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TX 77005

Contributed by Herbert Levine, May 22, 2013 (sent for review April 30, 2013)

Luria and Delbrück introduced a very useful and subsequently
widely adopted framework for quantitatively understanding
the emergence of new cellular lineages. Here, we provide an
analytical treatment of the fully stochastic version of the model,
enabled by the fact that population sizes at the time of measure-
ment are invariably very large and mutation rates are low. We
show that the Lea–Coulson generating function describes the “in-
ner solution,” where the number of mutants is much smaller than
the total population. We find that the corresponding distribution
function interpolates between a monotonic 1=mðm+1Þ decrease
at relatively small populations, (compared with the inverse of the
mutation probability), whereas it goes over to a Lévy α-stable
distribution in the very large population limit. The moments
are completely determined by the outer solution, and so are de-
void of practical significance. The key to our solution is focusing on
the fixed population size ensemble, which we show is very differ-
ent from the fixed time ensemble due to the extreme variability in
the evolutionary process.

Landau distribution | mutant distribution

In 1943, Luria and Delbrück (LD) (1) used a simple model to
argue that data regarding bacterial resistance were consis-

tent with selection of preexisting mutations. The model pos-
tulated a constant probability at which dividing normal cells
would have a single mutated, resistant daughter; these muta-
tions were assumed not to affect the growth rate until the
bacteria were challenged by an infectious virus and were as-
sumed never to revert to the sensitive state. In recent years,
the LD model has been used extensively to help understand
the emergence of antibiotic-resistant microbes (2, 3) as well as
drug therapy-resistant cancer cells (4–8). The basic approach
is also used for understanding stem cell lineage data (9) and
to help estimate mutation rates (10, 11). These applications
require generalizations of the LD model to include differen-
tial fitness effects and cell death (12, 13), but the basic notion
of the systematic accumulation of resistant clones remains
unchanged.
Despite extensive analyses by the applied mathematics, sta-

tistical physics, and evolutionary biology communities (14), a
tractable analytical expression for the distribution of the
number of mutants in an overall population of size N for the
general stochastic problem has remained elusive (15). In this
work, we develop a unique approach that directly solves the
master equation in the limit of (eventually) large population
sizes and a small mutation rate. We will find an explicit ex-
pression for the mutant number probability distribution. Re-
markably, in the further limit wherein the mutation rate μN is
large, the distribution takes the form of a Landau distribution
(16), the one-sided Lévy α-stable distribution (with α= 1)
originally obtained (17) in the context of energy loss due to
ionization. (The Landau distribution should not be confused
with the Cauchy distribution, which is the Lévy α= 1 two-sided
stable distribution.) For pedagogical purposes, we will start
with the original pseudodeterministic version of the model,

wherein our results agree with those obtained by earlier re-
searchers (2, 18).

Original LD Model
The initial LD approach assumes that all populations grow
with a deterministic exponential growth rate β starting from
an initial sensitive population of size N0. The only sources of
stochasticity are the number and timing of the mutational
events. At each moment in time, there is a fixed probability
per individual of generating a new mutant, corresponding to
an average fraction μ of birth events, leading to an overall rate
of N0μβeβt. The overall probability of having m mutants can be
broken down into a sum over the number of mutational events
and integrals over the possible times at which those events
occurred, so that

PðmÞ=
X∞
k= 0

e−μðN−N0Þ μ
kβk

k!

× ∏
k

i= 1

Z t

0

dtieβtiδ

 
m−

X
k

eβðt−tiÞ
!
; [1]

where the factor e−μðn−N0Þ comes from an integral over the times
when no mutation occurred. Changing variables to

zk ≡ eβðt−tkÞ =Ne−βtk=N0;

we obtain

PðmÞ=
X∞
k= 0

e−μðN−N0Þμ
kNk

k!
∏
k

i= 1

ZN=N0

1

dzi
z2i

δ
�
m−

X
zi
�
: [2]

We already see from here why PðmÞ contains features of the
Landau distribution. The random variable m is the sum over
a Poisson-distributed [with mean μðN −N0Þ] number of ran-
dom variables, each distributed as 1=z2, and if this were a sum
over a large definite number of z’s with no upper cutoff on
the distribution, by the generalized central-limit theorem (19),
m would be distributed as a one-sided Lévy α-stable distribu-
tion, with α= 1 (i.e., the Landau distribution). Here, things
are a bit more subtle; nevertheless, as N increases, the number
of terms becomes large and relatively more definite, and the
cutoff on the distribution goes off to infinity. Expanding
the exponential eiαz, carrying out the integrals over the zi,
and rescaling ~α= αN=N0 gives
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[3]

This result is in accord with the Lea–Coulson scaling ansatz (2)
that the N dependence of PðmÞ is captured by the variable

δ=
m− μN   lnðN=N0Þ

N
;

where it is easy to show that μN   lnðN=N0Þ is the mean of m to
lowest order in μ.
For small μ, there is an inner region where δ∼OðμÞ and

an outer region where δ∼Oð1Þ. In the inner region, we rescale
δ= μ~δ and note that we can approximate the sum by its large
argument limit:

X
k=2

ð−ixÞk
k!ðk− 1Þ= 1− cos  x− xSiðxÞ+ i½xðγ − 1+ ln  x−CiðxÞÞ+ sin  x�;

where γ ≈ 0:5772 is the Euler–Mascheroni constant and Si and Ci
are the sine and cosine integrals, respectively:

SiðxÞ≡
Zx
0

sin  t
t

dt;   CiðxÞ≡
Zx
0

cos  t− 1
t

dt+ γ + ln  x: [4]

Using SiðxÞ∼ π=2− cosðxÞ=x, CiðxÞ∼ sinðxÞ=x as x→∞, we have

X
k=2

ð−ixÞk
k!ðk− 1Þ≈−xπ=2+ 1+ i½xðγ − 1+ ln  xÞ�: [5]

Thus,

P
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:

[6]

This is nothing other than the Landau distribution:

PðmÞ= 1
μN

PLandau

�
m
μN

− ln  μN + γ − 1
�
: [7]

The asymptotic behavior of PLandauðxÞ is

PLandauðxÞ≈ 1
x2
; [8]

as expected. Notice that this inner formula is independent of N0.
This is because small clones originate near the end of the pro-
cess, and so are independent of the initial conditions.
Finally, for δ∼OðμÞ, which means m∼OðNÞ, we can expand

Eq. 3 in μ and find the outer solution:

PðmÞ= N0

2Nπ

Z∞
−∞

dα  eiαδN0μN0

X
k=2

ð−iαÞk
k!ðk− 1Þ

= −
μ

2Nπδ2

Z∞
−∞

dα  eiαδ
X
k=2

ð−iα=N0Þk−2
ðk− 1Þ!

= −
μ

2Nπδ2

Z∞
−∞

dα  eiαδ
e−iα=N0 − 1

−iα

=
μ

Nδ2
½θðδÞ− θðδ− 1=N0Þ�;

[9]

which cuts off the 1=m2 tail at m=N=N0.
To check the validity of this result, we have directly simulated

the sum in Eq. 2. The results are shown in Fig. 1, demonstrating
the direct relevance of the Landau distribution as well as the
sharp cutoff at m=N=N0.

Stochastic LD Model: Outer Solution
An obvious refinement of the original LD model is to allow for the
fact that birth events, for both the sensitive and mutant subpopu-
lations, are also stochastic (20). Again, we assume that development
of resistance is irreversible and mutants grow with no fitness disad-
vantage compared with wild-type (WT). As we shall see, the question
of conditioning becomes crucial here, an issue that obviously does not
arise in the quasideterministic original model, or in the Lea–Coulson
(2) variant, where the WT grows deterministically. We start by con-
ditioning on the total population,N, which matches most closely the
quasideterministic earlier formulations. We will later see that con-
ditioning on time (20, 21) yields very different answers in general.
The system, conditioned on N, is fully described by the master

equation governing the probability PNðmÞ of having m mutants
among the N total members of the population, [i.e., that has
undergone N −N0 birth events (22)]:

PN+1ðmÞ= 1
N

h
PNðm− 1ÞμðN −m+ 1Þ

+PNðmÞð1− μÞðN −mÞ+PNðm− 1Þðm− 1Þ
i
;

[10]
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Fig. 1. P (m) for the original LD model from a simulation of 106 realizations
of the stochastic process in Eq. 2, together with the analytical Landau for-
mula, for μ= 0:001; N= 2 · 105; and N0 = 1, 2, and 10.
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where N >N0 and m> 0. As before, μ is the mutation rate. The
probability that there are no mutants is clearly

PNð0Þ= ð1− μÞN−N0 : [11]

As in the original model, things are tremendously simplified if
μN � 1, and we work to linear order in μ. Then, the master
equation takes the form

PN+1ðmÞ= 1
N

�
δm;1μN +PNðmÞðN −mÞ

+PNðm− 1Þðm− 1Þ	: [12]

The last two terms are just birth without mutation, and the first
term reflects the uniform rate of mutant creation, which arises from
using the fact that PNð0Þ= 1+OðμÞ, whereas PNðmÞ is OðμÞ for all
m≠ 0. The solution of this recursion relation can be seen to be

PNðmÞ= μ
ðN −N0Þ!ðN − 1−mÞ!ðN −m+mN0ÞÞ

mðm+ 1ÞðN − 1Þ!ðN −N0 −mÞ! : [13]

This isparticularly simple forN0 = 1,wherePNðmÞ= μN=ðmðm+ 1ÞÞ
for 1<m<N, so that the power-law tail is sharply cut off past
m=N − 1. In general, for large N,

PNðmÞ ’ μN
mðm+ 1Þ

�
1+

mðN0 − 1Þ
N

��
1−

m
N

�N0−1
; [14]

and we again have a monotonic 1=mðm+ 1Þ distribution, now
with a smooth cutoff of the 1=m2 power-law tail as m approaches
N. It is important to note that the presence of the power-law tail
implies that all moments of the distribution are dominated by
rare early birth, large m events, and thus are extremely difficult
to measure in practice and strongly dependent on the initial
conditions. As in the original model, this first order in μ solution
breaks down for large enough N, such that μN is not small.
Nonetheless, it is always valid (for small μ) for m∼OðNÞ, which
does, in fact, arise from early birth events that are always rare
and so are treatable to linear order in μ. The vanishing of PNðmÞ
for m>N −N0 is an immediate consequence of the fixed N en-
semble in which we are working. In the fixed time ensemble, the
nature of the outer behavior is exponential, because there is no
limit to the total population at any fixed time. We next turn to
the problem of general μN for m � N, i.e., in the inner region.

Stochastic Model: Inner Solution
To derive the inner solution valid for large N and small μ (but
with no constraint on μN), we have to allow for terms in the
distribution that are of arbitrary order in μ. However, to each
order, we just need to keep the leading order in N. It is easy to
see that terms of order μk have leading order dependence Nk. If
we denote the coefficient of this term in PNðmÞ as Ak

m, we find on
substitution into the master equation (Eq. 12):

ðk+mÞAk
m = ðm− 1ÞAk

m−1 −Ak−1
m +Ak−1

m−1: [15]

To derive this result, we used the fact that the coefficient of the
term highest order in N (i.e., the term proportional to Nk) au-
tomatically vanishes, and the resultant equation emerges from
the requirement that the coefficient of the order Nk−1 term van-
ishes as well. This equation is supplemented with A0

m = 0 for
m> 1 (because only the no-mutant sector is populated if μ= 0)
and with Ak

0 = ð−1Þk=k!, which follows from Eq. 11.
To solve this equation, we use a transform method. We mul-

tiply Eq. 15 by xm · yk and sum from k=m= 1, and we denote
the resulting function as Fðx; yÞ. The distribution we want will

be found from F via setting y= μN and identifying PNðmÞ as the
coefficient of xm in F. Proceeding, we obtain�

y
∂
∂y

+ xð1− xÞ ∂
∂x

�
Fðx; yÞ= − yð1− xÞF + xye−y: [16]

Wecan convert this to a homogeneous equation, writingF =G− e−y,
so that �

y
∂
∂y

+ xð1− xÞ ∂
∂x

�
Gðx; yÞ= − yð1− xÞG: [17]

This homogeneous equation can be solved by the method of
characteristics. We write Gðx; yÞ=GðxðyÞ; yÞ≡ ĜðyÞ and choose
dxðyÞ=dy= xð1− xÞ=y, whose solution is

x=
y

α+ y
; [18]

where α labels the characteristic. Then, the equation for Ĝ is
the ordinary differential equation:

y
dĜ
dy

= −
αy

α+ y
Ĝ: [19]

Solving with the boundary condition Gðy= 0Þ= 1 yields

G=
�
1+

y
α

�−α
: [20]

Finally, we restore the original functional dependence on x and y
using (from Eq. 18) α= yð1− xÞ=x to obtain

F = ð1− xÞyð1−xÞ=x − e−y: [21]

This result was originally derived by Lea–Coulson (2), but for the
model where the WT population has deterministic growth dy-
namics. Note that the singular behavior at x= 1 is ultimately re-
sponsible for the 1=m2 behavior at large m. Explicitly, for small
y= μN:

F ≈ μN
1− x
x

lnð1− xÞ= − μN
X
k

"
xk−1

k
−
xk

k

#

= μN
X
m=1

xm

mðm+ 1Þ;
[22]

which is, of course, the lowest order solution away from the
cutoff region. It should be noted that our scaling solution cannot
be used to determine the exact answers to higher than linear
order in μ, however, because we have dropped higher order
terms in μ, terms that do not scale as y.
As already mentioned, we can recover Pm by extracting the

coefficient of the xm term in an expansion about x= 0. This can
be accomplished by contour integration in a small circle around
the origin:

Pm =
1
2πi

∮
FðxÞ
xm+1 dx: [23]

The integrand has a branch cut along the positive x axis starting
at x= 1, associated with the aforementioned singular behavior.
We can thus transform the contour integral into an integral of
the discontinuity along the branch cut:

Pm =
1
π

Z∞
1

dx  x−m−1ðx− 1Þ−yðx−1Þ=xsin πyðx− 1Þ
x

: [24]
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A similar expression based on the Lea–Coulson result appears
in a paper by Kepler and Oprea (10).
If we further specialize to the case of large y, large m (because

the scale of m is set by y), the integral is dominated by the region
near x= 1. We thus write m= y ~m and denote x= 1+ t=y, giving

Pm =
1

μNπ

Z∞
0

dt  e− ~mt−t  ln  t=y sin  πt

=
1

μNπ

Z∞
0

dt  e−


~m−ln  y

�
t−t  ln  t sin  πt:

[25]

This is just the Landau distribution, and our final answer is PNðmÞ=
1
μN PLandau



m
μN − ln  μN

�
. Amazingly, this is exactly the same result

[aside from a small shift in m of μNð1− γÞ] as we found for the
original LD model. Note that this inner solution does not depend
on N0, as we have come to expect. This lack of dependence of the
inner solution on N0 explains why the Lea–Coulson model, which
ignores the stochasticity of the WT, produces the same large
N distribution in the inner region as the fully stochastic model.
Similarly, this is why the distribution agrees with that provided by
Mandelbrot (18), who also used deterministic dynamics for the
WT population. Because here there is no N0 dependence, the
effect of stochasticity can be made arbitrarily weak by taking N0
large, and the models then coincide.
In Fig. 2, we compare this solution with an exact numerical

calculation of the master equation with N0 = 1, with the latter not
assuming anything regarding μN. The agreement is essentially
perfect for the case μN = 200 but deviates for small μ from the
exact answer when μN is reduced by an order of magnitude. The
Lea–Coulson distribution, however, still works perfectly. Both
approximations work all the way out to N, because the cutoff is
sharp for N0 = 1. Finally, in Fig. 3, we multiply this inner solution
by the appropriate outer solution to create a composite solution
valid for all values of m. This restores the N0 dependence and
shows how the Landau distribution is modified for m∼OðNÞ.
Discussion
We have seen that in the fixed N ensemble for large N, small μ,
the distribution can be divided into two regions, one an N0-
independent inner region, where the Lea–Coulson generating
function obtains, and the other an outer region, where N0 is
important and determines how the distribution is cut off. The

Lea–Coulson distribution interpolates between two simple lim-
iting behaviors: the μN=mðm+ 1Þ monotonic decrease for small
μN and the Landau distribution with its sharp rise at small m to
a peak followed by a slow 1=m2 decay for large μN. In the first
case, the most likely value of m is, of course, m= 0, whereas in
the second, the mode is at m≈ μNðln  μN − 0:22Þ. This is to be
compared with the first moment of m, namely, m= μN   ln N,
which we see larger by approximately μN   ln  ð0:8μÞ. For a not
untypical set of parameters, say μ= 10−7, N = 108, the mode is at
approximately m= 21, whereas the mean is ∼184. This reiterates
how uninformative the mean is as a characterization of the dis-
tribution. Similar statements hold for the variance, and using
these to estimate parameters of the evolution process by com-
parison with data is essentially impossible. This is a direct con-
sequence of the (cutoff) power-law nature of the distribution,
which is the underlying mechanism of the LD fluctuation ex-
periment. The convergence to the α-stable Landau distribution
at large μN is another consequence of this. As already men-
tioned, only one previous work (18) appears to have noticed this
fundamental property of this process and that aspect of this work
seems to have been completely ignored.
In this paper, we have focused on the original model with

deterministic growth as well as the stochastic variation, where
birth events occur probabilistically. In extensions to be discussed
elsewhere, we show that the results presented here can be gen-
eralized to include differential fitness effects as well as effects of
death. For completeness, we note that in each of those cases, the
distribution in the large μN limit is a one-sided Lévy α-stable
distribution, whose asymptotic power-law is determined solely by
the fitness difference of the two subpopulations. The extension
of the Lea–Coulson generating function to the differential fitness
case is known (18), and it is again the inner solution to the fixed
N stochastic problem. No similar results exist, however, for the
case in which death is included.
It should be pointed out that the stochastic LD model is ex-

actly solvable, and a formal but not very tractable explicit ex-
pression for the probability distribution has appeared previously
(22). This was shown to reproduce the Lea–Coulson generating
function in the inner region. The outer region was not analyzed.
More crucially, the connection to power-law tails and, in par-
ticular, the Landau distribution seems not to have been appre-
ciated in this work. This exact solution also applies only for equal
birth rates and in the absence of death; thus, our approximate
technique is more informative in the general case. It also should
be noted that the analytical exact solution is, as a numeri-
cal tool, less effective than a direct solution of the master

100 102 104 106

m
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

P m
(N

)

Exact, N

Landau, N

Exact, N

Landau, N

Lea-Coulson, N



Fig. 2. Comparison of exact integration of the master equation (solid lines)
vs. the Landau approximation (dashed lines) and the distribution repre-
sented by the Lea–Coulson generating function in Eq. 21 (dots) for μ= 0:001,
N= 2 · 104 and 2 ·105, and N0 = 1.

102 103 104 105

m
10-9

10-8

10-7

10-6

10-5

10-4

10-3

P N
 (m

)

N0
N0
N0

N / m

Fig. 3. Comparison of exact integration of the master equation (dots) vs.
the Landau approximation (solid lines) with the appropriate ð1+ ðN0 − 1Þm=

N=NÞð1−m=NÞN0−1 factor for μ= 0:001; N= 2 ·105; and N0 = 1, 2, and 10. Also
shown is the asymptotic μN=m2 behavior.
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equation, because the number of operations is comparable
and the exact solution involves terms of both signs, so that
round off becomes an issue.
For the general case, Antal and Krapivsky (AK) (21) have

recently derived a rather complex set of formulae embodying the
solution for the generating function of the probability distribution
in the fixed time ensemble, generalizing the results of Bartlett (20)
for the neutral pure birth stochastic model. Bartlett succeeded in
recovering the Lea–Coulson distribution in the limit of large N0,
because the WT dynamics become deterministic there and the two
ensembles coincide. To appreciate the problem, we first discuss
the results of the time ensemble, working from the AK solution
for the neutral pure birth model. The generating function of AK
for N0 = 1, which is called Aðy; xÞ, where y stands for WT and x for
mutants, satisfies

_A=A2 + νB− ð1+ νÞA; [26]

where B is the generating function for the pure mutant growth
problem, starting from a single mutant, which is given by

B= −
z

1− z
;  z= −

x
1− x

e−λ2t; [27]

and ν= μ=ð1− μÞ, λ2 = 1=ð1− μÞ. The solution for A is given by

A= −
Cz

ð1− zÞμ +C−Cz
; [28]

which can be seen, using the definition of z, to satisfy Eq. 26. The
constant C is determined by the condition that Aðt= 0Þ= y, so that

C= −
yð1− xÞ1−μ

y− x
: [29]

The generating function for the mutants, independent of the number
of WT cells, is given by F =Að1; xÞ. It is also convenient to work
in terms of N, the expected total population size, rather than t:

N ≡ eλ2t: [30]

We thus obtain

FðxÞ= x

x+Nð1− xÞ
h
1−
�
1− x+ x=N

�μi: [31]

We see immediately that the singularity at x= 1 has been shifted
to x= 1=ð1− 1=NÞ> 1, so that the asymptotic decay of PðmÞ is
exponential, and there is again a crossover from the inner region
when m∼OðNÞ.
The limit we wish to consider is the large N, small μ limit:

μN ∼ Oð1Þ. In the inner region, we can drop the x=N term, and
we have

FðxÞ≈ x
x− ð1− xÞμN   lnð1− xÞ; [32]

so that, again, μN is the relevant control parameter. However,
this is not the Lea–Coulson generating function. In particular,
P0 = 1=ð1+ μNÞ, so that it does not decay exponentially with μN
as in the fixed N ensemble. The reason for this is the presence of
anomalous members of the fixed time ensemble with small total
population sizes. Plotting the distribution that arises from this
solution for various values of μN (Fig. 4), we see that there is no
peak, ostensibly for the same reason.
Thus, going to the time ensemble makes a huge difference

and, in fact, is not the relevant ensemble for application to cases

where one measures N, for example, by determining the tumor
size. We can recover relevant results if we additionally condition
on N, that is, pick only those members of the statistical ensemble
that have exactly N =NðtÞ individuals. This is gotten by looking
at the coefficient of yN in A. We can do this analytically, because
A is of the form A1y=ðA2y+A3Þ, where A1 = z:

A2 = z− 1+
½ð1− zÞð1− xÞ�μ

1− x
;   A3 = −

x½ð1− zÞð1− xÞ�μ
1− x

:

Thus, the normalized generating function for the subensemble is
explicitly

QðN; yÞ=N A1

A3

�
−
A2

A3

�N−1

; [33]

where N is the normalization factor, chosen so that QðN; 1Þ= 1.
Now, in the limit x→ 1,

z→−
1

Nð1− xÞ→ −∞;

A2 →−
1

Nð1− xÞ+
N−μ

1− x
=
N−μ
1−Nμ−1�

1− y
;

A3 →−
N−μ

1− x
:

[34]

Thus,

N =N1−μ
1−Nμ− 1
�1−N

=N1−μe−ðN−1Þlnð1−Nμ− 1Þ

≈N1−μe1+μ  ln N =Ne1:
[35]

Given this, we now need to calculate the leading N behavior of
QðN; yÞ. For fixed y, large N, z→ 0, and

A2=A3 ≈−1+
1
N
− μ

ð1− xÞlnð1− xÞ
x

; [36]

and

A1=A3 ≈
1
N
: [37]
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Fig. 4. Distribution for the fixed time ensemble resulting from Eq. 32 for
μN= 0:1, μN= 1, and μN= 10. Notice that in all cases, the distribution is
monotonic decreasing and not at all like the Lea–Coulson result with its
Landau limit at large μN.
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Collecting all the pieces, we arrive at the result that QðN; yÞ in
this limit is equal to

QðN; yÞ≈Ne1
�
1
N

�
e−1+μN

ð1−yÞlnð1−yÞ
y

= ð1− xÞμNð1−xÞ=x:

[38]

This is just the Lea–Coulson result, including the m= 0 term;
thus, it also contains the small μN and Landau limits discussed
above. Of course, the true fixed N ensemble contains contribu-
tions from different elapsed times, but this has no impact, because
conditioning on N forces the time to be close to the nominal time
(although conditioning on time does not force N to be close to its
mean value). The small variation in these times clearly does not
change the distribution, as can be shown explicitly.

Methods
Here, we present more information regarding the generation of the curves
presented in the figures. The data for the original LD model was obtained for

each realization by picking k from a Poisson distribution with mean μðN−N0Þ
and then summing k independent identically distributed random variables
drawn from a 1=z2 distribution running from z= 1 to z=N=N0. The in-
dividual sums were then logarithmically binned to generate the histogram.

The Landau distribution, PLandauðxÞ, was computed for x > − 2 via the in-
tegral in Eq. 25. For x < − 2, the form in Eq. 6 was used, where the region of
integration was restricted to α> 0 by symmetry, and the contour was then
deformed to the steepest descent contour, extending from the critical point
on the negative α axis off into the complex plane (23).

The data for the stochastic birth model were obtained via a direct solution
of the master equation, Eq. 10. The data for the Lea–Coulson distribution
came from a Taylor expansion of the generating function obtained from the
symbolic algebra program Maple (Maplesoft). The data for the AK distri-
bution came from a Maple-generated Taylor expansion of the correspond-
ing generating function as well.
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