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Sex-specific single cell-level
transcriptomic signatures of Rett
syndrome disease progression

Check for updates

Osman Sharifi 1,2,3, Viktoria Haghani 1,2,3, Kari E. Neier1,2,3, Keith J. Fraga2,4, Ian Korf2,4,
Sophia M. Hakam1,2,3, Gerald Quon 2,4, Nelson Johansen2,4, Dag H. Yasui 1,2,3,5 &
Janine M. LaSalle 1,2,3,5

Dominant X-linked diseases are uncommon due to female X chromosome inactivation (XCI). While
random XCI usually protects females against X-linked mutations, Rett syndrome (RTT) is a female
neurodevelopmental disorder caused by heterozygousMECP2mutation. After 6-18months of typical
neurodevelopment, RTT girls undergo a poorly understood regression. We performed longitudinal
snRNA-seq on cerebral cortex in a construct-relevant Mecp2e1 mutant mouse model of RTT,
revealing transcriptional effects of cell type, mosaicism, and sex on progressive disease phenotypes.
Across cell types, we observed sex differences in the number of differentially expressed genes (DEGs)
with 6x more DEGs in mutant females than males. Unlike males, female DEGs emerged prior to
symptoms, were enriched for homeostatic gene pathways in distinct cell types over time and
correlated with disease phenotypes and human RTT cortical cell transcriptomes. Non-cell-
autonomous effects were prominent and dynamic across disease progression of Mecp2e1 mutant
females, indicating that wild-type-expressing cells normalize transcriptional homeostasis. These
results advance our understanding of RTT progression and treatment.

Rett syndrome is aneurodevelopmental disorderprimarily affecting females
and is characterized by a range of symptoms such as loss of speech, motor
abnormalities, and developmental regression at about 6–18months of age1.
Rett syndrome most often occurs through spontaneous missense or trun-
cationmutations, thereby predominantly affecting XX females2. Males with
MECP2 mutations that survive infancy are rare but can be observed
in clinical phenotypes ranging from severe neonatal encephalopathy to
cognitive impairment3.MECP2 encodes the DNA binding protein, methyl
CpG binding protein 2 (MeCP2), which is a critical regulator of neuronal
gene expression in the brain. Among the two alternatively splicedMECP2
transcripts, only the MeCP2e1 isoform contributes to RTT disease
phenotypes4. However, most mouse studies of RTT utilize the exon 3-4
knockout model in Mecp2-/y males, which is a null model effective for
studying MeCP2 function, but not a construct- or sex-relevant model for
human RTT5. RTT females are heterozygous for MECP2 (MECP2-/+)
mutations and are therefore mosaic for bothMECP2wild-type andmutant
cells in the brain. Prior studies in Rett syndrome suggest potential non-cell-
autonomous effects of MeCP2 deficiency on wild-type expressing cells in

the brain, but these effects have been poorly characterized at a cellular and
molecular level6–8. RTT is characterized by a seemingly typical development
in infancy, followed by progressive stages of regression in developmental
milestones beginning around 6–18months of age and lasting through early
adulthood1. We have previously demonstrated that the Mecp2e1 deficient
mouse model of RTT, modeled after a human mutation, recapitulates the
RTT-relevant extended period of disease symptom progression4,9,10. How-
ever, it is not known when and in which cell types the molecular changes
responsible for disease progression occur in MECP2 mutant females ver-
sus males.

To explore the effects of cellular mosaicism, sex, and cell type on the
progression of disease in Rett syndrome, we employed single nuclei RNA-
seq (snRNA-seq 5’) analysis in the cerebral cortex of the Mecp2e1 mutant
mouse model. We examined the influence of sex, cell type, cellular mosai-
cism, and disease stage, correlated with progressive disease phenotypes
using a systems-level perspective. These results demonstrate that MeCP2
deficiency in females results shows an inherently different disease pro-
gression at the cellular and molecular level compared to males, involving

1Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA. 2Genome Center, University of California, Davis, CA, USA.
3MIND Institute, University of California, Davis, CA, USA. 4Cellular andMolecular Biology, College of Biological Sciences, University of California, Davis, CA, USA.
5These authors contributed equally: Dag H. Yasui, Janine M. LaSalle. e-mail: jmlasalle@ucdavis.edu
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stage-specific, non-cell-autonomous transcriptional changes to homeostatic
gene pathways that correlate with disease phenotypes and stages.

Results
Experimental design to test longitudinal, cellular, and sex-
specific transcriptional dysregulation in a symptomatically pro-
gressive mouse model of Rett syndrome
To identify sex, cell type, and disease stage specific transcriptional differ-
ences in Mecp2e1 deficient mouse cortex, single nuclei RNA sequencing
(snRNA-seq 5’) analysis was performed to include the engineeredmutation
at the 5’ translational start site of theMecp2e1 isoform4. Four longitudinal
post-natal time points were chosen to correspond to pre-symptomatic
(PND 30), disease onset (PND 60) and late disease stages (PND 120 for
Mecp2e1-/y males, PND 150 for Mecp2e1-/+ females) compared to sex-
matchedwild-type (WT) littermates9,10 (Fig. 1a).A total of 28 cortex samples
were used, including twoper timepoint and genotype formales (PND30, 60,
120) and twoper genotype for females at PND30and 60), but four replicates
per genotype were used in females at P150 in order to study mosaicism
(Table 1).

Cortical nuclei were assigned to 14 different cell types based on 3,000
cell marker genes from the Allen brain atlas cortex transcriptomics data11.
93,798 cells from both sexes, four genotypes and four time points were all
clustered unsupervised (Fig. 1b). Four excitatory neuron cell types were
identified, corresponding with cortical layers 2 to 6 (L2-6), as well as five
inhibitory cell types (Pvalb, Vip, Sst, Sncg, Lamp5) and five non-neuronal
cell types (pericytes, endothelial, oligodendrocytes, astrocytes, non-
neuronal including microglia). Unbiased marker genes for all 14 cell types
were identified, supporting the distinction of our candidate cell
types (Fig. 1c).

Five separate hypotheses were tested, comparing cells across different
genotypes and expression phenotypes (mutant vswild-type-expressing cells
within females). In addition to comparing cells from Mecp2e1-/y to
Mecp2e1+/y (experiment 1) and Mecp2e1-/+ to Mecp2e1+/+ (experiment 2),
wild-type Mecp2e1 expressing cells from the Mecp2e1-/+ females were
compared to the wild-type expressing cells from the Mecp2e1+/+ (experi-
ment 3) and mutantMecp2e1 expressing cells from theMecp2e1-/+ females
were compared to either wild-type expressing cells from the Mecp2e1+/+

(experiment 4) or wild-type expressing cells within Mecp2e1-/+ females
(experiment 5) to test for cell non-autonomous effects (Fig. 1d).

Sexually dimorphic trajectories of transcriptional dysregulation
across cortical cell types
To accurately characterize alterations in gene transcript abundance, four
computational methods for identifying differentially expressed genes
(DEGs) from single nucleus RNA sequencing (snRNA-seq) data were
evaluated with single-cell data sets (Limma-VoomCC, Limma, EdgeR, and
DESeq2) with partial overlap (Supplementary Fig. 1a). An overlap of DEGs
between EdgeR and Limma-VoomCC showed that Limma-VoomCC
identifies mostly the same DEGs, but EdgeR identifies many more DEGs
that likely include many false positives, as highlighted by Squair et al.12

(Supplementary Fig. 1b). Ultimately, Limma-VoomConsensus Correlation
(Limma-VoomCC) was selected for DEG analysis based on the ability to
reveal high expressing DEGs amongst diverse gene transcripts expressed13.
Further, Limma-VoomCCcontrolled for the inter-correlations of cells from
the same animals14,15. Overall, Limma-VoomCC analyses of all cell types in
experiments 1 and 2 revealed a total of 1440 significantDEGs after adjusting
for false discovery (Table 1). In males from experiment 1, 165 or 85%
showed higher and 30 or 15% showed lower transcript levels in Mecp2e1
mutant cortical cells compared to wild-type controls across the three time
points, with fold changes ranging from a low of −1.99 for Sst to a high of
+2.31 for Cst3. In females from experiment 2, 282 or 22% showed higher
and 959 or 77% showed lower transcript levels inMecp2e1mutant cortical
cells compared to wild-type controls across the three time points, with fold
changes ranging from a low of −2.69 for Snhg11 to a high of +3.47 for
Ay036118 (Supplementary Data 1). DEsingle was also used as a

complementary approach to identify lower confidenceDEGs for transcripts
expressed at low levels (Supplementary Fig. 2). To ensure that DEGs
detectedwere not due to changes in cell types, we examined cell proportions
which did not show changes over time (Supplementary Fig. 3). Cell clus-
teringbasedoncell type, timepoint, sex andMecp2e1genotypedidnot show
evidence of batch effects (Supplementary Fig. 4a–d). Furthermore, an
analysis of the top high and low expressing genes showed that brain samples
from replicate mice were consistent (Supplementary Fig. 5).

Analysis of DEGs by Limma-VoomCC, DEsingle, and EdgeR revealed
that cell type transcriptional changes associated with Mecp2e1 deficiency
were markedly different by sex and disease stage in multiple cortical cell
types and that these differences were consistent across bioinformatic
methods (Fig. 2, Supplementary Fig. 2a–f). At the pre-symptomatic stage,
Mecp2e1-/y male P30 from experiment 1 cortical cells had only 9 DEGs
comparedwith wild-type, including 3DEGs in L2/3 neurons, 4 DEGs in L4
neurons (including immediate early genes Arc and Junb), and 1 DEG
(AC149090.1) in Lamp5 and Vip neurons (Fig. 2a). In contrast,Mecp2e1-/+

female from experiment 2 single cortical cells showed the strongest tran-
scriptional dysregulation, for a total of 1215 DEGs at P30 (Limma-
VoomCC). Interestingly, Mecp2e1-/+ female Pvalb DEGs at P30 had a sig-
nificant (p-value ≤ 0.00075) enrichment of imprinted genes, including
Meg3, Xist, Gnas, Kcnq1ot1, Np1l5, Ntm, Peg3 and Snrpn (Fig. 2b), a result
that was not observed in males.

At the disease onset P60 timepoint, 73 DEGs were identified in
Mecp2e1-/ymales, with 56DEGs in L2/3 neurons, but also including 7DEGs
in astrocytes, 4 DEGs in L4 and 6 in Scng neurons and 1 DEG in L6 and Sst
neurons (Fig. 2c).Mecp2e1-/+ female cortical cells had 47 DEGs, with 46 in
L6 excitatory neurons and 1 DEG in Sncg inhibitory neurons (Fig. 2d).
Further, Mecp2e1-/+ female DEGs at P60 included AY036118 (+3.47-fold
change), Ptprd, Edil3, Ptgds, Plp1, Atp6v0b, Kcn11ot1, Gria2, Nrxn1,
Arpp21, Snhg11.Mecp2e1-/+ females had 3 DEGs with 2 in VIP inhibitory
neurons and 1 DEG in Pvalb inhibitory neurons.

By the late disease P150 time point, only VIP interneurons contained
DEGs in Mecp2e1-/+ cortical cell types, including long non-coding RNAs
Snhg11 (p value = 0.0043) and Meg3 (p-value = 0.017). Remarkably,
Mecp2e1-/+ female cortical cells were most transcriptionally dysregulated
prior to the onset of symptoms, as the number of DEGs decreased in
number as disease symptoms progressed (Fig. 2d). Overall,Mecp2e1-/ymale
DEGs increased in number with disease progression, but Mecp2e1-/y male
cortical cell types had only 199DEGs across all three time points, whichwas
only 16.3% of the totalMecp2e1-/+ female DEGs (Fig. 2c, d).

To identify enriched functional pathways connecting RTT transcrip-
tional progression, Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis was performed using the DEGs (Limma-VoomCC, p-value ≤ 0.05)
from each cell type.KEGGpathways that were persistent over P30, P60, and
P120 inMecp2e1-/y male cortical cells or P30, P60 and P150 inMecp2e1-/+

female cortical cells are shown (Fig. 2e, f, Supplementary Data 2). Distinctly
different pathway dysregulation was observed betweenMecp2e1-/+ females
and Mecp2e1-/y male cortical cells by two key metrics. First, Mecp2e1-/+

cortical cell DEGs were enriched for 18 different pathways consistently
across time points, compared to only two inMecp2e1-/y males, of which only
gastric acid secretion overlaps with Mecp2e1-/+ pathways. Second, specifi-
cally in pre-symptomatic P30 Mecp2e1-/+ females, Pvalb and Sst neurons
shared 14 enriched pathways including synaptic vesicle cycle, retrograde
endocannabinoid signaling, oxytocin signaling, morphine addiction, long-
term potentiation, insulin secretion, glutamatergic synapse, gastric acid
secretion, dopaminergic synapse, circadian entrainment, cAMP signaling
pathway, amphetamine addiction, Alzheimer’s disease, and aldosterone
synthesis and secretion (Fig. 2f) compared to only the gastric acid secretion
pathway at the disease onset P60 and late disease P120 time point in
Mecp2e1-/y males (Fig. 2e). Interestingly, by symptom onset at P60 in
Mecp2e1-/+ females, 6 dysregulated KEGG pathways including nicotine
addiction, long-term potentiation, insulin secretion, glutamatergic synapse,
cAMP signaling, and amphetamine addiction (found in P30 Pvalb and Sst
neurons) were distinctly significantly enriched in L5 and L6 excitatory
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Fig. 1 | A scheme showing the overall mouse study design. aCortical samples were
collected from postnatal mice at four different timepoints corresponding to three
different disease stages (n = 28). Four different Mecp2e1 genotypes were considered
that include both sexes. b UMAP of the unsupervised clustering of cell types
(n = 93,798 cells post QC) identified. Cell type labels were transferred from39 Yao
et al. 2021. cTop genemarkers for each cell type are shown on y-axis. The color refers

to the average expression of genes in a cell type and the percent expressed describes
the percentage of cells within a cell type that express each gene marker. d Design of
computational experiments comparing mutant toWT cells frommice of both sexes.
Experiments 3 to 5 are comparing subtypes of cells in females due to X chromosome
inactivation to examine potential non-cell-autonomous effects ofMecp2e1 muta-
tion. Figure 1a, d is made using Biorender.
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neurons (Fig. 2f). At the late disease P150 timepoint, Mecp2e1-/+ female
cortical astrocytes remarkably were significantly enriched for 15 out of the
18 total convergent KEGG pathways (Fig. 2f). While some of the reduced
KEGG pathway enrichment in Mecp2e1 deficient males compared to
females could be due to fewer DEGs observed overall and especially at the
pre-symptomatic stage in Mecp2e1-/y cortical cells, the significant enrich-
ment of ubiquitin mediated proteolysis specifically atMecp2e1-/y P30 when
DEGswere fewest (Fig. 2e) suggests thatDEGnumber is less important than
the specificity of gene pathways dysregulated in the maleMecp2e1-/y mouse
model.We also performed an enrichment analysis for DEGs based on gene
length, but did not find evidence to support the previously reported
repression of long genes in Mecp2 deficient neurons of either sex16 (Sup-
plementary Fig. 6).

Co-expression networks of dysregulated genes within cortical
cell typescorrelatewithMecp2e1genotype, timepoint, sex,body
weight, and disease score
To complement the DEG analysis, we performed a systems-biology based
approach, High-Definition Weighted Gene Co-expression Network Ana-
lysis (hdWGCNA) which is specifically designed for analysis of high
dimensional data such as snRNA-seq17–19 (Fig. 3). hdWGCNAgroups genes
that are co-expressed together into colored modules based on scale-free
topology17,19 and was used to define nine distinct modules based on co-
expression within a network built from transcriptomes of all detected genes
from all cell types and experimental conditions. Genes in eachmodule were
compared to cell type marker genes to identify modules that uniquely
correlate with phenotype (Supplementary Fig. 7). In co-expression network
analysis,we focus on thehubgenes, thosewhich arehighly connectedwithin
each module. Therefore, we determined the eigengene-based connectivity,
also knownas kME, of eachgene.The top 10 rankedco-expressedhubgenes
were identified per module (Fig. 3a) and expression enrichment for each
cortical cell type was determined, whichwas distinct from cell typemarkers
(Fig. 3b). The blue hdWGCNAmodule corresponded to genes enriched in
oligodendrocytes, while themagentamodule genes were enriched in L5 and
L6 neurons, with Sez6 andNrp1 as hub genes. The brownmodule included
Grin2a, Grin2b, and Camk2a and the black module included Slit3 and
Gabrb3 enriched in excitatory neurons (L2-3, L4, L5, L6) showed similar
cellular patterns of expression. The green module genes like Grik1 and
Adarb2 were most highly expressed in inhibitory neurons. In contrast, the
turquoise, pink, red and yellow modules are more cell type independent,
being enriched in all neuronal subtypes (Fig. 3b).

To explore the relationship between cortical co-expression gene net-
works anddisease progression inRett syndrome, the eigengene value of each
sample within each module was correlated with the body weight, disease
score, genotype, sex, anddisease timepoint of eachmouse. Eigengene values
were calculated for all cortical cells, as well as each cell type individually, so
that correlations with each variable of interest could be examined for each
cell type (Fig. 3c, Supplementary Fig. 7). While the genes within each
module partially overlapped with those that served as cell type markers, the
genes within modules were independent from those that defined cell type
specificity (Supplementary Fig. 7). For all cell types, 6 out of the 9 gene
modules significantly correlated with all phenotypes and experimental
variables, andallmodules showedat least one significant correlation (Fig. 3c,
top row). Yet, certain gene set modules such as green correlated with phe-
notypes in L4, L6 and Sst neurons while the turquoise and blue modules
correlatedmost strongly with phenotypes in all neuronal subtypes (Fig. 3c).
Interestingly, magenta module genes only correlated with genotype in
neurons. Astrocytes were distinct in that only blue and yellow modules
correlated with both disease score and genotype. While most module-
genotype correlations were positive (red), meaning that co-expressed genes
in these modules were upregulated in mutant animals, the blue module
uniquelywas inversely correlated (blue), representing downregulated genes.
Interestingly, module-sex associations were frequent but sometimes were
absent in specific cell types or time points with strong module-genotype
correlations, such as the bluemodule in L6. Pvalb, and Sst neurons (Fig. 3c).T
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Further, genes from each module were tested for KEGG pathway enrich-
ment to identify phenotype correlated dysregulated pathways. Many RTT
disease progression relevant pathways such as glutamatergic synapse,
GABAergic synapse, circadian rhythm and axon guidance were identified
(Supplementary Fig. 8). KEGG analysis for the turquoise module showed
enrichment in neurological pathways such as Alzheimer disease and
metabolic pathways such as choline metabolism (Supplementary Fig. 8).

X chromosome expression mosaicism in female cortical cell
populations reveals dynamic non-cell-autonomous transcrip-
tional homeostasis
To examine non-cell-autonomous effects, we considered all Mecp2
expressing cells within Mecp2e1-/+ mosaic female cortical cells. Within
Mecp2e1-/+ female snRNA-seq data, we identified 1,146 Mecp2 expressing
cells, of which 607 could be genotyped as WT-expressing and 539 were
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Fig. 2 | Sexually-dimorphic dynamic patterns of DEGs andKEGGpathway terms
across time and cell type. aHeatmap of top 5 differentially expressed genes (DEGs)
based on the lowest adjusted p-value ≤ 0.05 comparing male Mecp2e1-/y and
Mecp2e1+/y cortical cells across timepoints (experiment 1). bHeatmap of top 5DEGs
comparing female Mecp2e1-/+ and Mecp2e1+/+ cortical cells across timepoints

(experiment 2). *indicates adjusted p-value ≤ 0.05 (corrected via Benjamini and
Hochberg method). c, d Number of DEGs over time at adjusted p-value ≤ 0.05 for
experiments 1 and 2, respectively. e, f Dot plots showing the KEGG pathway terms
for DEGs (adjusted p-value ≤ 0.1) from each cell type, selected for terms that are
persistent over time for experiments 1 and 2, respectively.
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expressing theMecp2e1mutation (Supplementary Fig. 9). These cells were
clustered based on expression and thus twelve different cell types were
identified (Fig. 4a). To reduce the impact of lower cell counts onDEGcalling
following parsing, we further grouped the Mecp2 expressing cells into two
broad categories of GABAergic neurons and glutamatergic neurons
(Fig. 4b). A summary of the number of DEGs in each of these three broader
cell type categories (glutamatergic, GABAergic, non-neuronal for each of
the five experimental comparisons (Fig. 1d) is shown in Table 1. Limma-
Voom was used for DEG calling of experiments 3, 4 and 5. As expected
based on random XCI, both cell populations (Mecp2_MUT and
Mecp2_WT), were randomly represented in all cell types (Fig. 4a–c). Cells
from the males were also parsed, showing 184 Mecp2_MUT in the
Mecp2e1-/y and 175 Mecp2_WT in theMecp2e1+/y (Supplementary Fig. 9).

In order to examine non-cell-autonomous effects over disease pro-
gression in a cell category specificmanner, we followed the third experiment
design (Fig. 1d) and compared theWT-expressing cells from theMecp2e1-/+

mosaic females to the WT expressing cells from the Mecp2e1+/+ females
(Fig. 4d, Table 1). At P30, both glutamatergic and GABAergic WT-
expressing cells from Mecp2e1-/+ showed a large number of significant

downregulated genes (blue) but a low number of upregulated genes (red),
despite these cell populations being WT-expressing. These differences in
gene expression were likely due to non-cell-autonomous effects of the
Mecp2e1 mutation on nearby WT-expressing cells. Further evidence was
obtained from the experimental comparison from experiment 5, where
mutant-expressing glutamatergic and GABAergic neurons from female
Mecp2e1-/+were compared toWT-expressing cells from femaleMecp2e1-/+,
resulting in only 10 DEGs, compared to 2,216 in experiment 3 (non-cell-
autonomous WT vs WT) (Table 1). This non-cell-autonomous effect was
dynamic over time, as glutamatergic cells showedmostly upregulated genes
with only a few downregulated genes at P60, while GABAergic cells only
showed upregulated genes (Fig. 4d). Interestingly, at the late disease stage
P150, the number of dysregulated genes were diminished and primarily
back to being downregulated, indicating a dynamic process of non-cell-
autonomous effects across disease progression. In order to test this
hypothesis, we overlapped the significant (Limma-VoomCC adjusted p-
value ≤ 0.05) DEGs from each cell type and time point (Fig. 4e, f). In glu-
tamatergic cells, the largest overlap (129 DEGs) was between P30 and P60
and only 3 DEGs were in common to all three time points (Fig. 4e). Similar
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Fig. 3 | hdWGCNA identifies co-expression networks for each cell type in the
mouse cortex that correlated with Mecp2e1 genotype, disease phenotypes,
and sex. a Top 10 hub genes identified for each of the 9 modules generated by
hdWGCNA on entire snRNA-seq dataset, identified by color. The x-axis are all
the genes in each module and the y-axis is the corresponding kME value. b Dot
plot of the average gene expression of the top 10 hub genes in each module

generated for each cortical cell type. c A heat map of correlations between
experimental phenotypes and variables (body weight, disease score, genotype,
time point, sex) and averaged gene expression (eigenmode value) for each cell
type (cell types not shown are in Supplementary Fig. 7a). *, **, *** indicates
FDR-corrected p-value ≤ 0.05, 0.01, and 0.001, respectively. The color bar shows
the Pearson correlation coefficient.
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Fig. 4 | Dynamic non-cell-autonomous effects on differentially expressed genes
and KEGG pathways over disease progression. As shown in Experiment #3
(Fig. 1d), we compared WT cells from Mecp2e1-/+ female with WT cells from
Mecp2e1+/+ glutamatergic and GABAergic neurons longitudinally. a UMAP plot of
cell types identified in the mosaic females. b UMAP plot of the female cortices
showing the clustering of the broad cell type categories. c UMAP plot of mosaic
female cells parsed byMecp2 allele dVolcano plots showing differentially expressed

genes (DEGs) of the mouse cortical neurons contrasting WT cells from WT
Mecp2e1+/+ females and WT cells from Mecp2e1-/+ mosaic females. e, f Venn dia-
grams of overlapping glutamatergic and GABAergic DEGs respectfully over time.
g, i Venn diagrams of significant KEGG terms of glutamatergic and GABAergic
neurons over time.h. Top 10KEGG terms of glutamatergic neurons over time. j. Top
10 KEGG terms of GABAergic neurons over time.
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results were seen in GABAergic neurons, where DEGs were predominantly
unique to each time point (Fig. 4f).

In order to look for functional pathway enrichments of non-cell-
autonomous effects ofMecp2e1-/+mosaicism, KEGG analysis on significant
DEGs (p-value ≤ 0.05) from glutamatergic and GABAergic neurons was
performed and significant (adjusted p-value ≤ 0.05) terms overlapped
across time (Fig. 4g, i). Non-cell-autonomous DEGs from glutamatergic
cells were enriched for 8 terms that were shared across all disease stages
which include Parkinson, Alzheimer, and Huntington diseases, as well as
homeostatic pathways of retrograde endocannabinoid signaling, ubiquitin
mediated proteolysis, oxidative phosphorylation, and protein processing in
endoplasmic reticulum, while the P60 time point was uniquely enriched for
terms such as GABAergic synapse and SNARE interactions in vesicular
transport (Fig. 4h). Further, glutamatergic cells showed molecular dysre-
gulation associated with MeCP2 activity such as mRNA surveillance
pathway, cholinergic synapse, and AMPK signaling pathway (Fig. 4h). In
contrast, GABAergic cells shared axon guidance as an enriched pathway
common across all time points (Fig. 4i). Other interesting RTT related
pathways included metabolism and energy related terms such as riboflavin
metabolism, phosphonate and phosphonate metabolism, choline metabo-
lism, and alanine, aspartate, and glutamate metabolism (Fig. 4j).

In order to compare these non-cell-autonomous effects to cell-
autonomous effects over the disease progression in a cell category specific
manner, we followed the fourth experiment design (Fig. 1d) and compared
the MUTMecp2e1 expressing cells from theMecp2e1-/+ mosaic females to
the WT Mecp2 expressing cells from the Mecp2e1+/+ females (Supple-
mentary Fig. 10a). Similar to the results of experiment 3, glutamatergic and
GABAergic significant DEGs were predominantly time point specific
(Supplementary Fig. 10b, c). Glutamatergic cells had 12 significant KEGG
pathways shared over time while GABAergic cells had 6 significant terms
both containing RTT related pathways such as mRNA surveillance and
circadian rhythm (Supplementary Fig. 10d–g). In order to examine if the
dysregulated KEGG pathways are shared between experiment 3 and
experiment 4, a comprehensive overlap testwas performed showing that the
majority of the pathways are unique to each experiment and each time, with
the glutamatergic and GABAergic P150 KEGG pathways from non-cell-
autonomousDEGs outnumbering those of cell-autonomous (17 in exp 3 vs
1 in exp 4) (Supplementary Fig. 11a, b).

Lastly, we examined non-cell-autonomous effects by comparing
MUT-expressing to WT-expressing cells within the mosaic Mecp2e1-/+

females, as described in experiment 5 (Fig. 1d). Overall, glutamatergic and
GABAergic neurons had only a few genes dysregulated which were mostly
at P150 when analyzed separately (Supplementary Fig. 12a). For higher
statistical power in KEGG term enrichment, DEGs glutamatergic and
GABAergic cells were each combined across time points, revealing dysre-
gulated retrograde endocannabinoid signaling and other pathways (Sup-
plementary Fig. 12b, c). The top10 enriched KEGG pathways when both
glutamatergic and GABAergic cells were combined across all time points
included pathways involved in cell signaling and addiction (Supplementary
Fig. 12d). The differences between WT-expressing and MUT-expressing
cellswithinmosaic females in experiment 5were far less than the differences
between WT-expressing cells in mosaic Mecp2e1-/+ females compared to
WT cells in Mecp2e1+/+ females in experiment 4. Together, these analyses
demonstrate that transcriptional dysregulation across disease progression in
mosaicMecp2e1-/+ females is dynamic, disease stage specific and dominated
by non-cell-autonomous effects on homeostatic gene pathways.

Human RTT cortical cell transcriptional dysregulation is recapi-
tulated by the female but not the male RTT mouse model
To examine how closelyMecp2e1-/+mice phenocopy Rett syndrome (RTT)
at the cellular transcriptome level, we examined the relationship between
altered transcript levels by cell type inmouseMecp2e1 deficient and human
MECP2-/+ cortices. Thus, snRNA seq analysis was performed on eight
MECP2-/+ (RTT) and eight agematched control female cortex samples from
post-mortemhumanbrains (Fig. 5a, SupplementaryData 3).Nineneuronal

and six non-neuronal cell type clusters could be assigned from these human
cortices basedon 3,000 genemarkers from the BakkenTrygve et al. dataset20

(Fig. 5b). Cell type labeling based on scTransform containing elevated
expression of at least three cell marker genes was validated (Fig. 5c). DEG
analysis via Limma-VoomCC compared MECP2-/+ to MECP2+/+ cortical
cells, resulting in cell type-specific dysregulated genes (Fig. 5d). Importantly,
of the top 20 upregulated DEGs identified by Limma-VoomCC at the
adjusted p-value ≤ 0.05 level in femaleMECP2-/+ cortical cells or significant
DEGs (adjusted p value ≤ 0.05) inMecp2e1-/+ femalemouse cortices with 14
gene transcripts out of 20 upregulated (Fig. 5e). Similarly, of the top 20 Rett
cortical Limma-VoomCC DEGs that were significantly downregulated
(adjusted p value ≤ 0.05), the homologous Mecp2e1-/+ female gene tran-
scripts were also downregulated (Fig. 5e). In contrast, there were very few
overlapping DEGs between human RTT and Mecp2e1-/y male cortical cell
transcriptomes (Fig. 5f). This demonstrates thatMecp2e1-/+ femalemice are
a better model for the dynamic transcriptomic dysregulation due to cellular
complexities in Rett syndrome disease progression.

Discussion
This study advances our understanding of RTT, offering insights into sex-
specific, cell type-dependent, and disease stage-associated transcriptional
dysregulation resulting fromthe cellular complexities related to theX-linked
dominant inheritance of MECP2/Mecp2 mutation. This longitudinal ana-
lysis of single cortical cell transcriptomes during the gradual progression of
disease symptoms in theMecp2e1-/+ mouse model of RTT provided several
new findings critical to the understanding and treatment of human RTT.
First, we demonstrated that the femaleMecp2e1-/+ mice are inherently dif-
ferent, not simply less severe, in their transcriptional dysregulation com-
pared to mutantMecp2-/y males that completely lackMecp2e1. Second, we
identified transcriptionally dysregulated gene pathways across cell types in
female Mecp2e1-/+ cortices that were significantly associated with the pro-
gression of multiple disease phenotypes over time. Third, we showed that
non-cell-autonomous effects in mosaic female Mecp2e1-/+ mice are
responsible for the homeostatic gene pathway dysregulations observed
dynamically over time. Lastly, and most important for translational rele-
vance, we showed that female mosaicMecp2e1mutant mice better recapi-
tulate the transcriptional dysregulation observed in human RTT cortical
cells than Mecp2 null males and may help explain the complexities of
progressive and regressive stages of disease in RTT girls.

The earliest studies examining the effect of MeCP2 levels on tran-
scription in the brain relied on bulk RNA-seq comparing male Mecp2
null to wild-type controls yielded few differentially expressed gene (DEG)
transcripts21–24. However, bulk analyses of transcript levels inMecp2 null
compared toMecp2 duplication mouse brain revealed 2582 altered DEGs
in hypothalamus25, 1180 DEG transcripts in cerebellum26, and 1060
DEGs in amygdala27. Interestingly, analysis of transcripts in individual
brain cell types yielded non-overlapping lists of DEGs suggesting that
bulk tissue DEG analysis suffers from a “dilution effect” potentially
masking DEGs28. While these initial studies comparing Mecp2 null to
wild-type and Mecp2 duplication control male brains can reveal gene
targets of MeCP2 in vivo,Mecp2-/+ female mice are the relevant model for
understanding RTT, where brain cell-autonomous and non-autonomous
effects require analysis of individual cells and cell types.

For autosomal genes, heterozygous mutations are expected to show
reduced phenotypic severity than the homozygous state, but for X-linked
genes, there is the added complicationof randomXCI that creates epigenetic
mosaicismwithin cell populations.We were able to utilize snRNA-seq 5’ in
theMecp2e1mousemodel toparsebyboth cortical cell type andmutation to
improve understanding of transcriptional dysregulation inRTT.Our results
can both help confirm certain aspects of previous bulk transcriptomic
studies and help explain some of the prior discrepancies between bulk
transcriptomic studies in RTTmouse models. A study using bulk RNA-seq
on 7-week-oldMecp2 null mice showed 48 genes upregulated and 32 genes
down-regulated in pathways such as circadian entrainment that are con-
sistent with our single nucleus data, despite the lower overall number of
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Fig. 5 | Human RTT cortical neurons share transcriptional dysregulation spe-
cifically withMecp2e1-/+mosaic femalemice. aA schematic of postmortem human
RTT cortices and age/sex matched control cortices. Figure 1a was made using
Biorender. b UMAP of the unsupervised clustering of cell types identified in the
human cortices (n = 39336 cells post QC). Cell type labels were transferred from
Bakken Trygve et al. 202120. c Top gene markers for each cell type in the human

cortex. d Heatmap of top differentially expressed genes (DEGs) for human female
cortices. *indicates adjusted p-value ≤ 0.05. e Bar graph showing overlapping of the
top significant upregulated and downregulated genes by logFC in female mouse and
female human. f Upset plot showing overlap of the significant DEGs from both
GABAergic and glutamatergic neurons in female human, female mouse, and
male mouse.
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DEGs identified29. We identified circadian entrainment as a homeostatic
gene pathway dynamically dysregulated in Pvalb and Sst at P30, L5 exci-
tatoryneurons at P60, andastrocytes at P150 inMecp2e1-/+ cortices. Todate,
there has been only one prior study conducted using single nucleus RNA-
seq in both RTT brain and a mouse model. Renthal et al. usedMecp2 null
cortex at a single timepoint (8weeks formales, 12-20weeks for females) and
compared to human RTT cortex with MECP2 255X16. Our studies were
consistent in finding both up- and down-regulated genes with MeCP2
deficiency across cell types and in finding evidence for non-cell-
autonomous gene dysregulation, but inconsistent in demonstrating a sig-
nificant effect of MeCP2 deficiency on repression of long genes. However,
differences between the study designs, including geneticmousemodel, time
points, statistical approaches for DEGs, and single cell technology (iDrops
versus 5’ V2 technology) could explain the discrepancies. We specifically
designed the current study to overcome some of the prior technical lim-
itations, including improvement in signal to noise ratio30, higher number of
genes detected per nucleus, higher UMI per nucleus, and higher number of
cells analyzed31. Furthermore, we used 3,000 marker genes from the Allen
brain atlas cortex single nucleus dataset to label cell types (compared to one
marker gene per cell) and used five different statistical approaches to
robustly identify differentially expressed genes.

To understand how transcriptional dysregulation in RTT cortex is
related to symptom progression, our study uniquely utilized a longitudinal
study design and systems biology approaches to correlate networks of
dysregulated gene expression patterns with disease phenotypes over time.
Remarkably, these disease-relevant gene networks were not specific to
individual cell types, but instead were enriched in pathways also dysregu-
lated in neurodegenerative disorders and addiction pathways that regulate
brain homeostasis across cell types, including metabolism, circadian
entrainment, and retrograde endocannabinoid signaling. Previous studies
had shown a link betweenMeCP2 and addiction32 that involveArc and Junb
transcription, consistent with our results in Mecp2e1-/y cortical cells33 and
KEGG pathways enriched in Mecp2e1-/+ cortical cells. A prior study
showing that selective deletion of Mecp2 from excitatory neurons had no
effect on excitatory transmission but reduced inhibitory synapse numbers
and neurotransmission in the somatosensory and prefrontal cortex34 is
consistent with our results showing a spread of dysregulated gene pathways
from excitatory to inhibitory neurons. A more recent study investigating
neurons and astrocytes found KEGG pathways such as calcium signaling
pathway andRap1 signaling pathwaywere enriched inRTT, consistentwith
our findings35.

While non-cell autonomous effects have been previously noted in
RTT mouse models, our comprehensive analyses of cellular tran-
scriptomes over disease progression implicates these effects as a central
and defining feature of transcriptional dysregulation in RTT mosaic
females. Sun et al. argue that the abnormal morphologies of neurons and
astrocytes in human RTT are caused by non-cell-autonomous effects
driven by altered gene expression and enriched energy related KEGG
pathways, consistent with our findings from experiment 235. Defects in
signaling pathways suggests RTT disease progression is not caused
exclusively by autonomous transcriptional changes in individual cells,
but rather due to a failure of wild-type MECP2 expressing cells to
compensate for mutant MECP2 expressing cells.

Since RTT in humans almost exclusively affects females, our results
have important implications for translational medicine. First, pre-clinical
models for testing new therapies should be female and construct-relevant,
ideally modeling actual human RTT mutations. While male Mecp2 null
models provide important basic insights into MeCP2 function, we clearly
demonstrate that the Mecp2e1 deficient males do not recapitulate the
transcriptional dysregulation observed in RTT human cortical cells as well
as their female mutant littermates. Furthermore, the non-cell-autonomous
dynamic waves of dysregulation in WT-expressing cortical neurons may
help explainwhyhumanRTTsymptomsappeargradually andare staggered
in a series of regressions followed by plateaus. Our results showing that
transcriptional dysregulation appears pre-symptomatic in femaleMecp2e1

mutant across multiple cortical cell types suggest that diagnosis and treat-
ment should ideally begin as early as possible, potentially by including
MECP2 in newborn screening panels. To date, the only drug in the market
for RTT is Trofinetide which is based on IGF-1 a growth factor previously
used for diseases such as Laron syndromeand liver cirrhosis36,37. Theoverlap
with other neurologic disease pathways including oxidative phosphoryla-
tion suggests that someexistingdrugs forneurodegenerativedisorders could
potentially be repurposed to counteract some of the RTT non-cell-
autonomous transcriptional dysregulations in pathways regulating home-
ostasis. Conversely, the molecular pathogenesis of RTT may provide
insights for understanding epigenetic regulation of transcriptional home-
ostasis of gene pathways relevant to common neurodegenerative and
addiction disorders.

Methods
Mecp2-e1mouse breeding and phenotyping
Mecp2e1-/+ female dams were bred with C57BL6/J wild-type male mice
(Jackson Labs strain 000664) to produce Mecp2e1-/+ Mecp2e1+/+, Mecp2-/y

and Mecp2+/y littermates for single-nuclei RNA seq. Mice were weaned at
21 days post-natal and genotyped using DNA from tail snips as described4.
Mouse disease scoring was performed blinded based on a seven-point scale
with points assigned for matted fur, unusually large abdomen, skin lesions,
hypoactivity and responses to tail suspension4. All animal procedures were
approved by the UC Davis Institutional Animal Use and Care Committee
(IACUC). We have complied with all relevant ethical regulations for
animal use.

Singlenuclei isolation formouseandhumanpost-mortemcortex
Mecp2-e1 and control mice were sacrificed by carbon dioxide inhalation
just prior to brain removal. Cerebral cortex was removed from each brain
from the mice. Human cortical samples were obtained from National
Institute of Child Health and Human Development (NICHD) Brain and
Tissue Bank for Developmental Disorders at the University of Maryland,
a public biorepository of deidentified deceased donors. All ethical reg-
ulations relevant to the use of these samples were followed. About 10 μg
of cerebral cortex tissue was isolated from human post-mortem and
control samples. Single nuclei were prepared from the left hemisphere
cortex according to a previously established protocol Martelotto (https://
cdn.10xgenomics.com/image/upload/v1660261285/support-documents/
CG000124_Demonstrated_Protocol_Nuclei_isolation_RevF.pdf). Briefly,
a 3.0 mm2 section of cortex was removed from each mouse brain. Both
mouse and human brain tissue were minced with a scalpel then homo-
genized in 0.5 ml of nuclei lysis buffer with RNAse inhibitor (Roche,
Indianapolis, ID) then transferred to a larger tube with an additional
1.0 ml of nuclei lysis buffer, mixed then incubated on ice for 5 min.
Nuclei were filtered from the lysate using a 70 µM FlowMi cell strainer
(Sp-Belart, Wayne, NJ). Nuclei were pelleted at 4 °C for 5 min at 500×G,
resuspended in 1.5ml of nuclei wash buffer, incubated for 5 min. Nuclei
were then pelleted again as above then washed twice in nuclei wash and
resuspension buffer then filtered with a 35 µM FlowMi filter (Sp-Belart,
Wayne, NJ) then resuspended in nuclei wash and resuspension buffer
with 5 μgs/ml DAPI and assayed on a Countess cell counter to determine
concentration and nuclear integrity (Fisher Scientific, Waltham, MA).
Nuclei were then sorted to remove debris and nuclear aggregates on a
MoFlow Astrios cell sorter (Beckman-Coulter, Brea, CA). Approxi-
mately,150,000 nuclei per sample were sorted and stored on ice prior to
snRNA-seq 5’ library generation.

Single nuclei-RNA sequencing
SingleCell 5′Library&Gel BeadKits (10×Genomics, Pleasanton,CA)were
used to prepare cDNA and generate bar coded and indexed snRNA-seq 5′
libraries according to the manufacturers protocol. 10,000 nuclei per sample
were targeted. snRNA-seq 5′ libraries were balanced using a Kapa library
quantification kit (Roche, Indianapolis, IN) and pooled to generate 150 base
pair, paired end sequences from using a NovaSeq S4 sequencer (Illumina,
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San Diego, CA). Mouse cortices had about 75,000 reads per cell on average
and 240,437,728 reads per sample on average. Human cortices had about
50,000 reads per cell on average and 300,000,000 reads per sample on
average.

Pre-processing and quality control
Cellranger v.2.0.2 was used to align the mouse raw reads to mm10-1.2.0
reference genome and the human raw reads to GRCh38 human reference
genome. Cell by gene count matrices were used to create a Seurat object
using Seurat_4.3.0.1 in R 4.2.2.Mouse sampleswerefilteredwith the criteria
that cells should have less than 7%mitochondrial, greater than 200 and less
than 5,625 genes and greater than 208 and less than 16,300 UMI
respectively.

Cell type identification by dimensionality reduction
The expression counts were log transformed and normalized via Seurat
4.3.0.1. Information about the samples such as sex, genotype, time
point, disease score, body weight andMecp2e1 expression allele were all
added to the metadata. Single cell mouse and human cortex data from
the Allen brain institute were used as a reference for cell type labeling
both data sets separately11,38. scTransform was used to align cell types
and transfer labels over to the Rett data. Cell marker test was performed
for validating the cell type labeling. Dot plots showing validation of the
cell type markers were created via scCustomize 2.1.1 (10.5281/
zenodo.5706430).

DEG analysis
A total offive differentDEGanalysismethodswere used to evaluate the best
method for comparing mutant samples to WT samples in a cell-type-
specific manner. EdgeR, Limma, and DeSeq2 yielded inconsistent DEGs
(Supplementary Fig. 1). For experiments 1 and 2, low expressing geneswere
filtered out. Low expressing was defined by expression in less than 25% of
cells of a given cell type. LimmaVoomCC was used on the remaining high
expressing genes to determine differentially expressed genes while con-
sidering cells from the same mouse will have correlated expression. For the
low expressing genes, DEsingle was used for DEG analysis on genes that are
not as robustly expressed (expressed in <25% of cells of type). For experi-
ments 3, 4, and 5, LimmaVoom was exclusively used to identify differen-
tially expressed genes. For each of theDEG experiments, the number of cells
were normalized by down sampling. Parameters for all DEG analysis are
available in the GitHub repository.

KEGG analysis
DEGswith a p-value of≤0.05 from each of the experiments were used as the
input for KEGG analysis. This was performed using the R package
enrichR 3.2.

The 20 upregulated and downregulated genes were determined by
Limma-VoomCC adjusted p value < 0.05. We also included gene ontology
analysis using the same DEGs.

hdWGCNA analysis
Cells from bothmales and females in the processed Seurat object were used
as the input for hdWGCNAanalysis.We also includedphenotype data such
as disease score. The criteria for the fraction of cells that a gene needs to be
expressed in order to be included was set at 5%. The network type used is
signed with a softpower of 0.8. A total of 9 modules were produced and
scores for each module was computed using UCell method. Standard
pipeline for hdWGCNA 0.2.4 were followed and the parameters are avail-
able in the GitHub repository.

WT and mutant cell parsing in mosaic female mouse cortices
AllMecp2 reads were extracted from the raw fastq files generated from each
individual sample. abBLAST 3.0 and BWA 0.7.17 mem were used in con-
junction to extract Mecp2 reads (alleler.py). The reference used for align-
ment was 100 bp of the Mecp2 gene; 50 bp upstream of the exon1 start

codon and 50 bp downstream. With the aligned reads, the number of
mutant (TTG) and wild type (ATG) start codons were counted using alle-
ler.py. Each read also contains the cell barcode andUMI information which
was used to add the mutant cell and wild-type cell information back to the
Seurat object as metadata.

Overlap of human and mouse DEGs and KEGG pathways
Limma-VoomCC DEGs from both human cell types and mouse cell types
were filtered at adjusted p-value ≤ 0.05. Significant human DEGs were
overlapped with female mouse and male mouse respectively. GeneOverlap
1.38.0 package was used to perform a Fisher’s exact test to determine the
significance of overlapped genes. The same overlap approach was per-
formed to determine the significant overlapping mouse and human KEGG
pathways.

Statistics and reproducibility
There were 28 mouse cortical samples were collected at four different
timepoints corresponding to three different disease stages (n = 28). Four
different Mecp2e1 genotypes were considered that include both sexes
producingMecp2e1-/+Mecp2e1+/+,Mecp2-/y andMecp2+/y littermates. At the
P30 and P60 timepoints, there were two biological replicates of theWT and
mutant animals for each sex. At P120, there were twoWT andmutantmale
replicates while at P150, there were four WT and mutant replicates. For
DEG analysis, for each gene in each sample, the DEG analysis utilizes the
summarized count which follows a negative binomial distribution with
mean equal to the multiplication of library size and relative abundance (the
gene expression levels), and the variance for each gene is a function of the
mean. Significant DEGs are called based on adjusted p value of ≤0.05 which
utilizes the Benjamini-Hochberg method to adjust for false discovery. Sig-
nificant DEGs were used as the input for the KEGG pathway analysis.
KEGG analysis uses fishers exact test to determine if the overlap of input
DEGswith the background genes are significant (adjusted p value of≤0.05).
Overlap tests of human and mouse DEGs and KEGG pathways were both
performed using GeneOverlap which also utilizes a Fisher’s exact test to
determine if the overlap of two gene sets is significant. hdWGCNA used
Pearson correlation test to make comparisons of gene expression with the
phenotypes. Significant correlations were determined based on adjusted p
value of ≤0.05.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data are available through NCBI accession number PRJNA1142998 and
PRJNA1157887.

Code availability
The analysis pipeline for the study is available39: https://github.com/
osmansharifi/snRNA-seq-pipeline https://doi.org/10.5281/zenodo.
13761244.
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