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Traverseable Asymptotically Flat Wormholes with

Short Transit Times

Zicao Fu, Brianna Grado-White, and Donald Marolf

Department of Physics, University of California, Santa Barbara, CA 93106, USA

E-mail: zicaofu@physics.ucsb.edu, brianna@physics.ucsb.edu,

marolf@physics.ucsb.edu

Abstract: We construct traverseable wormholes by starting with simple four-dimensional

classical solutions respecting the null energy condition and containing a pair of oppositely

charged black holes connected by a non-traverseable wormhole. We then consider the per-

turbative back-reaction of bulk quantum fields in Hartle-Hawking states. Our geometries

have zero cosmological constant and are asymptotically flat except for a cosmic string

stretching to infinity that is used to hold the black holes apart. Another cosmic string

wraps the non-contractible cycle through the wormhole, and its quantum fluctuations pro-

vide the negative energy needed for traversability. Our setting is closely related to the

non-perturbative construction of Maldacena, Milekhin, and Popov (MMP), but the anal-

ysis is complementary. In particular, we consider cases where back-reaction slows, but

fails to halt, the collapse of the wormhole interior, so that the wormhole is traverseable

only at sufficiently early times. For non-extremal backgrounds, we find the integrated null

energy along the horizon of the classical background to be exponentially small, and thus

traversability to be exponentially fragile. Nevertheless, if there are no larger perturbations,

and for appropriately timed signals, a wormhole with mouths separated by a distance d

becomes traverseable with a minimum transit time tmin transit = d + logs. Thus tmin transit
d

is smaller than for the eternally traverseable MMP wormholes by more than a factor of

2, and approaches the value that, at least in higher dimensions, would be the theoretical

minimum. For contrast we also briefly consider a ‘cosmological wormhole’ solution where

the back-reaction has the opposite sign, so that negative energy from quantum fields makes

the wormhole harder to traverse.
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1 Introduction

The study of wormholes in general relativity dates back many years (see e.g. [1–3]), with

varying discussions of whether an observer might be able to pass through and perhaps find

a shortcut to a distant region. In particular, it is now well understood that the existence

of traverseable wormholes is limited in two important ways. First, topological censorship

theorems [4, 5] forbid wormholes from being traverseable in globally hyperbolic solutions

to Einstein-Hilbert gravity coupled to matter satisfying the null energy condition (NEC)1,

Tabk
akb ≥ 0. Second, even when the NEC is violated by quantum effects, general arguments

expected to hold in quantum gravity forbid wormholes in globally hyperbolic spacetimes

from providing the fastest causal curves between distant points [8, 9]. This condition also

prohibits the further possible pathologies discussed in [3, 10, 11]. Recently, several examples

of traverseable wormholes supported by well-controlled quantum effects and respecting the

above restrictions have been constructed [9, 12–16]. Instantons producing such wormholes

by quantum tunneling were also discussed in [17]. While the second limitation significantly

restricts the utility of any shortcut they might provide, such solutions remain of theoretical

interest.

These various traverseable wormholes solutions naturally fall into two classes. Worm-

holes in the first class (see e.g. [9, 12, 13, 16]) connect two separate asymptotic anti-de

Sitter (AdS) regions and are supported by negative energy in the bulk that is generated

by explicit couplings between the two dual boundary CFTs. While such couplings are

non-local and acausal from the perspective of the bulk, they may be thought of as sim-

ple models for couplings that would be induced between wormhole mouths lying in the

1Though traverseable wormholes can be constructed if one drops the requirement of global hyperbolicty,

e.g. by introducing NUT charge [6, 7].
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same asymptotic region and interacting causally through ambient space. Wormholes in

this second, more natural class were constructed in [14, 15]. In particular, Maldacena,

Milekhin, and Popov (MPP) [14] used a nearly-AdS2 approximation to construct a static

wormhole in asymptotically flat spacetime. This approach allowed [14] to address many

non-perturbative issues.

In contrast, [15] used a perturbative framework to give a general method of constructing

traverseable wormholes with both mouths in the same asymptotic region, and in particular

argued that a broad class of (almost traverseable) classical wormhole backgrounds would

become traverseable after incorporating the back-reaction from standard local quantum

fields in Hartle-Hawking states. By an almost traverseable background, we mean one in

which there is a null geodesic γ traversing the wormhole that lies in both the boundary

of the past of future null infinity and the boundary of the future of past null infinity.

As in e.g. [9], under these circumstances a negative value for the integrated null stress

tensor along γ will often lead back-reaction moving γ into both the past of future null

infinity and the future of past null infinity; i.e., the wormhole becomes traverseable. Note,

however, that in contrast to the wormholes of [14], this perturbative approach generally

yields wormholes with strong time-dependence, so that the back-reaction slows but does not

stop the collapse of the wormhole interior. The result is that the wormhole is traverseable

only at sufficiently early times. This is the price to be paid for studying a more general

class of constructions. Consistent with the results of [14], and as discussed in [15] and also

reviewed below, perturbative calculations indicate that the wormholes described here and

in [15] can in fact become time-independent in the limit where the background almost-

traverseable wormhole becomes extremal.

Here, we return to the perturbative framework of [15] in order to explore the above

back-reaction in more detail for a simple class of classical wormholes (suggested in [15] and

closely related to the setting of [14]) which have both mouths in the same asymptotically

flat region of spacetime. Our classical backgrounds contain a pair of charged, Reissner-

Nordström-like black holes held apart by the tension of a cosmic string that threads the

wormhole and stretches to infinity. We also include a second cosmic string that wraps

the non-contractable cycle through the wormhole; see figure 1. The classical wormholes

are not traverseable, but are almost so. Quantum fluctuations from this compact cosmic

string generate the negative Casimir energy whose back-reaction renders the wormhole

traverseable. As in [15], the back-reacted wormhole will generally exhibit strong time-

dependence and can be traversed by causal curves from past null infinity only if such

curves depart at sufficiently early times.

Below, we review the general framework of [15] and apply it to the asymptotically flat

wormholes of interest here. As in [15], we define traverseable wormholes to be the set of

curves that can witness non-trivial topology while escaping out to infinity – e.g. causal

curves that cannot be deformed, while remaining causal, to lie in the boundary of the

spacetime. To construct our relevant classical geometry, we start with a spacetime M̃ with

a bifurcate Killing horizon and one asymptotic region on each side of the horizon; M̃ can

be thought of as an almost traverseable wormhole with two asymptotic regions. If this

spacetime admits a freely-acting Z2 isometry J exchanging the right and left asymptotic

– 2 –



Figure 1: A moment of time in a spacetime with a wormhole (shaded region) formed by

adding a handle to a space with a single asymptotic region. The wormhole is threaded by

two cosmic strings, one stretching to infinity (black line) and the other compact (blue line).

The string that stretches to infinity provides a tension that counteracts the gravitational

(and, in our case, also electric) attraction of the two mouths, as well as the tension of the

compact string, and thus prevents the black holes from coalescing. Quantum fluctuations

from the compact cosmic string will render the wormhole traverseable.

regions and preserving the time orientation, then the quotient M = M̃/J describes an

almost traverseable wormhole with a single asymptotic region. While in principle, a small

perturbation of either geometry could render the wormholes traverseable, for M̃ the horizon

generating Killing field forces the null stress-energy of any perturbation respecting this

symmetry to be zero. In M , however, this Killing symmetry is broken by the quotient by

J , which necessarily maps the horizon-generating Killing field ξ to −ξ, since it identifies the

right and left regions while preserving the time-orientation of the spacetime. This allows

small perturbations to render the wormhole in the quotient space traverseable.

The simplest examples of such quotient wormholes are like the RP3 geon [4, 18, 19]

shown in figure 2. Though the quotient M then contains only a single wormhole mouth,

it nevertheless admits causal curves γ that are not deformable to the spacetime boundary.

Similar spacetimes with asymptotically AdS3 (or AdS3×X) boundary conditions and their

back-reaction from quantum scalar fields were explored in detail in [15], and similar back-

reaction from bulk fermions will be explored in [20]. Here, we will instead study the more

sophisticated case where the covering space M̃ contains a pair of maximally-extended black

holes, as in figure 3, so that the quotient M takes the form depicted in figure 1. Since the

particular solution M studied below involves two cosmic strings, one stretching to infinity

and the other compact, we require three cosmic strings in the covering space M̃ . The

compact cosmic string in M lifts to a single longer compact cosmic string in M̃ , while the

string stretching to infinity in M lifts to a pair of disconnected strings in M̃ .

Once we have formed our classical backgrounds, it remains to understand the back-

reaction from quantum fields sitting on the spacetime. As explained in [15], if quantum

fields on M̃ have a well-defined Hartle-Hawking state, there will be a corresponding Hartle-

Hawking-like state on M . This state is defined by the path integral over the appropriate

quotient of the Euclidean geometry of M̃ . For linear fields this state can also be constructed

by applying the method of images to the Hartle-Hawking state on M̃ . In particular, we can

use the method of images to calculate expectation values of the stress tensor of quantum

fields in their Hartle-Hawking state 〈Tkk〉M = 〈Tabkakb〉M along affinely parameterized gen-

erators ka of the background spacetime’s horizon. Because the stress tensor is a quadratic
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Figure 2: (Left) The RP3 geon is a Z2 quotient of the maximally-extended Schwarzschild

black hole. The quotient acts on the above conformal diagram by reflection across the

dashed line, and simultaneously acts as the antipodal map on the suppressed S1. This

action maps the Killing field ξa to −ξa, and so the geon quotient lacks a globally defined

time translation Killing field. In particular, the dashed line is orthogonal to preferred

spacelike surfaces of vanishing extrinsic curvature that one may call t = 0. (Right) A

small perturbation of maximally-extended Schwarzschild renders the Z2 quotient wormhole

traverseable. This results in a causal curve running between past and future null infinity

that is not deformable to the boundary.

composite operator, the method of images implies that 〈Tkk〉M in our Z2 quotient space

can be written as 4 terms in our covering space. Two of these are just 〈Tkk〉M̃ in the Hartle-

Hawking state on M̃ which are forced to vanish by the Killing symmetry. The remaining

terms involve two-point functions evaluated at some point x on one horizon in the covering

space M̃ and the image point Jx under the isometry J , located on the other horizon. Since

J acts freely and the quotient M̃/J contains no closed causal curves, the points x and Jx

are spacelike separated and this two-point function is finite. The spacelike separation of x

and Jx also guarantees that the two cross-terms coincide.

As mentioned above, though the Killing symmetry of the covering space forces 〈Tkk〉M̃ =

0, breaking this symmetry by quotienting now allows non-zero 〈Tkk〉M . More powerfully,

the actual expression for 〈Tkk〉M depends on whether the quantum field is periodic or anti-

periodic around the non-contractible cycle created by the quotient, and the two choices

differ only by an overall sign. Because the effect of back-reaction on traversability is gov-

erned by the integral
∫
〈Tkk〉Mdλ (with respect to an affine parameter λ over the generators

of the horizon), barring surprising cancellations the above choice of sign allows us to tune

the boundary conditions of our fields to render the wormhole traverseable. For bosons,

this sign tends to correspond to periodic boundary conditions in accord with the famous

negative Casimir energy of periodic bosons on S1 × Rd−1.

Returning to the asymptotically flat wormholes of interest here, we consider the stress-

energy provided by the cosmic strings. Since the relevant null vectors k are tangent to the

cosmic string worldsheets and the classical cosmic string stress tensor is proportional to

the induced metric, classically the cosmic strings do not contribute to 〈Tkk〉M . Quantum

fluctuations in the location of the string will contribute, however. We will model such
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Figure 3: A moment of time symmetry in our covering space M̃ . Each of the two asymp-

totic regions contains a pair of black holes held apart by cosmic strings that stretch to

infinity. A pair of strings thread the two wormhole throats and return to infinity in the

second asymptotic region. The Z2 isometry used to construct M = M̃/Z2 acts as a π rota-

tion about the non-physical point indicated by the dot at the center of the right figure. As

a result, a moment of time-symmetry for M takes the form shown in figure 1 and contains

two wormhole mouths in a single asymptotic region.

fluctuations as 1+1 dimensional massless free scalar fields. Since correlators of 1+1 quan-

tum fields diverge only logarithmically at short distance, it is easy to find a regime where

these fluctuations remain small when compared with any classical scale (at least when the

fluctuations are averaged over any classical time or distance scale), and our free field ap-

proximation is valid in such regimes. For the string stretching to infinity in M , the points

x, Jx in the covering space M̃ will lie on two distinct non-compact strings. Since fluctua-

tions on two different strings are uncorrelated, the cross-terms in
∫
〈Tkk〉Mdλ will vanish.

The contributions from quantum fluctuations of the compact string are non-zero, however,

and studied below using a conformal transformation associated with the method-of-images

construction described above.

At finite temperatures, we find that our wormholes become traverseable for test signals

and that, when the mouths are separated by a large distance d, well-timed signals require

only the relatively short time tmin transit = d+ logs (in units with the speed of light c set to

1) to traverse the wormhole, where logs denote terms logarithmic in d and in the black hole

parameters. In particular, the transit time is shorter than for MPP wormholes by more than

a factor of 2 and, as discussed in section 4, for d→∞ the higher-dimensional analogue of

this result would approach the minimum transit time consistent with the above-mentioned

prohibition against wormholes providing the fastest causal curves between distant points

[8, 9]. However, in such cases traversability is exponentially fragile, and can be destroyed

by exponentially small perturbations.

One should note that our background spacetime is unstable, as small perturbations

will cause the black holes to either fall towards each other or fly apart. However, the time

scale for the black holes to merge is ∼ d3/2, so the solutions are long lived compared to

the transit time. Furthermore, one could engineer more complicated stable configurations

using additional cosmic strings and anchoring to some stable structure at a finite distance

(e.g., a large stable spherical shell surrounding both wormhole mouths) instead of running

– 5 –



the strings off to infinity. It will be clear below that the results for such more complicated

models will be essentially the same.

Additionally, as in [13–15], we take particular interest in studying the extremal limit of

our classical backgrounds. In [15, 16] it was shown that this limit gives large back-reaction

for rotating BTZ, and we see here that this limit also gives large back-reaction for d = 4

Reissner-Nordström black holes. On general grounds2 this feature is related to the fact

that far in the throat of a nearly extremal spherically-symmetric black hole, the size of the

spheres is approximately constant, and thus one can approximately Kaluza-Klein reduce

the dynamics to two-dimensional gravity. However, the Einstein-Hilbert action
∫ √

gR

becomes a topological invariant in two dimensions, and does not contribute to the equations

of motion, modeling the higher-dimensional case in the infinite coupling limit GN → ∞.

Thus, in the extremal limit, the effective coupling diverges. Though our perturbation

theory breaks down when the back reaction becomes large, we take the divergence as an

indication that a full, non-perturbative calculation would reveal traverseable wormholes

that remain open for all time.

In Section 2, we compute
∫
〈Tkk〉Mdλ from the Hartle-Hawking state quantum fluc-

tuations of the cosmic strings. We then compute the back-reaction on our geometry and

the resulting degree of traversability in section 3, and conclude with some brief remarks in

section 4. As a contrasting side-note and because it provides an exactly solvable model for

scalar fields of arbitrary mass, we also compute effects for what one may call a cosmologi-

cal wormhole dSd/Z2 in appendix A where the back-reaction has the opposite sign so that

negative energy from quantum fields in fact makes the wormhole harder to traverse.

2 Stress-energy on the horizon

The introduction outlined a simple background spacetime M with a wormhole whose

mouths are held apart by cosmic strings. This wormhole is not traverseable, but is al-

most so and will be rendered traverseable by the back-reaction of quantum fields. As

noted in [15], the 2-fold covering space M̃ of this background is a charged version of the

analytic extension behind the horizon [21] of solutions found by Bach and Weyl in 1922

[22]. For our case where the black holes have identical mass and opposite charge, an explicit

form for this solution was found in [23] based on the implicit solutions in [24]; see also [25–

28] for the simpler extreme case. Additionally, we wrap a compact cosmic string through

both wormholes mouths, and our goal here is to understand any additional contributions

to 〈Tkk〉M associated with its fluctuations. As discussed above, the contributions from any

strings stretching to infinity will all vanish and we ignore contributions from bulk fields.

We will not need the full details of the covering space (which can be found in the above

references), as we will instead focus on ranges of parameters where the analysis simplifies.

We will take the tension µ of the strings to be large compared with the length scale

r0 set by the black holes, µr2
0 � 1, but we take Newton’s constant GN even smaller

(GNµ � 1) so that the conical deficit associated with the strings can be neglected. The

first condition allows us to linearize the fluctuations, while the second means that we

2We thank Zhenbin Yang for explaining this point.
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can ignore local effects of the strings on the geometry3. Note that the tension of strings

stretching to infinity must be at least somewhat larger than that of the compact string in

order to keep the black holes from coalescing. To suppress quantum fluctuations in Tkk,

and also to justify neglecting the effects of bulk Maxwell fields and linearized gravitons,

we can replace each string in figure 1 with N strings so long as µr2
0 � 1 for each string

and NGNµ � 1. As in [14], this will be necessary to render our semi-classical treatment

in terms of expectation values valid.

To complete our specification of parameters, we further fix any measure of the distance

d between the mouths of our wormhole and take the limit where d is much larger than the

the radius r+ =
√
A/4π of the black hole horizon. In this limit, the covering spacetime M̃

can be divided into three overlapping regions: the region near the first black hole where the

influence of the second can be treated as a small perturbation, the corresponding region

for the second black hole, and the region in between where both black holes cause only

small perturbations from flat space. In each region, it is possible to systematically improve

the approximation order by order in perturbation theory, but we work in the leading

approximation below.

As noted in the introduction, it is possible to compute 〈Tkk〉M using the method of

images starting in the covering space. However, since we are modeling fluctuations of the

cosmic string as massless 1+1 free fields, they define a 1+1 dimensional conformal field

theory. It is thus natural to instead compute 〈Tkk〉M by finding a conformal map from the

1+1 spacetime Mcs induced on the worldsheet of the compact cosmic string to a piece of

the cylinder of circumference 2π, and which simultaneously maps the cosmic string Hartle-

Hawking state to the cylinder vacuum. Inverting the transformation will then determine

our 〈Tkk〉M in terms of the known 〈Tab〉 on the cylinder and the stress tensor Weyl anomaly

associated with this conformal map. Such a map must exist since both the cosmic string

Hartle-Hawking state and the cylinder vacuum can be constructed as path integrals over

the respective spacetimes. Though we do not explicitly use the method of images to

calculate 〈Tkk〉M , we will still find the quotient construction to be of great use in finding

this conformal map. Below, we use Mcs(M̃cs) to denote the 1+1 spacetimes induced on

the compact cosmic string by M(M̃), with Mcs = M̃cs/Z2.

We first construct a conformal transformation relating M̃cs to a piece of a cylinder,

and which maps the Hartle-Hawking state on M̃cs to the cylinder vacuum. The Killing

symmetry of M̃cs means that its Hartle-Hawking state may be characterized as the unique

Hadamard state invariant under the symmetry. As a result, the pull-back of the cylinder

vacuum under our conformal map will be the Hartle-Hawking state so long as the Killing

symmetry of M̃cs maps to a symmetry of the cylinder vacuum. Choosing locally-Minkowski

coordinates φ, τ on the cylinder (or equivalently null coordinates uc = τ−φ, and vc = τ+φ),

we take this symmetry to be the 1-parameter subgroup of the vacuum-preserving SO(2,1)

symmetry that acts like a boost near the origin φ = τ = 0 (or uc = vc = 0) and at

appropriate other points that form a periodic array on the cylinder. For convenience after

3Due to the logarithmic divergences of 1+1 field theories noted above, the first condition should really

be µr20 � lnn where n is a parameter set both by the background spacetime and the manner in which

fluctuations are averaged as described in detail below.
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Figure 4: A conformal diagram of the two-fold cover M̃cs of the background spacetime Mcs

induced on our compact cosmic strings shown in the cylinder conformal frame. Wormholes

in this spacetime are not traverseable, but are almost so and will be rendered traverseable

by the back-reaction of quantum fields. The left and right edges of the diagram are to

be identified because of the periodicity of φ. Here we have truncated the spacetime at

the black hole inner horizons (shown as dotted yellow lines) due to the expected insta-

bility of such horizons [29]. Blue dots mark the outer horizons, and the shaded regions

are the static patches. The diagram is adapted to the cylinder coordinates φ, τ as indi-

cated by the horizontal dashed lines showing τ = −2π, 0, π and the vertical dashed lines

showing φ = 0, π, 2π, 3π. (recall that φ has period 4π on M̃cs). The spacetimes has two

bifurcation surfaces (points) b, b′ at (φ, τ) = (0, 0) and (φ, τ) = (2π, 0). The points p, p′

at (φ, τ) = (π, 0) and (φ, τ) = (3π, 0) are also marked, as are the right-moving null lines

U = −∞, 0,+∞ and the left-moving null lines V = −∞, 0,+∞.

we take the Z2 quotient, we choose the unusual convention that here φ be periodic with

period 4π on the cylinder conformal to M̃ .

In a static patch of M̃cs (see figure 4) the metric can be written in the form

ds2
static = −fdt2 + f−1dx2, (2.1)

with f = f(x) and where x ranges over [0, 2x0]. For later use, we also note that in the

limit where the separation d between the black holes satisfies d� r+, there is a sphere of

approximate symmetry passing through x0 around either black hole, with radius

r(x0) = x0 +O(r+) = d/2 +O(r+), (2.2)
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where since the symmetry is only approximate the O(r+) terms depend on precisely how

this sphere is defined4.

To map to the cylinder, we want t, φ such that

ds2
static = Ω2(−dτ2 + dφ2) = −Ω2ducdvc (2.3)

for an appropriate conformal factor Ω. Two such patches will be required to wrap around

a piece of a cylinder conformal to M̃cs (see figure 4). Therefore, in our static patch, φ

ranges over [0, 2π]. This patch is thus precisely the part of the cylinder with uc ∈ [−2π, 0],

vc ∈ [0, 2π].

Before constructing the conformal map, we introduce Kruskal coordinates U, V on M̃cs.

We build these in the usual way by first introducing the tortoise coordinate

x∗ = x∗0 +

∫ x

x0

1

f
dx, (2.4)

where we will fix the arbitrary parameter x∗0 below. We then define u = t−x∗, v = t+x∗,

and finally

U = −κ−1
+ e−κ+u, V = κ−1

+ eκ+v, (2.5)

where κ+ is the surface gravity of the black hole’s outer horizon. In these coordinates,

metric becomes

ds2
static = f

(
−dt2 + dx2

∗
)

=
f

κ2
+UV

dUdV. (2.6)

Here the region 0 < x < 2x0 is mapped to −∞ < x∗ < +∞ and thus to U ∈ (−∞, 0),

V ∈ (0,∞). However, the form on the right-hand-side can be analytically continued to all

points where both U and V are defined. Comparing (2.3) with (2.6) yields

Ω2 = − f

κ2
+UV

dU

duc

dV

dvc
. (2.7)

Up to an arbitrary scale L, the symmetries determine the map to the cylinder to be

U = L tan(uc/4), V = L tan(vc/4). (2.8)

In particular, a map of this form also gives the standard conformal transformation relating

the cylinder to 1+1 Minkowski space. Here, we can fix L by using the fact that we want

the Z2 symmetry exchanging the black holes (and corresponding to a π rotation about the

non-physical point marked in figure 3) to correspond to half a rotation of the cylinder,

which here is φ→ φ+ 2π; see again figure 4. Note that if the Z2 symmetry on M̃cs maps

the null ray U1 to the null ray U2, the Killing symmetry requires that the Z2 symmetry

map λU1 to U2/λ. Using (2.8) in addition, we see that the action of this Z2 is

U → −L2/U, V → −L2/V. (2.9)

4The second O(r+) term similarly depends on the precise definition of the separation d.
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We can fix L by using time-reversal symmetry to note that the null lines through the point

p (with coordinates t = 0, x = x0) and its image p′ under this Z2 have U = ±κ−1
+ eκ+x∗0

and have uc = −π, π, so that L = κ−1
+ eκ+x∗0 .

Having constructed the conformal map from M̃cs to the cylinder with period 4π, it is

now straightforward to take the Z2 quotient and use this same conformal map to relate

Mcs = M̃cs to the cylinder with period 2π. Here it is of course critical that we ensured

the original conformal map took the Z2 action on M̃cs to the action φ → φ + 2π on the

cylinder. Since the original map related the Hartle-Hawking state on M̃cs to the 4π cylinder

vacuum, the method of images guarantees that it also relates the Hartle-Hawking state on

Mcs = M̃cs to the vacuum on the standard cylinder of period 2π as desired.

This map can now be used to compute the integrated null stress tensor
∫
Tkkdλ in the

Hartle-Hawking state of Mcs. To simplify this, we introduce rescaled Kruskal coordinates

Ū =
U

Lκ+
= e−κ+x∗0U, V̄ =

V

Lκ+
= e−κ+x∗0V. (2.10)

Since any Kruskal coordinate is an affine parameter on the horizon, we compute∫
TŪŪdŪ =

∫
duc
dŪ

Tucucduc, (2.11)

where the integral is performed over the horizon V = V̄ = 0. Due to the Weyl anomaly

(see e.g. [30] as translated to standard Lorentz signature conventions by [31]), for any null

vector k̂ the component Tk̂k̂ is related to the associated components of the cylinder vacuum

stress tensor T cyl

k̂k̂
= k̂ak̂bT cyl

ab by

Tk̂k̂ = T cyl

k̂k̂
+

c

12π

{
∇k̂∇k̂ (ln Ω)−

[
∇k̂ (ln Ω)

]2}
, (2.12)

where ∇k̂ = k̂a∇a, the covariant derivative is defined by the metric ds2
cyl = −ducdvc on

the standard cylinder, and we have used the fact that k̂a is null.

Tucuc is then found by setting k̂a∂a = ∂uc in (2.12). In particular, in the standard

cylinder vacuum we have

T cyl
ab = ρ(dtcyl)a(dtcyl)b + ρ(dφcyl)a(dφcyl)b, (2.13)

where ρ = − c
24π and c is the CFT central charge. Thus

T cyl
ucuc = − c

48π
. (2.14)

Since our bulk spacetime has 3 + 1 dimensions, there are two transverse polarizations for

oscillations of the string. For our N compact cosmic strings, this yields c = 2N .

To compute the remaining terms in (2.12) it is useful to observe that ∇uc = ∂uc since

uc and vc are affine on the cylinder, and that

∂2
uc (ln Ω)− [∂uc (ln Ω)]2 = −Ω∂2

uc

(
Ω−1

)
. (2.15)
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Since we only need to compute 〈Tkk〉M on the horizon V = V̄ = 0, it is useful to recall that
f
UV = 2gUV is constant over the horizon as required to make U affine there. The factor dV

dvc

is also constant on lines of constant V . The only uc-dependent factor in (2.7) is thus

dU

duc
=

L

4 cos2(uc/4)
, (2.16)

so Ω−1 ∝ cos2(uc/4) and

− Ω∂2
uc

(
Ω−1

)
=

1

16
. (2.17)

Combining (2.12), (2.14), (2.15), (2.7), and (2.17) yields

Tucuc = − c

64π
, (2.18)

so that (2.11) yields∫
TŪŪdŪ =

∫ 2π

0
4κ+ cos2(uc/4)

(
− c

64π

)
duc = −cκ+

16
, (2.19)

and thus ∫
TUUdU =

∫
dŪ

dU
TŪŪdŪ = e−κ+x∗0

∫
TŪŪdŪ = −e−κ+x∗0 cκ+

16
. (2.20)

Finally, it remains to choose the constant x∗0. Since this was an arbitrary constant

that entered only through the definition of a coordinate, physical results like the back-

reaction of quantum fields on the geometry cannot depend on its value. But the value

of
∫
TUUdU does depend on the normalization of U , and it useful to make a choice that

illustrates the relevant physics already at this stage. Recall that the null ray through the

point x0 has U = −κ−1
+ eκ+x∗0 at t = 0, and this ray passes through an approximate sphere

around either black hole of radius r(x0) = d/2 + O(r+); see (2.2). Standard dimensionful

Reissner-Nordström Kruskal coordinates U = −κ−1
+ eκ+(r∗−t) are defined using a tortoise

coordinate with r∗ = r +O(ln r
r+

), and so we choose

x∗0 = d/2 +O(ln
d

r+
), (2.21)

which yields U(t = 0, x∗ = x∗0) = −κ−1
+ e

κ+
(
d/2+O(ln d

r+
)
)
.

At finite κ+ > 0, the stress-energy is thus exponentially small in the black hole sepa-

ration d. So while the negative sign in (2.20) should make the wormhole at least formally

traverseable, this result will be exponentially sensitive to further perturbations – including

that from any signal sent through the wormhole. We will return to such issues in section

4 after carefully computing the back-reaction from (2.20) in section 3. For now, we simply

note that this contrasts sharply with the expectation of a Casimir energy of order 1/d

for large d at fixed κ+. The difference is due in part to the fact that the integrated null

energy (2.20) differs from the conserved total energy of the quantum field by a factor of

ξU , the null component of the Killing field which would appear in the latter but does not
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enter (2.20). As a result, energy that falls across the horizon at late times is exponentially

suppressed in (2.20) relative to the conserved total energy.

Before proceeding, we pause to note that the result (2.18) could in fact have been

predicted without calculation by combining the following observations. First, the fact

that U is affine along the horizon means that we could conformally map our physical

spacetime to flat 1+1 Minkowski space using a conformal factor Ω̃ that is constant on the

horizon and which thus has no anomalous contribution to the associated null-null stress-

energy. Second, the standard conformal map from 1+1 Minkowski to the cylinder maps the

Minkowski vacuum to the cylinder vacuum and thus has an anomaly that precisely cancels

the cylinder stress tensor (2.14). However, thirdly, our Z2 quotient introduces factors of

2 that scale the anomalous contribution by 1/4, so that it will only partially cancel the

cylinder stress-energy. Thus (2.18) is precisely 3/4 of (2.14). The rest of the computations

simply apply this rescaled version of the standard conformal map from the plane to the

cylinder. As a result, the final expression (2.20) must in fact be the identical for any other

1+1 background with the same causal structure up to the choice of x∗0 that determines

the overall scale of the effect.

3 Back-reaction and Stability

We are now ready to study first-order back-reaction from the quantum stress-energy (2.20),

and in turn, study the traversiblity of our wormhole. We first orient ourselves to the

appropriate geometry in section 3.1 before investigating the linearized Einstein equations

in section 3.2.

3.1 Geometry and Geodesics

We are primarily interested in following a null geodesic through the throat of our wormhole.

As described above, when the wormhole mouths are far apart, the spacetime in the throat is

approximately spherically symmetric and thus Reissner-Nordström up to small corrections.

At leading order in large d, it thus suffices to study perturbations to Reissner-Nordström

sourced by the stress-energy (2.20), and in particular on our null geodesic.

We start with the Reissner-Nordström metric in its static form

ds2 = −fdt2 + f−1dr2 + r2dΩ2, (3.1)

where dΩ2 is the metric on the unit two-sphere. As above, we introduce Kruskal coordi-

nates: the standard tortoise coordinate is

r∗ =

∫
1

f
dr = r +

1

2κ+
ln
|r − r+|
r+

− 1

2κ−
ln
|r − r−|
r−

(3.2)

where we have chosen the constant of integration such that r∗ = 0 at r = 0. We then

introduce u = t− r∗, v = t+ r∗ and thus the dimensionful Kruskal coordinates

U = ∓κ−1
+ e∓κ+u, V = ±κ−1

+ e±κ+v, (3.3)
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where the (U, V ) signs are (−,+) before the geodesic enters the throat and are (+,−) after

it leaves. The metric in these coordinates becomes

ds2 = 2gUV dUdV + r2
(
dθ2 + sin2θdφ2

)
, (3.4)

where r = r(UV ) is implicitly defined by equations (3.2) and (3.3). As usual, we have

gUV = gUV (UV ) =
f

2κ2
+UV

= −1

2

r+r−
r2

(
r − r−
r−

)1+(r−/r+)2

e−2κ+r. (3.5)

The null curve V = 0 at constant angles on the S2 is a geodesic in this background.

Following the standard treatment, we wish to understand how this geodesic is displaced

under a general metric perturbation hab. Integrating the geodesic equation gives

V (U) = −(2gUV (V = 0))−1

∫ U

−∞
dUhkk, (3.6)

where hkk = habk
akb and where we have used the fact that gUV is constant along the

unperturbed horizon at V = 0. At U = +∞ one thus finds

∆V =
r+

r−

(
r+ − r−
r−

)−1−(r−/r+)2

e2κ+r+

∫ +∞

−∞
dUhkk. (3.7)

So long as this quantity is negative, the geodesic will emerge from the black hole and reach

null infinity. As in [15, 32], we will see in section 3.2 below that negative hkk follows from

the negative 〈Tkk〉 found above in (2.20).

In addition to the binary question of traversability, we can also study the time-delay of

this wormhole-traversing null geodesic relative to some standard. For reference purposes,

let us consider a non-physical (particularly violating the generalized second law) ultrastatic

(gtt = −1) spacetime consisting at each time of two copies of Euclidean space, each with

a ball of radius r+ removed around the origin and with the two spheres glued together.

A null ray hitting one of these spheres in the first space then instantly teleported to an

associated point in the other. Note that Eddington-Finklelstein coordinates on such a space

with the above conventions would have v = constant for a radial null ray traveling from

one asymptotic region to the other. As a result, if a null geodesic through our wormhole

has vout = vin, it is as if the wormhole brought it instantaneously from one mouth to the

other. Conversely, with these conventions a null geodesic in Minkowski space that takes a

time d to travel the distance d separating the mouths has vout − vin = d. As a result, the

time delay relative to geodesics that propagate across the same separation in Minkowski

space is5 tdelay = vout− vin−d, so that it is natural to refer to vout− vin as the transit time

ttransit required for the signal to traverse the wormhole.

We should thus compute

ttransit = vout − vin = v(V (U = +∞))− v(V (U = −∞)) (3.8)

5As always for d = 4, in our actual background with black holes, propagation through the 1/r potential

gives an additional logarithmic delay. However, it is still conventional to discuss time delay relative to

comparable travel through Minkowski space.
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from (3.7). Due to the exponential relationship between v and V , (3.8) is minimized for a

geodesic starting at V = −∆V/2 and ending at V = +∆V/2 so that

tmin transit = vout

(
−∆V

2

)
− vin

(
−∆V

2

)
= − 2

κ+
ln

(
−κ+

∆V

2

)
. (3.9)

From (2.20) – and the fact that we work in linear perturbation theory – we thus expect to

find tmin transit = 2x∗0 + logs = d+ logs so that the ratio tmin transit
d to the transit time for a

geodesic that does not pass through the wormhole becomes 1 in the limit of large d. This

expectation will be confirmed below.

3.2 Back-reaction

We now study the metric perturbation hab associated with the quantum stress-energy

(2.20). As noted above, at leading order in d it suffices to perturb around the exact

Reissner-Nordström metric (3.1), and we consider a general perturbation. We will also

need the Reissner-Nordström electromagnetic field, which in Kruskal coordinates takes the

form

Fab = − Q

2κ+

[
1

V
∂U

(
1

r

)
+

1

U
∂V

(
1

r

)]
(dU)a ∧ (dV )b. (3.10)

One might expect that we also need to consider the spherically perturbed electromagnetic

field Fab + δFab. However, because the electromagnetic stress tensor is quadratic in Fab,

and since the component T
(EM)
UU vanishes by symmetry in the unperturbed background, it

turns out that to first order one finds simply

δT
(EM)
UU = − Q2

8πr4
hUU = −r+r−

8πr4
hUU (3.11)

which is independent of δFab. Therefore, on the horizon V = 0, the UU component of the

linearized Einstein equations becomes

8πGT
(scalar)
UU =

κ+

r+
(2hUU + U∂UhUU )− 1

2r2
+

∂2
U

(
hθθ +

1

sin2 θ
hφφ

)
+

1

2r2
+

[
−∂2

θhUU

− 1

sin2 θ
∂2
φhUU − cot θ∂θhUU + 2 cot θ∂UhUθ +

2

sin2 θ
∂U∂φhUφ + 2∂U∂θhUθ

]
.

(3.12)

We may then follow [15] in integrating (3.12) over U at each point on the S2 and

applying asymptotically flat boundary conditions to find

8πG

∫
〈Tkk〉dU =

(
κ+

r+
+

1

2r2
+

(−∂2
θ −

1

sin2 θ
∂2
φ − cot θ∂θ)

)∫
hUUdU. (3.13)

Because we are interested in solving for the perturbation to the metric in terms of the

stress tensor, we can invert this by finding an appropriate Green’s function, H(Ω,Ω′) on

S2: (∫
dUhkk

)
(Ω) = 8πG

∫
dΩ′H(Ω,Ω′)

∫
dU〈Tkk〉(Ω′). (3.14)
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As usual, the general, explicit expression for H(Ω,Ω′) is rather cumbersome, but here it

suffices to consider the response our compact cosmic string, which gives 〈Tkk〉(Ω′) propor-

tional to a delta-function at a single point on the S2, which we take to be the north pole

θ′ = 0. The remaining rotational symmetry then makes H a function only of the polar

angle θ, reducing to the known Green’s function for the Helmholtz equation [33]:

H(θ) = −
r2

+

2 sin(πλ)
Pλ(− cos θ) (3.15)

for λ = −1
2 (1 +

√
1− 8κ+r+), and Pl(x) the Legendre polynomial, or equivalently,

H =
∑
j

Ym=0,j(Ω)Hmj , Hmj =

√
2j + 1

4π

2r2
+

2κ+r+ + j(j + 1)
(3.16)

where Ym=0,j(Ω) =
√

2j+1
4π Pj(cos θ) are standard scalar spherical harmonics on S2 with

vanishing azimuthal quantum number. As in [15], we find that the response Hmj is largest

at small j, and that this effect becomes very strong at small κ+ in which case Hj=0 becomes

very large.

Note that (3.15) is everywhere positive, and that it is largest at the north pole (where

our compact cosmic string resides). The minimal transit time is thus experienced by the

geodesic at θ = 0. But for general θ (2.20), (3.9), (3.14), and (3.15) yield

tmin transit(θ) = 2x∗0 − 4r+ −
2

κ+
ln

(
πGc

16

r−
r3

+

(
r+ − r−
r−

)1−(r−/r+)2

H(θ)

)
. (3.17)

While H(θ) diverges for small theta, the divergence is only logartithmic. Since it also

appears inside another log in (3.17), the effect of this divergence is thus rather small and

is also independent of d. Using (2.21) thus gives tmin transit(θ) ≈ d up to terms that grow

no faster than logarithmically at large d.

4 Discussion

In the above work we studied the back-reaction from quantum fields in their Hartle-Hawking

state on a simple classical wormhole solution of general relativity of the form shown in

figure 1. In the unperturbed solution, both of the wormhole mouths are black holes,

and the wormhole interior collapses to a singularity. In particular, since the background

respects the NEC, the background wormhole is non-traverseable as predicted by topological

censorship [4, 5]. The solution of interest is a charged version of that first constructed by

Bach and Weyl in 1922 [22], and contains cosmic strings which hold the two mouths of the

wormhole apart at some separation d and prevent them from coalescing. Adding charge to

the Bach-Weyl solution allows one to adjust the surface gravity κ+ of the black holes. The

solution is asymptotically flat apart from the fact that some of these cosmic strings stretch

to infinity. An explicit form for such solutions can be found in [23] based on the implicit

solutions in [24]; see also [25–28] for the simpler extreme limit.
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While the wormhole is not traverseable, it is infinitesimally close to being so in the

sense that one can find two null rays separated by an arbitrarily small amount at t = 0

such that one ray begins at past null infinity and enters one mouth of the wormhole while

the other exits the other mouth and reaches future null infinity. As a result, an arbitrarily

small change in the metric generated by perturbative back-reaction from the stress-energy

of quantum fields can render the wormhole traverseable, at least for some period of time.

In this work we computed the expected stress-energy associated with fluctuations in the

locations of the of cosmic strings in their Hartle-Hawking state, as well as the first-order

back-reaction of this stress-energy on the metric. When the number N of such strings is

sufficiently large, this expectation value should dominate over any fluctuations in this quan-

tity, and also over contributions from bulk fields (e.g., from linearized gravitons) neglected

in this work. However, aside from greybody factors associated with the propagation of

such fields into the wormhole throat, it is natural to expect contributions from bulk fields

to be qualitatively similar to those found here for cosmic string fluctuations.

As expected on general grounds, here periodic boundary conditions give negative inte-

grated null energy on the horizon. This defocuses null geodesics and slows the collapse of

the wormhole, allowing properly chosen causal curves to traverse the wormhole and avoid

the singularities. In particular, these curves must begin their traversal of the wormholes

at sufficiently early times. Note that we have not computed the full back-reacted metric

sourced by our quantum fields, but (following [9]) we have focused on showing that a par-

ticular class of causal curves can traverse the perturbed wormhole and on computing the

time-advance that defines the associated transit times. For contrast, appendix A describes

a ‘cosmological wormhole’ in which the back-reaction of negative quantum stress-energy

causes a time-delay instead of the above time-advance. As in [13–16], the time advance

in our asymptotically-flat case becomes large in the limit κ+d → 0 where the background

black holes become extremal. Our perturbative description then breaks down but, at least

at large N , it is natural to expect non-perturbative corrections to render the wormhole

traverseable for all time as in [14].

However, we can more concretely discuss the non-extremal case where perturbation

theory is valid. Although the integrated null energy on the horizon remains negative and

proportional to N , it also becomes exponentially small in κ+d (of order e−κ+d/2). The

resulting traversability is thus extremely fragile, as an exponentially small positive-energy

perturbation will negate this effect and prevent traversability6.

6 This includes possible perturbations associated with any signal one might attempt to send through

the wormhole. Now, a right-moving signal is sensitive to the back-reaction of left-moving stress-energy,

and in a pure 1+1 massless theory, a right-moving signal will generate only right-moving stress-energy

and so will not interfere with its own attempt to traverse a wormhole. But more generally, right-moving

signals will generate some amount of left-moving stress-energy as well. For example, in our model left- and

right-moving oscillations of the cosmic strings are coupled via their interactions with the 4-dimensional bulk

gravity. However, in the covering space M̃ it is clear that any associated self-delay effect is independent of

when the signal is sent into the black hole. As a result, the integrated null stress-energy defined by any fixed

affine parameter along the horizon must be exponentially small when a signal enters at early times. As a

result, to protect a weak signal entering the left mouth of the wormhole on M from a strongly-blueshifted

version of its own back-reaction it suffices to prevent the signal from sending perturbations into the other
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The exponentially small integrated null energy is due in part to the fact that we

integrate affine stress-energy components TUU which are exponentially redshifted for energy

that falls into the black hole at late times; i.e., because the Casimir-like energy located

at r ∼ d/2 at t = 0 takes a time of order d to fall into the black hole. The effect of

positive-energy perturbations is similarly suppressed at late times, so it is only necessary

to be exponentially careful with our solution for a time of order d after t = 0. At later

times a more modest (though still significant) degree of care suffices to allow a signal to

pass through, at least modulo the comments of footnote 6.

This exponentially small expected stress-energy may also make one ask again about

quantum fluctuations. But as described in [9], the fluctuations of integrated null stress-

energy are exactly zero in the Hartle-Hawking state of our double-cover spacetime M̃ .

While fluctuations on the quotient M will be non-zero due to image terms much like those

that give non-vanishing TUU , they will again be exponentially suppressed7. So the standard√
N suppression of fluctuations relative to the mean will suffice to protect traversability at

only moderately large N .

Despite the small integrated stress-energy, the actual transit time through the worm-

hole is rather short. In particular, for a wormhole with mouths separated by a distance d,

we find tmin transit
d → 1 as d → ∞; see (3.17). As mentioned in the introduction, general

arguments (and in particular the generalized second law) prohibit wormholes from provid-

ing the fastest causal curves between distant points [8, 9]. Naively, one might expect this

to require tmin transit ≥ d for large d. This is the case in D ≥ 5 spacetime dimensions.

There one again has x∗0 ≈ d/2, so it is clear that the higher dimensional analogue of our

calculation will again give tmin transit
d → 1. So in this sense, at least for D ≥ 5, perturbative

back-reaction on black hole spacetimes far from extremality comes close to saturating the

theoretical bound on the shortest possible transit times for traverseable wormholes8.

In contrast, the eternally-traverseable MMP wormholes [14] (related to our extremal

limits) have ttransit
d > 2. Thus, while our non-extremal wormholes are more fragile and while

they are traverseable only for a limited period of time, for properly-timed signals they can

be traversed significantly more quickly than corresponding MMP wormholes. This raises

the interesting question of whether excited states of MMP wormholes might also have

(right) mouth at early times. Nevertheless, it would be interesting to study this back-reaction in detail as

was done for GJW wormholes in [12, 16, 34, 35], as this will place fundamental limits on the amount of

information that can be transmitted. We thank Eduardo Testé Lino for discussions on this point.
7This assumes that we leave the system isolated for a time of order d, and in particular that we do not

attempt to detect the signal before this time. The response to sampling the system earlier would involve an

integral of TUU supported on only part of the real line, in which case its fluctuations will not vanish even on

the covering space M̃ . So such sampling could easily provide the exponentially small positive perturbation

required to prevent traversability.
8In a fixed four-dimensional asymptotically flat spacetime (not necessarily satisfying any positive energy

condition) of total mass M > 0, there is an infrared logarithmic divergence in the Shapiro time-delay for

signals sent between distant points. As a result, the fastest causal curve between such points always lies far

from the center of mass, no matter what shortcuts might be available closer to this center. This means that,

even at large separation d, it is difficult to use arguments about causal curves connecting distant points

to rigorously bound wormhole transit times. It would be interesting to understand what bounds might be

derived directly from the quantum focusing conjecture [36].
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Figure 5: (Left) A conformal diagram of dSd showing time and the polar angle on the Sd−1

(the other d−2 angles are suppressed). The left edge is the south pole of the Sd−1 and the

right edge is the north pole. The diagonal lines denote light rays. (Right) Perturbations

satisfying the NEC generically make the diagram taller so that light rays can travel from

the north pole to the south pole in finite time. Here for simplicity we consider perturbations

that preserve spherical symmetry.

comparably shortened transit times for properly timed signals. We leave such issues for

future investigation.
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A Counterpoint: Negative Energy causes collapse of cosmological worm-

holes

In order to contrast with our analysis above, and also because it provides a convenient

exactly solvable model, we now briefly discuss analogous computations for what one may

call a cosmological wormhole. Here we again consider a Z2 quotient of a covering spacetime

M̃ having a globally-defined Killing symmetry, which in this case we take to be exact de

Sitter space dSd. In particular, in global coordinates we take the Z2 identification to be the

antipodal map on the spheres at each global time. This is clearly a cosmological analogue

of the RP3 geon. It is thus natural to think of it as a cosmological wormhole, though we

will not attempt to introduce a general definition of this term.

As is well known, in de Sitter space perturbations satisfying the NEC tend to make

the conformal diagram taller so that – at least in the natural sense defined by global

coordinates – wormholes become more traverseable; see figure 5. This is evident from the
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classic Einstein static universe solution, in which the addition of positive energy dust to

an otherwise-empty de Sitter space removes the cosmological expansion and leaves a static

cylinder that can be circled by causal curves arbitrarily many times. That a similar effect

occurs from general perturbations satisfying the NEC also follows from [32]. One thus

expects the analogue of (3.7) to have the opposite sign. And since periodic scalars in the

Hartle-Hawking state should again violate the null energy condition, they should not make

our cosmological wormhole traverseable. Indeed, they should make it more non-traverseable

than before. All of these expectations will be explicitly realized below.

In particular, it is straightforward to compute the analogue of (3.7), showing the effect

of back-reaction. For simplicity, we treat only the rotationally symmetric case. The dSd
metric with a general spherical perturbation is

ds2 = `2
−4dUdV + (1 + UV )2dΩ2

d−2

(1− UV )2 + hUUdU
2 + 2hUV dUdV + hV V dV

2 + hΩΩdΩ2
d−2,

(A.1)

where dΩ2
d−2 is the standard metric on the unit Sd−2 and where hUU , hUV , hV V , hΩΩ

are functions of U , V . On the horizon V = 0, the linearized Einstein equation (with

cosmological constant) yields

8πGTUU = −d− 2

2`2
(
2hUU + U∂UhUU + ∂2

UhΩΩ

)
. (A.2)

The negative sign in the above expression shows that positive null-energy gives a time-

advance, while negative null-energy gives a time-delay. In particular, we find

∆V =
1

8`2

∫ ∞
−∞

hUUdU = − πG

d− 2

∫ ∞
−∞

TUUdU. (A.3)

Since scalar two-point functions on dSd are known in closed form for any mass m ≥ 0

and dimension d, we may dispense with any cosmic strings and simply study scalars on

M = dSd/Z2 coupled to pure Einstein-Hilbert gravity with a cosmological constant. For

simplicity, we ignore quantum effects from linearized gravitons. Neglecting such contribu-

tions is justified in the presence of a large number N of bulk scalar fields.

The scalar two-point function in the dSd Hartle-Hawking state (also known as the

Bunch-Davies vacuum or the Euclidean vacuum) takes the closed form expression [37, 38]

G
(
x, x′

)
=

1

(4π)d/2`d−2

Γ
(
d−1

2 − iµ
)

Γ
(
d−1

2 + iµ
)

Γ
(
d
2

)
× 2F1

(
d− 1

2
− iµ, d− 1

2
+ iµ;

d

2
; 1− D (x, x′)

4`2

)
,

(A.4)

where µ ≡
√
m2`2 − 1

4 , and D (x, x′) is the (squared) distance between x and x′ in the

(d + 1)-dimensional Minkowski spacetime into which dSd is naturally embedded. In some

references, D (x, x′) is called the ‘chordal distance’ between x and x′.

In global coordinates, the de Sitter line element is

ds2
d =

`2

cos2 η

(
−dη2 + dθ2 + sin2 θdΩ2

d−2

)
, (A.5)
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with θ ∈ [0, π]. The Z2 quotient identifies each point (η, θ,Ω) with point (η, π − θ, a(Ω))

where Ω ∈ Sd−2 and a(Ω) denotes the Sd−2 antipodal map. We want to compute the two

point function G (U,U ′) when the first point lies on horizon η = θ and has affine parameter

U and the second point lies on the image horizon η = π− θ with affine parameter U ′. The

affinely-parametrized horizon is

η (U) = arctanU, θ (U) = arctanU, (A.6)

which becomes

T (U) = `U,X (U) = `, ~Y (U) = `U~z, (A.7)

in terms of the d+ 1 standard embedding coordinates T,X, ~Y such that T 2−X2− |~Y |2 =

−`2. Here, ~z is a unit vector describing a Sd−2. The affine-parametrized image horizon is

T ′
(
U ′
)

= `U ′, X ′
(
U ′
)

= −`, ~Y ′
(
U ′
)

= −`U ′~z. (A.8)

Thus, the chordal distance is

D
(
U,U ′

)
= −(T − T ′)2 + (X −X ′)2 + |~Y − ~Y ′|2 = 4`2

(
1 + UU ′

)
, (A.9)

and the two point function is

G
(
U,U ′

)
=

1

(4π)d/2`d−2

Γ
(
d−1

2 − iµ
)

Γ
(
d−1

2 + iµ
)

Γ
(
d
2

)
× 2F1

(
d− 1

2
− iµ, d− 1

2
+ iµ;

d

2
;−UU ′

)
.

(A.10)

The stress tensor is then

TUU (U) = lim
U ′→U

∂U∂U ′G
(
U,U ′

)
=

1

2d+2`d−2πd/2
(d− 1− 2iµ) (d− 1 + 2iµ)

d (d+ 2)

Γ
(
d−1−2iµ

2

)
Γ
(
d−1+2iµ

2

)
Γ
(
d
2

)
×
[
−2 (d+ 2) 2F1

(
d+ 1− 2iµ

2
,
d+ 1 + 2iµ

2
;
d+ 2

2
;−U2

)
+U2

(
d2 + 2d+ 1 + 4µ2

)
2F1

(
d+ 3− 2iµ

2
,
d+ 3 + 2iµ

2
;
d+ 4

2
;−U2

)]
.

(A.11)

Its integral is ∫ ∞
−∞

TUU (U) dU = −
Γ
(
d
2 + 1

)
Γ
(
d
2 − iµ

)
Γ
(
d
2 + iµ

)
2`d−2πd/2Γ (d+ 1)

< 0. (A.12)

Using the identity Γ(1− z)Γ(z) = π
sin(πz) one can rewrite the right-hand-side of (A.12) as

a d-dependent polynomial in µ divided by sinh(µ+ iπ d2) (i.e., divided by either sinh(µ) or

cosh(µ) depending on whether d is even or odd). The polynomial has a definite sign such

that the overall expression is negative for all allowed µ, and the factor of sinh(µ+ iπ d2) in

the denominator means that it decreases exponentially at large µ.
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[22] R. Bach and H. Weyl, “Neue Lösungen der Einsteinschen Gravitationsgleichungen,” Math Z.

13 (1922) 134.

[23] R. Emparan and E. Teo, “Macroscopic and microscopic description of black diholes,” Nucl.

Phys. B610 (2001) 190–214, arXiv:hep-th/0104206 [hep-th].

[24] M. J. Manko V. S. and R. E., “Metric of two arbitrary Kerr-Newman sources. located on the

symmetry axis,” J. Math. Phys. 35 (1995) 6644–6657.

[25] W. B. Bonnor, “An exact solution of the Einstein-Maxwell equations referring to a magnetic

dipole,” Z. Physik 190 (1966) 444–445.

[26] S. Chandrasekhar and B. C. Xanthopoulos, “Two black holes attached to strings,” Proc.

Roy. Soc. Lond. A423 (1989) 387–400.

[27] A. Davidson and E. Gedalin, “Finite magnetic flux tube as a black and white dihole,” Phys.

Lett. B339 (1994) 304–308, arXiv:gr-qc/9408006 [gr-qc].

[28] R. Emparan, “Black diholes,” Phys. Rev. D61 (2000) 104009, arXiv:hep-th/9906160

[hep-th].

[29] J. McNamara, “Instability of Black Hole Inner Horizons,” Proc. Roy. Soc. Lon. 358 (1978)

499–517.

[30] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory. Graduate Texts in

Contemporary Physics. Springer-Verlag, New York, 1997.

http://www-spires.fnal.gov/spires/find/books/www?cl=QC174.52.C66D5::1997.

[31] S. Fischetti and D. Marolf, “Flowing Funnels: Heat sources for field theories and th AdS3

dual of CFT2 Hawking radiation,” Class. Quant. Grav. 29 (2012) 105004, arXiv:1202.5069

[hep-th].

[32] S. Gao and R. M. Wald, “Theorems on gravitational time delay and related issues,” Class.

Quant. Grav. 17 (2000) 4999–5008, arXiv:gr-qc/0007021 [gr-qc].

[33] R. Szmytkowski, “Closed forms of the Green’s function and the generalized Green’s function

for the Helmholtz operator on the N-dimensional unit sphere,” Journal of Physics A:

Mathematical and Theoretical 40 no. 5, (Jan, 2007) 995–1009.

https://doi.org/10.1088%2F1751-8113%2F40%2F5%2F009.

[34] S. Hirano, Y. Lei, and S. van Leuven, “Information Transfer and Black Hole Evaporation via

Traversable BTZ Wormholes,” arXiv:1906.10715 [hep-th].

[35] B. Freivogel, D. A. Galante, D. Nikolakopoulou, and A. Rotundo, “Traversable wormholes in

AdS and bounds on information transfer,” arXiv:1907.13140 [hep-th].

[36] R. Bousso, Z. Fisher, S. Leichenauer, and A. C. Wall, “Quantum focusing conjecture,” Phys.

Rev. D93 no. 6, (2016) 064044, arXiv:1506.02669 [hep-th].

– 22 –

http://arxiv.org/abs/1908.03998
http://dx.doi.org/10.1007/BF02750196
http://dx.doi.org/10.1007/BF02750196
https://doi.org/10.1007/BF02750196
http://dx.doi.org/10.1016/S0550-3213(01)00319-4
http://dx.doi.org/10.1016/S0550-3213(01)00319-4
http://arxiv.org/abs/hep-th/0104206
http://dx.doi.org/10.1098/rspa.1989.0061
http://dx.doi.org/10.1098/rspa.1989.0061
http://dx.doi.org/10.1016/0370-2693(94)90623-8
http://dx.doi.org/10.1016/0370-2693(94)90623-8
http://arxiv.org/abs/gr-qc/9408006
http://dx.doi.org/10.1103/PhysRevD.61.104009
http://arxiv.org/abs/hep-th/9906160
http://arxiv.org/abs/hep-th/9906160
http://dx.doi.org/10.1007/978-1-4612-2256-9
http://www-spires.fnal.gov/spires/find/books/www?cl=QC174.52.C66D5::1997
http://dx.doi.org/10.1088/0264-9381/29/10/105004
http://arxiv.org/abs/1202.5069
http://arxiv.org/abs/1202.5069
http://dx.doi.org/10.1088/0264-9381/17/24/305
http://dx.doi.org/10.1088/0264-9381/17/24/305
http://arxiv.org/abs/gr-qc/0007021
http://dx.doi.org/10.1088/1751-8113/40/5/009
http://dx.doi.org/10.1088/1751-8113/40/5/009
https://doi.org/10.1088%2F1751-8113%2F40%2F5%2F009
http://arxiv.org/abs/1906.10715
http://arxiv.org/abs/1907.13140
http://dx.doi.org/10.1103/PhysRevD.93.064044
http://dx.doi.org/10.1103/PhysRevD.93.064044
http://arxiv.org/abs/1506.02669


[37] P. Candelas and D. J. Raine, “General-relativistic quantum field theory: An exactly soluble

model,” Phys. Rev. D 12 (Aug, 1975) 965–974.

https://link.aps.org/doi/10.1103/PhysRevD.12.965.

[38] J. S. Dowker and R. Critchley, “Effective Lagrangian and energy-momentum tensor in de

Sitter space,” Phys. Rev. D 13 (Jun, 1976) 3224–3232.

https://link.aps.org/doi/10.1103/PhysRevD.13.3224.

– 23 –

http://dx.doi.org/10.1103/PhysRevD.12.965
https://link.aps.org/doi/10.1103/PhysRevD.12.965
http://dx.doi.org/10.1103/PhysRevD.13.3224
https://link.aps.org/doi/10.1103/PhysRevD.13.3224

	Introduction
	Stress-energy on the horizon
	Back-reaction and Stability
	Geometry and Geodesics
	Back-reaction

	Discussion
	Counterpoint: Negative Energy causes collapse of cosmological wormholes



