.37 and
3.38 requires consideration of the evolving laser strength parameter with temporal envelope
of the laser. Assuming |δn/n0 << 1|, the 3D electric field and density perturbations can be
solved in the form

δn

n0

=
c2

2ωpe

∫ t

0

dt′ sin (ωpe(t− t′))∇2a2(r⃗, t′), (3.39)

E⃗

E0

= − c
2

∫ t

0

dt′ sin (ωpe(t− t′))∇a2(r⃗, t′), (3.40)

which is valid for E/E0 << 1. Examination of these equations reveal that, perhaps intu-
itively, wakefield formation is most effective when the laser intensity profile evolves on a scale
length which is roughly matched to the characteristic plasma wave length, λpe = 2πc/ωpe

[81]. An electron beam can be injected, or background electrons can become “trapped” in
this wake structure, and accelerated by the longitudinal electric fields along the propagation
path of the laser pulse.

In addition to the longitudinal electric fields that are formed, there are axial electric
fields, Er, and rotational magnetic fields, Bθ that are related to the longitudinal fields by
the Panofsky-Wenzel Theorem [91, 81]. These fields are related by the expression

∂Ez

∂r
=
∂ (Er −Bθ)

∂ (z − ct)
, (3.41)
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which will be revisited shortly. To understand the behavior of the behavior of these systems,
apply a Gaussian laser pulse with

a2 = a20 exp

(
−2

r2

r20

)
sin2

(
kpe
2
(z − vgt)

)
, (3.42)

to Equations 3.39 and 3.40 where z is the longitudinal coordinate, r is the radial coordinate,
r0 is characteristic radial width of the laser, vg = c(1− ω2

pe/ω
2)1/2 ≈ c is the group velocity

of the laser pulse in the plasma in the 1D linear limit, and kpe = 2π/λpe. Introducing the
co-moving coordinate frame, ζ = z − vgt, the solutions to these equations are [81]

δn

n0

= −π
4
a20

(
1 +

8

k2per
2
0

(
1− 2

r2

r20

))
exp

(
−2

r2

r20

)
sin (kpeζ) , (3.43)

Ez

E0

= −π
4
a20 exp

(
−2

r2

r20

)
cos (kpeζ) . (3.44)

Additionally, an expression for ϕ can be calculated by the relation −∂ζϕ = Ez/E0, which
yields

ϕ =
π

4kpe
a20 exp

(
−2

r2

r20

)
sin (kpeζ) . (3.45)

Sinusoidal fluctuations in electron density and the longitudinal electric field are observed,
with an inherent π/2 phase shift. The plasma waves propagate in the direction of the laser
pulse with a phase velocity vp roughly matched to the laser pulse, which travels through the
plasma with a group velocity vg ≈ c. This behavior is shown in Figure 3.4, and compared to
non-linear wakefield behavior. For the same laser pulse, the transverse wakefield component,
Wr = Er −Bθ, is [92, 91, 81]

Wr(r, ζ)

E0

≈ a20
π

4

4r

kper20
exp

(
−2

r2

r20

)
sin (kpeζ) , (3.46)

which introduces a π/2 shift relative to the longitudinal accelerating field. This shift leads
to a π/2 phase region where trapped relativistic electrons are accelerated and focused.

One key limiting factor for the acceleration of trapped electron bunches is the result
of de-phasing between the electron bunch and the plasma wave. Trapped electrons can
accelerate to a velocity which outpaces the phase velocity of the wakefield. When this occurs
the electron can witness an electric field of the opposite polarity, leading to slowing and
potentially broadening the energy spread of the electron bunch. The de-phasing length, LD,
can be approximated in the 1D linear limit as

(1− vg
c
)kpeLD =

π

2
, (3.47)

LD ≈
λ3pe
2λ

, (3.48)
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which upon examination using the definition of ωpe in Equation 3.17, reveals a scaling factor

with electron density of LD ∝ n
−3/2
0 [81]. Higher density plasma will result in shorter de-

phasing lengths. This ultimately needs to be balanced with the wakefield longitudinal electric
field strength, which scales as E0 ∝ n

1/2
0 , with higher density plasma allowing for stronger

electric fields. The net energy gain of an electron can be found by integrating Equation 3.44
over the accelerating and focusing phase of π/2 for r = 0. After invoking the definitions of
E0 and kpe, this expression becomes

∆γ =
π

4
a20, (3.49)

where sin(kpeπ/2) = 1. In the linear plasma wave limit, increasing a0 leads to increased
electron energy gain.

One of the unique characteristics of LPAs is the inherently short beam durations which are
created. This arises from the plasma nature of the scheme. For a wake of the characteristic
length λpe, the temporal duration of an electron bunch accelerated within the wake,

τb <
λpe
c
, (3.50)

is inherently ultra-short. For a plasma with n0 ≈ 1018 cm−3, bunches with τb < 100 fs are
expected. The ultra-short nature of these pulses enables probing of short-lived nuclear states,
and provides the opportunity for exploring nuclear-plasma interactions in nuclei excited to
the quasicontinuum.

3.3.2 Non-linear plasma waves

For cases where a20 ≥ 1, the electron motion is relativistic, leading to modifications in
expected wakefield behavior. In this non-linear regime, the cold plasma wave-breaking limit
can be exceeded, resulting in E > E0. Modelling 1D behavior of non-linear plasma waves in
the presence of static ions can be accomplished using cold relativistic plasma fluid equations,
[81, 93, 94]. The continuity and momentum equations are given as

∂n

∂t
+ c

∂nβ

∂z
= 0, (3.51)

d(γβ)

dt
= c

∂ϕ

∂z
− c

2γ

∂a2

∂z
, (3.52)

which provide a generalized function for non-linear plasma waves along the longitudinal
z-axis. In using these equations, a set of relativistic factors are useful.

β =
vz
c
,

β⊥ =
v⊥
c

=
a

γ
,

γ =
1√

(1− β2 − β2
⊥).

(3.53)
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This set of equations defines the longitudinal and transverse velocity normalizations, β and
β⊥, respectively, with β⊥ = a/γ describing the quiver motion of the electron in the laser
field. The Lorentz factor is defined such that it accounts for both longitudinal and transverse
momentum. The cold fluid equations can be shifted into a co-moving frame with the variables
ξ = z − vpt and τ = t in the form [94]

∂ (n(βp − β))

∂ξ
=
∂(n/c)

∂τ
, (3.54)

∂ (γ(1− βpβ)− ϕ)

∂ξ
= −1

c

∂(γβ)

∂τ
, (3.55)

where βp = vp/c is the normalized phase velocity in the shifted frame. These are comple-
mented by Poisson’s equation in the form

∂2ϕ

∂ξ2
= k2pe

(
n

n0

− 1

)
. (3.56)

Here the evolution of the electric potential is directly related to the density fluctuations of
the electron plasma.

In analyzing 1D non-linear plasma wave evolution, the quasi-static approximation can
be applied to simplify the forms of Equations 3.54 and 3.55. Extending upon envelope
approximation, this approximation is valid when the laser pulse duration is treated as much
shorter than the timescale on which the laser envelope is modified due to the presence of the
plasma electrons. This approach allows the electrons to respond to a “static” laser envelope.
Additionally, the laser spot size must be much greater than the characteristic length of the
plasma waves, λpe. In this framework, assuming γ2p >> 1 where γp is the Lorentz factor for
the phase velocity of the plasma wave, the Poisson equation and plasma electrons can be
treated as a set of observable quantities n, uz, βz evolving around ξ [94, 93, 81]. The Poisson
equation in this form is given as

∂2ϕ

∂ξ2
=
k2p
2

(
(1 + a2)

(1 + ϕ)2
− 1

)
, (3.57)

which details the evolution of the wakefield potential as a result of the plasma responding to
the passing laser envelope a. The longitudinal electric field, Ez, is related to the potential
by

Ez = −E0
∂ϕ

∂ξ
(3.58)

The electron density, n, fluid longitudinal velocity uz, and βz are given in the following set
of equations as

n

n0

=
1 + a2 + (1 + ϕ)2

2(1 + ϕ)2
, (3.59)
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uz =
1 + a2 − (1 + ϕ)2

2(1 + ϕ)2
, (3.60)

βz =
1 + a2 − (1 + ϕ)2

1 + a2 + (1 + ϕ)2
, (3.61)

which details the behavior of plasma electrons as influenced by the passing laser pulse. These
equations are discussed later with numerical solutions for multiple a0.

Another key characteristic of non-linear plasma waves is the elongation of the plasma
wavelength, increasing relative to the fundamental λpe. This elongated wavelength, λNpe, is
broken into two regimes,

λNpe = λpe

1 + 3
16

(
Emax

E0

)2
if Emax

E0
<< 1

2
π

(
Emax

E0
+ E0

Emax

)
if Emax

E0
>> 1,

(3.62)

where Emax is the peak electric field sustained by the non-linear plasma wave [81]. In the
non-linear regime the longitudinal electric fields generated can exceed E0 by many factors.
This cold relativistic wave-breaking field limit is given as

EWB = E0

√
2(γp − 1), (3.63)

where γp =
(
1− v2p/c

2
)−1/2

. EWB represents a limit on the electric field strengths which can
be sustained by the electron density perturbations. As E → EWB, β → βp and n/n0 → ∞
leading to a breakdown in the cold fluid models [81].

In understanding the effects of a0 on wakefield formation, this system of equations has
been solved numerically and plotted in the following figures for a0 = 0.5, 1, 2. All of these
cases use a laser intensity envelope defined as

a2 = a20 exp
(
−2k2peξ

2
)
, (3.64)

which is Gaussian in ξ. A radial dependence is omitted, compliant with the 1D formulation
presented. In all plots, a normalized electron density perturbation of δn = n/n0−1 is shown.
The laser pulse is centered at kpeξ = 0, moving rightward. The linear regime for a0 = 0.5
is shown in Figure 3.4, with the expected sinusoidal characteristic shapes for the electron
plasma density perturbation and the resultant Ez are seen for ξ < 0, with a π/2 phase shift.
The quasi-linear regime for a0 = 1.0 is shown in Figure 3.5. Elongation of the plasma wave-
length and distortion of the sinusoidal behavior can be seen in comparison with the a0 = 0.5
case. This distortion is clear in Figure 3.6, plotted for a0 = 2.0, where the plasma wavelength
is significantly elongated and the density perturbations display a periodic “spiked” behavior.
This modified density distribution accompanies the characteristic “sawtooth” behavior in Ez

attributed to non-linear plasma waves [81].
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Figure 3.4: Linear plasma wave behavior plotted as function of the co-moving variable kpeξ
for a0 = 0.5, with Ez/E0, δn, and a

2 shown.

Figure 3.5: Quasi-linear plasma wave behavior plotted as function of the co-moving variable
kpeξ for a0 = 1.0, with Ez/E0, δn, and a

2 shown.
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Figure 3.6: Non-linear plasma wave behavior plotted as function of the co-moving variable
kpeξ for a0 = 2.0, with Ez/E0, δn, and a

2 shown.

3.4 Hundred-Terawatt Thomson laser platform

The experimental work detailed in Chapter 4 was performed using a laser-plasma accel-
erator at Lawrence Berkeley National Laboratory’s BELLA center. The Hundred-Terawatt
Thomson (HTT) laser platform is detailed in this section. Designed for dual-arm synchro-
nized femtosecond laser Thomson scattering experiments, the HTT platform is equipped
with a ≤ 5 Hz, ≤ 4 J LPA drive laser synchronized with a second ≤ 5 Hz, ≤ 1 J scattering
laser arm. An additional third laser arm can be used as a plasma density probe. An over-
head view of the entire system is given in Figure 3.7. The system utilizes an 800 nm front
end, which is amplified using liquid-cooled Ti:Sapphire multi-pass amplifiers pumped with
a dedicated 532 nm, 16 J pump laser. The laser amplification chain is detailed in Figure
3.8. A drive laser energy spread FWHM of < 3.3% is achieved, with a sample measurement
shown in Figure 3.9 for 2500+ consecutive shots. The net drive laser energy can be tuned by
adjusting the energy of the pump laser. The laser focus quality is well characterized, with
Figure 3.10 detailing beam profile evolution through focus. The pulse duration at the target
is adjustable, controlled by the compressor grating spacing following amplification. A scan of
pulse duration is shown in Figure 3.11, as measured by Frequency-Resolved Optical Gating
(FROG) and a Single-Shot Auto-correlator (SSA). The offset in shortest pulse locations as
a function of grating spacing is a result of the measurement geometry. System long term
stability is well characterized, and can be observed in the LPA electron beam. A stacked
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Figure 3.7: Overhead generalized description of the HTT laser system. Laser seeding and
amplification occur in the room on the right side of image, with the target chamber on the
left.
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Figure 3.8: Schematic description of the HTT laser amplifier chain. Detailed are the three
independent laser arms, with adjustable on-target arrival times. The listed current/future
components were accurate at the time of the experiment, but are not representative of the
system at the time of publication.

spectrum plot showing electron beam stability over 1000 shots at 1 Hz is shown in Figure
3.12.
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Figure 3.9: Histogram of 2500+ successive shots measuring the amplified drive laser energy.
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Figure 3.10: Scan data showing the laser profile near focus, with representative CCD images
shown at the top. The beam at focus is 20 µm, for a calculated intensity of ≈ 1019 W/cm2.
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Figure 3.11: Scan data showing the laser temporal FWHM as a function of compressor grat-
ing spacing, with representative FROG traces at the top. For both instruments, a FWHM
pulse duration of 40 fs is measured, with an offset indicative of measurement geometry.
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Figure 3.12: Long-term consecutive LPA electron beam spectrum data showing consistency
over 1000 shots at 1 Hz.
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Chapter 4

Isomer population in Bromine nuclei

4.1 Experimental motivation

A “proof-of-concept” experiment for isomer manipulation using laser-plasma accelerators
was performed and is detailed in this Chapter. The 79Br nucleus has an 9/2+ isomer at 207.6
keV with a half-life of 4.85 seconds [14]. The goal of the following experiment was to populate
the 79mBr state following irradiation in two discrete cases. In both cases, the radiation energy
was planned to be > 10 MeV, which is sufficient for excitation into the quasicontinuum. One
irradiation was performed using bremsstrahlung photons to photo-excite bromine nuclei, with
some fraction populating the isomer state. The second irradiation case was performed using
ultra-short electron bunches from the HTT LPA discussed in Chapter 3. The goal was to
compare the isomer population rates for each case, with population rates predicted to be
higher in the case of electron irradiation. Enhanced isomer population was predicted to occur
as a result of enhanced spin-coupling in the quasicontinuum enabled by < 100 fs electron
bunches, via nuclear-plasma interactions or electron-nuclear interactions. The ultra-short
lifetime of quasicontinuum states requires that the beam source have a time signature on
the femtosecond scale, which is a unique property of LPA sources. By modifying the spin-
distribution of excited states, it is thought the excited nuclei would de-excite in a manner
which may preferentially populate the 79mBr spin isomer state, which has a ∆J = 3 above
the ground state. An abbreviated level scheme for 79Br is given in Figure 4.1.

4.2 Experimental design

This experiment utilized an active target configuration, in which the detector contained
the target nuclei for excitation. With this configuration, the active target can be irradiated
and decay signal from isomer states can then be detected with great efficiency. The active
target in this experiment was a 0.5” right cylinder LaBr3 scintillator purchased from Saint-
Gobain. This crystal was mounted to a Hamamatsu photo-multiplier tube, which output its
signal to a digital multi-channel analyzer from CAEN.
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Figure 4.1: Abbreviated nuclear level scheme for 79Br, with lifetimes, energies, and spin states
given. The solid blue arrow represents a direction photo-excitation from the ground state
into the isomer, while the dashed red arrows represent excitation into the quasicontinuum
followed by de-excitation into the isomer state [14].

The LaBr3 crystal is manufactured with natural Bromine which contains an abundance of
50.69% 79Br, with the remainder composed of 81Br [95]. With this isotopic make-up there are
two possible long-lived isomers which can be populated, 79mBr and 80mBr. Population of the
79mBr state is attributed to the 79Br(γ,γ’)79mBr and 81Br(γ,2nγ’)79mBr reactions. Given the
approximately equal proportion of 79Br and 81Br nuclei in the active target, it is impossible
to attribute observed experimental excitations of the 79mBr state to a given parent nuclei.
The 80mBr state is primarily populated by the 81Br(γ,nγ’)80mBr reaction, as the incoming
photon energy well exceeds the Sn of 81Br at 10.159 MeV [96]. Note the 80mBr state has a
half-life of 4.42 hours, which requires a separate treatment experimentally than the 79mBr
state, which will be detailed later.

Two experimental configurations were used, to account for the two irradiation cases. For
photon irradiation, a 0.46 T dipole magnet is used to disperse the electron beam for energy
selection with a movable bremsstrahlung converter. The converter consists of a 2 mm tall, 5
mm deep stainless steel bar. A 0.75 T bending dipole magnet was used to prevent electrons
from reaching the active target. Bremsstrahlung photons up to 35 MeV excited the target
into the nuclear quasicontinuum. For electron irradiation, the bremsstrahlung converter and
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secondary bending dipole were removed from the experiment, allowing ≈ 35 MeV, <100
fs, electron bunches to excite nuclei into the quasicontinuum and promote electron-nuclear
interactions in the target. Schematic figures of these experimental configurations are shown
in Figures 4.2 and 4.3.

For each irradiation case, the sample was irradiated at 0.05 Hz. This repetition rate
corresponds to 20 seconds between shots, which is ≈ 4 times the half-life of the 79mBr state.
Counting of de-excitations following each shot was performed, as near-full depletion of the
isomer state occurred. This was performed using a rapid high-voltage switch synced to the
laser clock. This allowed to the PMT to be biased immediately following each shot, prevent-
ing damage from over-exposure during the shot, and then switched off before the following
shot. This switching behavior resulted in a changing detector energy response immediately
following the shot, but the detector stabilized quickly. For measuring total activations of the
80mBr state, the detector assembly was left operating for days after irradiation, allowing for
full depletion of the 4.42 hour isomer [97].

This experiment was performed at the BELLA HTT laser system detailed in Chapter 3
[98, 99]. For this experiment, a 1.75 J, 40 fs laser pulse was focused to a waist size of ≈17 µm
FWHM with a peak intensity of 7.25×1018W/cm2 in a high-density gas jet, which produces
<100 fs electron beams through laser-plasma accelerator mechanisms discussed in Chapter
3. An electron spectrometer was implemented to characterize the electron energy spectrum.
A movable LANEX rare-earth scintillating screen was placed behind the 0.46 T dispersion
magnet, with the scintillating side imaged by a CCD camera equipped with an objective
lens. A representative electron spectrum is shown in Figure 4.4, with the presence of the
stainless steel bar included. This results in a suppressed spectrum at the electron energies
which are striking the bar. Energy calibration was performed using the magnet design and
particle tracking software RADIA [100].
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Figure 4.2: Schematic representation of the photon irradiation experimental configuration.
The laser, shown in red, is focused in the gas jet, driving the LPA. The resulting electron
beam, blue, co-propagates towards the magnet assembly. The 0.46 T dispersion magnet
allows for geometric selection of the bremsstrahlung energy endpoints, while the 0.75 T
secondary magnet bends the remaining electrons away from the detector, into a plastic shield
not pictured. The LANEX screen located between the magnets is removable, providing a
diagnostic tool for the electron beam energy.
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Figure 4.3: Schematic representation of the electron irradiation experimental configuration.
The laser, red, is focused in the gas jet, driving the LPA. The resulting electron beam,
blue, co-propagates towards the magnet assembly. The 0.46 T dispersion magnet allows
for geometric selection of the electron energies which strike the target. The LANEX screen
located downstream of the dispersion magnet is removable, providing a diagnostic tool for
the electron beam energy.
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Figure 4.4: Electron energy spectrum showing the measured electron spectrum. The inset
plot is an example CCD image with the center-line energy axis provided. As the screen was
placed at 40◦ angle relative to the laser axis, the energy distribution across the image is
warped and requires complex analysis. This angle offset is the cause of the diagonal shadow
of the bremsstrahlung converter bar.

4.3 Experimental analysis

4.3.1 Identification of isomer signals

In experimentally identifying the isomer decay signal, the characteristic decay γ energy
and half-life must be confirmed. Following calibration with a 137Cs sealed source, decay
signals from the 79mBr and 80mBr states were identified at the characteristic 207.6 keV and
85.8 keV, respectively [14, 97]. Time-series decay curves are given in Figures 4.5 and 4.6.
Calculation of the experimental decay rates using a time-bin count exponential fit gives a
79mt1/2 = 4.05±0.64 s and 80mt1/2 = 4.36±0.05 hrs. For 79mBr this calculation was performed
using the post-shot accumulated time-series, while for 80mBr the post-irradiation collection
data was used.
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Figure 4.5: Shot-accumulated 2D histogram for the 20 seconds following each shot. The
79mBr decay signal can be seen at 207.6 keV, which can be seen to decay away over the 20
second counting period. The 80mBr decay signal can be seen as a constant background near
85.8 keV, as result of the significantly longer half-life. Note the curved detector response
following rapid biasing after each shot.

Figure 4.6: Post-irradiation continuous 2D histogram for many hours. The 80mBr decay
signal can be seen near 85.8 keV, which can be seen to decay away with the characteristic
4.42 hour half-life.
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4.3.2 Calculation of populated nuclei

Following successful identification of the isomer decay signals, the total population of
isomer states must be calculated. For 79mBr, which is fully depleted between shots, this pro-
cess was performed by calculating the original isomer population, N0, by decay-correcting
time-bin counts from the shot-accumulated time-series. Figure 4.7 provides a visual repre-
sentation of this process, during which a projection across the energy axis (ADC channel)
is taken for a given time-bin. Within this projection, the signal peak is identified and fit
with a Gaussian plus linear model. This fit allows for subtraction of the counts below the
linear background, giving the peak counts value. The peak counts is then decay corrected to
determine N tbin

0 using Equation 4.2. The mean of the N tbin
0 values is taken using Equation

4.3, to calculate the total isomer population N0. In this set of equations, λ is the decay
constant for the isomer of interest, tbin is the center of a time-bin, tLHS and tRHS are the
time-bin limits, m is the number of peak bins corresponding to the bottom right plot in
Figure 4.7, and n is the number of time-bins evaluated.

Peak Counts =
m∑
i=1

Ci − BGi, (4.1)

N tbin
0 =

Peak Counts

exp(−λ · tLHS)− exp(−λ · tRHS)
, (4.2)

N0 =

∑n
tbin

N tbin
0

n
. (4.3)

Calculating the total population of the 80mBr isomer requires separate treatment, due to
the long half-life resulting in simultaneous pumping and decay during the experiment. For
this case, a two step correction was necessary. First, N0 was calculated using the method
discussed above, with the exception that the post-irradiation long counting period data
set was used, shown in Figure 4.6. The activity value at the end of irradiation, A0, was
calculated from N0 using Equation 4.4. This A0 was then used to determine an effective
isomer pumping rate, Peff , across the duration of the irradiation, tirrad, with Equation 4.5.
The calculated Peff was integrated over tirrad in Equation 4.6 to calculate how many 80mBr
states had been populated and decayed away before the long counting period, referred to as
NDec. The total number of populated states, Ntotal, is the sum of NDec and N0.

A0 = N0 · λ, (4.4)

Peff =
A0

1− exp(−λ · tirrad)
, (4.5)

NDec =

∫ tirrad

0

Peff · (1− exp(−λ · t))dt, (4.6)

Ntotal = NDec +N0 (4.7)
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Figure 4.7: Example process for the calculation of total isomer population N0. The left
plot shows the time-selection from the 2D histogram to generate the y-axis projection shown
in the top right. The isomer signal peak for 79mBr is circled in red, and magnified on the
bottom right. The number of beige-green bins, m, is iterated through to calculate the peak
counts, light blue, above the background signal, orange. In Equation 4.1 the total bin value
is referred to as Ci and the background signal is BGi.

This calculation was performed for four data sets, yielding four total isomer activation
populations; 79mBr from photon irradiation, 80mBr from photon irradiation, 79mBr from elec-
tron irradiation, and 80mBr from electron irradiation. The sum values were then divided by
the total number of shots to yield average Activations/Shot per isomer, given in Table 4.1.
The ratio of these Activation/Shot is taken for 79mBr/80mBr under both irradiation cases
and will be referred to as the isomer activation ratio.
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Case 79mBr [#/Shot] 80mBr [#/Shot] 79mBr/80mBr

Photon 13.21 ± 1.29 566.23 ± 17.48 0.023 ± 0.0024
Electron 26.25 ± 0.80 787.50 ± 26.10 0.033 ± 0.0015

Table 4.1: Activations/Shot for isomer decay peaks

4.3.3 TALYS calculations for photo-excitation

The nuclear reactions modelling code TALYS was used to calculate an isomer activation
ratio (IAR) for comparison with the experimental value of 0.023±0.0024 for photo-excitation.
For these calculations, a bremsstrahlung photon spectrum was calculated using FLUKA-
FLAIR for a 35 MeV centered, 2 MeV wide flat electron spectrum incident on the stainless
steel bar detailed prior [101, 102, 103]. This spectrum was used to generate energy bins
fed into TALYS, which generates reaction cross sections for each of the energy bins. By
multiplying the spectrum by the cross sections and integrating total reaction contributions
to each isomer, an IAR was calculated. A broad grid search was performed using TALYS
default settings for each nuclear level density model and gamma strength function, each of
which are detailed in Chapter 2. This grid search is plotted in Figure 4.8, which indicates
that the closest matches are found with NLD models 4, 5, and 6, and γSFs 2 and 5.

Following this broad grid search, the closest matches to the experimental 79mBr/80mBr
isomer activation ratio were achieved with combinations of TALYS γSF models 1, 2, 3, and
5, the Kopecky-Uhl generalized Lorentzian, Brink-Axel, Skyrme-Hartree-Fock BCS model,
and the Hybrid Lorentzian-microscopic model, respectively, and NLD models 4, 5, and
6, the Skyrme-Hartree-Fock-Bogoliubov, Gogny-Hartree-Fock-Bogoliubov, and temperature-
dependent Gogny-Hartree-Fock-Bogoliubov tabulated values, respectively. The closest calcu-
lated value was ≈0.128, which is significantly higher than the 0.023± 0.0024 ratio observed
experimentally. TALYS calculation parameters for NLDs 4, 5, and 6 were systematically
adjusted in efforts to better match experimental data. These adjustments resulted in a
decreased IAR by ≈ 20%, which still far exceeds the experimental value.

Modification of angular momentum distributions within the microscopic NLD models was
explored in order to better match the experimental IAR. Given the ∆J isomers populated
in the experiment, shifting the angular momentum distributions used in TALYS calculations
should affect the feeding into the high-spin isomer states. Manual shifts of level densities
were performed as a function of nuclear spin state, J . The tables for TALYS NLD models
4, 5, and 6 were manually adjusted with intent of shifting level density at each energy bin,
as a function of spin, J . This was performed with Equations 4.8 and 4.9:

ρ′E,i =

(
k∑

j=1+X

δi,j

)
ρE,i−X +

1

k

k∑
l=1+k−X

ρE,l, (4.8)
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Figure 4.8: Grid of TALYS default NLDs and γSFs used to calculate isomer activation ratios
for the photo-excitation case using the stainless steel bremsstrahlung converter.

ρ′E,i =

(
k−X∑
j=1

δi,j

)
ρE,i+X +

1

k

X∑
l=1

ρE,l, (4.9)

which shift the level density ρ(E, i) within each energy bin E by a positive integerX multiples
of h̄. In this form, i is the J bin iterator, ρ′E,i is the level density after the shift, and k is
the number of J states with non-zero level density at E. Distinct equations are used for
positive and negative direction shifts. For all nuclei, shifted distributions were calculated for
−10h̄ ≤ X ≤ +10h̄. Total level density, ρ(E), is preserved as level density values shifted
out of the table are summed and distributed evenly across the corresponding ρ(E, J) space
in locations where ρ(E, J) contained non-zero values. Level density was not introduced
into ρ(E, J) components where level density was not present before modification. 79Br and
81Br NLD tables were shifted together, in order to prevent unintentional modification of
neutron pairing interactions, while 80Br was shifted independently. For these calculations,
γSF models 1, 2, and 3 were used. An example of this shift is shown in Figure 4.9.

After performing this shift for TALYS NLD models 4, 5, and 6, the best match to
experimental data was found with γSF model 2, NLD model 4, +4h̄ shifts for 79Br and 81Br
nuclei, and +5h̄ for 80Br nuclei. This combination produced a calculated IAR of 0.075 to
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Figure 4.9: Shifted ρ(E, J) distributions at 30 MeV in 79Br.

compare with the experimentally observed 0.023 ± 0.0024. Modification of γSF models 1,
2, and 3 was performed within the parameters offered by TALYS, however, no appreciable
changes to the calculated IAR were observed. NLD distribution modifications remained the
dominant factor.

4.3.4 Comparison of electron and photon irradiation cases

Shown in Table 4.1, the observed IARs differ between the photon and electron irra-
diation case. In explaining this discrepancy, FLUKA simulations comparing the stainless
steel bremsstrahlung spectrum and internally generated LaBr3 bremsstrahlung spectrum
were performed [101]. These spectra are plotted in Figure 4.10, with the internal electron
spectrum resulting from the geometrically selected LPA electron beam interacting with the
target included. These two distinct bremsstrahlung spectra were used in TALYS calcula-
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Figure 4.10: Simulated spectra at the LaBr3 active target comparing the internally generated
bremsstrahlung from the electron beam, bremsstrahlung from the stainless steel bar, and
the internal electron scattering spectrum. All calculated with FLUKA for an electron beam
centered at 35 MeV with a flat width of 2 MeV.

tions to calculate IARs for the TALYS default NLD Model 4, γSF model 2 case and the
shifted NLD Model 4, γSF model 2 case [104]. The double ratios of the calculated internal
LaBr3 bremsstrahlung/stainless steel bremsstrahlung IARs were taken to compare with the
experimentally observed electron/photon double ratio of 1.43. For the default and shifted
distribution cases, the double ratios are 0.94 and 0.87, respectively. Neither match the
experimentally observed double ratio of 1.43 and both are < 1, indicating that there are
contributions which are not accounted for by photo-excitations. Contributions from (e,e’)
interactions may strongly contribute to isomer populations, but calculations for these con-
tributions need to be developed.

Determining the potential for contributions from NPIs requires an understanding of the
ionization states present in the crystal during exposure to the ultra-short electron beam.
Electron beam energy deposition calculations performed with FLUKA do not suggest energy
deposition sufficient for bulk plasma generation within the LaBr3 crystal, making it difficult
to attribute the discrepancy in double ratios to NEEC and NEET mechanisms. Figure 4.11
details the energy deposition within the crystal, and suggests that the energy deposited per
Br nuclei per picocoulomb of charge is insufficient for bulk nuclear-plasma interactions to
occur as ionization energies for outer-shell electrons are on the eV scale.
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Figure 4.11: Simulated electron energy deposition for an electron beam centered at 35 MeV
with a flat width of 2 MeV in the LaBr3 active target. Color bar calibrated for eV/Br
atom/pC of electron beam charge.

4.4 Discussion

There are two primary areas of discussion raised by the analysis performed. First,
addressing the mismatch between the experimental and calculated IARs for the photo-
excitation case requires discussion of methods used in TALYS calculations and nuclei-specific
considerations which may be missing. The modified +4h̄/+5h̄ shift for odd/even nuclei may
be attributed to population of the g9/2+ orbital near the Fermi surface in Bromine nuclei.
Nucleon occupation of this intruder orbital could result in a potential shift of ρ(E, J) by 4.5h̄.

In TALYS, shifting the angular momentum distribution increased the 81Br(γ,n)80mBr
reaction cross section by approximately 43%. In contrast, the 79mBr population, which is
overwhelmingly populated by the 81Br(γ,2nγ’)79mBr reaction, decreased by less than 10%.
Increased population of high spin states should inhibit neutron emission following excitation,
due to an increased centrifugal barrier, which could explain the converging 79mBr/80mBr IAR
as single neutron emission from 81Br is less suppressed than double neutron emission into
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79mBr state. However, TALYS reaction modelling does not account for the shifted angu-
lar momentum distributions when determining neutron transmission coefficients. As such,
the shifted distributions predominantly modify photon transitions between states. Further
calculations are required in building a self-consistent explanation for the observed IAR. Ex-
perimental characterization of NLDs and γSFs for Br nuclei would provide needed validation
for calculations.

Second, the discrepancy between the photon and electron irradiation IARs requires de-
velopment of (e,e’) reaction rate calculations. These interactions represent inelastic electron
scattering (IES) off of the nucleus. There are two routes by which these interactions can
excite nuclei and modify isomer activation rates. The first is direct excitement of the nucleus
by the electron, which can impart more spin than pure photo-excitation. Evaluated nuclear
data for these interactions are sparse. Second, inelastic electron scattering off nuclei already
excited into the quasicontinuum must be considered, as the enhanced NLD may allow for
significant energy-spin coupling into the nucleus. Frameworks for these calculations will need
to be developed. As discussed in Chapter 2, Harston and Chemin have performed IES rate
calculations for low lying states in 235U, but the conditions evaluated are vastly different
than those explored in the Br experiment documented here [63].
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Conclusion

The development of laser-plasma accelerators as an experimental platform for probing
nuclear properties, such as gamma strength functions and nuclear level densities, gives access
to a new regime of interactions at the femtosecond timescale. These platforms enable pump-
probe experiments exploring highly excited states in nuclei, previously inaccessible due to
their ultra-short lifetimes. Additionally, < 100 femtosecond electron beams may enable exci-
tation into the quasicontinuum followed by secondary energy-spin coupling into the nucleus
mediated by electron-nuclear and nuclear-plasma interactions as a result of the enhanced
nuclear level densities at quasicontinuum energies. These interactions can be utilized to ex-
plore novel isomer manipulation techniques in a broad range of nuclei, which have practical
applications for energy storage, radio-medicine, spent-fuel mitigation, and space exploration.
Developing an improved understanding of quasicontinuum properties and nuclear-plasma in-
teractions will provide insight into heavy element stellar nucleosynthesis through the s-, p-,
and r-processes.

Chapter 4 details a proof-of-concept experiment in exploring isomer manipulation in
Br nuclei using a laser-plasma accelerator. By comparing populations of 79mBr and 80mBr
following separate irradiation by bremsstrahlung photons and ultra-short electron beams,
two notable results are found. For the photo-excitation only case, attempts to match the
experimental 79mBr/80mBr isomer activation ratio with TALYS calculations led to significant
modifications of nuclear level density angular momentum distributions. These shifts may be
explained by population of the g9/2+ intruder orbital near the Fermi surface in Br nuclei.
However, TALYS calculations do not account for these shifted distributions when calculating
neutron transmission coefficients. In better evaluating the experimental results with theory,
there are several other parameters which can be explored. Parity balance of excited states
may not be equal, and this could have significant impact on expected isomer activation
ratios. Additionally, a self-consistent exploration of neutron optical model parameters with
the shifted angular momentum distributions will provide better insight into the behavior of
excited Br nuclei.

In comparing the electron and photon irradiation cases, a discrepancy between the isomer
activation ratios was found that cannot be attributed to photo-excitation mechanisms. While
simulations suggests that electron energy deposition was insufficient to foster ionization con-
ditions conducive to NEEC and NEET reactions, calculations for inelastic electron scattering
(e,e’) reactions need to be developed to determine their contributions to isomer populations.
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Calculation frameworks for ground-to-excited and quasicontinuum-coupled (e,e’) interactions
are lacking, but may explain the observed isomer activation ratio.

A follow-up experiment is planned to better characterize the isomer population reactions.
A LaBr3 bremsstrahlung converter would unify the external and internal photon spectrum,
removing any potential for discrepancies to be attributed to photo-excitation mechanisms.
Addition of an electron collimator coupled to an integrating current transformer following
dispersion will give a quantified value of the charge on target, as well as allow for calculation
of bremsstrahlung intensity. Also, lowering the radiation energy below the S2n threshold
in 81Br will restrict the population of 79mBr to the 79Br(γ,γ’)79mBr reaction. By removing
this second feeding channel, a direct measurement of the isomer population rate can be
performed. This adjustment will make analysis of changes to TALYS calculation parameters
and their impact more straightforward.

Moving beyond proof-of-concept, an experiment for irradiation of various Americium
nuclei using ultra-short electron beams is planned. In addition to characterizing gamma
strength functions and nuclear level densities for heavy nuclei, inclusion of 242mAm as a target
nuclei will provide a direct test for induced isomer depopulation through excitation into the
quasicontinuum. Modification of spin distributions in the quasicontinuum may promote
enhanced de-excitation into the ground state, as introduced in Chapter 1. If successful, this
approach may be developed for application in spent-fuel mitigation and production of 238Pu,
an isotope valuable for space exploration.

In totality, the work presented establishes laser-plasma accelerators as a tool for probing
nuclear level densities and γSF, as well demonstrates their capability for isomer manipulation
experiments. With the unique capability of femtosecond scale pulses, laser-plasma acceler-
ators provide a novel platform for characterizing nuclear properties and evaluating isomer
manipulation techniques. Additional exploration of electron-nuclear and nuclear-plasma in-
teractions will provide insight into stellar heavy element synthesis and inertial confinement
fusion experiments.
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