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To adhere to and capitalize on the benefits of the FAIR (findable, accessible, interoperable, and reusable) principles in agricultural gen
ome-to-phenome studies, it is crucial to address privacy and intellectual property issues that prevent sharing and reuse of data in re
search and industry. Direct sharing of genotype and phenotype data is often prohibited due to intellectual property and privacy 
concerns. Thus, there is a pressing need for encryption methods that obscure confidential aspects of the data, without affecting the out
comes of certain statistical analyses. A homomorphic encryption method for genotypes and phenotypes (HEGP) has been proposed for 
single-marker regression in genome-wide association studies (GWAS) using linear mixed models with Gaussian errors. This methodology 
permits frequentist likelihood-based parameter estimation and inference. In this paper, we extend HEGP to broader applications in gen
ome-to-phenome analyses. We show that HEGP is suited to commonly used linear mixed models for genetic analyses of quantitative 
traits including genomic best linear unbiased prediction (GBLUP) and ridge-regression best linear unbiased prediction (RR-BLUP), as 
well as Bayesian variable selection methods (e.g. those in Bayesian Alphabet), for genetic parameter estimation, genomic prediction, 
and GWAS. By advancing the capabilities of HEGP, we offer researchers and industry professionals a secure and efficient approach 
for collaborative genomic analyses while preserving data confidentiality.
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Introduction
To conform to and capitalize on the benefits of the FAIR (findable, 
accessible, interoperable, and reusable) principles in agricultural 

genome-to-phenome studies, it is necessary to address privacy 
and intellectual property issues that may prevent sharing and re

use of data in research and industry. First, sharing and reuse of 
genotypic and phenotypic data enables reproducible research, 

where researchers can confirm published analyses with minimal 
effort. Second, for traits that are hard or expensive to measure, a 

single research group may have limited data for genetic analysis, 

which may lead to less reliable and underpowered results. This 
problem may be alleviated by joint analyses that include data 

from multiple contributors.
Although data sharing and reuse will bring significant benefits 

to genome-to-phenome studies in both academia and industry, it 
is often prohibitive to directly share raw genotype and phenotype 

data due to privacy concerns, commercial interests, and data- 
sharing policies, and because the risks of sharing raw data may 

not be fully understood by the data owners. For example, al
though individual identifiers can be anonymized, information 

about an anonymized individual might still be disclosed by 

comparing its genotypes to known genotyped relatives. To avoid 
the concerns about sharing raw data, consortia are often estab
lished, and raw data are only shared with members of the consor
tium or with researchers who are approved for access. In other 
cases, external researchers may perform analysis on the data 
owner’s computer system without access to the raw data. These 
approaches, however, still pose risks to privacy and intellectual 
property, hampering widespread data sharing and reuse.

Homomorphic encryption (HE) refers to a type of encryption 
of raw data (hereafter referred to as “plaintext”) in a manner 
that obscures confidential aspects of the data, while certain com
putations on the encrypted data (hereafter referred to as “cypher
text”) match the results from the plaintext, when decrypted. 
While several methods for HE have been proposed for genomic 
analysis, most limit the types of computations and analyses 
that can be conducted on the encrypted data (cyphertext). For ex
ample, for case–control genome-wide association studies (GWAS), 
HE schemes were proposed to calculate allelic chi-square test and 
perform logistic regression (Lu et al. 2015; Chen et al. 2018; Blatt 
et al. 2020; Jie Sim et al. 2020). However, these methods ignore ran
dom and fixed effects that account for family and population ad
mixture. Although linear mixed models are widely used in genetic 
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analyses such as genomic prediction and GWAS (Bradbury et al. 
2007), the use of HE for mixed models is scarce.

Recently, Mott et al. (2020b) proposed an encryption method, 
called homomorphic encryption for genotypes and phenotypes 
(HEGP), that is specifically suited to single-marker regression in 
GWAS using linear mixed models with Gaussian errors. HEGP is 
based on high-dimensional random orthogonal transformations 
of the plaintext that encrypts phenotypes, genotypes, and speci
fied covariates by replacing them with random linear superposi
tions, such that cyphertext genotypes and phenotypes cannot be 
linked back to individual identifiers. HEGP preserves linkage dis
equilibrium between markers but scrambles the genomic rela
tionship between individuals. Moreover, under a linear mixed 
model with Gaussian errors, the likelihood of the cyphertext is un
changed, such that the encryption does not affect the outcomes of 
single-marker regression in GWAS analyses. HEGP differs concep
tually from other HE methods in that some outputs (particularly 
the parameter estimates) are unaffected by encryption and do 
not need to be decrypted.

In this paper, we extend the HEGP scheme for wider application 
in genome-to-phenome analyses. We demonstrate that HEGP can 
be effectively applied to many popular mixed models, beyond 
single-marker regression. These models, including Bayesian vari
able selection methods such as those in Bayesian Alphabet, are 
routinely employed in the fields of animal and crop improvement, 
for genetic analyses of quantitative traits, including genetic par
ameter estimation, genomic prediction, and GWAS. We show 
how most of the quantitative genetics toolbox used by animal 
and plant breeders can be integrated with data-sharing protocols 
and performed while protecting important types of potentially 
confidential or commercially sensitive information.

Materials and methods
HE using high-dimensional random 
orthogonal matrix
We will use y, a vector of length n, to denote the plaintext pheno
types for n observations, and M to denote the n × p plaintext geno
type covariate matrix for the n observations across p single 
nucleotide polymorphism (SNPs). To infer unknowns in mixed 
models, these quantities will typically be used in the multiplica
tive forms MTM and MTy. Thus, intuitively, any data encryption 
scheme that leaves the above multiplications unchanged would 
produce the same GWAS and genomic prediction outcomes.

HEGP uses a high-dimensional random n × n orthogonal matrix 
P, such that PTP = I and the determinant |P| = 1. The suitable 
choices of P for the purpose of encryption are discussed in a later 
section. The plaintext genotypes and phenotypes are encrypted as

M∗ = PM,
y∗ = Py,

(1) 

because

MTM = MTPTPM = (PM)T(PM) = M∗TM∗ (2) 

and

MTy = MTPTPy = (PM)Ty∗ = M∗y∗. (3) 

In contrast to other methods of HE, the outputs of HEGP (i.e. mark
er effect estimates and P-values) are automatically plaintext, 

regardless of whether the inputs are plaintext or cyphertext. 
This means that there is no need to decrypt the outputs such as 
marker effect estimates and hence no decryption key is distribu
ted. In a later section, we will show that the HEGP does not affect 
the inference of marker effects, thus with the plaintext of geno
types, the estimated breeding values (EBV) can be calculated. 
Otherwise, the EBV calculated from the cybertext of genotypes re
mains cybertext EBV.

Conceptual overview
Figure 1 illustrates HEGP for a small example of 4 individuals (a–d) 
and 6 SNPs. By multiplying by the random orthogonal matrix P, 
phenotypes and genotypes in the encrypted data become “ran
dom” linear combinations of phenotypes and genotypes of the ori
ginal 4 individuals (a–d).

Figure 2 compares plaintext and cyphertext genotypes from a 
larger pig dataset (Cleveland et al. 2012). Figure 2a and b presents 
the heat maps of the plaintext and cyphertext genotypes. For the 
plaintext, each row represents an individual and each column re
presents the genotypes for an SNP across individuals. As shown in 
Fig. 2c and d, after encryption, the genotypes transform from tri
modal values (0/1/2) to continuous values that closely resemble a 
sample from a normal distribution.

The set of orthogonal n × n matrices forms a group under multi
plication and includes the identity matrix, which is clearly inef
fective for encryption. Therefore, it is necessary for P to be 
randomly generated and independent of the plaintext. A suitable 
method is derived from the Stiefel manifold, or Haar measure 
(Chikuse and Chikuse 2003; Hoff 2009), which is measure- 
preserving, meaning that the measure (loosely speaking, the sam
pling probability) of any data matrix M is the same as the measure 
of PM. For this method, first an n × n matrix B is generated, whose 

Fig. 1. Illustration of HEGP. For 4 individuals (a–d), the raw genotypes for 6 
SNPs and the raw phenotypes are provided in the upper part of the figure. 
The raw data are encrypted by premultiplying with a random orthogonal 
encryption matrix P, which is displayed in the middle of the figure. The 
encrypted phenotypes and genotypes, shown in the lower part of the 
figure, are “random” linear combinations of the raw phenotypes and 
genotypes of the original four individuals (a–d).
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entries are sampled independently from a standard normal distri
bution. Next, an n × n random orthogonal matrix is generated as 
P = B(BTB)−1

2. In detail, (BTB)−1
2 is computed as QΛ−1

2QT, where Q 
and Λ are obtained from the eigen decomposition of BTB, i.e. 
BTB = QΛQT. Matrix P is easily seen to be orthogonal (by checking 
that PTP = I ) and furthermore can be shown to be randomly 
sampled from the Stiefel manifold. The R package rstiefel (Hoff 
2012) can be used to generate P.

Relationships between SNPs and between individuals
HEGP preserves relationships between genotypes (i.e. linkage dis
equilibrium, r2), but scrambles relationships between individuals. 
Any orthogonal transformation preserves the dot product of two 
vectors and, geometrically, acts as a rotation of a hyper-sphere 
in which SNP genotype vectors and phenotype vectors are repre
sented as points on its surface. The cosine of the angle between 
any pair of points subtended at the origin equals their Pearson cor
relation coefficient, or dot product and a rotation merely changes 
the coordinate system while leaving angles unchanged. In HEGP, 
all marker genotypes (and phenotypes) are rotated by the same or
thogonal matrix as PM = [Pm1, . . . , Pmp]. Thus, the LD between jth 
and kth marker is preserved since

(m∗j )T(m∗k) = (Pmj)
T(Pmk)

= mT
j mk,

(4) 

where we use the fact that for any orthogonal matrix, PTP = I. For 
illustration, the LD matrices based on the raw and the encrypted 
genotypes for 5,000 markers in the pig dataset of Cleveland et al. 

(2012) are shown in Fig. 3a. The LD matrix is calculated as 1n HTH, 

where H is the normalized genotype matrix. The jth marker of 

the ith individual is normalized as Hi,j = Mi,j−2pj��������
2pj(1−pj)
√ , where pj is the al

lele frequency. In Fig. 3a, the 2 LD matrices are almost identical, 
and the correlation between elements in the 2 LD matrices is 1.0.

In contrast to LD relationships, HEGP scrambles relationships 
between individuals since (PM)(PM)T = P(MMT)PT and, after trans
formation, individual records are random linear combinations of 
the original records. For demonstration, GRMs, calculated as 
1
p HHT, based on plaintext and cyphertext genotypes, are shown 
in Fig. 3b for a subset of the pig dataset. The elementwise correl
ation between the 2 GRM is ∼ 0.

Statistical preliminaries
As we will demonstrate, in addition to single-marker regression 
for GWAS using linear mixed models with Gaussian errors, 
HEGP is compatible with most genetic analyses that use mixed 
models, including GBLUP, SNP-BLUP, Bayesian Alphabet, and 
others.

Mixed models
The mixed model is a cornerstone for many quantitative genetic 
analyses, including genetic parameter estimation, genomic pre
diction, and GWAS (Meuwissen et al. 2001; VanRaden 2008; 
Hayes et al. 2009; Wang et al. 2012; Moser et al. 2015a; Wang et al. 
2016; Fernando et al. 2017; Legarra et al. 2018). In particular, 
GBLUP (Habier et al. 2007; VanRaden 2008; Hayes et al. 2009) is 
one of the most widely used linear mixed models for genomic pre
diction. The GBLUP model can be written as

y = Xβ + u + e, (5) 

Fig. 2. a) A subset of pig genotypes provided in the dataset of Cleveland et al. (2012). Genotypes are coded as 0, 1, and 2, which are presented by white, gray, 
and black colors, respectively. Each row represents one individual, and each column represents one marker. b) The corresponding encrypted genotypes, 
encrypted via a high-dimensional random orthogonal matrix. The encrypted genotypes are a continuum of real numbers presented by different colors. c) 
Sorted genotypes of one marker, coded as 0/1/2 (left), and its trimodal distribution (right). d) The corresponding encrypted genotypes [same order as in c)] 
and their bell-shaped distribution.
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where y is a vector of phenotypes of length n, and X is the inci
dence matrix for nongenetic fixed effects, denoted by β. Vector u 
contains additive genetic values for n individuals and follows a 

multivariate normal distribution u ∼ N(0, Gσ2
u), where G is the 

GRM proportional to MMT, where M is an n × p genotype covariate 

matrix, and σ2
u is the genetic variance. Vector e includes n random 

residuals and follows a normal distribution, e ∼ N(0, Iσ2
e ), where σ2

e 

is the residual variance. Narrow sense heritability is defined to be 

h2 = σ2
u

(σ2
u+σ2

e ).
The GBLUP model is equivalent to the following marker effects 

model (hereinafter referred to as SNP-BLUP) in terms of predicting 
genetic values (Fernando 1998; Habier et al. 2007; Strandén and 
Garrick 2009):

y = Xβ + Mα + e, (6) 

where α is a vector of p additive marker effects, with α ∼ N(0, Iσ2
α). 

The same point estimates of marker effects α̂ can be obtained 

from the estimated genetic values û in GBLUP as α̂ = MT(MMT)−1û.
The Gaussian prior distribution of marker effects in SNP-BLUP 

is just one, analytically tractable, member of the “Bayesian 
Alphabet”, in which a range of prior distributions, reflecting differ
ent assumptions about the genetic architecture of the trait, is as
signed to the marker effects (Meuwissen et al. 2001; Park and 
Casella 2008; Kizilkaya et al. 2010; Habier et al. 2011; Erbe et al. 
2012; Moser et al. 2015b; Gianola and Fernando 2019). For example, 
it is sometimes desirable to model the majority of marker effects 
as being zero, and to allow occasional markers with large effects. 
For some traits, such priors are more biologically meaningful than 
SNP-BLUP and have been widely used in genomic prediction and 
GWAS.

In this paper, we demonstrate the effectiveness of HEGP using 
both SNP-BLUP and BayesCπ (Kizilkaya et al. 2010; Habier et al. 

2011). BayesCπ is a representative of the other “Bayesian 
Alphabet” models, so the extension of HEGP to other priors for 
marker effects (Meuwissen et al. 2001; Park and Casella 2008; 
Erbe et al. 2012; Moser et al. 2015b; Gianola and Fernando 2019) 
does not present further challenges. BayesCπ (Kizilkaya et al. 
2010; Habier et al. 2011) is typical in that it assigns mixture priors 
to marker effects, which are multiplied by the Gaussian likelihood 
of the data to generate the posterior. The BayesCπ model must be 
fitted using Gibbs sampling, and therefore we must show that 
HEGP does not perturb the algorithm and produces numerically 
stable and accurate estimates.

At each step of the Gibbs sampler, a given unknown is sampled 
from its full conditional posterior distributions given the latest 
sampled values of all other unknowns. Below we will show that 
the full conditional posterior distributions of marker effects are 
identical when using raw or encrypted data, such that the same 
posterior distributions will be obtained (this also holds for other 
parameters of interest). Derivations for other parameters of inter
est in SNP-BLUP and BayesCπ can be found in the Appendix.

Unchanged likelihood using HEGP
In HEGP, the plaintext phenotypes, covariates, and genotype do
sages, and the design matrix for fixed effects are encrypted by pre
multiplication by the same random orthogonal matrix, P. The 
mixed model using cyphertext for both SNP-BLUP and BayesCπ 
can be written as

y∗ = X∗β + M∗α + e∗. (7) 

In this model, y∗ = Py are the encrypted phenotypes, M∗ = PM = u∗

are the encrypted genotypes, and X∗ = PX is the encrypted design 
matrix for fixed effects. After encryption, the residual variance re

mains unchanged, represented as var(e∗) = var(Pe) = PTIσ2
e P = Iσ2

e . 

Fig. 3. a) Linkage disequilibrium (LD) matrix calculated using raw genotypes (up), and encrypted genotypes (down). The LD matrix is preserved using 
encrypted data, and the correlation between the 2 LD matrices is 1.0. b) GRM calculated using the raw genotypes (up), and encrypted genotypes (down). 
The GRM is scrambled using encrypted data, and the correlation between 2 GRMs is close to 0.
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The genetic variance becomes var(u∗) = PTGPσ2
u after encryption.

We next show that the likelihood of the data is invariant under 
orthogonal transformation. Define the plaintext variance matrix  
V = Gσ2

u + Iσ2
e and its cyphertext equivalent V∗ = PT(Gσ2

u + Iσ2
e )P. 

Then the determinant of the variance matrix is invariant because 
|V∗| = |PTVP| = |PT||V||P| = |V| and hence the Gaussian log-likelihood 
of the plaintext (log L) equals that of the cyphertext (log L∗):

−2 log L(β) = (y − Xβ)TV−1(y − Xβ) + n log (|V|)

= (y − Xβ)T(PTP)V−1(PTP)(y − Xβ) + n log (|V|)

= (P(y − Xβ))T(PTVP)−1(P(y − Xβ)) + n log (|V∗|)

= (y∗ − X∗β)TV∗−1(y∗ − X∗β) + n log (|V∗|)
= −2 log L∗(β).

(8) 

Hence, all parameter inference in SNP-BLUP is invariant under or
thogonal transformation in the mixed model, resulting in un

changed estimates for β, for the variance components σ2
e , σ2

u and 

heritability h2.

Inference of unknowns in mixed model
In BayesCπ, the prior for the marker effects is a mixture of a point 
mass at zero and a univariate normal distribution with a null 
mean and a common locus variance σ2

α. The full conditional pos
terior distribution of the marker effect for locus j when it is non
zero (i.e. the full conditional posterior distribution of the marker 
effect for locus j in SNP-BLUP) can be expressed as

αj ∣ ELSE
􏼐 􏼑

∼ N α̂j,
σ2

e

mT
j mj +

σ2
e

σ2
α

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

, (9) 

where ELSE stands for all the other parameters and α̂j is the solu

tion to

mT
j mj +

σ2
e

σ2
α

􏼒 􏼓

α̂j = mT
j y − Xβ −

􏽘

j′≠j

mj′ αj′

⎛

⎝

⎞

⎠. (10) 

When encrypted genotypic and phenotypic data are used, the full 
conditional posterior distribution of αj, when it is nonzero, can be 

written as

αj ∣ ELSE
􏼐 􏼑

∼ N α̂∗j ,
σ2

e

(m∗j )T(m∗j ) +
σ2

e

σ2
α

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

, (11) 

where ELSE stands for all the other parameters, and α̂∗j is the solu

tion to

(m∗j )T(m∗j ) +
σ2

e

σ2
α

􏼒 􏼓

α̂∗j = (m∗j )T y∗ − X∗β −
􏽘

j′≠j

m∗j′ αj′

⎛

⎝

⎞

⎠

= (m∗j )Ty∗ − (m∗j )TX∗β −
􏽘

j′≠j

(m∗j )Tm∗j′ αj′ .

(12) 

We have previously shown that (m∗j )T(m∗k) = mT
j mk. Similarly,

(m∗j )Ty∗ = (Pmj)
TPy

= mT
j y

(13) 

and

(m∗j )TX∗ = (Pmj)
TPX

= mT
j X.

(14) 

Therefore, the full conditional posterior distribution of αj using cy

phertext, as per equations (11) and (12), is identical to that ob
tained using the plaintext, as shown in equations (9) and (10). 
Thus, because HEGP does not change the full conditional posterior 
distributions in Gibbs sampling, the posterior distributions of 
marker effects are also identical using plaintext or cyphertext. 
The same conclusion holds for all other parameters of interest 
(see Appendix). Note that once estimates of marker effects are ob
tained, the plaintext of genotypes, if available, should be used to 
calculate the EBV.

Joint analysis using encrypted data from multiple 
contributors
A single research study may only contain a limited amount of data 
that is underpowered for genetic analysis. This issue can be miti
gated through joint analyses using data from multiple studies, e.g. 
Yengo et al. (2022). An attractive feature of HEGP is that it allows 
each component of the joint data to be encrypted independently. 
Thus, each contributor generates its own private key and uses it to 
encrypt its own plaintext prior to sharing it for joint analysis. The 
keys are never shared. The process for joint analysis then pro
ceeds as described in the following.

For clarity, let us assume there are three contributors. 
Assuming variance components, such as the marker effect vari
ance and the residual variance, are identical for all parties, the 
mixed model for the joint analysis of cyphertext can be written 
as

P1y1
P2y2
P3y3

⎡

⎣

⎤

⎦ =
P1X1

P2X2

P3X3

⎡

⎣

⎤

⎦β +
P1M1

P2M2

P3M3

⎡

⎣

⎤

⎦α +
P1e1

P2e2

P3e3

⎡

⎣

⎤

⎦, (15) 

where the matrices related to the tth contributor are labeled with 
subscript “t”. This equation can be rewritten as

P
y1
y2
y3

⎡

⎣

⎤

⎦ = P
X1

X2

X3

⎡

⎣

⎤

⎦β + P
M1

M2

M3

⎡

⎣

⎤

⎦α + P
e1

e2

e3

⎡

⎣

⎤

⎦, (16) 

where P is a block-diagonal orthogonal matrix

P =
P1 0 0
0 P2 0
0 0 P3

⎡

⎣

⎤

⎦. (17) 

Thus, conceptually, the stacked cyphertexts are equivalent to 
the stacked plaintexts after encryption by the block-diagonal 
matrix P, which is the orthogonal matrix assembled from the 
component random orthogonal matrices P1, P2, and P3. Thus, 
as shown in the previous section, unknowns inferred from joint 
cyphertext will be identical to those inferred using the joint 
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plaintext. Note that genomic predictions of the original indivi
duals require the plaintext genotypes, and thus, each contribu
tor can only generate these for their own individuals, but using 
estimates of marker effects obtained from the combined data 
for additional accuracy of predictions.

Security of HEGP
The correlation between the centered plaintext genotypes, repre
sented as mj, and the cyphertext genotypes, represented as Pmj, is 
proportional to mT

j Pmj. When P is “far from” an identity matrix (or 
scaled identity matrix), such correlations resemble those between 
two random vectors. For example, using the pig genotypes from 
Cleveland et al. (2012) (n = 3, 534, p = 50, 436), the empirical distri
bution of Pearson correlations between the plaintext and cypher
text genotypes for each marker is shown in Fig. 4. On average, the 
correlation between raw and encrypted genotypes is about 0.001, 
which is very close to 0, and almost all (∼ 93%) correlations are in
side the interval [ − 0.03, 0.03]. Thus, without decryption, cyber
text genotypes and phenotypes are uninterpretable.

Decryption without knowledge of the key
To obtain the raw genotypes from the encrypted genotypes, an or
thogonal matrix Q ∼ PT should be estimated as the key for decryp
tion. When Q = PT, exactly, the plaintext genotypes will be 
recovered, since then QM∗ = PTPM = M. The distance between 
QM∗ and M measures how close the decryption is to the raw 
data. However, because neither M nor P are shared, it is difficult 
to evaluate attempted decryption without a suitable objective 
function to minimize. Assuming the distance between the at
tempted decrypted genotype matrix and the plaintext genotype 
matrix is known (although it is unknown in practice), several 
strategies to decrypt the genotypes were discussed in Mott et al. 
(2020b). First, in a brute-force approach, numerous random or
thogonal matrices (i.e. keys) were generated for decryption. 
However, massive computing resources would be required to gen
erate and test all possible keys. Mott et al. (2020b) reported that 
even for a dataset with 8 individuals, they could not brute-force 
the key. A second approach to uncover the decryption key relies 
on the trimodal distribution of the plaintext genotype frequencies 
of each marker, assuming all markers are in Hardy–Weinberg 
equilibrium with publicly available allele frequencies (such as 
Fig. 2c). Mott et al. (2020b) attempted to infer the key by maximiz
ing the kernel density estimator of those non-Gaussian 

distributions. However, the results were unsuccessful. Finally, a 
decryption challenge for HEGP (Mott et al. 2020), in which attempts 
were invited to decrypt HEGP-encrypted plaintext genotypes, has 
so far failed to elicit a successful attack. More discussion can be 
found in Mott et al. (2020b).

The only identified weakness of HEGP occurs when the data in
cludes variants that are private to an individual. In an extreme 
case, when each individual has a private variant coded as 1, the 
plaintext genotype matrix can be written as M = [I ∣ Msub], where 
I represents genotypes of the n private variants, and Msub repre
sents genotypes of all the other markers. In this situation, P itself 
will be included in the encrypted genotypes since M∗ = [P ∣ M∗sub]. 
In practice, this extreme case can be avoided by using common 
variants. However, it suggests that useful information might be 
extracted from the encrypted data of lower frequency variants, 
suggesting it is best to remove any variant with a frequency under 
0.01 or that is private to fewer than about 10 individuals. Since 
these variants are typically removed during quality control pro
cessing, there should be minimal loss of information.

Data analysis
The pig dataset in Cleveland et al. (2012) was used to validate the 
equivalent outcomes from both genomic prediction and GWAS 
analyses using plaintext and cyphertext. This dataset contains 
3534 genotyped individuals and the number of SNP markers 
is 50,436. We simulated phenotypes based on different values 
for heritability and numbers of quantitative trait loci (QTL) (i.e. 
causal variants). In detail, phenotypes with heritability equal 
0.1, 0.3, 0.5, and 0.7 were simulated, and 1, 10, 50, and 100% 
of SNPs were randomly sampled as QTL (16 scenarios). 
Contemporary group effects were included to simulate pheno
types on individuals from 4 groups. For each simulated scenario, 
10 replicates were applied. The genotypes of each marker were 
centered to have 0 mean. The incidence matrix of fixed effects, 
the genotypes, and the simulated phenotypes were encrypted 
using a random orthogonal matrix generated as described 
above. SNP-BLUP and BayesCπ were applied to analyze the plain
text and cyphertext using the JWAS package (Cheng et al. 2018, 
2022). In all scenarios, 500,000 Markov chain Monte Carlo 
(MCMC) iterations were applied to ensure convergence.

We first show that the estimated marker effects (α̂) remain un
changed with the cybertext. Using the plaintext of genotypes (M), 
the EBV are calculated as Mα̂, confirming that the EBVs also 
remain unchanged. Below we only present the results from 
BayesCπ, and the conclusions drawn were consistent with those 
from RR-BLUP results.

Results
Estimated marker effects and breeding values
Overall, the marker effects estimated from plaintext and cypher
text were very similar, with a Pearson correlation of 0.9929. The 
results from 1 replicate in the scenario with h2 = 0.3, QTL%=1% 
are presented in Fig. 5a, and similar results were observed across 
all other scenarios. The results for all scenarios are detailed in 
Table 1, where each value represents the averaged correlation 
across 10 replicates.

The EBV for all individuals with genotypes M were calculated as 
Mα̂plaintext, using marker effects estimated from plaintext, and as 
Mα̂cyphertext, using marker effects estimated from cyphertext. 
Overall, the correlation between EBV calculated using the plain
text and those calculated using the cyphertext was about 
0.9996. The results of one replicate from the scenario with 

Fig. 4. Distribution of correlations between 50,436 pairs of plaintext and 
cyphertext genotypes using pig dataset in Cleveland et al. (2012) (n = 3534, 
p = 50, 436). The average correlation is less than 0.001.
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h2 = 0.3, QTL%=1% are shown in Fig. 5b, and similar results were 
observed for all the other scenarios. The results for all scenarios 
are listed in Table 2, where each value is the average correlation 
from 10 replicates.

Local genetic variances
For GWAS, the genetic variance captured by a genomic window is 
of interest due to the fact that highly correlated SNPs within a gen
omic window jointly affect the phenotype, and it is difficult to 
identify the effect of a single marker (Hayes et al. 2010). In 
GWAS, local genetic variances can be used to estimate window- 
based posterior probabilities of association (WPPA) (Fernando 
et al. 2017). Here, we divided the pig reference genome into 2,522 
nonoverlapping genomic windows, where each window contains 
about 20 SNPs. The genetic values that are attributed to each 

genomic window were sampled from their posterior distributions 
using MCMC.

Overall, the correlation between local genetic variances esti
mated using plaintext or cyphertext was about 0.9923. The results 
of one replicate from the scenario with h2 = 0.3, QTL%=1% are pre
sented in Fig. 5c, and similar results were observed for all other 
scenarios. The results for each scenario are listed in Table 3, where 
each value represents the average correlation from 10 replicates.

Joint analysis of cyphertext from multiple 
contributors
To perform joint cyphertext analysis, the 3,534 individuals in the 
pig dataset were split into 2 datasets (n1 = 500, n2 = 3, 034), model
ing the scenario of 2 data contributors. The genotypes were inde
pendently centered within each contributor to have 0 means. The 
simulated phenotypes data in the scenario with heritability of 0.3 
and 10% QTLs were used. The plaintext phenotypes, genotypes, 
and covariates were independently encrypted by each contribu
tor. For example, for contributor 1, the encrypted genotype data 
are M∗1 = P1M1 with P1 of size n1 × n1, and for contributor 2, the en
crypted genotype data are M∗2 = P2M2 with P2 of size n2 × n2. Only 
the cyphertexts were shared, not the encryption keys P1 or P2. 
We repeated the previous analyses using the joint cyphertexts 
and the joint plaintexts. Using the joint cyphertexts yielded re
sults very similar to those using the joint plaintexts.

Moreover, using joint cyphertexts to estimate parameters re
sulted in significantly higher prediction accuracies than only 
using the data from a single-data contributor. This is to be ex
pected, as a larger sample size improves parameter inference. 
For the 500 individuals in contributor 1, we calculated their EBV 

Fig. 5. Results from one replicate in the simulation scenario with h2 = 0.3 and QTL%=1%. Each dot represents a pair of results calculated from plaintext 
(x-axis) vs cyphertext (y-axis). The diagonal line indicates when the plaintext and cyphertext result in the same estimates. a) Comparison between 
estimated marker effects α̂plaintext and α̂cyphertext (correlation = 0.9971). b) Comparison between EBV Mα̂plaintext and Mα̂cyphertext (correlation = 0.9997). The 
pig genotypes data were used (M). c) Comparison between local genetic variances of 2,522 nonoverlapped genomic windows (correlation = 0.9983).

Table 1. Pearson correlations between estimated marker effects 
from plaintext vs ciphertext in different simulation scenarios.

h2

0.1 0.3 0.5 0.7

QTL% 1% 0.9937 0.9950 0.9957 0.9961
10% 0.9928 0.9927 0.9926 0.9928
50% 0.9898 0.9937 0.9916 0.9911

100% 0.9906 0.9932 0.9925 0.9920

Each value is the averaged correlation from 10 replicates.

Table 2. Pearson correlations between EBV calculated using 
marker effects estimated from cyphertext (Mα̂cyphertext) and EBV 
calculated using the marker effects estimated from plaintext 
(Mα̂plaintext).

h2

0.1 0.3 0.5 0.7

QTL% 1% 0.9993 0.9997 0.9998 0.9998
10% 0.9992 0.9996 0.9997 0.9997
50% 0.9992 0.9996 0.9997 0.9997

100% 0.9992 0.9995 0.9997 0.9997

Each value represents the average correlation across 10 replicates.

Table 3. Pearson correlations between local genetic variances of 
2,522 nonoverlapping genomic windows calculated from 
plaintext or cyphertext.

h2

0.1 0.3 0.5 0.7

QTL% 1% 0.9954 0.9950 0.9966 0.9968
10% 0.9895 0.9923 0.9929 0.9943
50% 0.9908 0.9946 0.9932 0.9924

100% 0.9728 0.9934 0.9936 0.9933

Each value represents the average correlation from 10 replicates.
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using marker effects estimated from the joint data (M1α̂joint), as 
well as using marker effects estimated from only contributor 1’s 
data (M1α̂sub1). The comparison between the accuracy of M1α̂joint 

and M1α̂sub1 is shown in Fig. 6, where each dot represents the re
sult of one replicate. The joint data resulted in significantly higher 
accuracy than using data from a single contributor (pairwise t-test 
P−value < 0.0005). The same conclusions were drawn for con
tributor 2.

Discussion
Overview
In this study, we have built on the HEGP methodology introduced 
in Mott et al. (2020b) to show how it can be extended to the wide 
class of mixed models including Bayesian Alphabet models that 
are commonly used in animal and crop quantitative genetics. 
We have also shown how joint analysis of multiple datasets fits 
into this framework and confirmed the increase in prediction 
accuracy of breeding values expected from joint analyses, with 
plaintext analyses also holds for cyphertext. Note that the esti
mated marker effects using encrypted data are the same as those 
using the raw data.

HEGP enables adherence to, and capitalizes on, the benefits of 
the FAIR principles in genome-to-phenome studies. In the context 
of animal and crop breeding, it also addresses many of the priv
acy, intellectual property, and commercial interest issues that 
prevent the sharing and reuse of data for both research and indus
try applications.

Alternatives
The principal alternative strategy to sharing genotype and pheno
type data is to share GWAS summary statistics, for example, 
marker regression coefficient estimates and their standard errors. 
This approach is most suited to single-marker regression analyses 

that are typical in human studies (MacArthur et al. 2021). To this 
end, databases have been built to collect GWAS summary statis
tics (Welter et al. 2014; MacArthur et al. 2017; Buniello et al. 
2019), and methods have been proposed to facilitate large 
meta-analyses needed for the increased power in dissecting the 
genetic basis of complex traits (Yang et al. 2012; Vilhjálmsson 
et al. 2015; Barbeira et al. 2018; Lloyd-Jones et al. 2019; Privé et al. 
2020; Werme et al. 2022; Yengo et al. 2022). However, 
meta-analyses based on these summary statistics rely heavily 
on approximations due to unavailability of the individual-level 
data. HE methods such as HEGP do not require such approxima
tions, provided they factorize into a prior distribution of the mar
kers multiplied by the Gaussian likelihood of the data, and can be 
fitted by MCMC methods such as Gibbs sampling.

Rounding errors
In HEGP, the individuals’ plaintext identities, phenotypes, and 
genotypes are obscured by premultiplying by a high-dimensional 
random orthogonal matrix. In the resulting cyphertext, the rela
tionships between SNPs, and between SNPs and phenotypes 
are preserved, but the relationships between individuals are 
scrambled—in fact, the concept of an individual is nonsensical 
after encryption, as records in the encrypted data are random 
linear combinations of the original individuals’ records. 
Theoretically, plaintext and cyphertext should yield identical es
timates of marker effects and other parameters, but due to 
rounding errors, as well as Monte Carlo errors in the case of mod
els using MCMC, the estimated marker effects are not identical 
but rather very similar, with correlations close to 1.0. In detail, 
rounding errors occur because the off-diagonal elements of PTP 
are very small values, ∼ 10−13. Mott et al. (2020b) reported that 
rounding errors were negligible for P with dimensions up to 
10, 000 × 10, 000. To alleviate the problem of rounding errors 
for a very large dataset, P can be constructed as a block-diagonal 
matrix, where each block is a random orthogonal matrix.

Fig. 6. The prediction accuracies of EBV for 500 individuals in a single data 
contributor. Each dot represents a pair of results calculated either using 
only this contributor’s data (x-axis) or using the joint data from all 
contributors (y-axis). Joint analyses had significantly higher accuracies 
than those using data from a single contributor (pairwise t-test 
P−value < 0.0005).

Fig. 7. Time to generate a random orthogonal matrix from the Stiefel 
manifold. The x-axis is the size of P matrix (i.e. number of individuals) and 
the y-axis is the computation time.

8 | T. Zhao et al.



Time complexity
The time taken to generate a random n × n orthogonal matrix P 
from the Stiefel manifold is proportional to n3, where n is the num
ber of individuals, being dominated by the eigen decomposition. 
The time taken to multiply the plaintext by P to produce the cy
phertext is proportional to pn2, where p is the number of markers. 
In a computer server with 5 cores, generating P for the pig dataset 
(n = 3, 534) took less than 1 min. For a dataset with 10,000 indivi
duals, the time to generate P was about 5 min. However, the 
time to generate P for 50,000 individuals was about 8 h. As shown 
in Fig. 7, running time increased rapidly as sample size increased.

In practice, with hundreds of thousands of individuals, 
many relatively small random orthogonal matrices (e.g. 
50, 000 × 50, 000) could be generated in parallel, and then a large 
block-diagonal orthogonal matrix could be constructed, with 
each block being a random orthogonal matrix (i.e. a block- 
diagonal random orthogonal matrix). This larger block-diagonal 
orthogonal matrix, as well as any permutation of such a matrix, 
can be used as the encryption key.

The size of the cyphertext is the same as the plaintext and, 
therefore, the computational effort required for each iteration in 
MCMC is comparable. In our analysis of the pig dataset 
(Cleveland et al. 2012), the number of MCMC iterations necessary 
to ensure the convergence of the MCMC process was also similar 
between analysis of the plaintext and the cyphertext.

Security
With an appropriately sampled HEGP encryption key, the correl
ation between raw and encrypted data resembles that between 
two random vectors. For the pig dataset (Cleveland et al. 2012), 
the absolute Pearson correlation between raw and encrypted mark
er genotypes was almost always less than 0.03. To increase the se
curity of the encrypting and lower the risk of discovery of the 
decryption key, genotypes for SNPs with very low minor allele fre
quencies should not be shared. Since only cyphertext are shared, 
the unknown nature of the plaintext genotypes M makes it difficult 
to evaluate decryption attempts. To date, decryption attacks have 
been proven ineffective (Mott et al. 2020b), even when M was avail
able for evaluation. However, further exploration is still needed to 
determine whether HEGP is cryptographically secure.

Protocols for data sharing in HEGP
Finally, we mention some points to consider when sharing HEGP 
cyphertext. First, it is necessary for all contributors to agree on a 
common set of markers and covariates to be shared, and on 
whether phenotypes are to be residualized by removing covariate 
effects before sharing—in which case the cyphertext versions of 
covariates need not be shared—or afterwards, during the joint 
analysis. Second, missing genotypes, covariates, and phenotypes 
must be imputed, either for markers not genotyped in a particular 
contributor’s data, or to fill in sporadic missing values (HEGP does 
not allow missing data). Third, the sharing topology must be agreed 
upon: each cyphertext could be shared with all contributors, so that 
each participant could conduct their own analysis, or instead, it 
could be shared only with a trusted third party who would perform 
the agreed-upon analysis. Fourth, although the joint analysis’ par
ameter estimates do not need decrypting, the parties may want to 
agree beforehand on their subsequent use and dissemination.

These considerations would likely require the contributors to 
set up a protocol for data sharing, reflecting the sensitivity and 
value of the component datasets, and which will likely vary de
pending on circumstances and commercial considerations. 

Notwithstanding the HEGP-specific technical requirements, 
such a protocol should be simpler to implement than agree
ments involving the sharing of plaintext data.

Data availability
Pig genotypes used in the analysis are publicly available in 
Cleveland et al. (2012). The simulated phenotypes and all scripts 
are available at https://github.com/zhaotianjing/encryption. The 
authors state that all data necessary for confirming the conclusions 
presented in the article are represented fully within the article.
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Appendix
Homomorphic encryption for single-marker 
analysis in GWAS
Mott et al. (2020b) proposed the HEGP method for single-marker re
gression in GWAS using linear mixed models with Gaussian er
rors, where the raw genotypes and phenotypes data were 
premultiplied by a high-dimensional random orthogonal matrix. 
Mott et al. (2020b) showed that such encryption does not change 
the likelihood of the quantitative trait in the GWAS model, a point 
we will illustrate further below. For more details, refer to Mott et al. 
(2020b).

In detail, for n individuals genotyped with p markers, the raw 
genotypes and phenotypes matrix were premultiplied by the 
same random orthogonal matrix as

M∗ = PM
y∗ = Py,

(A1) 

where M is an n × p genotype matrix, y is the vector of phenotypes 
of length n, P is an n × n random orthogonal matrix whose columns 

and rows are orthonormal vectors (i.e. PT = P−1), and M∗ and y∗ are 
encrypted genotypes and phenotypes, respectively. The covariate 
matrix X should be encrypted as well, producing X∗ = PX.

In GWAS, the linear model used to test the significance of jth 
SNP (j = 1, . . . , p) is

y = Xβ + mjαj + u + e

= Xβ + mjαj + ϵ,
(A2) 

where y is the phenotype, X is the covariate matrix, β is the fixed 
effects of covariates, mj is the (centered and scaled) genotypes 

of jth SNP, αj is the regression coefficient of jth SNP. u is a random 

vector for polygenic effects with u ∼ N(0, Gσ2
u), and e is a random 

vector of residuals with e ∼ N(0, Iσ2
e ). Thus, the variance of y is 

var(y) = Gσ2
u + Iσ2

e = V.
Applying orthogonal encryption, the above GWAS model 

becomes

Py = PXβ + Pmjαj + Pϵ
y∗ = X∗β + m∗j αj + ϵ∗, (A3) 

where the variance of encrypted phenotypes becomes 

var(Py) = PVPT. We showed in equation (8) that the likelihood is in
variant under orthogonal transformation. Thus, HEGP leaves 
likelihood-based inferences for GWAS model—used to test the 
significance of a single marker—unaffected. This includes the 
maximum likelihood parameter estimates and P-values for 
likelihood-based tests of significance.

Gibbs sampler for the linear mixed model
The full conditional posterior distributions of parameters of inter
est in SNP-BLUP and BayesCπ are shown below. More details can 
be found in Fernando and Garrick (2013).

Residual variance
The full conditional posterior distribution of residual variance σ2

e 

follows a scaled inverse chi-square distribution with n + νe degrees 
of freedom and scale parameter e

Te+νeS2
e

n+νe
. That is,

f (σ2
e ∣ ELSE) ∝ (σ2

e )−n+νe+2
2 exp −

1
2σ2

e
(eTe + νeS2

e )
􏼔 􏼕

, (A4) 

where e is the residuals. Since (e∗)T(e∗) = eTPTPe = eTe, the full 

conditional posterior distribution of σ2
e is unchanged with the 

encrypted data.

Marker effect variance
The full conditional posterior distribution of σ2

α follows a scaled in
verse chi-square distribution with k + να degrees of freedom and 
scale parameter αTα+ναS2

α
k+να

, where k =
􏽐

δj is the number of markers 
included in the model. In detail,

f (σ2
α ∣ ELSE) ∝ (σ2

α)−k+να +2
2 exp −

1
2σ2

α
(αTα + ναS2

α)
􏼔 􏼕

. (A5) 

We have proven that α is unchanged with the encrypted data, and 

thus, the full conditional posterior distribution of σ2
α is also 

unchanged.

Fixed effects
The full conditional posterior distribution of jth fixed effects βj fol

lows a univariate normal distribution with mean 
xT

j
(y−Mα−

􏽐
j′≠j

xj′ βj′)

xT
j
xj 

and variance σ2
e

xT
j
xj

.

Given X∗ = PX, we have

[x∗1, . . . , x∗p] = P[x1, . . . , xp]

= [Px1, . . . , Pxp].
(A6) 

Thus, the xT
j xj is unchanged using encrypted data since

(x∗j )T(x∗j ) = (Pxj)
T(Pxj)

= xT
j xj.

(A7) 

The xT
j y is also unchanged using encrypted data since

(x∗j )T(y∗) = (Pxj)
TPy

= xT
j y.

(A8) 

Similarly, xT
j M and xT

j xj′ are also unchanged using encrypted data. 

Thus, the full conditional posterior distribution of βj is unchanged.

Indicator variables
In BayesCπ, an indicator Bernoulli variable δj is introduced for lo
cus j that is 1 with probability 1 − π and 0 with probability π. The 
full conditional posterior distribution of indicator variable δj is

f δj = 1 ∣ ELSE
􏼐 􏼑

=
f1 rj ∣ σ2

α, σ2
e

􏼐 􏼑
f δj = 1
􏼐 􏼑

f0 rj ∣ σ2
e

􏼐 􏼑
f δj = 0
􏼐 􏼑

+ f1 rj ∣ σ2
α , σ2

e

􏼐 􏼑
f δj = 1
􏼐 􏼑 ,

(A9) 

where f1(rj ∣ σ2
α , σ2

e ) is a univariate normal distribution with

E rj ∣ σ2
α, σ2

e

􏼐 􏼑
= 0, Var rj ∣ σ2

α, σ2
e

􏼐 􏼑
= mT

j mj

􏼐 􏼑2
σ2

α + mT
j mjσ2

e 

and f0(rj ∣ σ2
e ) is a univariate normal distribution with

E rj ∣ σ2
e

􏼐 􏼑
= 0, Var rj ∣ σ2

e

􏼐 􏼑
= mT

j mjσ2
e 
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and

rj = mT
j y − Xβ −

􏽘

j′≠j

mj′ αj′ δj′

⎛

⎝

⎞

⎠.

We have showed that rj and mT
j mj are unchanged with encrypted 

data. Thus, the full conditional posterior distribution of δj is 

unchanged.

Inclusion probabilities
In BayesCπ, the full conditional posterior distribution of inclusion 
probability π follows a Beta distribution with shape parameter 
p − k + 1 and k + 1. That is,

f (π ∣ ELSE) ∝ π(p−k)(1 − π)k. (A10) 

Using encrypted data will not affect the full conditional posterior 
distribution of π.

12 | T. Zhao et al.


	Using encrypted genotypes and phenotypes for collaborative genomic analyses to maintain data confidentiality
	Introduction
	Materials and methods
	HE using high-dimensional random orthogonal matrix
	Conceptual overview
	Relationships between SNPs and between individuals

	Statistical preliminaries
	Mixed models

	Unchanged likelihood using HEGP
	Inference of unknowns in mixed model
	Joint analysis using encrypted data from multiple contributors
	Security of HEGP
	Decryption without knowledge of the key

	Data analysis

	Results
	Estimated marker effects and breeding values
	Local genetic variances
	Joint analysis of cyphertext from multiple contributors

	Discussion
	Overview
	Alternatives
	Rounding errors
	Time complexity
	Security
	Protocols for data sharing in HEGP

	Data availability
	Funding
	Conflicts of interest
	Literature cited
	Appendix
	Homomorphic encryption for single-marker analysis in GWAS
	Gibbs sampler for the linear mixed model
	Residual variance
	Marker effect variance
	Fixed effects
	Indicator variables
	Inclusion probabilities






