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Abstract. The Hawking evaporation process, leading to the production of detectable particle
species, constrains the abundance of light black holes, presumably of primordial origin. Here,
we reconsider and correct constraints from soft gamma-ray observations, including of the
gamma-ray line, at 511 keV, produced by electron-positron pair-annihilation, where positrons
originate from black hole evaporation. First, we point out that the INTEGRAL detection
of the Large Magellanic Cloud provides one of the strongest bounds attainable with present
observations; and that future MeV gamma-ray telescopes, such as GECCO, will greatly
enhance such constraints. Second, we discuss issues with previous limits from the isotropic
flux at 511 keV and we provide updated, robust constraints from recent measurements of the
diffuse Galactic soft gamma-ray emission and from the isotropic soft gamma-ray background.
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1 Introduction

The persistent absence of any definitive, non-gravitational signal from dark matter (DM)
candidates [1], including those in the class of weakly interacting massive particles [2], has
led to a renewed interest in black holes of non-stellar origin, also known as primordial black
holes (PBHs) [3–5]. While at sufficiently large masses gravitational (micro-)lensing strongly
constrains the fraction of the cosmological DM that can consist of PBHs [3], finite-size source
effects make it virtually impossible to probe masses significantly below around 1020 grams [6].
Nonetheless, around that mass black holes are slated to emit abundant and bright non-
thermal radiation via Hawking evaporation, offering an alternative way of constraining their
global contribution to the cosmological DM [4].

The temperature associated with black holes is inversely proportional to the hole’s
mass, and TBH ∼ 0.1 keV (1020 grams/MBH), thus the emitted radiation, for masses below
around 1020 grams is expected in the X-ray to gamma-ray energy range; additionally, if
MBH . 1016 grams, evaporation also copiously produces positrons which, in turn, upon
annihilating with ambient electrons, give rise to detectable gamma rays, in particular at an
energy Eγ = me = 511 keV [7].

This observation has led to attempts at constraining the mass fraction of black holes
around MBH ∼ 1016 grams, or possibly even heavier, using observations at 511 keV [7–9];
in particular, the recent ref. [10] obtained somewhat conservative limits, using the observed
511 keV emission from the Galactic center, for a Navarro-Frenk-White Galactic DM density
profile [11], and for log-normal mass distribution for the Galactic PBHs.

Additionally, recent analyses have explored constraints from the isotropic hard X-ray
background, stemming from both the 511 keV photons from positron annihilation as well as
from photons directly produced from evaporation (e.g. [12]), as well as utilizing template
fits to the SPectrometer aboard the INTEGRAL (SPI) satellite to derive constraints on the
diffuse Galactic emission associated with decaying DM [13], albeit, in this latter case, without
including the emission from positron annihilation.

Here, we reassess limits from the 511 keV emission from positron annihilation and from
direct photon production from Hawking evaporation, and discuss new targets and issues
with certain data sets and methods considered in the recent past. The reminder of this note
is structured as follows: in section 2, we discuss the details of the computation of positron
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production from Hawking evaporation, as well as positrons transport and annihilation; in the
following section 3 we give details on the positron flux produced in different directions in the
sky, including extragalactic sources and the Galactic center; section 4 discusses limits from
the measurement of the isotropic hard X-ray background, and the final section 5 presents
our discussion and conclusions.

2 PBH evaporation and positron production

A non-rotating Black Hole (BH) with mass M has a temperature of [14]

TBH = 1
8πGNM

≈ 1.06 MeV
(

1016 gm
M

)
, (2.1)

where GN denotes Newtons gravitational constant. Such BH radiates each fundamental
particle species at a rate (in natural units ~ = c = 1)

∂2Ni

∂Ei∂t
= gi

2π
Γi(TBH, Ei, si)

exp(Ei/TBH)− (−1)2si
, (2.2)

where gi denotes the degrees of freedom of species i, with ge = 2 (positrons) and gγ = 2.
The Γi are species-dependent greybody factors, with Ei indicating the energy of the emitted
particle, and si its spin. The greybody factors are typically written in the form

Γi(Ei, TBH, si) = 27
(

Ei
8πTBH

)2
γ(Ei, TBH, si) , (2.3)

with γ(Ei, TBH, si) factors that tend to 1 at Ei � TBH, while γ � 1 at E < TBH. We use γ
factors from [15], which agrees with the BlackHawk code [16]).

In this paper, we are interested in primary and secondary emission from PBH with mass
1016 gm . M . 1018 gm; since TBH < MeV in this mass range, the emission we focus on lies
in the soft gamma-ray and hard X-ray bands. In addition to the primary photon emission
from PBH, we also consider the emission from positrons annihilating with the thermal elec-
trons in the Interstellar medium (ISM), leading to a 511 keV line and to the so-called ortho-
positronium continuum. For the latter, we note that while the primary electrons/positrons
emitted from PBH would be relativistic initially, they lose energy via Compton scattering
and ionization losses and turn non-relativistic well before annihilation (albeit a small contri-
bution from annihilation in flight is possible: the fraction of positrons that annihilate before
turning non-relativistic is typically less than 5% for the initial energy of electrons up to
10MeV [17, 18]). Qualitatively this can be understood considering the energy loss and an-
nihilation timescales of relativistic electrons in the typical ISM condition with ne ≈ 1 cm−3:
the energy loss timescale for a 10MeV electron is τloss ≈ E/|dE/dt|loss ≈ 1013 s, while the
annihilation timescale is τann = (σannvne)−1 ≈ 1015 s. This implies τloss/τann � 1, indepen-
dent of ne, since both time scales have the same dependence on ne, justifying the assumption
we make hereafter that positrons turn non-relativistic before annihilation. We also note that
the typical diffusion length-scale for positrons, ddiff ≈ (D(E)τloss)1/2, is typically small for
positrons: for typical values of D(E) ≈ 3× 1028(E/GeV)−1/3 cm2 s−1 we have ddiff ≈ 0.1 kpc
for positrons with energies of 10MeV (note that in what follows we generally expect positrons
to be dominantly at even lower energies, with resulting even smaller diffusion lengths). While
uncertainties exist on both the value of D(E) within the Galactic diffusive halo, and even
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greater ones on the values pertinent for extragalactic systems, we estimate that net diffusion
of positrons prior to annihilation outside our targets of interest to be a negligible effect. The
determination of the diffusion coefficient depends on a variety of assumptions on the diffusion
model, and is an area of ongoing active research. The value we assume is commonly taken as
the central value based on comparisons of a number of numerical codes modeling cosmic-ray
transport with observational data on cosmic-ray species [19, 20]. While deriving precise un-
certainty brackets to the diffusion coefficient itself absent assumptions about other transport
model parameters is problematic, such uncertainty can be solidly considered to be within a
factor of a few at most of the central value, based on the results of the studies presented,
e.g., in [21–23].

3 Constraints from the Galactic center, M31, and the Large Magellanic
Cloud

In this section, we consider limits on the PBH DM fraction derived using INTEGRAL/SPI
data. Generically, the flux of 511 keV photons from PBH evaporation in a region of solid
angle ∆Ω is given by

Φ511 = L511(M)fPBH
4πM

∫
∆Ω

D(Ω)dΩ ,

= flinefPBH
4πM

dNe

dt

∫
∆Ω

∫
l.o.s

ρDMdrdΩ . (3.1)

The symbol fPBH, above and thereafter, indicates the fraction of the cosmological DM that
is allowed to consist of PBH with a single mass M . Also in the equation above, L511(M) is
the rate of 511 keV photons produced by a PBH of mass M , which, in turn, is related to the
energy-integrated rate of positron emission d2Ne/dEdt and to the number of 511 keV photons
produced when positrons interact with the thermal electrons, fline. Explicitly we have

L511 = fline
dNe

dt
= fline

∫ ∞
me

dE
d2Ne

dEdt
. (3.2)

The annihilating positrons could either directly produce two quasi-monochromatic pho-
tons of energy Eγ ∼ me, or they could form a Positronium bound state with an electron,
which, in turn, results 25% of the time in two 511 keV photons, and 75% of the time in three
photons, each with energy Eγ < 511 keV. Thus, numerically one has fline = 2(1−fp)+2fp/4,
where fp is the Positronium fraction. For the interstellar medium of the Milky Way fp =
0.967 ± 0.022 [24] which results in fline ≈ 0.55, while, more generally, or absent a direct
observational determination of fline, 0.5 ≤ fline ≤ 2.

The total flux additionally depends on the D(Ω)-factor which is, as customary, the
angular-averaged integral over the line of sight of the DM density i.e.D(Ω) =

∫
l.o.s ρDMdr.

For the DM distribution, we consider a Navarro-Frenk-White (NFW) halo profile [11]

ρDM = ρ0r
3
s

r(rs + r)2 , (3.3)

where the parameters ρ0, rs are system dependent. Notice that we numerically evaluated
the impact of utilizing alternate DM density profiles, such as the cored Burkert [25] or the
cuspier Einasto profile [26, 27] on the D(Ω)-factor and found that it is less than a 5% effect.
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The SPI spectrometer on the INTEGRAL satellite has observed the flux of 511 keV
photons (1.07 ± 0.03) × 10−3 photons cm−2 s−1 from the inner regions of Milky Way [28].
This has been used to constrain the fraction of DM in PBH in ref. [10], which obtained
limits we show in figure 1 with a dotted blue line assuming, conservatively, that the flux
from PBH evaporation cannot exceed the total observed flux. Recently, a new analysis of a
larger data set of 16-years of INTEGRAL/SPI observations containing diffuse soft gamma-
ray emission from the region (|l|, |b| ≤ 47.5◦) was analyzed [13, 29]. Utilizing a template fit
technique, ref. [13] extracts the amplitude of the signal associated with a putative decaying
DM species which, in turn, can be associated here with the emission from PBH evaporation.
Here, we use the results of ref. [13] in two ways: first, we conservatively posit that the
emission from PBH evaporation does not exceed the total emission in the region of interest
(i.e. the left panel of figure 2 of ref. [13]) (shown in figure 1 by a purple line); secondly,
we demand that the emission from PBH evaporation in the Galactic region of interest does
not exceed the intensity associated with the line-of-sight integrated NFW profile, i.e. the
right panel of figure 2 of ref. [13] (shown in figure 1 by a dashed purple line). Note that this
latter approach assumes that positron propagation prior to annihilation does not significantly
affect the 511 keV morphology which, as we claimed in the previous section, is a reasonable
assumption given the relevant time-scales. Notice that the bound shown by the purple and
dashed purple line in figure 1 is stronger compared to the one derived in [13] (dashed gray
line), which uses the same data. This is because ref. [13] neglected the contribution to the
diffused soft gamma-rays from positron annihilation, which we find dominates the signal.

If DM consists at least in part of PBH, then the 511 keV line resulting from PBH
positrons produced in PBH evaporation should exist in any DM halo, provided electrons are
present; as such, potentially promising targets for the detection of a bright 511 keV signal
include the Large Magellanic Cloud (LMC) and Andromeda galaxy (M31). Neither target
was detected by INTEGRAL/SPI, providing, as such, promising opportunities to constrain
the mass fraction of PBH relative to DM fPBH. Using the all-sky map of 511 keV photons
by INTEGRAL/SPI [30], the upper limit on the flux of 511 keV photons has been placed
at 3.6 × 10−5 cm−2 s−1 and 10−4 cm−2 s−1 for LMC [31] and M31 [30], respectively. Since
we lack direct observational data for fp for the two targets, we show the band between the
upper and lower limits derived using fline = 0.5 and fline = 2 . The parameters for the NFW
profile are taken from ref. [32] for the LMC and from ref. [33] for M31. We associate the solid
angle of the observation ∆Ω ≈ 3◦ with the imaging resolution of the SPI instrument [34]. We
show the limits from LMC and M31 in figure 1 by green and brown band, respectively, and
note that the LMC limits exceed other existing limits, shown in grey, taken from ref. [35] (to
which we refer the Reader for details). Note that to derive the limits shown in this section we
do not include here the isotropic extragalactic diffuse emission from evaporating PBH (see
next section).

Note that the limits on the 511 keV flux from the LMC and M31 are limited by the
sensitivity of the SPI spectrometer. Future telescopes such GECCO [36], whose science
program includes specifically investigating the origin of the 511 keV emission in the Galactic
center, will conduct high-sensitivity measurements of cosmic γ-radiation in the energy range
from 100 keV–10MeV. The GECCO instrument will have a field of view of ∼ 5−6◦, and a
narrow-line sensitivity, in the best case scenario, of 7.4 × 10−8 cm−2 s−1, and in the worse
case scenario 3.2× 10−7 cm−2 s−1 for point sources [37].

While estimating a bound using sensitivities alone would require background modelling
of the 511 keV line from these sources, which is at present not available because of the lack
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Figure 1. Bounds on the PBH DM fraction as a function of mass from MW diffuse emission of
511 keV line and soft gamma-ray continuum in the region (|l| ≤ 47.5◦, |b| ≤ 47.5◦) as observed by
SPI [13, 29] (purple line), and using extracted spectra utilizing NFW template [13](dashed purple
line); upper limits on the flux of 511 keV line from LMC [31] (green band) and M31 [30] (brown
band) from SPI upper limits. The band considers the uncertainty in positron fraction fp in these
two sources. We show the GECCO [37] sensitivity in probing the 511 keV line from the LMC (green
dot-dashed) and M31 (brown dot-dashed), assuming a conservative value of fline = 0.5 and using
worst-case sensitivity for point sources. We also show the limits derived by DeRocco and Graham’19
(DG’19) (blue dotted line) using the observation of the 511 keV line from the Galactic center [10]. The
grey dotted line shows the bounds from [13] which uses template fit method on the Galactic emission
data [13, 29] to derive the bound. The grey band shows the existing constraints on PBH in the shown
mass range [35].

of the observation of the line from these sources with current telescopes. In figure 1 we thus
show the sensitivity curves assuming no background 511 keV line will be detected by GECCO.
We take the conservative value of fline = 0.5 and use the worst case scenario sensitivity for
point sources. We see that GECCO will be able to probe PBHs with much smaller DM
fraction below few times 1017 gm. The GECCO discovery potential for M31 and the LMC is
comparable to the shown constraining power.

4 Constraints from the isotropic X-ray background

In this section, we consider measurements of the isotropic X-ray and soft gamma-ray emission
to constrain the PBH DM abundance. There are two main contributions to the isotropic flux
from PBH: (1) direct photon radiation from PBH evaporation and (2) positrons annihilating
with thermal electrons producing an X-ray background at energies around and below 511 keV.
The diffuse photon emission consists of a contribution from PBH from extragalactic structures
at all redshifts, given by

dF egal
γ (E)
dE

= fPBHΩDMρc
4πM

∫ zmax

0

dz

H(z)
d2Nγ

dEdt
(E(1 + z)) ; (4.1)

– 5 –
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in the equation above, fPBH is the fraction of DM in PBH, ρc = 9.1 × 10−30gm cm−3,
H(z) = H0

√
ΩΛ + (1 + z)3Ωm, H0 = 67.36 km s−1 Mpc−1, zmax = 100, ΩΛ = 0.6847, ΩDM =

0.2645 [38]. The second contribution to the diffuse emission stems from PBHs inside our
own Galaxy; this contribution, while not isotropic, contributes, at its lowest level on the sky,
to the isotropic emission as well. The Galactic diffuse emission from direct evaporation is
given by

dF gal
γ (Ω)
dE

= fPBHD(Ω)
4πM

d2Nγ

dEdt
. (4.2)

Above, D(Ω), as in the previous section, is the angular average of the line-of-sight integral
of the dark matter density, which depends, here, on the direction of observation in Galactic
coordinates (l, b). In earlier work [12] that sought to constrain PBH evaporation using the
isotropic background, the authors utilized the direction, in eq. (4.2) above, l = 180◦, b = 0 i.e.
in the anti-Galactic center. This is a conservative choice, since D(Ω) is at its minimum for
the anti-Galactic center direction; however, this choice is actually overly conservative: mea-
surements of the diffuse Galactic hard X-ray/soft-γ-ray emission indicate that at a Galactic
latitude of b = 15◦, the diffuse emission from the Galaxy is highly suppressed [39]. Seeking
to optimize the line of sight integral D(Ω), we thus choose the l = 0, b = 15◦ direction, which
has negligible Galactic diffuse flux contamination to set out limits from the isotropic flux;
notice that unlike in ref. [13], that utilizes a template fit analysis to subtract off a num-
ber of different background contributions, here we conservatively limit the PBH emission by
requiring it to be lower than the observed total flux.

Next, we turn to positron emission by PBH and their annihilation, which also contributes
to the isotropic X-ray background. In this case, we again have to take into account the
uncertainty in the fp. We consider two cases fp = 0 and fp = 1. The Galactic contribution
is given by

dF gal
0 (Ω)
dE

= fPBHD(Ω)
4πM

dNe

dt
2δ(E −me) , (4.3)

dF gal
1 (Ω)
dE

= fPBHD(Ω)
4πM

dNe

dt

(2
4δ(E −me) + 9

4
h3γ(E/me)

me

)
. (4.4)

For fp = 0, the annihilation of electrons and positrons leads to 2 photons contributing to the
isotropic 511 keV flux. For the fp = 1 case, annihilation produces, in addition to the 511 keV
line, a continuum spectrum h3γ(E/me), up to E = me and is given by [40, 41]

h3γ(x) = 2
π2 − 9

[2− x
x

+ (1− x)x
(2− x)2 −

(
2(1− x)2

(2− x)3 −
2(1− x)
x2

)
log(1− x)

]
, (4.5)

with x = E/me. Note that
∫ 1

0 dxh3γ(x) = 1, and the integrated energy flux is∫
dE E dF gal

0 /dE =
∫
dE E dF gal

1 /dE ∝ 2me.
As far as the extragalactic contribution to the isotropic X-ray flux from positron an-

nihilation is concerned, we again consider the case of fp = 0 and fp = 1; for fp = 0 the
contribution is

dF egal
0
dE

= fPBHΩDMρc
4πM

dNe

dt

∫ zmax

0

dz

H(z)F(z) 2 δ(E(1 + z)−me) ,

= fPBHΩDMρc
4πM

dNe

dt

2
E

θ(me − E)
H(me/E − 1)F(me/E − 1) , (4.6)
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where, in the equation above, θ(x) denotes the Heaviside step function. For fp = 1 we get

dF egal
1
dE

= fPBHΩDMρc
4πM

dNe

dt

∫ zmax

0

dz

H(z)F(z)
(

2
4 δ(E(1 + z)−me) + 9

4
h3γ

(
E(1+z)
me

)
me

)
,

= fPBHΩDMρc
4πM

dNe

dt

[
2

4E
θ(me − E)

H(me/E − 1)F(me/E − 1)

+ 9
4me

∫ zmax

0
dz

h3γ
(
E(1+z)
me

)
H(z) F(z)

]
. (4.7)

Above, we have introduced the factor F(z), which takes into account the fraction of DM con-
tained in DM halos which host galaxies and, thus, a dense, magnetized interstellar medium
that confines the positrons and provide sufficiently large electron density for positron annihi-
lation. The inclusion of the factor F(z) is necessary as the annihilation time scale of e+− e−
annihilation with IGM electron density of ne ≈ 10−6cm−3 becomes larger than the age of
the universe at lower redshifts. Whereas positrons released from PBH bound to DM halos
hosting galaxies could annihilate with the electrons in the ISM medium where electron den-
sity is much larger. The theory of galaxy formation, along with the cosmological simulations,
suggest that only a DM halo of mass greater than Mmin ≈ 107 − 1011M� could support the
collapse of baryons to form galactic disks [42, 43]. The fraction of DM at redshift z in halos
with mass greater than Mmin(z) is given by

F(z) = 1
ρm(z)

∫ ∞
Mmin(z)

dM M
dn(M, z)
dM

, (4.8)

here dn/dM is the halo mass function which by definition is normalized to
∫∞

0 dMM dn
dM = ρm

and thus F < 1 (for instance, we get F(0) ≈ 0.5) [44, 45]. We note that (1) this formalism
is independent of the nature of the cold dark matter candidate under consideration (albeit
for the masses under consideration, PBH and standard WIMP-like candidates do not differ
in the halo formation history), and (2) that the F suppression factor has been neglected in
earlier work [12]; thus, the inclusion of this factor produces a more robust bound.1

The total isotropic X-ray contribution for fp = 0 and fp = 1 case is given by

dF0/1
dE

=
dF egal

γ

dE
+
dF gal

γ

dE
+
dF egal

0/1
dE

+
dF gal

0/1
dE

. (4.9)

In order to bound fPBH we compare dF0/1/dE with two different X-ray and soft gamma-ray
datasets: the determination of the isotropic X-ray emission from the Solar Maximum Mission
(SMM) [46], and a combination of COMPTEL [47] + HEAO [48, 49] + BAT [50]. Notice that
the latter does not include data at 511 keV; thus, the limits only originate from direct photon
emission and not from positron annihilation. We also marginalize over the delta function
peak by considering finite energy resolution of ∆E/E ≈ 7 % for the SMM instrument [51].
We obtain the bound by imposing that the X-ray flux due to PBH, eq. (4.9), does not exceed
any measurement data point by more than 2-σ. The bounds we obtain are shown in figure 2.

1We also point out that ref. [12] over-estimates positron production by a factor of 2 due to a mis-
interpretation of the output of the BlackHawk code [16]: the ge factor in eq. (2.2) should be 2, for positron
emission, whereas the BlackHawk code counts for both positron and electron emission to give ge = 4 (see
table III in [16]).
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Figure 2. Bounds on the PBH DM fraction fPBH as a function of mass from the observed isotropic
X-ray and soft gamma-ray background flux. To take into account the uncertainty on the Positronium
fraction, we show the bound obtained for both fp = 0 (brown) and fp = 1 (blue). The bounds are
obtained by comparing the total flux in eq. (4.9) to two different datasets; the first one is the SMM
data set [46] (solid line), while the “Other” lines are derived using a combined data set that includes
observations by COMPTEL [47], HEAO [48, 49], and BAT [50] (dot-dashed line). For comparison,
we show the strongest bound from figure 1 shown here by the dashed purple line. We also show the
strongest bound obtained in [12] (dashed black line, not corrected for an erroneous factor of 2 therein),
which also considers isotropic X-ray flux data to constrain fPBH, and other existing constraints in
this mass range are shown by gray shaded region [35].

While for the sake of comparison we show limits from the SMM measurement of the
isotropic X-ray flux, we actually have strong reservations about how that measurement was
derived and on the estimate of the error bars thereof. First, the data presented in ref. [46]
were never peer-reviewed, nor is any detail on the analysis procedure offered in any publica-
tion. The analysis is presented in a Ph.D. thesis,2 which we reviewed and studied in detail.
The thesis presents several outstanding issues, including frequent failure of the employed
generalized non-linear least-squares fitting routine to converge and no robust evaluation of
the systematic uncertainties other than a rough estimate based on time fluctuations of the
cosmic gamma-ray background, and the statement that “an excellent detector, like SMM,
has a resolution of about 7 percent”; this latter issue is especially concerning since the mea-
surement error is largely systematics-dominated. Finally, the claim that the measurement is
compatible with that of the cosmic gamma-ray background (CGB) is exclusively based on
weak evidence such as the listed items: “(1) time variations of “CGB” term has no long term
variations, no effects from the change of altitude, and no correlations with solar modulation,
and (2) energy spectrum of “CGB” is quite different from any other background spectrum.”.
In view of the lack of consistent and peer-reviewed analysis presentation and of the deficien-
cies listed, we consider the SMM measurement as unreliable and advise against using it to
set robust limits on new physics.

2https://tigerprints.clemson.edu/arv_dissertations/index.9.html.
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5 Discussion and summary

We have clarified and re-assessed limits on the abundance of primordial black holes as dark
matter candidates from gamma-ray primary and secondary emission resulting from Hawking
evaporation of light, primordial black holes. Here, the secondary emission stems from the
annihilation of positrons, produced by black holes’ evaporation, with ambient electrons. We
first considered new targets for which upper limits on the flux of photons at 511 keV from SPI
observations are available, namely the Andromeda galaxy (M31) and the Large Magellanic
Cloud; we showed that especially the latter offers highly competitive limits (albeit more
uncertain due to the unknown local positron fraction), and re-evaluated the constraints from
the diffuse gamma-ray emission in the direction of the Galactic center, which, at present,
offer the best and most solid constraints on the largest-mass PBH-to-DM mass fraction.
We then also re-evaluated constraints from measurements of the isotropic cosmic gamma-
ray background and argued that limits from the SMM measurement thereof should not be
considered robust, while other telescopes offer comparatively weaker limits than those from
the Galactic diffuse emission. Finally, we reiterated the point that future telescopes, such as
the proposed GECCO telescope, will offer opportunities to discover Hawking evaporation,
or constrain to a much higher degree of precision, the possibility that PBH forms a large
fraction of the cosmological dark matter.
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