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An Adaptive Method for the Stochastic Orienteering Problem

Thomas C. Thayer Stefano Carpin

Abstract— We consider the NP-hard Stochastic Orienteering
Problem, where the goal is to navigate between start and end
vertices in a graph, maximizing the sum of rewards for visited
vertices while obeying a travel budget over edges with stochastic
cost within a given probability of failure. Previously, we solved
this by finding an initial path using a deterministic orienteering
solver and transformed it into a path policy using a Constrained
Markov Decision Process that can skip vertices based on arrival
time. In this work we augment our technique, creating a path
tree which branches at vertex-time states with high probability
of being skipped, allowing for new sequences of vertices in the
resulting policy. We demonstrate that this adaptive path method
collects significantly more reward in expectation, even when the
number of branches is limited to control computation time.

I. INTRODUCTION

The Orienteering Problem (OP) is a classic optimization
problem defined over graphs with rewards associated to each
vertex and costs associated to each edge. A path solving the
OP maximizes rewards for all unique vertices visited while
subject to a travel budget which the sum of costs for all edge
traversals must be equal to or less than. Rewards for vertices
visited more than once are counted only once, while costs for
edges crossed multiple times are incurred every time. A path
is a set of vertices which are ordered as a specific sequence,
thus taking an agent from a start vertex to a goal vertex
with some subset of vertices and edges from the graph in
between. This problem is motivated by numerous real world
examples, such as tourist sight seeing, vehicle routing, or
robotic navigation, wherein an agent must plan for places
of interest to visit in order to maximize the utility of their
budget, which may be some limit on travel time, distance,
energy consumption, etc. However, the OP is limited in its
ability to properly describe these problems, as it assumes all
edges have deterministic costs. In real world problems, costs
are often stochastic, meaning that the goal cannot always
be reached before exhausting the travel budget. It is easy
to imagine situations where a simple path between vertices
is not adequate, and therefore an agent following the path
should have contingency plans if the situation arises where
costs accumulate quicker than expected. Naturally, the ability
to take shortcuts and skip one or more stops in the path is
one type of contingency plan. Another type of plan is to
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take a different route toward the goal, maximizing the utility
of the remaining budget with a new path going places yet
to be visited. Both of these ideas require the use of a path
policy, which determines where to go next based on not just
the current vertex but also the current time. In this paper,
we present a solution to this problem, called the Stochastic
Orienteering Problem (SOP), where we provide a policy that
utilizes both types of contingencies to meet a bound on the
probability of going over budget before reaching the goal.

Our solution involves multiple steps: First, an initial
path is found with a deterministic orienteering solver us-
ing the expected costs for all edges. Then, a path policy
is devised using a Constrained Markov Decision Process
(CMDP) architecture to determine when to take shortcuts
along the initial path. Next, new paths are computed for
accumulated costs and locations with high probabilities of
utilizing shortcuts, such that an agent may take these instead
of the shortcuts. Finally, a new policy is computed with
a CMDP, combining all paths and shortcuts into a single
actionable plan that optimizes overall reward and guarantees
a limit on the probability of not reaching the goal vertex
within the budget.

The rest of this paper is organized as follows. Section II
discusses related works, and Section III formally introduces
key concepts and the problem at hand. In Section IV we
discuss a fixed path approach based on constrained Markov
decision processes, and in Section V we introduce an adap-
tive path extension. Results of randomized simulations for
these methods are given in Section VI, and we recap our
work and propose future work.

II. RELATED WORK

The OP first appeared in [10] where it was proven to
be NP-hard, and was later shown to be APX-hard in [2].
Numerous variants and solution methods have been devised
for the OP, and the reader is referred to [11] and [23] for
supplementary information. On smaller problem sizes (up to
500 vertices), the OP can be solved exactly, commonly using
integer programming methods, however for larger problems
these methods have intractable growth in computation time.
Approximation algorithms are useful when problems contain
more vertices, and after extensive literature review the best
we could find was proposed by [8], which gives a (2+ε) ap-
proximation with a time complexity of nO( 1

ε ) where n is the
number of vertices. In practice, heuristic methods informed
by domain-specific knowledge offer the best balance between
computation time and reward collection (without guarantees),
and we highlight our recent works [17], [19], [20] which
can solve very large OP instances (≥ 50, 000 vertices)



extremely quickly by exploiting the peculiar structure of
graphs encountered in our particular application.

The SOP is less well studied than the OP. Introduced
in [5], the authors consider uncertainty in edge traversal
and vertex service costs, but other versions of the problem
consider non-deterministic rewards as well. In [5] an exact
solutions for problems restricted to very exclusive types
of graphs is provided, and also generalized heuristics that
are less restrictive. The method presented in [12] studies
the case of only stochastic service costs, giving a non-
adaptive constant factor approximation algorithm and an
adaptive (policy driven) O(log logB) approximation, where
B is the cumulative cost budget for edge traversal and vertex
service. The related literature [3] proves a lower bound
for the worst-case ratio between the optimal rewards for
adaptive and non-adaptive plans (called the adaptivity gap)
of Ω(

√
log logB). These works only seek to solve the SOP

maximizing expected reward without considering the risk of
failure to meet budget constraints, which is what we consider
in this work.

Chance constraints are used frequently when solving prob-
lems involving stochasticity, as they are able to restrict risky
behavior for robust solutions. A few works have studied
chance constraints within the orienteering domain, such as
[14], which studied a version of the team OP with survival
probabilities on edges, seeking to maximize reward while
ensuring that at least one agent survives with a minimum
probability. For the SOP, [24] considers risk-sensitivity on a
formulation with stochastic weights and chance constraints,
with an open-loop solution based on a mixed integer linear
program formulation. However, this does not provide a policy
allowing an agent to dynamically adjust its path based
on current budget expenditure. This is different from the
solution we provide in our previous work [18] and here,
which instead gives a policy considering incurred travel
costs after each edge traversal. To do this, we utilize the
CMDP framework, which (along with the closely related
Constrained Partially Observable MDP) is used extensively
for chance constrained problems (see [9], [13], [15], [16],
[21] for examples).

III. DEFINITIONS AND PROBLEM FORMULATION

We begin by defining the SOP and some useful funda-
mental concepts, which were introduced in [18]. From here
onward, “cost” and “time” are used interchangeably, where
time is a particular type of cost referring to edge traversal.

A. The Deterministic Orienteering Problem

The deterministic OP is defined on an undirected fully-
connected graph G(V,E), with an edge cost function c :
E → R+ defining the time required to traverse an edge
and vertex reward function r : V → R+. If G is not fully-
connected, it can be made as such by inserting new edges
with cost equivalent to the minimum cost path between two
vertices. Given start and goal vertices vs, vg ∈ V and a
budget B, find a path P from vs to vg that maximizes the sum
of collected rewards R(P) on unique visited vertices, without

exceeding B for the total cost C(P) accrued every time an
edge is traversed. In the case where vs and vg are coincident,
a tour is determined. In general, the start and goal vertices
do not need to be specified for the OP, however practical
considerations often require that they are. Some versions of
the problem require only vs to be specified, and this is often
referred to as the “rooted” OP. In any case, the OP is NP-hard
regardless of whether one or both vertices are specified.

B. Path Policy

A path P on G is a sequence of n vertices v1, . . . vn ∈ V
such that (vi, vi+1) ∈ E for 1 ≤ i ≤ n − 1. For vi ∈ P ,
we define the set of vertices following vi in P as S(vi) =
{vi+1, vi+2, . . . , vn}. Following this definition, S(vn) = ∅.
Given a path P , a path policy π over P is a function π :
P × R+ → P that maps each vertex-time pairing (vj , t) to
an action (the next vertex to travel to) such that π(vj , t) ∈
S(vj). This formalizes the idea of taking a shortcut over P
(see Figure 1), which is useful to meet a budget constraint in
the context of randomized travel times, as we will see later.
Assuming v1 = vs and t0 = 0, π establishes a way for the
agent to plan ahead and skip vertices based on current time
and position to reach vn = vg before the deadline B expires.

v1 v2 v3 v4 v5
Fig. 1: For a hypothetical path of 5 vertices, π allows skipping one
or more vertices along the path. In particular, from v2, depending on
the value of the temporal parameter t, the path policy defines which
successive vertex an agent should move to next. By skipping one or
more vertices, the agent can decrease the expected cumulative cost
of reaching the last vertex in P , although doing so will decrease
the overall collected reward.

C. The Stochastic Orienteering Problem

For every edge (vi, vj) ∈ E, let f(vi,vj) be a probability
density function (pdf) with positive support and finite expec-
tation. The incurred cost for each traversal of edge (vi, vj)
is a random variable ci,j whose pdf is f(vi,vj). Starting at
time t0 = 0 and vertex v1, an agent moves along path P
following path policy π. For i ≥ 1, at vertex vi and time
ti the agent moves to vj = π(vi, ti) arriving at vj at time
tj = ci,j + ti, where ci,j is a random variable with pdf
f(vi,vj). The agent continues moving along the path until
it arrives at the last vertex in the path vn. Because the
movement times are random variables, the total cost and
total reward collected along path P following path policy
π are also random variables as indicated by CP,π and RP,π ,
respectively. As only the vertices in P are visitable according
to π, E[RP,π] ≤ R(P) is always true. Then, the SOP asks to
find a path P and path policy π that maximizes the expected
sum of rewards E[RP,π] such that Pr[CP,π > B] ≤ Pf
for a given Pf . This chance constraint aims at limiting
the probability that the last vertex is reached after having
exceeded the allocated budget B, and therefore Pf can be



interpreted as a failure probability. The SOP is a generalized
version of the OP and is consequently NP-hard as well.

IV. SOLVING THE SOP USING A CMDP

A. Defining an MDP

Let us assume P = {v1, . . . , vn} in G is given. The
objective is to now determine a path policy such that for
every vertex in P and time, vj = π(vi, ti) is defined where
vj ∈ S(vi). The transition time to go from vi to vj is
stochastic and characterized by the pdf associated with the
edge between them. A natural way to formalize this is to use
a Markov Decision Process (MDP) for a suitable augmented
state space. We assume the reader is familiar with MDPs
and refer to [4] for a comprehensive introduction. Given a
set of states S, set of actions A, transition kernel Pr, and
reward function r(s ∈ S, a ∈ A), an MDP is defined as
M = {S,A,Pr, r}, with the following properties:
• S = V × T, where V is the set of vertices in P and T

is a suitable discretization of time, such that there are
N = dB∆e sequential time steps of length ∆ between t0
and B, where tk describes the interval [k∆, (k+ 1)∆).
The composite state (vi, tk) represents an agent arriving
at vertex vi during the time interval tk.

• The action set for each state (vi, tk) is the set of vertices
following vi, Avi = S(vi). The action set of any state
is independent of the time interval for that state. The
total action set is then A =

⋃n
i=1Avi .

• Pr is the transition kernel defining the probability
of landing in successor state (vj , tl) when executing
an action a ∈ Avi in state (vi, tk), indicated by
Pr((vi, tk), a, (vj , tl)). The next vertex is determinis-
tically chosen by the action, and therefore all states
including vertices not equal to a have a transition
probability of 0. For all successor states in which l < k,
the transition probability is also 0 because the agent
cannot travel back in time. For the remaining states, the
transition probability is equal to

∫ (ti+1)∆

ti∆
[F (∆(tk+1)−

ξ)−F (∆tk−ξ)]dξ, where F is the cumulative function
of the pdf associated with edge (vi, vj).

• r is the reward function for each state/action pair, where
r((vi, tk), a) is equal to r(vi), a.k.a. the reward for vi
in G. Note the abuse of notation, as the two are indeed
equivalent regardless of tk or a.

The cumulative reward function used to determine the
policy is critical to the definition of an MDP. Since traversal
of P occurs as a single episode, we opt for a non-discounted
reward and add two special states, the failure state sf and the
loop state sl. The failure state represents any combination
of vertex and time where tk > B, and thus describes the
condition that an agent has failed to reach the goal vertex
before the deadline B. The transition kernel is extended to
include the probability that the budget is expended during
any transitional action, Pr((vi, tk), a, sf ) where the intended
vertex of that action vj is not reached, and the reward
associated with transitioning from any vertex into sf and
out of sf is 0. The loop state completes the definition of the

MDP and represents the conclusion of the traversal episode.
All states associated with vn or the failure state sf have a
single action al, leading to sl with probability 1. sl also has
a single action al leading to itself with probability 1 and
reward of 0. Under this definition, the loop state cannot be
exited once entered, and no more reward is collected. The
structure of the MDP is illustrated in Figure 2, showing the
composite state space and some example transitions.

Fig. 2: States in the MDP are shown as a grid with rows represent-
ing vertices and columns representing time intervals. Arrows are
depicted for some transitions with non-zero probability. From state
(v1, t0) it is possible to go to any of the following vertices, and the
next vertex arrival time can be any time interval ti > t0. Reaching
a vertex after B has passed is modeled as a transition towards sf .
Note that once the state reaches the last vertex in the path (vn), a
deterministic transition is made to the loop state sl.

This MDP structure is similar to the works [7], [9], [15],
which utilize failure and loop states to design control policies
with bounded failure probabilities. In this case, the failure
probability is equivalent to the probability of hitting sf when
following a policy π, meaning that the last vertex along P
could not be reached before B. The probability of reaching
sl is 1 for all valid policies, and the start state is constrained
to (v1, t0). Therefore, the non-discounted reward function is

E[RP,π] = R(π) = E

[ ∞∑
t=1

r(Xt, π(Xt))

]
where the expectation is taken according to the probability
distribution induced by π and Xi, a random variable for the
state at time t. The expectation exists and is finite, since
reaching sl has probability 1 and no loops precede sl.

B. Defining a CMDP

The goal of the SOP introduced earlier is to maximize
expected rewards while bounding the probability of entering
sf . With this definition, an MDP is inadequate because
it is capable of handling only a single objective function.
Therefore, we need to extend our MDP definition to a
Constrained MDP (CMDP), a type of model which can
maximize for one objective function while ensuring bounds
in expectation for others [1]. To do this, we introduce a



secondary cost for each state/action pair d : S×A→ R+ that
is 0 everywhere except for (sf , al) where it is 1. This sets up
a cost that is incurred only when an agent passes through the
failure state. Because an episode can pass through the failure
state only once, the probability of failure for any policy is
equal to the expectation of this secondary cost E[D(π)].

A CMDP is typically solved using a linear program (see
[1], ch. 8), with the optimization variable ρ that represents
the occupation measure for each state/action pair ρ(x, a) =∑∞
t=1 Pr[Xt = x,At = a], and β that represents the start

state distribution (which we set as 1 for (v1, t0) and 0
everywhere else).

max
ρ

∑
(x,a)∈S×A

ρ(x, a)r(x, a) (1)

s.t.
∑

(x,a)∈S×A

ρ(x, a)d(x, a) ≤ Pf (2)

∑
y∈S

∑
a∈S(y)

ρ(y, a)(δx(y)− Pr(y, a, x)) = β(x)

∀x ∈ S \ {l} (3)
ρ(x, a) ≥ 0 ∀(x, a) ∈ S ×A (4)

This formulation has an objective function defined by Eq. (1)
maximizing the reward over the set of occupancy measures
ρ. Constraint (2) specifies that the occupancy cost of the
failure state is less than or equal to Pf . Since the failure state
can be visited just once, this bounds the failure probability.
Constraint (4) enforces that all state/action pairs have a
non-negative occupancy measure. Constraint (3) is a flow
preservation constraint defining the set of valid occupancy
measures. It is related to both the initial distribution β and
the transition probabilities between states (see [1], ch. 8 for
details.) Here, δx(y) is a function with value 1 when x = y
and 0 in all other circumstances.

The linear program admits a solution if and only if a
stationary, randomized policy π can be found that satisfies
the cost constraint and is uniquely defined by ρ as follows:

π(x, a) =
ρ(x, a)∑

a∈S(x) ρ(x, a)
∀(x, a) ∈ S ×A (5)

where π(x, a) is the probability of taking action a in state x.
If E.q. 5 has a 0 in the denominator for any state, then that
state is unvisited and the policy for (x, a) can be defined
arbitrarily. For a detailed discussion about this approach,
the reader is referred to [6], [7], [9], [15]. The following
theorem, which we presented and proved in [18], shows
that the above linear program defines a policy satisfying the
failure probability constraint Pf .

Theorem 1. If the linear program admits a solution, then
the associated policy π fails with a probability of at most
Pf to reach the vertex vn within budget B.

The formulation based on a CMDP leads to the following
algorithm to solve an instance of the SOP:

1) Create an instance of the deterministic OP assigning to
every edge e the expected travel cost E[c].

2) Solve the deterministic OP with vs, vg , and B using any
deterministic method and let P be the returned path.

3) Use P to build and solve the CMDP described above
and return π.

The quality of the solution of this proposed algorithm is
dependent on the algorithm used in step 2 to solve the
deterministic OP. For small problem instances one could
obtain an exact solution using the standard mixed integer
program to solve the OP [11]. For large problems or repeated
runs of the algorithm, where using mixed integer programs
becomes computationally impractical, a heuristic or approx-
imated method may be used.

V. AN ADAPTIVE PATH METHOD

In [18] we used the method described in Section IV to
compute solutions for the SOP and showed that a deter-
ministic path can indeed be used as the starting point for a
path policy capable of reaching a goal vertex within a given
failure bound while also maximizing rewards. However, this
algorithm outputs a policy π that can only visit vertices in P ,
and therefore limits the maximum potential reward to R(P),
with little room for improvement in expected reward. Here
we present a new method which does not rely solely on the
initial deterministic path, and gives the policy alternatives
where reward collection increases in expectation.

This new method builds upon the previous one, but im-
proves it by allowing the policy to deviate from the starting
path. This is done by computing new paths originating from a
subset of the intermediate vertices along the path. Situations
where it is beneficial to allow the policy to deviate from the
initial deterministic path include arriving at a vertex vi much
earlier or later than expected. In these cases it means that the
current realization is deviating from the expected average
behavior and it may therefore be advantageous to compute a
new route based on the current position and residual budget.
There may be some room in the budget to visit a different
subset of V , following a new path Pnew and policy πnew
computed from vi, such that the expected reward is higher
than continuing with the initial path and policy. The new
path Pnew and path policy πnew can be computed online,
however this computation is expensive and difficult to do
on-the-fly, limiting the potential adaptivity gains.

Instead, Pnew can be computed offline and retrieved on
demand. Doing this, πnew will consider a directed path
tree PT , where branching indicates possible paths to tra-
verse, including the initial deterministic path and potential
deviations. The new policy starts at state (v1, t = 0) and
moves along P according to π up to (vi, tj), where it can
continue along P or branch to Pnew depending on the arrival
time. If Pnew is utilized by the policy, then only shortcuts
to future vertices along Pnew may be taken from (vi, tj)
onward. Setting the rewards for already visited vertices to
0, Pnew can be computed using a deterministic orienteering
solver resulting in a single path from vi to vg with budget
B−tj that optimizes for rewards yet to be collected. Multiple
new paths are allowed from vi, but there can be only one
for each possible arrival time. Since there may be many



states where a new path is beneficial, multiple branches
can be added to PT . Because we define a directed path
tree, branches are not allowed to merge. Paths are ordered
sets of vertices, so any vertex along a branch implicitly
encodes information about previously visited vertices and
this information is used to build new branches when the
original bifurcates. The merging of two branches would
provide inconsistent information about which vertices have
been previously visited. Thus, recombining branches would
exclude vertices than an agent may not have visited since
branches purposely visit different subsets of V . An example
of PT is given in Figure 3.

Fig. 3: An example of a path with two additional branches at vi and
vi+1 to create a path tree PT . In this example, from v1 it is possible
to take a shortcut to any vertex in P , P1

j>i, and P2
j>i+1. But from

vi+1 it is only possible to take shortcuts to vertices further along
in P and any vertex in P2

j>i+1, and v1i+1 can only take shortcuts
to vertices in P1.

Superscript notation is used to indicate paths following
different branches of PT and subscript notation indicated a
vertex in the path. All feasible paths start at v1 (equivalently
Pk1 or vs) and end at vn (Pkn or vg), where n indicates the
total number of vertices in that path. A policy over PT may
consider shortcuts from some vi to vertices further along
the path and any future connecting branches, but not to any
branches that connected before vi.

The idea of using a path tree PT instead of a singular
deterministic path P leads to a new adaptive path algorithm
for solving an instance of the SOP:

1) Create an instance of the deterministic OP assigning to
every edge e the expected travel cost E[c].

2) Solve the deterministic OP with vs, vg , and B using
any deterministic method and let PT be the returned
path.

3) Use PT to build and solve the CMDP described in
Section IV to obtain π.

4) Find the set of states (vi, ti) ∈ Sjump where π induces
an action resulting in a shortcut to a future vertex vj
where j > i+ 1.

5) For each state in Sjump, use any deterministic orien-
teering method to find a new path branch from vi to vg
with budget B − ti and add it to the path tree PT .

6) Use PT to build and solve the CMDP as described
above to obtain πnew.

This adaptive path algorithm uses the method described in
IV to create an initial policy π (steps 1-3) to determine where
branches should occur (step 4), then add new branches to PT

(step 5) and create a new policy πnew (step 6). In step 5, it
may be the case where a new branch at vi starts with some
sequence of the same vertices in P , i.e. vi+1 . . . vj , therefore
the branch can instead be shortened and start at vj . Duplicate
branches can also occur, and these are safely discarded. The
final output is a policy πnew that dictates actions to take
when reaching vertices in PT at various times to maximize
expected reward and bound the probability of failure to Pf .
Because of the adaptive nature of the path tree, the expected
reward E[RPT ,πnew ] will be equal to or greater than that
for the policy from the method described in IV, and can
possibly be greater than R(P). It should be noted that steps
4−6 can be repeated iteratively to create more path branches
originating from the previously added branches, however this
greatly increases the amount of computation required to find
πnew even with heuristics, and we do not utilize it.

A. Branch Heuristics

When solving a CMDP using linear programming, the
computational complexity is dependent on the number of
state/action pairs |S ×A|. For the deterministic path method
described in section IV, it grows super-linearly with respect
to the size of the state space, and computation time becomes
intractable with large state spaces. This number is equal to

|T| ·
(
n(n− 1)

2
+ 1

)
+ 2 = O(|T| · n2)

where n is the number of vertices in P and |T| is the number
of time intervals.

The adaptive path algorithm can compute policies with
higher expected rewards than the deterministic path method,
but at the cost of increased state space and computation time.
New branches are added where shortcuts are taken in the
initial policy π, however there may be many states where
shortcuts occur. As a consequence, the number of vertices in
PT can be many times greater than in P , and the number
of state/action pairs increases to

|T| ·
∑
Pb∈PT

(
|Pb|(|Pb| − 1)

2
+ 1

)
+ 2 = O

(
|T| · |PT |2

)
where |PT | is the total number of vertices in the path tree,
and |Pb| is the number of vertices in branch b.

Each new branch added to PT has a variable path
length, which cannot be controlled explicitly since they
are computed using a deterministic orienteering algorithm.
The number of branches, however, can be controlled, and
reducing this number using heuristics is a straight forward
approach. An intuitive way of doing this is to only add
branches that have a high likelihood of being utilized by the
policy. Because non-loop states in the CMDP can be visited
only once, ρ is equal to the probability that a state/action
pair is executed by the policy. Therefore, the adaptive path
algorithm can be modified such that only the top kb shortcut
actions with highest ρ values will add states to Sjump. The
modified algorithm is given as follows:

1) Follow steps 1-4 of the adaptive path algorithm.
2) Sort Sjump according to ρ in descending order.



3) For the first kb states in Sjump, use any deterministic
orienteering method to find a new path branch from vi
to vg with budget B−ti and add it to the path tree PT .

4) Use PT to build and solve the CMDP as described
earlier to obtain πnew.

This adaptive path heuristic limits the number of branches
added to PT to kb instead of potentially n×|T|. Note that in
the case of kb = 0, no branches are added and this method
produces the same policy as the deterministic path method.

VI. RESULTS

To compare our new adaptive path algorithm for solving
the SOP to the deterministic path algorithm, we simulated the
methods on randomized synthetic problems allowing us to
determine the general effectiveness of our technique. Vertices
v ∈ V for G were obtained sampling the unit square with
uniform distribution, and edges e ∈ E were added between
every vertex. The reward for each vertex r(v) was a random
sample from a uniform distribution in [0, 1]. Stochastic travel
times along edge (vi, vj) were obtained from

αdi,j + E
(

1

(1− α)di,j

)
where di,j is the Euclidean distance between the two vertices,
E(λ) is a random sample from an exponential distribution
with parameter λ, and 0 < α < 1 is a parameter describing
the relationship between the expected cost of the edge (equal
to di,j) and the amount of variance ((1−α)di,j)

2. Under this
formulation, edges always have non-negative costs.

For both methods, we used the S-algorithm heuristic
described in [22] as our deterministic orienteering solver
due to its speed and robustness. An exact solver based
on mixed-integer linear programming was not used because
these often take longer to find a path than solving the CMDP,
and would be impractical for the adaptive path algorithm
which calls on the orienteering solver multiple times. The
output of the deterministic orienteering solver is an initial
path P with expected cost less than or equal to B. In each
trial simulation of the algorithms, this path and the graph it
navigates remained fixed for a set of parameters so that a fair
comparison could be made between the two algorithms. The
fraction of collected reward is the ratio of each algorithms
expected reward to the total reward of P , as E[RP,π ]

R(P) . Because
the adaptive path algorithm can deviate from P , it is possible
for this ratio to be greater than 1. The process was repeated
for both methods on 10 different instances with unique G
and P . The results for each set of parameters were averaged
across all 10 instances.

For the simulations, the parameters were set as follows. α
was randomized uniformly such that all edges had a unique
value. The probability of failure Pf was set to three different
values, indicating the allowed proportion of failure to reach
the goal vertex. The branching factor was varied as kb =∞
(all possible branches were added to PT ), kb = 5 (only the
top 5 branches were added to PT ), and kb = 0 (no branches
were added, equivalent to the deterministic path method from
Section IV). As an example, Figure 4 shows one of the

simulated problem graphs with the computed path tree for
kb = 5 overlayed onto it. Notice how different branches
are able to visit different subsets of vertices. Some branches
appear to overlap in the graph, however they remain separate
in the path tree.

Fig. 4: The computed path tree for one of the evaluated problems.
The initial path is shown in black, while the branched paths are
shown in various colors.

For the first set of simulations, we fixed the number of
vertices in P and varied the number of time steps, with
results shown in Figure 5. For the second set of simulations,
we fixed the number of time steps and varied the number of
vertices in P , with results shown in Figure 6. For both sets
of simulations, the results are shown in terms of the average
expected fraction of reward collected and the average total
computation time for each set of parameters. All simulations
were run on a computer with an Intel 6700k processor and
32GB of RAM, with our methods coded in Matlab and
CPLEX used to solve the CMDP linear programs.

The results shown in Figures 5 and 6 are indicative of
clear trends for the average expected reward and average
computation time. For expected rewards, a kb = 0 (rep-
resenting the deterministic path method without branching)
is significantly lower than kb = 5 and kb = ∞ across all
numbers of time steps (Figure 5), numbers of vertices in P
(Figure (6)), and values of Pf . For 15 vertices and 10 time
steps, there is an average difference of 6.07% between kb = 0
and kb = ∞, and this number increases as the state space
grows in size (up to 10.5% in these instances). Interestingly,
kb = 5 is very comparable to kb = ∞, staying just below
or right at the same average expected reward, showing that
the branching heuristic is effective at adding only the most
valuable branches to the path tree. For average computation
time, the adaptive path method using kb =∞ and kb = 5 is
clearly slower than the deterministic path method, showing
a trade off between solution quality and time to solution.
Setting a lower kb value does help however, as it limits the
number of branches from growing super-linearly with the
number of time steps or vertices in P . At 15 vertices and 10
time steps, the average computation time for kb = 5 is only



Fig. 5: Rewards and computation time when the number of vertices
in the initial path is fixed at 15. Legend: Green indicates Pf = 0.01,
red indicates Pf = 0.05, black indicates Pf = 0.1, solid line
indicates kb = 0, dashed line indicate kb = ∞, and dotted line
indicates kb = 5.

56.5% that of kb =∞, and this number shrinks as the state
space grows in size, showing that a small branching factor
pays a small price for increasing the expected reward.

Another aspect deserving investigation is the scalability of
the proposed method. Therefore, in our final simulations we
also attempted to find the maximum size graph |V | that the
adaptive path algorithm is capable of solving the SOP for.
To this end, we fixed the number of time steps to |V |/10,
where |V | is the number of vertices in G, α = 0.75, kb = 5,
and Pf = 0.1. The length of the initial path was fixed at
n = b|V |/2c or half the number of vertices in G. Figure 7
shows the results on 10 unique graphs for each problem size
between 100 and 220. The plot also shows the number of
non-zero transition probabilities, as they relate to the number
of non-zero entries in the linear constraints in Eq. (3). On
average, we were able to find solutions on graphs of size
|V | = 220 (|n| = 110) in 1, 191 seconds (less than 20
minutes), using the same computer setup as for the results
in Figures 5 and 6. On graphs that contain more than 220
vertices, we were unable to find any solutions using the
given parameters within a 24 hour time window due to the
limitations of the system we use.

Fig. 6: Rewards and computation time when the number of time
intervals is fixed at 10. Legend: Green indicates Pf = 0.01, red
indicates Pf = 0.05, black indicates Pf = 0.1, solid line indicates
kb = 0, dashed line indicate kb = ∞, and dotted line indicates
kb = 5.

VII. CONCLUSIONS

In this work we studied the Stochastic Orienteering Prob-
lem (SOP) where travel times between pairs of vertices are
continuous random variables. The objective of the SOP is
to compute a policy that maximizes the expected reward of
visiting vertices in a graph while obeying a budget constraint
within a given probability. Our solution builds upon a method
from our recent work using a solver for the deterministic
orienteering problem to find an initial path through the graph
and create a policy using a CMDP architecture for taking
shortcuts along that path to reach the goal vertex within the
budget and given probability. Our new method is adaptive in
the sense that it is no longer bound to a single precomputed
path. Instead, a path tree is built where there are multiple
routes to the goal vertex, which can be advantageously used
by the policy to maximize expected collected reward within
the failure probability. Additionally, we introduced a heuris-
tic for limiting the potential computational cost increases
for our new method while maintaining useful adaptivity.
Our testing results show that the adaptive path method is
effective at increasing the expected reward and the branching
heuristic is useful for limiting the increase in computation
time required for the adaptive method.



Fig. 7: Average computation time (black, left y-axis) and average
number of nonzero probability state/action/state transitions (red,
right y-axis) for each when solving the SOP for large size graphs
with parameters α = 0.75, kb = 5, and Pf = 0.1. Error bars
indicate ±1 standard deviation.

There are a few avenues for further research to improve
this approach. One avenue is to examine how to adaptively
adjust the discretization of time to improve the expected re-
ward and possibly reduce computation time. Another avenue
is to explore removing time discretization altogether and
instead solve the problem in a continuous time space. These
will be the subjects of our future work on this problem.
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