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Epithelial-Mesenchymal Interactions in Intestinal Development 

By Cynthia Kosinski 

 

ABSTRACT 

 Communication between the intestinal epithelium and the underlying 

mesenchyme is essential in controlling intestinal stem cell (ISC) activity, morphogenesis, 

differentiation, and homeostasis.  These epithelial-mesenchymal interactions involve 

instructive signaling molecules that belong to multiple signaling families including the 

Wnt/β-catenin, BMP, and Hedgehog (Hh) pathways.  How these pathways coordinate to 

regulate intestinal development, including ISC self-renewal and differentiation is not 

completely understood.  Potential sources and targets of these signals exist in the 

microenvironment surrounding ISCs, known as the stem cell niche.  Of the niche cells, 

intestinal subepithelial myofibroblasts (ISEMFs) are considered the main niche cell type 

since their location at the crypt base positions them closest to ISCs.  Herein, we provide 

evidence that BMP antagonists, including Gremlin 1, Gremlin 2, and Chordin-like 1 are 

supplied by ISEMFs and smooth muscle cells surrounding the crypt.  We show that Gremlin 

1 activates Wnt signaling and inhibits the differentiation of intestinal epithelial cells, and thus 

functions as a stimulating signal that promotes ISC self-renewal.   

 Working in the converse direction to BMP antagonists are Hh signals, which 

originate in the intestinal epithelium and target mesenchymal cells, including those 

comprising the ISC niche.  Utilizing Indian Hedgehog (Ihh) conditional knockout mice, we 

show that deletion of epithelial Ihh in the small and large intestine disrupts the ISC niche 

architecture as demonstrated by the loss of the muscularis mucosae, diminished crypt 
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myofibroblasts, and extracellular matrix breakdown.  Gene expression data suggest that Ihh 

mutants have an overall decrease in BMP signaling, amplified matrix metallopeptidase 

activity, and deficient extracellular matrix and smooth muscle development.  The 

mesenchymal niche modifications seen in the Ihh mutants are accompanied by striking 

changes in the intestinal epithelium, including dilated and ectopic crypts, anatomically 

deranged and mislocated absorptive and secretory cell lineages, and elevated Wnt 

signaling.  Significantly, we detected an increase in the number of ISCs in the Ihh 

mutants.  These results demonstrate that the Ihh regulates ISCs by maintaining the 

mesenchymal stem cell niche.  In total, the work presented in this dissertation describes 

previously unrecognized paracrine functions of BMP antagonists and Ihh in regulating 

intestinal development. 
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Overview 

The gastrointestinal tract undergoes multiple developmental transitions as it transforms 

from a simple tube into a functional organ with specialized compartments.  The gut 

epithelium interacts with the underlying mesenchyme to form invaginations referred to as 

crypts, and protrusions called villi (in the small intestine), or crypt surface (in the colon) 

(1).  Each crypt is comprised of proliferating cells and stem cells, while each villus or 

crypt surface is comprised of differentiated, functional cells.  As the lifespan of a typical 

gut epithelial cell is 4-5 days, the gut epithelium must continually renew itself.  This 

renewal process is sustained by rapidly cycling intestinal stem cells (ISCs) that receive 

directive cues from their surrounding microenviroment, known as the stem cell niche.  

Much progress has been made in identifying signaling pathways involved in intestinal 

development and homeostasis, including intestinal morphogenesis, intestinal stem cell 

activity, lineage commitment, terminal differentiation, and cell death.  From mouse 

studies, the Wnt, bone morphogenic protein (BMP), Hedgehog and Notch pathways have 

all emerged as major contributors to intestinal development and homeostasis (2-4).   

 

Intestinal Development 

Intestinal development is a complex process that is guided by epithelial-mesenchymal 

interactions.  The intestinal epithelium originates from an endoderm-derived digestive 

tube.  At early embryonic stages, the tube appears uniform with stratified layers of 

epithelium.  During fetal and neonatal murine development, signals from the surrounding 

mesoderm-derived mesenchyme transform the digestive tube into a single-layered 

epithelium with invaginations, known as the crypts of Liberkühn and protrusions called 
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villi.  The entire intestinal morphogenesis process, including the formation of villi and 

crypts is not fully complete until postnatal day 28 (5).  Variations in villi occur along the 

proximal-distal axis of the gut, with the duodenum featuring long, thin villi and the ileum 

displaying shorter, thicker villi.  During the first week of postnatal life the colon also 

contains villi, however by weaning age villus structures are replaced by surface 

epithelium and crypts extend the entire thickness of the epithelium (6).  Intestinal 

epithelial stem cells reside at the crypt base and give rise to a transit-amplifying 

population.  The descendents of these proliferative cells migrate along the crypt-villus 

axis and differentiate into four epithelial lineages: absorptive, mucin-secreting goblet, 

peptide hormone-secreting enterendocrine, and antimicrobial-secreting Paneth cells 

(small intestine only).  Most of these differentiated cell types migrate toward the villus 

tip, where they are shed or undergo apoptosis.  The sole exception is Paneth cells, which 

instead differentiate as they move downward toward the crypt base where they eventually 

die.  Since the average lifespan of intestinal epithelial cells is 3-7 days (with the 

exception of Paneth cells, which survive approximately 20 days before they are 

phagocytosed by neighboring cells), the crypt progenitors must continuously divide to 

sustain the epithelial cell population.  Accordingly, the proliferative capacity of dividing 

progenitors is high, with each crypt generating approximately 200-300 cells per day (2). 

At this rate of proliferation, enough cells are produced to renew the entire murine 

intestinal epithelium in 2-5 days.   
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Intestinal Stem Cells 

Intestinal stem cells are characterized by their ability to give rise to all the differentiated 

cell types of the intestine as well as being able to self-renew.  Until recently, the precise 

location of ISCs was unknown.  For at least the past 40 years, it was widely believed that 

ISCs were positioned four to six cell diameters from the crypt base (the “+4 position stem 

cell model”).  This conclusion stemmed from DNA label-retaining studies in which ISCs 

were considered to be quiescent and thus label-retaining, while progenitor cells were 

assumed to be continuously dividing, diluting out the incorporated DNA (7).  The +4 

position stem cell model gained more momentum when it was discovered that cells in this 

position were sensitive to radiation, a protective mechanism believed to prevent ISCs 

from passing on genetically damaged material (8).  The fault in these studies, however, is 

that they failed to directly assess other crucial characteristics of “stemness” in these cells, 

such as whether +4 cells are capable of generating the four differentiated cell types of the 

intestinal epithelium. 

 Recent advances using cell-lineage tracing strategies have identified more 

definitive ISC markers, nonetheless, debate over the exact location of ISCs remains 

strong.  Dr. Hans Clevers’ group recently provided convincing evidence that ISCs are 

located at the base of the crypt interspersed between Paneth cells, supporting a mostly 

unrecognized proposal that dates back to 1974 by Bjerknes and Leblond that suggests 

crypt-base columnar (CBC) cells are ISCs (9-11).   The Clevers’ group identified 

Lgr5/Gpr49, a leucine-rich orphan G protein-coupled receptor as a marker that is 

specifically expressed in CBC cells in the small intestine and in crypt bottom cells in the 

colon (9).  Using this marker, they estimated that each crypt contains approximately four 
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to six stem cells, which is consistent with previous reports.  BrdU labeling experiments 

revealed that Lgr5+ CBC cells do not behave as quiescent cells as they have an average 

cycling time of 24 hours.  Most importantly, the Clevers’ group has shown via genetic 

marking studies (utilizing tamoxifen injected mice obtained from a Lgr5-EFGFP-IRES-

creERT2 × Rosa26-lacZ cross) that Lgr5+ CBC cells produce the four intestinal epithelial 

cell types in normal ratios.  Similarly, Lgr5+ crypt bottom cells in the colon produce 

enterocytes as well as goblet cells.  Furthermore, Lgr5+ CBC cells are retained for at least 

12 months and continue to self-renew the epithelium.  Thus, by displaying multipotency 

and longevity, Lgr5+ CBC cells satisfy the requirements that define a stem cell (9). 

 Notwithstanding these data, fueling ongoing controversy over the location of ISCs 

are results from a new study by Sangiorgi and Capecchi that uses lineage-tracing 

experiments of Bmi-1-expressing cells. This study places ISCs above Paneth cells at the 

+4 position (12).  Similar to the Lgr5+ CBC cells, Bmi-1-expressing cells produce all cell 

types of the intestinal epithelium.  Also, Bmi-1-expressing cell numbers persist for 12 

months, similarly fulfilling the self-renewal property of stem cells.  In comparison to 

Lgr5+ CBC cells, Bmi-1 expressing cells appear to enter a proliferative state at slower 

rates, suggesting they are more quiescent.  This observation has led to the speculation that 

two stem cell populations exist: one that represents a slow cycling stem cell surrounded 

by an inhibitory microenvironment, and one that represents a rapid cycling stem cell that 

is surrounded by an excitatory microenvironment rich with stimulating signals such as 

BMP antagonists like Gremlin 1 and Noggin (13).  Another significant difference 

between the Lgr5+ CBC cells and the Bmi-1-expressing cells is that the Bmi-1-expressing 

cells exist in a descending gradient along the small intestine with the majority of the 
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labeled cells detected in the duodenum, the proximal region of the small intestine (12).  

This finding further corroborates the idea that more than one stem cell population exists 

along the gastrointestinal tract since Bmi-1-expressing cells are largely absent in regions 

distal to the duodenum. 

 The availability of Lgr5- and Bmi-1-based genetic systems provides new 

opportunities to study ISCs.  Most recently, the identification of Lgr5-stem cells has led 

to the discovery of more ISC markers.  Analysis of Lgr5 stem cell-enriched genes 

identified Achaete scute-like 2 (Ascl2) and Olfactomedin-4 (Olfm4) as two specific ISC 

markers that are excluded from immediate daughter cells (14, 15).  The expression of 

Ascl2 and Olfm4 coincides with expression of Lgr5, uniquely marking CBCs sandwiched 

between Paneth cells.  Several other ISC markers have been proposed including the 

cholesterol-binding glycoprotein Prominin1, the neural RNA-binding protein Musashi1, 

and the inactivated form of PTEN (phosphatase and tensin homolog) i.e. phosphorylated 

PTEN (P-PTEN) (16-18).  However, the stem cell specificity of these markers is 

equivocal as other investigators have found Prominin1, Musashi1 and P-PTEN 

expression is not solely restricted to ISCs, but rather detected throughout the entire crypt 

progenitor compartment (19-21).  The emergence of Lgr5, Bmi-1, Ascl2, and Olfm4 as 

validated ISC markers is expected to facilitate the genetic modification of ISCs, the 

isolation and culture of ISCs, and the visualization of ISCs in vivo.  These experiments 

will likely provide further insights into ISC regulatory pathways and function. 
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Intestinal Stem Cell Niche 

Intestinal stem cell behavior is controlled by diffusible factors and physical interactions, 

imposed by the surrounding microenvironment known as the stem cell niche. Regulating 

the stem cell’s ability to self-renew and remain undifferentiated are essential functions of 

the niche.  The ISC niche encompasses all cellular and non-cellular components that 

interact with and regulate ISC fate.  The proposed ISC niche consists of neighboring 

epithelial cells, pericryptal intestinal subepithelial myofibroblasts (ISEMFs), enteric 

neurons, endothelial cells, intraepithelial lymphocytes and the basement membrane (22).  

It is widely believed that ISEMFs are the most influential mesenchymal niche cell given 

their close proximity to intestinal epithelial stem cells.  ISEMFs possess morphologic and 

functional properties of both fibroblasts and smooth muscle cells.  They express smooth 

muscle markers such as α-smooth muscle actin and fibroblast markers such as vimentin 

(23).  ISEMFs regulate ISC activity through paracrine signaling of growth factors, 

cytokines, prostaglandins, and extracellular matrix proteins (24).  Factors secreted by 

these cells include hepatocyte growth factor (Hgf), tissue growth factor-β (Tgf-β), basic 

fibroblast growth factor (bFGF), and keratinocyte growth factor (Kgf) (25-27). However, 

many secreted factors important in sustaining the niche remain elusive.   

 In addition to secreted factors, stem cell fate decisions may also be influenced by 

physical characteristics of the ISC niche such as those established by the basement 

membrane (28).  The basement membrane of the small intestine and colon is a thin layer 

of extracellular matrix (ECM) components located at the epithelial-mesenchymal 

interface.  It is mainly composed of type IV collagen, laminin, and nidogen produced by 

mesenchymal cells and heparan sulfate proteoglycan produced by epithelial cells (29).  
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ISCs attach to the basement membrane, anchoring themselves within the niche, where 

directive self-renewing and differentiating signals reside.  Additionally, the physical 

attachment to the basement membrane allows intestinal epithelial cells to attain their 

proper shape, which may be necessary for the transcription of self-renewing or 

differentiation gene programs.  ECM protein-cell interactions and signaling are primarily 

mediated by integrins, transmembrane heterodimeric glycoproteins located on the 

epithelial basal membrane.  Strong expression of the epithelial integrin subunits, β1, α2 

and α6 are detected in the crypt epithelium.  A recent study reported that the specific 

deletion of β1 integrin in intestinal epithelial cells leads to an increase in epithelial 

proliferation (30).  Mechanistic studies revealed that the increase in proliferation was 

anchorage-independent and due to the loss of β1-mediated Hedgehog signaling.  Thus, 

ISCs likely integrate physical cues and secreted protein factors provided by the niche to 

regulate their function.  Much remains to be determined about the ISC niche, including 

the precise signals that influence ISC behavior, the cellular sources of the signals and 

how supporting stromal cells, cell adhesion molecules and the extracellular matrix impact 

ISC decisions.  The paucity of definitive ISC markers has long impeded the progress of 

understanding how the niche regulates ISCs.  However, with the identification of the 

specific ISC markers Lgr5, Olfm4, Ascl2, and Bmi-1, better understanding of the niche, 

including ISC regulatory signals and the individual functional components, is anticipated.  

Also, greater insight into how deregulation of the ISC niche contributes to colorectal 

cancer, colonic polyps and celiac disease may be obtained. 
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Wnt Signaling in the Intestine 

In the intestine, the Wnt signaling pathway performs a critical role in the development 

and maintenance of crypt progenitor compartments (31).  The key playmaker in the 

signaling cascade is the cytoplasmic protein β-catenin, whose fate is determined by a 

destruction complex that contains two scaffolding proteins, axin and adenomatous 

polyposis coli (APC), as well as two kinases, casein kinase I (CKI) and glycogen 

synthase kinase-3beta (GSK3β).  In the absence of Wnt, APC and axin bind β-catenin, 

allowing CKI and GSK3β to phosphorylate a conserved region of Ser and Thr residues in 

the N terminus of β-catenin.  The resulting phosphorylation leads to the ubiquitination 

and proteasomal degradation of β-catenin, which is manifested by low levels of cytosolic 

and nuclear β-catenin.  Wnt ligands initiate signaling by binding to a Frizzled receptor 

(FZD1-8) and a low-density lipoprotein-related protein co-receptor (LRP-5 or LRP-6), 

which in turn activate Dishevelled.  The activation of Dishevelled leads to the inhibition 

of GSK3β.  Consequently, β-catenin accumulates and translocates to the nucleus, where it 

interacts with TCF-4, a member of the TCF/LEF family to regulate transcription of Wnt 

target genes in the intestine (Figure 1).  Among the genes that are upregulated by a Wnt 

response are c-Myc, which promotes cell proliferation (32), EphB2 and EphB3, which 

control cell segregation in the crypt (33), Sox9, which directs Paneth cell differentiation 

(34, 35), Lgr5, which specifically marks intestinal and colonic stem cells (9) and Axin2, 

which acts as a negative feedback regulator of the Wnt pathway. 
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Figure 1. The Wnt/β-catenin signaling pathway. (Left) In the absence of Wnt, β-
catenin levels are minimized via the β-catenin destruction complex, pictured above as the 
cluster of APC, Axin, GSK3β and CKI. (Right)  In the presence of Wnt, the integrity of 
the β-catenin destruction complex is disrupted, allowing β-catenin to accumulate in the 
nucleus and activate the transcription of Tcf target genes. 
 

 The Wnt pathway has been well studied in the intestine as mutations in the tumor 

suppressor gene APC lead to familial adenomatous polyposis (FAP), a hereditary cancer 

syndrome.  In normal intestine, Wnt signals are involved in the maintenance, 

proliferation, and fate of intestinal stem cells (36). Nuclear β-catenin, an indicator of 

active Wnt signaling is detected in proliferative cells comprising the bottom third of the 

crypt, whereas membrane associated β-catenin is observed above this region along the 

crypt-villus axis (33).  Numerous in vivo studies utilizing engineered mice have provided 

considerable evidence demonstrating Wnt is the key factor that sustains the proliferative 
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capacity of crypt progenitor cells.  Mice containing a deletion of Tcf-4, which is the 

primary transcriptional effector of the Wnt pathway, lack proliferating intestinal 

epithelial cells after E16.5 as well as a functional stem cell compartment (32, 37). 

Similarly, transgenic overexpression of dickkopf homologue 1 (DKK1), a specific 

canonical Wnt inhibitor, results in the absence of proliferating crypts in the murine small 

intestine, thus indicating that Wnt signaling is required to form and preserve crypts by 

promoting proliferation (38). Adenoviral expression of DKK1 in adult mice produced 

conforming results in which the small intestines of treated mice lacked crypts and villi 

(39).  Data are available for the converse studies in which the Wnt pathway is 

constitutively activated via inactivating mutations in APC or activating mutations in β-

catenin.  Conditional loss of APC in murine intestine results in poorly differentiated 

intestinal epithelial cells as well as an increase in proliferative cells, a phenotype akin to 

that seen with early colorectal lesions (40).  Wong et al. generated chimeric-transgenic 

mice expressing constitutively active β-catenin in the small intestine and observed similar 

increases in the proliferation of crypt cells (41).  Besides proliferation, the Wnt signaling 

pathway also plays a role in cell differentiation, particularly the specification of secretory 

lineages.  In vivo studies have demonstrated that when Wnt signaling is inhibited, 

absorptive cells differentiate normally, but goblet, enterendocrine, and Paneth cells fail to 

differentiate properly or not at all (37, 38, 42). Thus, the Wnt signaling pathway regulates 

multiple processes within the intestine, including the proliferation of progenitor cells, the 

maintenance of progenitor cells in an undifferentiated state (except Paneth cells), and the 

bestowal of a secretory cell fate to cells committed to terminal differentiation. 
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Notch Signaling in the Intestine 

The Notch signaling pathway is important in regulating key cellular differentiation 

processes during embryonic development and adult life.  Molecular cloning of Notch 

determined that the gene encodes a transmembrane protein which functions as a receptor 

for ligands (Delta and Jagged) presented on the cell surface of neighboring cells.  In 

mammals, four Notch receptors (Notch 1, Notch 2, Notch 3, and Notch 4) and five Notch 

ligands have been identified.  

Notch is activated when it binds to its ligand on a neighboring cell.  The binding 

triggers a cascade of proteolytic cleavages. The first cleavage is mediated by ADAM 

protease, an α-secretase, also known as tumor necrosis factor α converting enzyme or 

TACE. This reaction releases the Notch extracellular region (Notch-EC), and facilitates 

the next cleavage mediated by γ-secretase at the Notch transmembrane domain.  This 

liberates the intracellular domain of Notch (Notch-IC).  Notch-IC subsequently 

translocates into the nucleus, where it interacts with the transcription factor, CSL (also 

known as RBP-J in mice) and recruits coactivators (CoA) to form an active 

transcriptional complex (Figure 2).  The transcriptional targets of Notch include the basic 

helix-loop-helix (bHLH) transcriptional factor hairy/enhancer of split (Hes) family (Hes1 

and Hes5).  
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Figure 2. The Notch signaling pathway. Notch signaling is initiated between adjacent 
cells upon the engagement of Notch receptors with Notch ligands (Delta or Jagged), 
resulting in two successive proteolytic cleavages of the receptor by ADAM protease and 
γ-secretase.  The cleaved Notch receptor (Notch-IC) translocates into the nucleus, where 
it interacts with the transcription factor CSL to induce Hes expression. 

 

 The identification of Notch pathway components in the intestine provided the first 

indication that Notch signaling may play a role in gut development and homeostasis (43).  

It was found that the expression of all Notch receptors and ligands can be detected during 

various stages of intestinal development.  In many cases, these genes are expressed in 

both proliferative and differentiated intestinal epithelial cells.  Subsequent genetic and 

biochemical experiments have demonstrated that Notch signaling is critical in controlling 

multiple cell lineages, especially goblet cell differentiation in the intestine.   For example, 

in the zebrafish DeltaD mutant, there is an increase of secretory cells and a loss of 

absorptive cells (44).  In mice, there is a massive conversion of cryptic cells into goblet 

cells after conditional deletion of CSL/RBP-J, the downstream transcription factor of the 

Notch pathway (42).  Consistently, when Hes1 is deleted, there is an increased number of 
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mucosecreting and enteroendocrine cells at the expense of absorptive cells (45).  In 

converse experiments, Fre et al. overexpressed constitutively active Notch 1 in all cells of 

the murine intestinal epithelium (46).  It was found that these mice had a complete 

depletion of goblet cells in their intestinal tract.  Additionally, there was a marked 

reduction of enteroendocrine cells as well as Paneth cells.  Similar results were reported 

by Stanger et al (47).  In addition, the studies by Stanger et al. also suggest that there are 

different phenotypes depending on when ectopic Notch signaling is activated: ectopic 

Notch signaling in embryonic foregut leads to reversible defects in villus morphogenesis 

and loss of intestinal progenitor cells, whereas ectopic Notch signaling in adult gut leads 

to a bias against secretory cell fate.  Altogether these studies demonstrate that Notch 

signaling regulates intestinal cell fate determination by controlling the balance between 

secretory and absorptive cells.  

 

BMP Signaling in the Intestine 

Bone morphogenetic proteins (BMPs) are growth factors belonging to the TGF-β 

superfamily and are implicated in multiple processes including development, 

morphogenesis, differentiation, proliferation, and apoptosis (48, 49).  As shown in Figure 

3, BMPs function by uniting their type I (IA, IB, or ALK2) and type II (II, Activin 

receptor IIA or IIB) serine-threonine kinase receptors.  The type I receptor is 

phosphorylated by the type II receptor, which results in the activation of receptor 

regulated SMAD-1, SMAD-5, or SMAD-8.  The receptor-activated SMAD forms a 

heterodimeric complex with the common mediator SMAD-4 and translocates the signal 

to the nucleus, where it drives the transcription of BMP target genes.  BMP signaling is 
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tightly regulated both intracellularly by inhibitory SMADs (SMAD-6 and SMAD-7) as 

well as extracellularly by BMP antagonists such as Noggin, Gremlin 1, and Chordin. 

 

 

Figure 3. The BMP signaling pathway.  BMP signaling is initiated when BMP ligands 
bind to the complex of BMP type I receptor and BMP type II receptor, leading to the 
phosphorylation of SMAD1, 5, or 8 (R-SMAD).  Phosphorylated SMAD1, 5, or 8 forms 
a complex with SMAD4 and translocates into the nucleus to activate transcription. 
 
 
 In the intestine, BMP-2 and BMP-4 are highly expressed in the intervillus 

mesenchyme near the villus tips and display an expression gradient that decreases 

downward toward the crypt (18, 50-52).  The BMP receptor BMPR1A and 

phosphorylated SMADs, indicators of active BMP signaling, have been detected along 

the villus epithelial surface (18).  Additionally, stromal cells surrounding the crypt base 

express the BMP antagonists Noggin and Gremlin 1 (18, 53).  Altogether, the expression 

pattern of BMP signaling components supports a role for BMPs in repressing epithelial 

proliferation and promoting epithelial differentiation.  Accordingly, the overexpression of 
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the BMP antagonist Noggin in mice results in rampant proliferation in stem/progenitor 

compartments, increased crypt numbers and a Juvenile Polyposis phenotype manifested 

by hamartomatous polyps (51).  Furthermore, de novo crypt formation, expansive cell 

proliferation, increased crypt fission, and polyp formation were all observed upon 

conditional deletion of BMPR1A using an interferon-inducible promoter. These results 

indicate that BMPs act to restrict crypt size and formation (18). Moreover, the BMP 

signaling pathway is implicated in hindering ISC self-renewal by inhibiting the Wnt 

pathway, appearing to balance stem cell self-renewal versus differentiation (18).  The 

mechanism behind this control involves PTEN, which becomes phosphorylated and 

inactivated when BMP signaling is inhibited, allowing Phosphatidylinosital-3 kinase 

(PI3K) via Akt to promote β-catenin nuclear localization and activity.  Hence, stem cell 

activation is dependent on both Wnt signaling and the ability to override the BMP signal. 

 Interestingly, the intestinal epithelial specific conditional deletion of BMPR1A 

resulted in moderate proliferative defects with no ectopic crypts or polyp development in 

the intestine as was seen in conditional BMPR1A knockout mice generated using the 

interferon-inducible Mx1-Cre line (54).  In the epithelial specific BMPR1A mutant mice, 

defects in all 3 secretory cell types were reported.  Specifically, these mice displayed 

diminished numbers of enteroendocrine cells, decreased expression of terminal 

differentiation markers for enteroendocrine, Paneth, and goblet cells and reduced 

secretory granule content in Paneth and goblet cells.  These results suggest that BMP 

signaling to the intestinal epithelium plays an important role in the differentiation of the 

secretory lineages, while BMP signaling within the mesenchymal compartment plays an 

important role in crypt formation and restricting proliferation to the crypt zone.  Thus, 
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loss of mesenchymal BMP signaling leads to aberrant epithelial proliferation and 

intestinal polyposis. 

 

Hedgehog Signaling in the Intestine 

The Hedgehog (Hh) signaling pathway is a critical regulatory cascade involved in 

intestinal morphogenesis (55).  In mammals, three Hh ligands have been identified: Sonic 

hedgehog (Shh), Indian hedgehog (Ihh) and Desert hedgehog (Dhh).  The Hh signaling 

components include the receptors, Patched (Ptch), a 12-span transmembrane protein and 

Smoothened (Smo), a 7-span transmembrane protein as well as members of the Gli 

family of zinc-finger transcription factors (Gli1, Gli2 and Gli3).  In the absence of Hh 

ligands, the Ptch receptor inhibits Smo activity, and as a result full-length Gli proteins 

(Gli2/3) are phosphorylated by protein kinase A (PKA), Gli2 is degraded, and Gli3 is 

cleaved to produce the truncated repressor form of Gli (Gli3R).  In this form, Gli lacks 

the transcriptional activation domain (Gli2) and represses Hh target genes.  When Hh 

binds to Ptch, it releases Smo from Ptch-mediated suppression.  This triggers the 

stabilization and nuclear translocation of Gli transcription factors (Figure 4).  Gli 

subsequently activates downstream targets including Gli1 and Ptch.  As with most 

evolutionarily conserved signaling pathways, the Hh pathway is tightly regulated by 

negative feedback signals.  For example, Hh activation induces the expression of 

hedgehog interacting protein 1 (Hhip1), a cell surface protein that binds to and sequesters 

hedgehog ligands.  Additionally, Hh also induces the expression of Ptch, the inhibitory 

receptor, in order to limit activation of the pathway. 
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 All 3 Hh ligands are expressed in the gastrointestinal tract.  Ihh and Shh are 

exclusively expressed in epithelial cells, while Dhh expression is confined to Schwann 

cells, peripheral nerves and endothelial cells in the gut (56).  Hh-responsive cells as 

indicated by the expression of the Hh target genes Ptch and Gli are located within the 

mesenchyme (57, 58).  In particular, Hh-responsive cells include pericryptal 

myofibroblasts, muscularis mucosae cells, and villus core cells in the small intestine and 

pericryptal myofibroblasts and muscularis mucosae cells in the colon (58).  These data 

provide strong descriptive evidence that Hh signaling in the small intestine and colon acts 

in a paracrine direction, moving from the epithelium to the mesenchyme. 

 

Figure 4.  The Hedgehog signaling pathway. (Left) In the absence of Hh ligand, Ptch 
blocks Smo, resulting in the post-translation processing of Gli transcription factors into 
the repressive form. (Right) Engagement of Hh with the Ptch receptor activates Smo, 
leading to accumulation of full-length Gli2 and Gli3 and the transcription of Hh target 
genes. 
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 Not surprisingly, Ihh- and Shh-null mice display marked gastrointestinal 

abnormalities during late embryonic development including attenuated smooth muscle 

layers and intestinal malrotation (57).  The two mutant mice also display individual 

phenotypes, likely reflecting the fact that Ihh and Shh are expressed in distinct domains 

along the gastrointestinal tract.  Shh-/- mice display intestinal transformation of the 

stomach as observed by the expression of the intestinal enterocyte marker alkaline 

phosphatase in the stomach epithelium.  Other phenotypes detected in Shh-/- mice include 

lengthening of duodenal villi and overgrowth of the stomach epithelium.  While the 

developmental defects of Shh-/- mice localize primarily to the proximal region of the 

gastrointestinal tract, where Shh expression peaks, developmental defects in Ihh-/- mice 

localize to the distal small intestine and colon, where Ihh expression abounds (57, 58).  

Ihh-/- mice exhibit reduced proliferation in the ISC compartment, villi that are hypoplastic 

and reduced in numbers, and Hirschsprung’s disease-like enlarged colons.   

 As Ihh- and Shh-null mice die at birth, the role of Hh signaling in the neonatal and 

adult gastrointestinal tract has been explored through the use of various mouse models, 

including transgenic rodents, anti-Hh antibody-treated mice and chemically-treated mice 

using cyclopamine, an antagonist of Hh signaling.  Madison et al. used the intestinal-

epithelial specific villin promoter to overexpress the Hedgehog interacting protein 

(Hhip), a negative regulator of Hh signaling, to block all Hh signals (59).  Defective 

villus formation, increased proliferation, aberrant crypt structures and mislocalized 

ISEMFs were all observed in villin-Hhip mice, suggesting Hh signals pattern the crypt-

villus axis through their interactions with ISEMFs.  The villin-Hhip mice also showed 

abnormal differentiation of the absorptive lineage as determined by the lack of expression 
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of brush border markers and poorly developed microvilli.  This phenotype resembled the 

phenotype described in mice injected with an anti-Hh antibody in which the mice 

displayed immature microvillus architecture and reduced density of microvilli (60).  

Failure of enterocyte differentiation was also observed in the colon of cyclopamine-

treated rats (61).  The colonic enterocytes had altered distribution of the brush-border 

protein villin and acquired expression of the goblet cell marker intestinal trefoil factor.  

Taken together, these findings suggest Hh signals indirectly regulate enterocyte 

differentiation via an unknown factor found in mesenchymal Hh-responsive cells. 

 Von Dop et al. studied the role of Hh signaling in the colon of adult mice by 

inactivating the Hh receptor Ptch.  In these mice, the Hh pathway is constitutively active 

since the repressive constraint on Smo is removed (62).  The Ptch1 mutant mice showed 

diminished numbers of epithelial precursor cells, inhibition of Wnt signaling, increased 

BMP signaling, and the accumulation of myofibroblasts in the lamina propria.  These 

results are consistent with the notion that Hh signals to the mesenchyme, where they 

regulate secondary signals that influence epithelial behavior.  More specifically, this 

study concluded that Hh signals induce mesenchymal BMPs to negatively regulate 

precursor cell proliferation.  In another recent study, the overexpression of Ihh under the 

villin promoter resulted in the expansion of villus core smooth muscle (58).  Although the 

reported phenotype described for this mouse model is limited, it does provide additional 

confirmation that Hh signals regulate mesenchymal cells. 
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Summary of Thesis 

 In this thesis, I investigated the interplay between ISCs and their mesenchymal 

niche, examining signals that emanate from the niche and influence ISC behavior as well 

as signals that originate from the intestinal epithelium and act on the mesenchymal niche.  

We performed gene expression analysis comparing human colon top and crypt 

compartments and identified genes that are key in ISC maintenance as well as signaling 

pathways critical in the transition of stem/progenitor cells to differentiated colonic 

epithelial cells (Chapter 2).  Of the crypt genes identified, several were localized to the 

ISC niche including the BMP antagonist Gremlin 1 (GREM1) (Chapter 2).  We then 

conducted in vitro experiments on intestinal epithelial cells to determine whether Gremlin 

1 influences epithelial differentiation and/or proliferation (Chapter 2).  Next, we 

examined epithelial-to-mesenchymal interactions that occur in the opposite direction, 

focusing on Indian hedgehog, an epithelially expressed morphogenetic protein known to 

target mesenchymal cells that comprise the proposed ISC niche (Chapter 3).  To 

investigate how Hh signals affect the ISC niche, we generated intestine specific Indian 

hedgehog knockout mice (Villin-Cre;Ihhflox/flox) (Chapter 3).  The phenotype of these 

mice was defined using gene expression profiling, gross anatomical changes and 

microscopic anatomy as determined through immunohistochemistry, electron microscopy 

and quantitative RT-PCR (Chapter 3).  To determine if the mesenchymal niche changes 

following Ihh loss affect the ISC population, we performed in situ hybridization for the 

specific ISC marker Olfm4 (Chapter 3).  Finally, we determined whether the phenotypes 

observed in Villin-Cre;Ihhflox/flox mice are strictly due to paracrine Ihh signaling by 
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generating mice with the deletion of Smo, the receptor that mediates Hh signaling, in 

intestinal epithelial cells (Chapter 3). 
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Gene Expression Patterns of Human Colon Tops and Basal Crypts and 

BMP Antagonists as Intestinal Stem Cell Niche Factors  

 

 

 

 

 

 

 

 

 

 

 

 



   

  27

 

Gene Expression Patterns of Human Colon Tops and Basal Crypts and 

BMP Antagonists as Intestinal Stem Cell Niche Factors  

 

 

Cynthia Kosinski*, Vivian SW Li†, Annie SY Chan†, Ji Zhang*‡, Coral Ho*, Wai Yin 

Tsui†, Tsun Leung Chan†, Randy C. Mifflin§, Don W. Powell§, Siu Tsan Yuen†, Suet Yi 

Leung†¶ and Xin Chen*¶ 

 

*Dept. of Biopharmaceutical Sciences, University of California, San Francisco, CA, USA; 

†Dept. of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, 

Hong Kong; ‡Dept. of Surgery, Beijing Cancer Hospital, Beijing, China; and § Dept. of 

Internal Medicine, University of Texas Medical Branch, Galveston, TX , USA. 

 

 

 

 

 

 

 

 

 

 



   

  28

Summary 

Human colon epithelial cell renewal, proliferation, and differentiation are stringently 

controlled by numerous regulatory pathways.  To identify genetic programs of human 

colonic epithelial cell differentiation in vivo as well as candidate marker genes that define 

colonic epithelial stem/progenitor cells and the stem cell niche, we applied gene 

expression analysis of normal human colon tops and basal crypts using expression 

microarrays with 30,000 genes. Nine hundred and sixty-nine cDNA clones were found to 

be differentially expressed between human colon crypts and tops.   Pathway analysis 

revealed the differential expression of genes involved in cell cycle maintenance and 

apoptosis, as well as genes in bone morphogenetic protein (BMP), Notch, Wnt, EPH and 

MYC signaling pathways.  BMP antagonists gremlin 1, gremlin 2, and chordin-like 1 

were found to be expressed by colon crypts.  In situ hybridization and RT-PCR 

confirmed that these BMP antagonists are expressed by intestinal cryptal myofibroblasts 

and smooth muscle cells at the colon crypt.  In vitro analysis demonstrated that gremlin 1 

partially inhibits Caco-2 cell differentiation upon confluence and activates Wnt signaling 

in normal rat intestinal epithelial cells.  Collectively, the expression data set provides a 

comprehensive picture of human colonic epithelial cell differentiation.  Our study also 

suggests that BMP antagonists are candidate signaling components that make up the 

intestinal epithelial stem cell niche.   
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Introduction 

The human adult colonic epithelium undergoes perpetual regeneration fueled by intestinal 

epithelial stem and progenitor cells located at the colon crypt base.  Perturbation of the 

pathways regulating stem cell renewal contributes significantly to neoplastic 

transformation.  The current basis of our understanding of intestinal stem cells is 

primarily derived from studying the small intestine, which shares major regulatory 

pathways in common with the colon.  Specifically, several key regulatory signals are 

involved in intestinal stem cell renewal and differentiation, including the Wnt, bone 

morphogenetic protein (BMP), and Notch pathways (1-3).  

 Among these pathways, canonical Wnt signaling plays a major role in 

maintaining intestinal stem cell fate and progenitor cell proliferation (4).  BMP signaling, 

in contrast, has been reported to inhibit intestinal stem cell activation and promote 

intestinal differentiation (5).  Cell fate decisions in the intestine have been shown to 

involve Notch signaling, which specifically directs cells toward a secretory lineage in the 

gut (6).  All the evidence suggests there is a close interaction of several key pathways in 

directing intestinal epithelial stem cell renewal and differentiation.  Yet how these 

different pathways coordinate in the specific anatomical compartment of the intestine 

remains mostly unknown.   

 Intestinal epithelial stem cells are supported by underlying myofibroblasts known 

as intestinal subepithelial myofibroblast (ISEMF), which are in close proximity to the 

smooth muscle cells of the muscularis mucosae layer.  These cells at the base of intestinal 

crypts may contribute to the stem cell niche and act as regulators of intestinal stem cell 

self-renewal and differentiation. 
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 Several genomic studies have been applied to study mouse intestinal epithelial 

stem cells and their differentiation program by using either expression array technology 

or cDNA library sequencing (7-9).  These gene expression analyses have provided 

valuable information and candidate markers for mouse gastrointestinal stem/progenitor 

cells, as well as revealing the differentiation program of these cells.  However, no 

information regarding the stem cell niche environment, specifically for the supporting 

cells, is known because previous experiments used microdissected or isolated epithelial 

cells.  Furthermore, no data are available with regards to the human intestine, especially 

for the human colon.  Data on the proliferation program governing the stem/progenitor 

cell compartment and the differentiation program of colon epithelial cells are of particular 

importance because colon cancer is one of the most common cancer types, whereas small 

intestinal cancer is exceedingly rare in humans. 

 In this article, we characterized the gene expression profiles of human colon by 

comparing the gene expression pattern between the top and the basal crypt compartments.  

We identified a comprehensive list of differentially expressed genes encompassing major 

pathways regulating intestinal epithelial stem cell renewal.  Among these pathways, we 

identified elements that contribute to the stem cell niche, which were then validated by 

cellular localization and in vitro functional studies.  Our data set provides a 

comprehensive picture of the human colonic epithelial cell differentiation program and 

helps identify elements that contribute to the maintenance of the intestinal stem cell niche.  
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Results 

Gene Expression Signatures of Human Colon Top and Bottom Crypt 

Compartments 

Using cDNA microarrays containing 44,500 cDNA clones, representing approximately 

30,000 unique genes, we generated gene expression profiles from nine paired 

horizontally dissected human colon top versus bottom crypt tissue compartments.  We 

next applied significance analysis of microarrays (SAM) to the array data set and 

identified 969 cDNA clones, representing approximately 736 unique genes that are 

differentially expressed in colon tops versus bottom crypts, with a false discovery rate of 

<0.1%.  Among these genes, 367 cDNA clones (299 unique genes) were highly expressed 

in colon bottom crypts; and 602 cDNA clones (437 unique genes) were expressed in 

colon crypt tops and surface (the complete gene data set is available for download from  

http://www.pnas.org/content/suppl/2007/09/05/0707210104.DC1/07210Table1.xls ). 

 Careful examination of the genes that are highly expressed at colon basal crypts 

revealed that, apart from previously well known genes such as the c-myc and the EphB 

family (EPHB2, EPHB3 and EPHB4), two major clusters exists (Cluster I and II in 

Figure 1).  Cluster I includes many genes involved in cell proliferation and cell cycle 

regulation, as well as candidate oncogenes (e.g., CDC20, Cyclin B2, PTTG1 and FYN).  

These genes are cell cycle-regulated and are highly expressed in tumor cells, compared 

with normal tissues in a variety of tumor types (10).  As such, these genes are most likely 

to be expressed by proliferating crypt progenitor cells.  Cluster II includes many genes 

that encode secretory proteins and genes involved in cell matrix or matrix modeling (e.g., 

Fibronectin, TIMP3, ADAMTS1 and TAGLIN).  Some of these genes (including 
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Fibronectin and TAGLIN) have been found to be expressed by myofibroblasts as well as 

smooth muscle cells (11, 12).  Therefore, we suspect that genes in this cluster most likely 

represent genes which are expressed by crypt stromal cells.  Strikingly, there are three 

BMP antagonists expressed in this cluster: gremlin 1 (GREM1), gremlin 2 (GREM2) and 

chordin-like 1 (CHRDL1), whose expression and role in the normal human colon are 

mostly unknown.  The genes expressed in the colon top include genes that inhibit cell 

proliferation (p21 and MAD), cell adhesion molecules (CDH1 and TJP3), and genes 

encoding functional proteins of gut epithelial cells (membrane transporters ABCB1, 

ABCG2 or enzymes like CA4).  Together the data support that our microarray analysis 

accurately captures the global gene expression patterns of colon tops versus basal crypts. 

 To further characterize the functional significance of genes expressed in colon 

basal crypts and tops, we performed Gene Ontology (GO) term analysis and identified 

GO terms, which are enriched in each gene list with a cutoff P value of < 0.05 (GO term 

summary of the colon top and bottom crypt compartments is available for download from 

http://www.pnas.org/content/suppl/2007/09/05/0707210104.DC1/07210Table2.xls ).  GO 

term analysis facilitates the interpretation of data by providing biological, physiological, 

and functional descriptions of gene products.  The GO terms that are enriched and unique 

in the basal crypt gene list include “M phase,” “cell cycle,” “protein biosynthesis,” 

“macromolecular biosynthesis,” and “DNA replication”.  These terms are clearly related 

to the cell proliferation and cell renewal at basal crypts.  In contrast, GO terms that are 

enriched and unique in the colon top gene list include “cell communication,” “digestion,” 

“establishment of localization,” “transport,” “ion transport,” etc.  These GO terms are 
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consistent with the expression of genes required for digestive function and transport in 

mature intestinal epithelial cells. 

 

 

 

 

Figure 1. Hierarchical clustering of genes differentially expressed in colon top and 
basal crypt as identified by significance analysis of microarrays (SAM).  Cluster I is 
enriched in genes associated with cell proliferation, and cluster II is enriched in genes 
expressed in pericryptal mesenchymal cells. 
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Expression Profiling in Different Molecular Pathways  

To gain a broader picture of gene expression changes and to elucidate the molecular and 

biological pathways involved in colon crypt maturation, we examined the global 

expression profile data set by using paired t-test. Of the 25,132 cDNA clones, 6,087 were 

found to be significantly altered between the two compartments with the cutoff value at P 

< 0.01 (approximate false discovery rate of 4%). Genes differentially expressed in bottom 

crypt compartment compared to top crypt compartment are available for download from 

http://www.pnas.org/content/suppl/2007/09/05/0707210104.DC1/07210Table3.xls. These 

6,087 transcripts were then visualized by using GenMapp software to examine their 

relationship in various biological pathways.  Expression data of genes in key signal 

transduction pathways regulating stem cell renewal also were extracted by using a 

threshold of P < 0.05 in paired t-test. 

 

Cell Cycle and Apoptosis  

A significant increased gene expression signature enriched in the cell cycle pathway was 

observed in bottom crypts, consistent with the findings that proliferative activity is 

located within this compartment (Figure S1A).  In particular, 85% of the differentially 

expressed genes within this pathway were significantly up-regulated in the bottom 

compartments.  By contrast, inhibitors of cell cycle, including CDKN1A and CDKN2A, 

were down-regulated in the bottom compartment.  Genes involved in RNA and protein 

processing, including ribosomal proteins and translation factors, also were up-regulated 

in the bottom crypts (Figure S2).  We next examined genes involved in the apoptosis 

pathway and noted that most of these genes, including TNF, its receptor TNFRSF1B, 
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CRADD, CASP10, and BAK1, are significantly down-regulated in the colon bottoms 

(Figure S1B).  Our array data are consistent with the occurrence of cell maturation and 

elimination of epithelial cells through apoptosis at the colon top compartment. 

 We next examined the expression of an essential group of genes that control cell 

growth: the Myc/Mad/Max network (Figure S3A).  As expected, oncogenic MYC was 

highly expressed in the proliferative bottom crypt, whereas its dimerization partner MAX 

and its antagonist MAD were restricted to the upper crypt.  In addition, the MXI1 gene 

that functions to antagonize MYC by competing for MAX, also was highly expressed at 

colon tops.  Our findings suggest that proliferation is prohibited in the upper mature 

colon compartment by expression of multiple MYC antagonists.  

 

Wnt Signaling Pathway 

To verify  the key contribution of the Wnt signaling pathway in controlling colon crypt 

development, we correlated the 969 cDNA clones that were differentially expressed as 

identified by SAM with the previously published Wnt target gene data set obtained by 

using inducible dnTCF-4 in CRC cell lines by van de Watering et al. (13).  Interestingly, 

we observed an exceedingly high concordance of expression between the two data sets 

(Pearson correlation coefficient, -0.661; P < 0.001) (Figure 2). Genes highly expressed in 

colon tops are mostly induced by interruption of Wnt signaling through dnTCF4 (e.g., 

p21, BMP2, MAD and CDH18), whereas genes highly expressed in colon crypts are 

mostly repressed by dnTCF4 (e.g., MYC, CDCA7, EPHB2 and EPHB3) (Figure S4).  

These results provide direct evidence that Wnt/β-catenin signaling pathways are a major 

determinant of gene expression patterns along the colon crypt axis. 
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Figure 2. Significant correlation between genes differentially expressed in colon top 
and basal crypt and Wnt/β-catenin signaling targets.  Microarray data of inducible 
expression of dnTCF4 in Ls174 cells were retrieved from van de Wetering et al. (13), and 
overlapping clones with colon top-bottom crypt gene list as identified by SAM were 
selected and calculated for correlation.  The x axis measures mean gene expression 
change (log2) 23 h after dnTCF4 induction, and the y axis measures mean fold change 
(log2) of bottom versus top colon crypt compartments.   
 

BMP Signaling Pathway 

We noted differential expression of multiple BMP components along the colon crypt axis 

(Figure S3B).  BMP1, BMP2, BMP5 and BMP7, SMAD7, and BMPR2 were highly 

expressed in colon tops, whereas BMP antagonists CHRDL1, GREM1, and GREM2 were 

enriched in basal colon crypts.  This observation suggests that BMP signaling is activated 

in the upper crypt, whereas secretory inhibitors CHRDL1, GREM1, and GREM2 located 

at the bottom antagonize BMP signaling in the intestinal epithelial stem cell niche.  
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NOTCH Signaling Pathway 

It is known that the transmembrane NOTCH receptor is cleaved upon activation by its 

ligand (Delta/JAG), releasing the intracellular domain of Notch (NICD).  NICD then 

migrates to the nucleus and activates the transcriptional regulator RBPSUH/RBP-Jk by 

binding to it.  We observed an expression profile consistent with the activation of 

NOTCH signaling in the bottom crypt where NOTCH1, NOTCH2 and NOTCH3, 

RBPSUH and TLE2 were highly expressed at the basal crypt and the NOTCH ligand 

JAG1 was expressed at the top (Figure S3C). 

 

The EPH  Family 

We noted a distinct expression gradient of multiple members of the EPHA and EPHB 

family of tyrosine kinase receptors as well as their ligands in the colon crypt axis (Figure 

S3D).  Expression of EPHB receptors and their ligands are implicated in maintaining the 

correct positioning as well as driving proliferation of the progenitor compartment in the 

crypt-villus axis of the mouse intestine (14, 15).  Consistent with the published data on 

the EPHB families, we noted expression of EPHB1, EPHB2, EPHB3, EPHB4 and 

EPHB6 in the crypt base, whereas the ligand EFNB2 was expressed at colon tops.  

Interestingly, we also noted differential expression of the EPHA receptor family in the 

colon crypt axis, with high expression of EPHA1, EPHA4, EPHA7 at the crypt base and 

high expression of EPHA2 and EPHA5, and the ligand EFNA1 in colon tops.  Our results 

call for further study of the role of the EPHA family in controlling colon crypt maturation 

and its possible involvement in the oncogenic process. 
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Quantitative RT-PCR Validation of Differentially Expressed Genes 

To verify our bottom-top array data, several genes belonging to different key pathways 

were selected for validation by using quantitative RT-PCR in four pairs of samples, 

including MXI1 (Myc/Mad/Max family); APC and SFRP1 (WNT signaling), GREM1, 

GREM2, and CHRDL1 (BMP signaling); JAG1 (Notch pathway); EFNA1 (Eph family); 

DUSP5 (MAPK pathway); and GPC4 (candidate stem cell marker).  All of the selected 

genes were confirmed to be differentially expressed between colon bottom-top 

compartments by quantitative RT-PCR (Supplemental Table 1). 

 

BMP Antagonists are Expressed by Subepithelial Myofibroblasts and Smooth 

Muscle Cells at Colon Crypts 

One of the most intriguing observations is the distribution of BMP signaling pathway 

molecules along the colon crypt axis, including BMP ligands and receptor and signaling 

molecules.  In the colon top, BMP1, BMP2, BMP5 and BMP7, SMAD7, and BMPR2 are 

highly expressed, whereas the basal crypt exhibits high expression of three BMP 

antagonists, GREM1, GREM2, and CHRDL1 (Figure 1 and Figure S3B).  The latter 

information, which was previously unknown, suggests the unusual requirement to block 

BMP signaling at the colon basal crypt region.  Furthermore, we discovered that the three 

BMP antagonists are part of a cocluster of genes that are enriched for those putatively 

expressed by intestinal crypt stromal cells, such as the fibronectin gene (Figure 1), which 

prompted us to suspect that these BMP antagonists also may be expressed by stromal 

cells. 
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 To investigate the cellular origin of BMP antagonists, we performed in situ 

hybridization for GREM1 and GREM2 on human colon tissues.  In situ hybridization 

revealed strong expression of GREM1 and GREM2 in the mesenchymal cells in the basal 

part of the lamina propria and muscularis mucosae of the colon (Figure 3A and 3B), 

whereas sense probes showed no staining (data not shown).  Expression corresponded to 

cells on serial sections that stained for fibronectin (Figure 3C) and α-smooth muscle actin 

(α-SMA) (Figure 3D), markers expressed in both myofibroblasts and smooth muscle cells.  

Transcripts of GREM1 and GREM2 were not detected in epithelial cells, mesenchymal 

cells in the top part of the lamina propria and submucosa, or smooth muscle cells in the 

muscularis propria (data not shown).   

 In the colon, it has been shown that myofibroblasts are vimentin-positive, whereas 

smooth muscle cells are vimentin-negative (16).  Although expression of GREM1 and 

GREM2 in α-smooth muscle actin-positive smooth muscle cells of the muscularis 

mucosae is unequivocal, specific expression of GREM1 and GREM2 by cryptal 

myofibroblasts remained unclear because of their inconspicuous morphology.  Thus, we 

performed coimmunofluorescence with vimentin to further define the cellular origin.  

Consistently, we observed no GREM1 signal in colon tops.  In addition, we found 

GREM1 mRNA (Figure 3E) and vimentin staining (Figure 3F) colocalized (Figure 3G, 

white arrows; also see Figure S5 for the enlarged version of the coimmunostaining) in 

certain mesenchymal cells surrounding the basal crypts, suggesting that gremlin 1 is also 

secreted by myofibroblasts. 
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Figure 3.  Expression and localization of GREM1 and GREM2 by myofibroblast 
cells and smooth muscle cells at colon crypt.  (A and B): In situ hybridization (ISH) for 
GREM1 (A) and GREM2 (B).  Dark brown dots indicate positive staining; (C and D):  
Immunohistochemical staining of fibronectin (C) and α-smooth muscle actin (D) as 
markers for intestinal myofibroblasts as well as smooth muscle cells.  Dark brown 
staining indicates positive staining.  (E, F) Double labeling for GREM1 mRNA (red, E) 
and myofibroblast marker vimentin (green, F) at colon basal crypt region.  (G) Combined 
image showing co-expression of GREM1 and vimentin (yellow dots indicated by white 
arrows) at scattered pericryptal mesenchymal cells corresponding to myofibroblasts.  See 
Figure S5 for the enlarged version of fluorescent ISH/immunostaining. (H) RT-PCR 
analysis of BMP antagonists expression in four intestinal myofibroblast isolates (CMF11, 
CMF7B, IMF11B and 18Co) as well as three colon cancer cell lines (Caco-2, DLD-1, 
HT29). 
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 To further validate our findings, we isolated primary colonic myofibroblasts from 

histologically normal human colonic tissue and assayed for gene expression by RT-PCR. 

The myofibroblast features of isolated cell lines were confirmed by immunofluorescent 

staining for fibronectin, vimentin, and α-smooth muscle actin (Figure S6).  The mRNA 

for BMP antagonists GREM1, GREM2, and CHRDL1 were detected in human colonic 

and ileal myofibroblasts, but never or weakly in colon tumor epithelial cells (Figure 3H). 

 Taken together, the data demonstrate that gremlin 1, gremlin 2, and chordin-like 1 

in the gastrointestinal tract likely originate from myofibroblasts and smooth muscle cells, 

both located at the crypt base in proximity to the stem cell niche.  Thus, we hypothesized 

that, through inhibiting BMP signaling locally, these BMP antagonists may function to 

maintain Wnt signaling and inhibit differentiation at the crypt base. 

 

Gremlin 1 Partially Inhibits Caco-2 Cell Differentiation 

To determine whether gremlin 1 interferes with differentiation in intestinal epithelial cells, 

Caco-2 cells were treated with recombinant gremlin 1 and gene expression of intestinal 

differentiation markers was assayed by quantitative RT-PCR.  Caco-2 cells have been 

shown to spontaneously differentiate into an enterocyte phenotype in 21 days upon 

reaching confluence and form a polarized monolayer resembling the intestine (17).  In a 

microarray study of Caco-2 cell differentiation, it was found that expression levels of 

mature differentiation marker genes reach a plateau at 4 to 7 days postconfluence, and the 

expression levels do not significantly go up during the rest of the 21 days in culture (Saaf 

A et al., personal communication).  We have further validated these results by 

quantitative RT-PCR (data not shown).  Therefore, we chose 7 days postconfluence to 
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study the effect of gremlin 1 on Caco-2 cell differentiation.  We assayed the expression of 

two genes: p21/CDKN1A, a marker for cell cycle inhibition; and ANPEP, a brush border 

enzyme.  We found that 7 days of gremlin 1 treatment consistently decreased p21 gene 

expression by 20-30% in Caco-2 cells compared to control cells (Figure 4A).  Similarly, 

7 days of gremlin 1 treatment consistently decreased ANPEP gene expression by 40-50% 

in Caco-2 cells compared to control cells (Figure 4A).  These findings suggest that 

gremlin 1 partially inhibits intestinal differentiation, and thus gremlin 1 may play a 

crucial role in inhibiting differentiation near the crypt base. 

 

Gremlin 1 Activates Wnt Signaling in Intestinal Cells 

In a previous study, overexpressing the BMP antagonist noggin in the intestine promoted 

Wnt activity and the development of ectopic crypts (18).   Consistent with the hypothesis 

that BMP antagonists may activate Wnt signaling, we noticed that, in Caco-2 cell 

differentiation assays, gremlin 1 is able to transiently induce expression of the known 

Wnt target gene AXIN2 (19, 20) in Caco-2 cells at 4 h (Figure 4A).  To test our 

hypothesis that gremlin 1 assists in maintaining Wnt signaling in normal intestine, we 

treated two normal rat intestinal epithelial cell lines, IEC-6 and IEC-18, with gremlin 1 

for 48 h and examined the expression of AXIN2.  Quantitative RT-PCR analysis revealed 

that the expression of AXIN2 was significantly up-regulated by gremlin 1 treatment in 

both tested cell lines (Figure 4B).  We next examined whether gremlin 1 affects β-catenin 

activity by assaying the subcellular localization of β-catenin in IEC-18 cells.   We found 

that, in untreated IEC-18 cells, none of the cells displayed nuclear β-catenin staining.  

After incubating with gremlin 1, nuclear β-catenin was observed in a small number of 
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IEC-18 cells (Figure 4 C and D). All these data support that gremlin 1 is able to activate 

Wnt signaling in intestinal epithelial cells. 

 

 

 
 
Figure 4. Gremlin 1 partially inhibits Caco-2 cell differentiation and activates 
Wnt/β-catenin signaling in normal intestinal cells.  (A) Quantitative RT-PCR analysis 
revealed a statistically significant decrease in expression of intestinal epithelial 
differentiation markers ANPEP and p21 at day 7 when Caco-2 cells were cultured in 
growth media supplemented with gremlin 1.  The analysis detected a significant up-
regulation of the AXIN2 transcript in Caco-2 cells following a 4 hour treatment with 
gremlin 1 (*, P < 0.05).  (B) Quantitative RT-PCR analysis demonstrated a statistically 
significant increase in AXIN2 expression in normal rat intestinal cells IEC-6 and IEC-18 
after 48 hours of treatment with gremlin 1 (*, P < 0.01).  (C and D) Gremlin 1 induces 
nuclear/cytoplasm localization of β-catenin in IEC-18 cells. 
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 In summary, our data support that the BMP antagonists gremlin 1, gremlin 2, and 

chordin-like 1 are expressed by colon crypt myofibroblasts and smooth muscle cells and 

contribute to the stem cell niche by activating Wnt signaling and inhibiting differentiation 

of basal crypt epithelial cells.  

 

Discussion 

In this manuscript, we provide a comprehensive genomic analysis of genes differentially 

expressed at human colon top and basal crypt compartments.  Our results reveal alteration 

in a diverse spectrum of genes reflecting not only a difference in cell proliferation versus 

differentiation/apoptosis along the colon crypt axis but also changes in various 

components of key signaling pathways regulating colon stem cell renewal. Although 

many similarities were noted in comparison with an expression profiling database derived 

from mouse small intestine (8), our data extend the findings to human and provide unique 

information about the colon, including elements highly relevant to colon carcinogenesis.  

Specifically, our data captured information not only from the epithelial cells, but also the 

supporting tissue microenvironment, which may contribute critical elements for creating 

and maintaining the stem cell niche.   

 The identification of genes highly expressed in colon crypts provides us a unique 

opportunity to search for markers of intestinal stem/progenitor cells.  We compared the 

crypt gene list with genes that are highly expressed in human ES and embryonic 

carcinoma (EC) cells (21) and identified 31 genes, including GAB1, PTTG1, EBAF, 

GPC4, and MYBL, which are highly expressed in ES and EC cells as well as in colon 

crypts (complete list of mutually expressed genes available for download from 
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http://www.pnas.org/content/suppl/2007/09/05/0707210104.DC1/07210Table5.xls and 

Figure S7).  These genes mutually expressed in basal crypts and ES and EC cells 

represent potential markers for intestinal stem or progenitor cells.  Some potential cell 

surface proteins (e.g., GPC4) might be useful markers for the purification of intestinal 

stem/progenitor cells.  One has to be cautious, however, because some of these genes 

may simply represent proliferating cell signatures in ES, EC and crypt progenitor cells.  

Further studies to address the cellular localization of these genes in the intestinal 

compartment and their function in intestinal stem/progenitor cell differentiation will 

improve our understanding of intestinal stem/progenitor cells. 

 Although we observed gene expression profiles reflecting activated Wnt signaling 

in colon crypts (Figure 2), the exact mechanism leading to Wnt activation remains 

unclear.  We have observed differential expression of several members involved in 

transduction or regulation of Wnt signaling along the colon crypt axis.  Specifically, APC, 

WNT5B and TCF4 were localized at the crypt top, whereas AXIN2, DKK3, TCF3, SFRP1, 

SFRP2, FZD2, FZD3, FZD7 and FZDB were all restricted to the bottom.  Many of these 

observed differential expression patterns were consistent with an expression study based 

on in situ hybridization in mouse intestine (22). The reason for the expression of several 

Wnt secretory inhibitors in the colon crypt base is unclear.  It may suggest either a 

negative-feedback regulation or the need to fine tune Wnt activity through an intricate 

balance of positive and negative regulators in this specific anatomical location. 

 Altogether, based on our expression profiling data, we generated a model 

depicting the components and signaling molecules featured in this study and their 

differential expression along the colon crypt axis (Figure 5), including activated Wnt and 
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Notch signaling at the crypts and BMP signaling at the tops.  The differential distribution 

of Eph receptors and their ligands, as well as MYC and MYC antagonists, helps maintain 

crypt polarity through regulating cell positioning and cell proliferation.   

 

Figure 5. Graphical view of human colon intestinal epithelial cell development and 
stem cell niche maintenance.  Only genes with significant differential expression in 
paired t-test (P < 0.05) are listed.  ISEMF, intestinal subepithelial myofibroblast; SMC, 
smooth muscle cell. 
 

 The discovery of genes localized to the colonic stem cell niche provides further 

understanding of the signaling pathways important in this region.  However, the detailed 

mechanisms of how the different signaling pathways coordinate to create this niche 

remains largely unknown.  It has been hypothesized that Wnt signaling is required but not 
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sufficient for intestinal stem cell activation and self-renewal.  A second signal to 

antagonize BMP is required so as to release its inhibitory effect on nuclear translocation 

of β-catenin.  In mouse intestine, transient expression of the BMP antagonist noggin has 

been observed in pericryptal mesenchymal cells and intestinal epithelial stem cells, which 

may contribute to this required second signal (23).  Although a cDNA clone 

corresponding to noggin was not present in our array, we found expression of three 

different BMP antagonists, including GREM1, GREM2, and CHRDL1, in colon basal 

crypts by pericryptal mesenchymal cells.  Moreover, we found a similar effect of gremlin 

1 in promoting nuclear translocation of β-catenin and activating Wnt signaling.  These 

findings led us to propose a model of how BMPs and their antagonists, including gremlin 

1, contribute to create the colonic epithelial stem cell niche through modulation of Wnt 

activity (Figure 5).  In this model, BMPs act to restrict stem cell expansion and are 

expressed at colon tops with a decreasing gradient towards the crypt.  BMP antagonists, 

including gremlin 1, expressed by ISEMFs and smooth muscle cells in turn create an 

opposite gradient to antagonize BMPs, thus maintaining Wnt activity at the crypt base.  

This gradient then creates an environment that promotes stem cell self-renewal and 

expansion at the crypt base region.  Indeed, the expression of multiple BMP antagonists 

by ISEMFs and smooth muscle cells has provided an optimal anatomical setup for the 

creation and maintenance of the stem cell niche in the basal crypt region of the colon.  

 Both BMPs and their antagonists play essential roles in stem cell biology, 

although their functions may vary in different stem cell systems (24).  In a recent study, 

GREM1 was reported to be expressed in stromal cells of basal cell carcinoma (BCC) of 

the skin, and gremlin 1 was shown to inhibit differentiation and promote proliferation in 
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basal cell carcinoma cells in vitro (25).  Expression of GREM1 also was noted in stromal 

cells in diverse types of human cancer, including colon cancer.  Consistently, we 

observed GREM1 expression by stromal cells in a subset of human colon cancer samples 

(Figure S8).  The staining of GREM1 in tumor stromal cells tends to be stronger than that 

in normal myofibroblast and smooth muscle cells at the colon crypt.  The data suggest 

that GREM1 expression is up-regulated during the development of a subset of colon 

tumors, and thus BMP antagonists may represent important stem cell niche factors in 

both normal and neoplastic conditions.  It would be of great interest to further investigate 

and clarify the role of BMP antagonists in the colon cancer stem cell niche.  Such studies 

may provide new opportunities for therapeutic strategy through the modulation of BMP 

activity. 

 

Materials and Methods 

Tissue Samples and RNA extraction 

Colectomy specimens were received fresh from the operating theater immediately upon 

resection.  The study included 11 patients who underwent colectomy for either 

adenocarcinoma, or localized non-neoplastic conditions.  Morphologically normal colon 

mucosae distant from pathological lesions were dissected free from the underlying 

submucosa and muscularis propria.  The dissected mucosae were laid completely flat on a 

metal surface and frozen in liquid nitrogen.  A small 5-mm square of flat mucosa was cut 

out and embedded in embedding medium for frozen sectioning.  Ten microgram-thick 

serial horizontal were cut such that the early sections contained the top compartment, 

whereas the deeper sections contained the basal crypt compartment.  H&E slides were 
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prepared from each 100-µm interval, and the intervening sections were collected into 

separate tubes containing Trizol (Invitrogen, Carlsbad, CA) reagent.  For each case, tissue 

from the superficial crypt compartment and tissue from the basal crypt compartment were 

selected based on the consecutive H&E sections and submitted for RNA extraction.  

Tissue from the mid-crypt region was kept for future use and not studied.  Expression 

profiling was performed in nine pairs of patient samples.  Spare-paired RNA from two 

patients, and paired RNA extracted from two independent patients were used for 

validation studies by quantitative RT-PCR.  This study was approved by the Ethics 

Committee of the University of Hong Kong and Internal Review Board of University of 

California, San Francisco.  

 

RNA amplification, microarray procedure  

cDNA clones representing about 30,000 unique genes were obtained from Stanford 

Functional Genomics Facility.  Total RNA isolated from nine pairs of colon top and crypt 

compartments, together with universal human reference RNA (Strategene, La Jolla, CA) 

was amplified using MessageAmp kit (Ambion, Austin, TX).  Amplified RNAs were 

converted to aminoallyl-modified cDNA and coupled to hydroxysuccinimidyl esters of 

Cy3 or Cy5 (Amersham-Pharmacia, Piscataway, NJ) and hybridized to microarrays as 

described (26).  The array was then scanned with a GenePix 4000B microarray scanner 

(Axon Instruments, Union City, CA).  Primary data collection and analysis were carried 

out using GenePix Pro 3.0 (Axon Instruments).  Areas of the array with obvious 

blemishes were manually flagged and excluded from subsequent analysis.  The raw data 

were deposited into Stanford Microarray Database (SMD) (27), http://smd.stanford.edu.  
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The raw data also were submitted to Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/projects/geo, accession no. GSE6894).   

 

Microarray Analysis 

For initial data analysis, all nonflagged array elements for which the fluorescent intensity 

in either channel was >2.5 times the local background were considered well measured.  

Genes for which <75% of measurements were available across all the samples were 

excluded from further analysis.  This resulted in 25,132 cDNA clones that were 

downloaded from Stanford Microarray Database.  For SAM analysis, data were mean 

centered, and genes with >1.5-fold variation in four arrays were selected. Missing data 

were estimated using 10 nearest neighbor KNN imputing algorithm. Paired SAM was 

performed with 512 permutations (28).   A total of 969 cDNA clones with significant 

differential expression between bottom-top compartments was identified.  The GO term 

finder program was used to analyze the list of differentially expressed genes for 

enrichment of specific functional groups (29). 

 To gain a broader picture for the differential gene expression, a paired t test was 

performed using the whole data set independently to identify genes that were 

significantly altered (P < 0.01, n = 18) between each pair of samples.  A total of 6,087 

cDNA clones satisfying the previous criteria was then extracted.  For graphical display, 

the 6,087 significant cDNA clones identified were imported into GenMapp software (30) 

to illustrate the expression difference between bottom-top crypt compartments among 

different pathways. 
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 Genes with differential expression as identified by SAM were arranged by 

hierarchical clustering using the average linkage clustering method and visualized by 

using TreeView.  Data regarding the global gene expression level changes after 

interruption of Wnt signaling in colon cancer cells through inducible dnTCF4 (13) were 

retrieved from  

http://smd.stanford.edu/cgi-bin/publication/viewPublication.pl?pub_no=191; and genes 

highly expressed in human ES and EC cells (31) were downloaded from 

http://microarray-pubs.stanford.edu/es_cells_2/ for comparison with our data set. 

 

Real-Time Quantitative RT-PCR 

Quantitative RT-PCR was performed to validate microarray data as well as to study gene 

expression variation in Caco-2 and rat intestinal epithelial cells (IEC-6 and IEC-18) 

treated with 0.5 µg/ml recombinant mouse gremlin 1 (R&D Systems, Minneapolis, MN).  

The procedure was carried as described (32).  In brief, total RNA was subjected to DNase 

I digestion to remove any genomic DNA contamination.  Two-step reverse transcription 

was carried out using MultiScribe™ Reverse Transcriptase (Applied Biosystems, Foster 

City, CA).  Human or rat GAPDH was used as the normalization control in subsequent 

quantitative analysis.  For confirmation of microarray data in this study, the following 

primers and probe were used:  GAPDH-F: CCTTCATTGACCTCAACTACAT; 

GAPDH-R: GAAGATGGTGATGGGATTTC; and GAPDH-probe: 

CAAGCTTCCCGTTCTCAGCC.  Other primers and probe reagents were purchased 

from TaqMan Gene Expression Assay (Applied Biosystems).  For the gene expression 

study in cells, SYBR Green Master Mix (Applied Biosystems) was used together with the 
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primer pairs listed in Supplemental Table 2.  Quantification was performed using the ABI 

Prism 7700 sequence detection system (Applied Biosystems) according to the relative 

standard method.  Calibration curves were generated for each transcript and validated by 

using linear regression analysis (r2  0.99).  Transcript quantification was performed in 

triplicate for every sample and reported relative to GAPDH. 

 

Cell Culture 

Caco-2, DLD-1, HT 29, IEC-6 and IEC-18 cells were obtained from American Type 

Culture Collection (ATCC, Manassas, VA).  Caco-2, DLD-1, IEC-6 and IEC-18 cells 

were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/L glucose 

and L-glutamine.  HT 29 cells were cultured in RPMI-1640 with 2.0 g/L glucose and L-

glutamine.  The media was supplemented with 10% fetal bovine serum (5% for IEC-18 

cells), penicillin (50 units/ml), and streptomycin (50 µg/ml).  Transferrin (0.01 mg/ml) 

was added to media for Caco-2 cells.  An intestinal subepithelial myofibroblast cell line, 

18Co, was purchased from ATCC (33).  Primary intestinal myofibroblast cultures were 

established from histologically normal margins of surgically resected colonic (CMF) or 

ileal (IMF) tissue by using the outgrowth method described by Mahida et al. (34).  The 

myofibroblast phenotype was verified by immunohistochemistry and flow cytometry as 

described (35, 36).  The primary myofibroblasts were cultured in MEM Eagle’s with 

Earle’s BSS Medium that was supplemented with 10% NuSerum, 200 µM L-glutamine, 

penicillin (50 units/ml), and streptomycin (50 µg/ml).   
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In situ hybridization and Immunohistochemistry 

In situ hybridization was performed using digoxigenin-labeled probes as previously 

described (37).  Human (gremlin 1) GREM1 and human (gremlin 2) GREM2 riboprobes 

were used in this study and generated by appending the T7 promoter sequence to the 

respective 5’ end of antisense and sense primers (Supplemental Table 2).  For 

immunohistochemistry, paraffin tissue sections were dewaxed with xylene and hydrated 

in graded alcohols.  Antigen retrival was performed by boiling slides for 10 min in 

sodium-citrate buffer (10mM, pH 6.0).  Following antigen retrival, the slides were treated 

with primary monoclonal antibodies directed against either α-smooth muscle actin 

(αSMA) (DAKO, Carpinteria, CA; 1:50 dilution) or fibronectin (NeoMarkers, Fremont, 

CA; 1:1000 dilution).  The slides were incubated with biotinylated goat anti-mouse 

antibody, followed by ABC immunodetection (VECTASTAIN elite ABC reagent, Vector 

Laboratories, Burlingame, CA) using DAB to reveal antibody binding. 

 

Double staining using in situ hybridization and immunofluorescence 

In situ hybridization was performed using human GREM1 riboprobe as described in the 

previous section.  Double staining by using immunofluorescence and in situ hybridization 

was carried out as described previously (38). To detect the secondary streptavidin 

complex, streptavidin-specific Alexa Fluor 594 (Invitrogen) was used.  After mRNA 

detection, the slides were incubated overnight with primary antibody vimentin 

(Neomarkers, 1:1000 dilution). The antibody binding was detected by incubating the 

sections with FITC goat anti-mouse secondary antibody.  The slides were mounted with 
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Vectashield containing DAPI (Vector Laboratories).  Images were captured with the 

Zeiss upright Axioscope2 Plus fluorescence microscope. 

 

RT-PCR 

Total RNA was extracted from CMF11, CMF7B, IMF11B, 18Co, DLD-1, Caco-2, and 

HT 29 cells using TRIzol reagent (Invitrogen).  For each reaction, 1 µg of RNA was 

reversed transcribed to cDNA. PCR amplification was carried out as described (39).  The 

primer sequences are listed in Supplemental Table 2.   

 

Immunofluorescence 

 IEC-18 cells cultured on chambered slides and treated with 0.5 µg/ml recombinant 

mouse gremlin 1 (R&D Systems) for 0 or 24 h were fixed with 4% paraformaldehyde at 

room temperature for 20 min.  Cells were permeabilized with 0.1% Triton X-100 in PBS 

for 15 min.  After blocking with PBS containing 0.5% goat serum for 30 min, the cells 

were incubated with primary antibodies against vimentin (Neomarkers, 1:800 dilution), 

fibronectin (Neomarkers, 1:1000 dilution), or α-smooth muscle actin (αSMA) (Dako, 

1:50 dilution).  The primary antibody binding was detected with goat anti-mouse 

antibody conjugated to Alexa 568 (Invitrogen).  The slides were mounted with 

Vectashield mounting medium containing DAPI (Vector Laboratories).  Images were 

acquired using the Zeiss upright Axioscope2 Plus fluorescence microscope. 
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Supplementary Information 
 

 

 

Figure S1. Network analysis for cell cycle (A) and apoptosis (B) genes differentially 
expressed in colon top and basal crypts by GenMapp from KEGG pathway. 
Highlighted genes are those significantly altered in paired t-test (P < 0.01), where red 
represents genes overexpressed in bottom crypt and green represents down-regulated 
genes.  
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Figure S2. Differential expression of translation factors and ribosomal proteins in 
colon bottom versus top crypt compartments by GenMapp.  Highlighted genes are 
those significantly altered in paired t-test (P < 0.01), where red color represents genes 
overexpressed in bottom crypt and green color represents downregulated genes.  (A) 16 
out of 19 translation factors (84%) and (B) 43 out of 48 ribosomal proteins (90%) are 
overexpressed in bottom crypt. 
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Figure S3. Differential gene expression pattern of selected pathways in colon top 
and basal crypts. (A) Myc/Max/Mad network. (B) BMP pathway. (C) NOTCH pathway. 
(D) Eph/ephrin pathway.  All the genes listed were significant in paired t-test (P < 0.05).  
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Figure S4. Genes differentially expressed in colon top and basal crypt and their 
relationship with Wnt/β-catenin signaling targets. Microarray data of inducible 
expression of dnTCF4 in Ls174 cells were retrieved from van de Wetering et al.(13), and 
overlapping clones with colon top/bottom crypt gene list as identified by SAM were 
selected. Common genes in both data sets were displayed by using TreeView. 
 
 
 
 
 
 
 
 



   

  63

 
 

 
 
Figure S5. Enlarged version of Figure 3E-3G showing the colocalization (white 
arrows) of gremlin 1 (red dots) and myofibroblast marker vimentin (green staining) 
at colon crypts. 
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Figure S6. Characterization of isolated human colonic myofibroblast 18Co cells by 
immunofluorescent staining of fibronectin (A), vimentin (B), and α-smooth muscle 
actin (C). 
 
 

 
 
Figure S7.  Candidate stem/progenitor cell markers in colon crypt gene list 
illustrated by using TreeView. Specifically, 895 genes reported to be highly expressed 
in human ES and EC cells by Sperger et al. (21) were compared to 367 clones highly 
expressed in colon crypts. Thirty-one genes in common between these two data sets were 
noted.     The complete list of genes is available for download from 
http://www.pnas.org/content/suppl/2007/09/05/0707210104.DC1/07210Table5.xls. 
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Figure S8. Gremlin 1 expression in colon cancer stromal cells revealed by in situ 
hybridization. Dark brown dots indicate positive staining. 
 
 

 

                         

 

Figure S9. Representative horizontal histological sections of colon top (A) and crypt 
(B) mucosal compartments submitted for RNA extraction.  
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Table S1. Quantitative RT-PCR validation of colon bottom/top crypt array 
expression data. 
 
 

Genes Bottom/top 
array fold 

change 
(log2) 

Paired t-
test 

p-value 
(array) 

Expressed 
at colon 
Position 

Bottom/top 
qRT-PCR 

fold change 
(log2) 

Paired t-
test 

p-value 
(qRT-PCR)

APC -0.94 0.012 Top -1.021 0.002 

SFRP1 2.265 <0.001 Bottom 2.788 0.017 

MXI1 -2.553 <0.001 Top -3.200 0.002 

JAG1 -1.042 0.004 Top -0.951 0.026 

DUSP5 -2.450 <0.001 Top -2.336 0.002 

EFNA1 -2.400 <0.001 Top -2.874 0.002 

CHRDL1 5.317 <0.001 Bottom 6.646 0.004 

GREM1 3.043 <0.001 Bottom 7.536 < 0.001 

GREM2 3.960 <0.001 Bottom 6.068 0.001 

GPC4 1.682 <0.001 Bottom 0.928 0.002 
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Table S2. Primers used for RT-PCR, quantitative RT-PCR, and in situ 
hybridization. 
 
Table S2A: Primers used for RT-PCR analysis 
 
Human Primers Forward Sequence (5'  -3') Reverse Sequence (5'  -3') 

Gremlin 1 GTCACACTCAACTGCCCTGA GGTGAGGTGGGTTTCTGGTA 

Gremlin 2 CCTCAATCCTGGTCTTTGGA TGGATCAACCATGTGCAGTT 

Chordin-like1 CCACCTCAGGTAGAGGTCCA GTGCATGGCGTGAATAATTG 

Chordin TGTGAGAAGGTGCAGTGTCC AAGAGCCTTCGGCTTCTTTC 

FST GTTTTCTGTCCAGGCAGCTC AGCTTCCTTCATGGCACACT 

TWSG1 TCCCCTTCTTCATGAGCATC AGCCAAATTTGAAGGCAAAA 

Actin TCACAATGTGGCCGAGGACTTTGA GCACGAAGGCTCATCATTCAAA 

 
Table S2B: In situ hybridization probes 
 
Human Primers Forward Sequence (5'  -3') Reverse Sequence (5'  -3') 

Gremlin 1 AACAGTCGCACCATCATCAA CGATGGATATGC 

Gremlin 2 TGTGGGGACTTAGCTTCCTG TCCACCAAATGC 

 
Table S2C: Primers used for qRT-PCR 
 
 Human Primers Forward Sequence (5'  -3') Reverse Sequence (5'  -3') 

ANPEP CCACCTTGGACCAAAGTAAAGC TCTCAGCGTCACCTGGTAGGA 

p21 TGGAGACTCTCAGGGTCGAAA GGCGTTTGGAGTGGTAGAAATC 

Axin-2 TGCTCTGTTTTGTCTTAAAGGTCTGA ACAGATCATCCCATCCAACACA 

GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC 

   

Rat Primers Forward Sequence (5'  -3') Reverse Sequence (5'  -3') 

Axin-2 TGCCAAAACGGAATACGAAAG TGCACTGGACATCCCTCCTT 

GAPDH TGCCAAGTATGATGACATCAAGAAG TAGCCCAGGATGCCCTTTAGT 
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Summary 

The intestinal stem cell (ISC) niche supports and regulates ISCs through both physical 

interactions and diffusible factors. However, how the niche influences ISC regulation 

remains elusive. Here, we examined the role of Indian hedgehog (Ihh) in niche 

organization and how perturbation of niche components affects ISC fate. We find that 

deleting intestinal epithelial Ihh leads to disrupted niche architecture as manifested by the 

loss of the muscularis mucosae, extracellular matrix deterioration, and reduced crypt 

myofibroblasts. Moreover, deregulation of the niche leads to an expansion of ISCs. 

Mechanistic studies reveal inhibiting Hh deregulates BMP signaling, up-regulates MMPs, 

and disrupts extracellular matrix proteins, fostering a pro-growth environment for ISCs. 

We show that the muscularis mucosae is a novel component of the ISC niche, which acts 

with myofibroblasts to restrict crypt size and prevent abnormal stimulation of ISCs. Thus, 

Ihh functions as a critical regulator of ISC self-renewal by maintaining the ISC niche. 
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Introduction 

In the adult intestine, gut epithelial cells undergo repeated progenitor cell proliferation, 

terminal differentiation and cell death, a process that requires intestinal epithelial stem 

cells (ISCs) to engage in a continuous dialogue with neighboring epithelial and 

mesenchymal cells (1, 2). The ISC is located at or near the base of the crypt. The debate 

on the exact location of ISCs has been reignited by two recent genetic lineage tracing 

studies in which Lgr5 and Bmi1 emerged as candidate ISC markers (3, 4). Lgr5 and 

Bmi1-labeled cells both possess the quality of “stemness” as demonstrated by their 

longevity and multipotency; however, Lgr5-labeled cells were found at the base of the 

crypt interspersed between Paneth cells while Bmi1-labeled cells were primarily found at 

the +4 position. Since the discovery of Lgr5 intestinal stem cells, additional ISC markers 

have been identified based on the gene signature of Lgr5 stem cells, including Achaete 

Scute-Like 2 (Ascl2) and Olfactomedin-4 (Olfm4) (5, 6).  Other ISCs markers have been 

proposed including the cholesterol-binding glycoprotein Prominin1 and the neural RNA-

binding protein Musashi1 (7, 8). However, subsequent studies have challenged the 

specificity of these markers as they found Prominin1 and Musashi1 are broadly expressed 

in intestinal crypts, marking transit-amplifying cells as well as ISCs (9, 10). 

 The continuous shedding of intestinal epithelial cells into the gut lumen requires 

ISCs to self-renew daily. The regenerative capacity of ISCs is directed by structural and 

biochemical cues received from the ISC niche (11). The niche is a complex structure that 

modulates intestinal homeostasis by maintaining a fine balance between stem cell self-

renewal and downstream differentiation. The different cell types believed to contribute to 

the ISC niche include neighboring epithelial cells, pericryptal intestinal subepithelial 
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myofibroblasts (ISEMFs), smooth muscle cells (SMCs), endothelial cells, immune cells, 

and the basement membrane. The most influential components of the ISC niche are 

considered pericryptal ISEMFs due to their close proximity to ISCs (12, 13).   These 

mesenchymal niche cells secrete various factors that favor or restrict ISC self-renewal 

including cytokines, growth factors, and matrix proteins. Among them are BMP 

antagonists, such as Noggin and Gremlin 1, which act with Wnt signals to maintain an 

environment permissive for ISC self-renewal (14, 15). Indeed, recent in vitro culture of 

intestinal epithelium incorporated either myofibroblasts or extracellular signals that are 

believed to be produced by myofibroblasts such as BMP antagonists into the culture 

system (16, 17). Yet how ISEMFs are regulated within the ISC niche, their precise role in 

fostering ISC self-renewal and proliferation, and whether they are the only major 

contributors of the mesenchymal ISC niche remains unclear.  

 The Hedgehog (Hh) signaling pathway plays a critical role during gut 

development (18). Evidence that Hh signals may target intestinal mesenchymal cells 

including those forming the niche has emerged from studies that characterized the 

expression pattern of Hh signaling components (19, 20). Expression of the Hh ligands, 

Sonic Hedgehog (Shh) and Indian Hedgehog (Ihh) has been detected exclusively in the 

intestinal epithelium, while expression of Hh target genes, Patched (Ptch-1), and Gli1 has 

been observed in the mesenchyme. Expression of the other Hh ligand, Desert Hedgehog 

(Dhh), does not overlap with epithelially expressed Shh or Ihh and is limited to Schwann 

cells, peripheral nerves, and endothelial cells in the gut (21). A detailed analysis of the 

gut expression pattern of Hh components in early postnatal mice revealed Hh-responsive 

cells (Gli1-positive cells) within the small intestinal villus core, muscularis mucosae and 
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pericryptal myofibroblasts (20). In the colon, a similar pattern was detected with Hh-

responsive cells in the muscularis mucosae and in regions surrounding the crypts. These 

data suggest Hh signaling in the intestine predominantly functions in a paracrine 

direction, from the epithelium to the mesenchyme. 

 The importance of Hh signaling in intestinal development has been demonstrated 

by studies using knockout and transgenic mice. Both Shh- and Ihh-null mice display 

marked gastrointestinal abnormalities including attenuated smooth muscle layers and 

intestinal malrotation (19). Interestingly, the gut phenotype seen in Ihh-/- mice is more 

dramatic compared to that observed in Shh-/- mice. Ihh-/- mice exhibit hypoplastic villi, 

diminished proliferation in the ISC compartment, and Hirschsprung’s disease-associated 

enlarged colons. On the other hand, Shh-/- mice display intestinal transformation of the 

stomach as well as overgrown stomach epithelium and duodenal villi. The distinct 

differences observed between the knockouts are consistent with the Hh ligand expression 

profile along the gastrointestinal tract in which Shh expression concentrates in the 

stomach, while Ihh expression peaks in the small intestine (20). These data suggest Ihh is 

the primary functional Hh in the intestine as well as the colon. However, our 

understanding of Ihh’s role in intestinal development is limited as Ihh-/- mice die 

prenatally before gut differentiation is complete. Mice overexpressing the Hedgehog 

interacting protein (Hhip), a negative regulator of Hh signaling, demonstrated that 

inhibiting all Hh ligands in the gut leads to the mislocalization of ISEMFs and expansion 

of immature SMCs (22). Furthermore, these mice showed increased cell proliferation and 

aberrant crypt-like structures, as well as enhanced Wnt activity. In converse experiments, 

enhanced Hh signaling due to the conditional deletion of Ptch1 resulted in accrual of 
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colonic myofibroblasts and colonic crypt hypoplasia (23). Similarly, overexpression of 

Ihh in the intestinal epithelium led to the expansion of SMCs in the villus cores of adult 

mice (20). 

 Despite the recent advances, the exact role of Ihh in ISC regulation and gut 

development still remains unclear. Here we examined the function of Ihh in the postnatal 

gastrointestinal tract by generating intestinal epithelial conditional Ihh knockout mice.  

We show that the ISC niche critically depends on Ihh signaling. In the absence of 

intestinal Ihh, mice display a loss of the muscularis mucosae, a disorganized and 

compromised extracellular matrix (ECM), and reduced crypt myofibroblasts. 

Furthermore, alterations in the ISC niche are accompanied by abnormal epithelial 

phenotypes, including an increase in ISCs and intestinal epithelial progenitors, deranged 

and mislocated absorptive and secretory cell lineages, dilated and misplaced intestinal 

crypts and increased Wnt signaling, eventually leading to adenomatous epithelium with 

dysplastic changes. We also demonstrate that blocking Hh signals in ISEMFs up-

regulates matrix metallopeptidases (MMPs), providing a favorable environment for 

intestinal stem/progenitor expansion. We conclude that Ihh prevents abnormal ISC 

activation and differentiation by maintaining the ISC niche. This study also provides, for 

the first time, a possible functional role for muscularis mucosae cells as key components 

of the ISC niche. 
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Results 

Generation of Ihh Conditional Knockout Mice 

A partial description of Ihh’s role in intestinal development has been provided by a study 

of Ihh-/- mice (19). However, these mice die at birth, a time when intestinal 

morphogenesis is still ongoing. Late embryogenesis marks the onset of many 

transformations including villus formation and cytodifferentiation, and while these 

processes begin during late embryonic stages they are still being modified after birth.  

Additionally, the intervillus epithelium undergoes a prominent transition around postnatal 

day (P) 7 when crypt development commences. Postnatally, mesenchymal ISC niche 

cells partake in instructive crosstalk with crypt epithelial cells to control cell 

proliferation, differentiation, and apoptosis. Thus, to examine the full role of Ihh in 

intestinal development including the critical postnatal period when crypt structures are 

established and the ISC niche is engaged, we generated a conditional Ihh-deficient mouse 

line. We bred Ihhflox/flox mice to Villin-Cre mice, which express Cre in the epithelial cells 

of the small and large intestine from E12.5 onward (24). This cross generated Villin-

Cre;Ihhflox/flox mice that had intestinal Ihh gene expression levels that were 4% of control 

mice, confirming that the Villin-Cre-mediated recombination of the Ihhflox allele was 

successful. The gene expression level of Ptch1 and Gli1, two direct transcriptional targets 

of Hh signals were 19% and 9% of the control mice, respectively (Figure 1A). These 

results suggest that Ihh is the key Hh molecule in mediating Hh signaling in intestinal 

tissues, and Shh or Dhh cannot replace its function. The absence of Ihh at the protein 

level was confirmed in Villin-Cre;Ihhflox/flox mice using Ihh immunohistochemistry 

(Figure 1B).  
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Figure 1. Conditional Deletion of Ihh in Mouse Intestinal Epithelium. (A) 
quantitative RT-PCR of P7-P9 jejunum for Ihh, Ptch and Gli1 mRNA in control and 
Villin-Cre;Ihhflox/flox mice. Lines represent the average of three Villin-Cre;Ihhflox/flox litters 
normalized to GAPDH. The mutants had significant decreases in Ihh, Ptch, and Gli1 
expression levels compared to control; (B) Immunohistochemical staining of Ihh shows 
expression of Ihh in epithelial cells along the crypt-villus axis in control mice that is 
abrogated in Villin-Cre;Ihhflox/flox mice; (C) Image of P9 mice from control (right two) 
and Villin-Cre;Ihhflox/flox mice (left one). The weight of each mouse is indicated at the 
bottom; (D) Gross images of gastrointestinal tracts resected from control (upper) and 
Villin-Cre;Ihhflox/flox mice (lower). The arrow indicates the cecum. 
 

 Villin-Cre;Ihhflox/flox mice were born alive and similar in size to their control 

littermates. However, at P3 it was apparent that the mutant mice were not thriving; the 

mice were noticeably smaller than their control littermates. The majority of Villin-

Cre;Ihhflox/flox mice died between P7 and P10, although some managed to survive as long 

as P30. The early lethality of Villin-Cre;Ihhflox/flox mice is likely caused by 

malnourishment as the mutants weighed approximately one-third of their age-matched 
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control littermates at the time of death (Figure 1C). The presence of milk in the stomach 

indicates, however, that the mutant mice did not die from a failure to eat. 

 The length of the small intestine of Villin-Cre;Ihhflox/flox mice was markedly 

shorter than their control littermates (Figure 1D). The diameter of the small and large 

intestine was slightly smaller in the mutant mice. Plausibly, the reduced body size of the 

Villin-Cre;Ihhflox/flox mice may have led to this phenotype; however, stunted control mice 

that weighed less than half of their normal-sized control littermates had only marginal 

decreases in intestinal lengths (unpublished data). Also in contrast to control littermates, 

yellow liquid stool or no stool was observed in the colon of Villin-Cre;Ihhflox/flox mice, 

suggesting these mice are not sufficiently absorbing or digesting their milk. 

 

Loss of Intestinal and Colonic Niche Cells in Villin-Cre;Ihhflox/flox Mice 

It has previously been reported that Ihh signals in a paracrine direction, moving from its 

origin in intestinal epithelial cells towards Hh signaling effectors in mesenchymal cells 

(20). Since mesenchymal cells are the key Hh target cells we hypothesized their 

composition and ultimately the ISC niche would be altered in Villin-Cre;Ihhflox/flox mice. 

We investigated the myofibroblast and smooth muscle changes by α-smooth muscle actin 

(α-SMA) immunostaining. The most striking and consistent change observed in the 

Villin-Cre;Ihhflox/flox mice was the loss of a horizontal layer of α-SMA positive cells at the 

crypt base in the small intestine and colon that corresponds to the muscularis mucosae 

(red arrows) (Figure 2A, 2B, 2E and 2F; Figure S1A and S1B). The complete loss of 

muscularis mucosae cells was observed soon after birth and persisted throughout 

development (Figure S1A and 1B). Since the cellular components of the muscularis 
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mucosae in mice have not been well-characterized, we performed a double-labeling 

experiment for α-SMA and desmin. Myofibroblasts can be distinguished from fibroblasts 

by their expression of α-SMA, and separated from SMCs by their lack of desmin 

expression, a smooth muscle marker. The staining results revealed that in control mice, 

the cells comprising the thin layer below the small intestinal crypt expressed α-SMA 

(green), but not desmin (red), indicating the muscularis mucosae layer absent from the 

small intestine of Villin-Cre;Ihhflox/flox mice is composed of myofibroblasts (Figure 2C 

and 2D; Figure S2). In the control colon, α-SMA and desmin co-expressed (yellow) 

along the muscularis mucosae underneath colonic crypts, demonstrating the missing 

muscularis mucosae layer in the colon of Villin-Cre;Ihhflox/flox mice is composed of SMCs 

(Figure 2G and 2H; Figure S2). 

 Since ISEMFs, especially pericryptic myofibroblasts have traditionally been 

considered the key components of the ISC niche, we examined the composition of these 

cells in mutant mice. In the colon, we consistently observed diminished numbers of 

pericryptal myofibroblasts at the crypt base (Figure 2E and 2F; Figure S1A). In the small 

intestine, loss of pericryptal myofibroblasts was more variable, while the concentration of 

myofibroblasts in the lamina propria was generally reduced (Figure 2A and 2C; Figure 

S1B). At sites where superimposed inflammation occurred, we observed an expansion of 

the villus core with an accumulation of myofibroblasts at the villus core tip (data not 

shown). In summary, our data indicate that deletion of Ihh results in the disappearance of 

the muscularis mucosae and fewer ISEMFs surrounding the intestinal and colonic crypt 

base, disrupting the composition of the ISC niche. 
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Figure 2. Loss of ISC Niche Cells in Villin-Cre;Ihhflox/flox Mice. (A, B, E and F): 
Immunostaining  of stromal marker α-SMA (brown) in small intestine (A-B) and colon 
(E-F) in control (A and E) and mutant mice (B and F). In control, the muscularis mucosae 
(A and E, arrows) is located subjacent to crypts in the small intestine and colon, whereas 
in the mutant mice (B and F) no muscularis mucosae is evident. Pericryptic 
myofibroblasts are shown in detail in small intestine (A, B, inset) and colon (E, F, inset); 
(C, D, G and H): Double immunofluorescent staining of α-SMA (green) and desmin (red) 
to distinguish ISEMFs and SMCs in the small intestine (C and D) and colon (G and H) in 
control (C and G) and mutant mice (D and H). The muscularis mucosae in the small 
intestine (white arrows) predominantly expresses α-SMA (green), revealing the 
composition of this layer is mainly ISEMFs. In the colon, the muscularis mucosae 
expresses both α-SMA and desmin (G, white arrows), indicating the composition of this 
layer is mainly SMCs. See Figure S2 for individual color channels; (I-J) Inhibition of Hh 
signaling by GANT61 inhibits ISEMF cell proliferation. (I) Decreased cell growth of 
ISEMF cell lines (18Co and IMF11B) after GANT61  treatment as determined by the 
WST-1 assay; (J) Decreased cell proliferation of ISEMFs following GANT61 treatment 
as detected by BrdU labeling; **, P < 0.001. 
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 The diminished ISEMFs observed in Villin-Cre;Ihhflox/flox mice suggested that Ihh 

loss might impair ISEMF proliferation. To test this hypothesis, we examined cell growth 

in the presence of GANT61, a small-molecule antagonist of GLI1-mediated transcription 

(25). The cell viability of two human ISEMF primary isolates (18Co and IMF11B) after 

GANT61 treatment was significantly decreased, suggesting Hh signaling is critical for 

ISEMF expansion (Figure 2I). Additionally, BrdU labeling provided evidence that loss of 

Hh impedes ISEMF proliferation (Figure 2J). Analysis of activated caspase 3/7 to 

measure for apoptosis revealed no differences between DMSO-treated ISEMFs and 

GANT61-treated ISEMFs (data not shown). Thus, these in vitro results provide 

additional support that reduced levels of Hh signals suppress ISEMF proliferation. 

 

Morphological Alterations in the Intestine of Villin-Cre;Ihhflox/flox Mice 

As we detected marked differences in the structure of the ISC niche between control and 

mutant mice, we sought to determine whether these differences were accompanied by 

changes in the intestinal epithelium. Histological examination revealed striking contrasts 

between the small intestines of Villin-Cre;Ihhflox/flox mice and their control littermates 

(Figure 3A-3C). Elimination of Ihh resulted in crypts that appeared wider, loosely 

organized, and crowded with nuclei. Additionally, the mutant mice displayed distorted 

villus architecture in which villi appear dilated with an expanded intravillus stroma 

(Figure 3C). Villus branching accompanied by aberrant crypt-like structures was also 

detected in the small intestine of Villin-Cre;Ihhflox/flox mice (Figure 3B). The ectopic 

crypts contained cells that were positive for the proliferation marker Ki67 (Figure 3E). 

Furthermore, proliferating cells in the mutant mice greatly outnumbered those in control 
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littermates with their distribution extending beyond the normal confines of the crypt 

(Figure 3D-3F). A similar crypt phenotype was noted in the colon of Villin-Cre;Ihhflox/flox 

mice in which crypts were dilated with frequent branching and had disturbed orientation 

and a high degree of proliferation (Figure S3). Thus, in the absence of Ihh the normal 

patterning of intestinal epithelial cell proliferation is disrupted, resulting in the 

intercalation of proliferative cells among differentiated villus cells in the small intestine 

and differentiated cells at the top of colonic crypts. 

 Interestingly, older mice (P19-P30) that we analyzed revealed epithelial and 

morphological changes that are consistent with the initial stages of small intestinal and 

colorectal cancer. Crypt fission is a process in which new crypts are produced and is 

believed to occur in response to stem cells doubling in number. Elevated rates of crypt 

fission indicate high proliferative activity and are associated with higher risks of colon 

cancer. While crypt fission normally occurs in neonatal mice, we observed a much higher 

incidence of crypt fission in Villin-Cre;Ihhflox/flox colons compared to control, revealing 

major proliferation abnormalities (Figure S3). In P30 Villin-Cre;Ihhflox/flox jejunum, we 

observed marked elongation of crypts with florid proliferation (Figure 3G).  Additionally, 

in some areas, we saw a loss of epithelial maturation, characterized by the absence of 

villus architecture and proliferative crypt cells reaching the luminal surface (Figure 3G). 

This was accompanied by the onset of dysplastic changes, giving the morphological 

appearance of an early tubular adenoma (Figure 3H). In P30 Villin-Cre;Ihhflox/flox colon, a 

small adenoma with mild dysplasia was detected in the midst of disorganized and 

disoriented crypts (Figure 3I and 3J). These observations suggest that loss of Ihh 
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expression induces florid proliferative events that promote neoplastic transformation in 

the small intestine and colon. 

 It is known that a small amount of mosaic Cre expression exists in the colon of 

Villin-Cre transgenic mice. In cases in which Villin-Cre;Ihhflox/flox mice survived beyond 

P15, we noticed normal crypt structures adjacent to dilated crypts in the colon (Figure 

3K).  Interestingly, beneath the normal crypt structures α-SMA staining detected an 

intact muscularis mucosae, whereas below neighboring dilated crypts, no α-SMA 

staining was detected, revealing an absence of muscularis mucosae (Figure 3L). 

Futhermore, Ki67 positive cells were restricted to crypt bottoms in regions where the 

muscularis mucosae was present; however, in the absence of the muscularis mucosae, 

differentiated cells occupied crypt bottoms and proliferative cells were found at crypt 

bottoms and tops (Figure 3M).  These results suggest the muscularis mucosae influences 

crypt epithelial fate and it is a key component of the ISC niche. 
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Figure 3. Abnormal intestinal epithelial phenotypes in Villin-Cre;Ihhflox/flox mice. (A-
C): H&E staining of small intestine tissues from control (A) and Villin-Cre;Ihhflox/flox 
mice (B and C). Note the sprouting villi and ectopic crypt formation in Villin-
Cre;Ihhflox/flox mice (arrows) in (B). In addition, dilated crypts are frequently observed in 
these mutant mice (C); (D-F): Ki67 staining showing cell proliferation is restricted to the 
intervillus base in control (D). In Villin-Cre;Ihhflox/flox mice, there is an expansion of Ki67 
positive cells (E, F) and the ectopic crypts show high levels of Ki67 staining (E); (G) 
H&E staining of jejunum from P30 Villin-Cre;Ihhflox/flox mice shows early adenomatous 
foci with marked elongation of crypts and a loss of differentiation towards the surface; 
(H) High power view of the crypt base lesion shows dysplastic changes and frequent 
mitosis. (I) In the P30 Villin-Cre;Ihhflox/flox mice colon, accumulation of dilated and 
disoriented crypts leads to a localized elevated lesion in the mucosa, with evolution into a 
tubular adenoma with mild dysplasia (J); (K-M) Relationship between dilated crypts in 
colon of Villin-Cre;Ihhflox/flox mice and loss of muscularis mucosae cells subjacent to 
crypts. Blue arrows indicate areas with normal crypt morphology (K) above muscularis 
mucosae cells (L). Typical Ki67 staining pattern is observed in morphologically normal 
crypts (blue arrows) while Ki67 is expressed at both bottoms and tops of dilated crypts 
(red arrows) (M).   
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Loss of Intestinal Epithelial Ihh Signaling Activates Wnt/β-catenin and Expands the 

ISC Population 

Given that we observed several manifestations in the Villin-Cre;Ihhflox/flox mice that were 

comparable to those seen in mice with increased Wnt signaling, including enhanced 

epithelial cell proliferation, branched villi, and enlarged crypts, we sought to analyze 

whether mutant mice displayed increased Wnt activity (26, 27). Typically, the expression 

of Wnt/β-catenin target genes (e.g., Cd44, Sox9, EphB2) is restricted to the crypt 

proliferative compartment (Figure 4A and 4B; Figure S4A and S4C). However, in mutant 

mice Cd44, Sox9, and EphB2 expression was highly expressed throughout the crypt and 

along the villus in the small intestine as well as along the entire crypt length in the colon 

(Figure 4C and 4D; Figure S4B and S4D). Furthermore, staining for β-catenin in mutant 

mice showed increased intensity of staining in crypts extending up the villi, with presence 

of cytoplasmic and some nuclear staining, providing additional evidence that the mutant 

mice have increased Wnt activity (Figure S4E and S4F).  

 We next addressed whether the loss of Ihh affected the ISC population by 

performing in situ hybridization for Olfm4, a marker for small intestinal stem cells (6).  

Villin-Cre;Ihhflox/flox mice showed an increase in expression of Olfm4 as well as an 

increase in the number of Olfm4+ cells per crypt compared to control mice (Figure 4E 

and 4F). A previous study of Ihh-/- mice suggested that a complete loss of Ihh diminishes 

the number of ISCs; however, this study lacked a definitive ISC marker and based its 

findings solely on a cell proliferation marker (19). Thus, by utilizing a specific ISC 

marker, we provide compelling evidence that deactivation of Ihh leads to an increase in 

ISCs.   
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Figure 4. Increased Wnt/β-catenin activity and intestinal stem cell expansion in 
Villin-Cre;Ihhflox/flox mice. (A-D) Immunostaining of Wnt target gene CD44 in control 
jejunum (A) and colon (B) and mutant jejunum (C) and colon (D); (E-F) In situ 
hybridization of the small intestine for Olfm4 in control (G) and mutant mice (H). The 
expression pattern of Olfm4 reveals an increase in intestinal stem cell number and 
expression level in mutant mice (H), relative to control (G).  
 

Altered Differentiation of the Absorptive and Secretory Cell Lineages in Villin-

Cre;Ihhflox/flox Mice  

Villin-Cre;Ihhflox/flox mice display a strong increase in epithelial proliferation, suggesting 

these mice fail to properly regulate proliferation and/or differentiation. To determine 



 86

whether the expansion of epithelial proliferation occurred to the detriment of intestinal 

epithelial differentiation, we examined the differentiation pattern of the 4 different 

intestinal cell types (enterocytes, goblet, enteroendocrine, and Paneth cells) in Villin-

Cre;Ihhflox/flox mice. In the small intestine of mutant mice, histological examination 

revealed a failure of enterocyte maturation as manifested by vacuolated epithelial cells 

lining the villus (Figure S5A and S5B). The morphology of these vacuolated cells are 

consistent with those previously described as enterocyte precursors (28) and reminiscent 

of the phenotype described in mice injected with an anti-Hh antibody that show poor lipid 

transport (29). Immunostaining results showed that vast regions along the villi were 

absent for the absorptive enterocyte marker fatty acid binding protein (Fabp) (Figure 5A 

and 5B). Immunostaining of serial sections demonstrated that Ki67 is expressed by Fabp-

negative villus epithelial cells, indicating deletion of Ihh leads to a loss of polarity in 

which proliferating cells are no longer restricted to the crypt but are infiltrating the 

differentiation compartment (Figure 5C). Furthermore, villin staining in the mutant mice 

revealed discontinuous and sporadic expression of the brush border protein (Figures 5D 

and 5E). Electron microscopy studies showed that microvilli were less dense in mutant 

mice compared to control mice (Figure S6A and S6B). In contrast to the enterocyte 

lineage, we observed an increase in all small intestinal secretory lineage cells, including 

Paneth, goblet and enterendocrine cells in Villin-Cre;Ihhflox/flox mice (Figure 5F-5K). 

Similar arrest in enterocyte differentiation was also seen in colon samples of Villin-

Cre;Ihhflox/flox mice, resulting in vacuolated cells that line the top and surface of the 

colonic mucosa (Figure S5C and S5D). Immature microvilli resembling those found in 

undifferentiated crypt cells were also detected near the top of colonic crypts in the mutant 
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mice (Figure S6C and S6D). Additionally, there was a marked increase in goblet cell 

differentiation, especially at crypt bases (data not shown). Altogether, our studies suggest 

an expansion of the secretory cell lineages at the expense of the enterocyte differentiation 

program in Villin-Cre;Ihhflox/flox mice.   

 

 

 
Figure 5. Abnormal Intestinal Epithelial Cell Differentiation in Villin-Cre;Ihhflox/flox 
Mice. (A-B) Immunostaining of enterocyte marker Fabp in control (A) and Villin-
Cre;Ihhflox/flox mice (B). Fabp staining is missing from some regions along the villus 
epithelium in mutant mice (red arrows); (C) Ki67 staining of a consecutive section to (B) 
shows that the regions lacking Fabp staining are positive for Ki67 (red arrows); (D-E) 
Immunofluorescent staining of enterocyte brush border marker villin in control (D) and 
Villin-Cre;Ihhflox/flox mice (E). Again, various regions with missing villin staining can be 
seen in the mutant mice; (F-G): Increased goblet cells detected by Alcian blue staining in 
Villin-Cre;Ihhflox/flox mice; (H) In P9 control mice, lysozyme staining for Paneth cells is 
barely detectable in crypts since Paneth cells typically do not physically mature until P14. 
(I) In P9 Villin-Cre;Ihhflox/flox mice, prominent lysozyme staining is seen at crypt bases, 
indicating the Paneth cell differentiation program occurs sooner and is stronger; (J-K) 
Chromogranin A staining reveals more enterochromaffin cells in Villin-Cre;Ihhflox/flox 
intestine (K) compared to control (J). 
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Paracrine Ihh Signaling Responsible for Villin-Cre;Ihhflox/flox Phenotype 

While some studies suggest Hh signals in an autocrine direction, acting directly on 

intestinal epithelial cells (30, 31), more recent reports support the idea that Hh signals 

predominantly in a paracrine fashion in the intestine (20, 32). To exclude the possibility 

that the phenotypes we observed in conditional Ihh knockout mice were due to autocrine 

Hh signaling, we deleted the required hedgehog receptor Smoothened (Smo) in intestinal 

epithelial cells by crossing Villin-Cre mice with Smoflox/flox mice to generate Villin-

Cre;Smoflox/flox mice. We found that Villin-Cre;Smoflox/flox mice were born at the expected 

Mendelian frequency. Unlike Villin-Cre;Ihhflox/flox mice, these Villin-Cre;Smoflox/flox mice 

were healthy with no gross abnormalities up to 15 months of age. Microscopic 

examination revealed normal intestinal and colonic architecture (Figure 6A). All four 

epithelial cell lineages were well developed, and normal Wnt signaling was observed 

(Figure 6B). The results provide strong evidence that autocrine Hh signaling is not 

required for intestinal epithelial cell proliferation and differentiation, and Hh signaling 

functions strictly in a paracrine manner during gut morphogenesis. 

 

A
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Figure 6. Normal Intestinal Development in Conditional Smo KO Mice. (A) H&E 
staining showing normal small intestine and colon morphology in VilCre;Smoflox/flox mice. 
(B) Normal epithelial cell differentiation and Wnt signaling in VilCre;Smoflox/flox mice. 
 

B
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Expression Analysis of Genes Deregulated in Villin-Cre;Ihhflox/flox Mice 

To investigate the molecular mechanisms underlying the disruption of the ISC niche and 

how it leads to abnormal ISC development, we performed expression array analysis of 

colon samples from control and Villin-Cre;Ihhflox/flox mice. Statistical analysis identified 

508 transcripts, including 298 named genes up-regulated and 532 transcripts, including 

429 named genes down-regulated in Villin-Cre;Ihhflox/flox mice (Table S1). As expected, 

all known targets of Hh signaling, such as Gli1, Ptch and Hhip, were significantly down-

regulated in colon samples of the mutant mice (Figure 7A).  

 Among the genes that were up-regulated in mutant mice were Wnt targets, 

including c-Myc, Sox-9 and MMP7, as well as the ISC marker Lgr5 (Figure 7B). 

Furthermore, comparison of genes up-regulated in Villin-Cre;Ihhflox/flox mice with Lgr5 

stem cell genes identified several genes that overlap, including Lgr5, Acot1, Adora1, 

Sox9, Soat1, and Slc12a2 (Figure 7B) (5). Genes involved in gut hormones (CCK and 

glucagon), reflecting changes in enteroendocrine cells as well as goblet cell marker genes 

(Spdef, Spink4, Muc2, Gcnt3, and Foxa3) were up-regulated in Villin-Cre;Ihhflox/flox mice 

(Figure 7C), which is consistent with the expansion of secretory lineage cells observed in 

the mutants. Intriguingly, several MMPs (MMP3, MMP7, MMP8 and MMP10) which are 

known to degrade ECM proteins and connective tissues were all up-regulated in mutant 

colon samples (Figure 7D).  

 Interestingly, the most prominent genes down-regulated in the mutant mice 

encode proteins that help support and maintain the ISC niche (Figure 7D and 7E). For 

example, genes that may provide structural support to ISCs such as genes involved in 

smooth muscle development (Myh10, Myh11, myocardin, Mef2c, and desmin, etc.) were 
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down-regulated in Ihh mutant colons (Figure 7E). Furthermore, genes encoding ECM 

proteins (multiple isoforms of collagen, and laminin; as well as fibronectin, osteoglycin, 

versican, nidogen 1, Ecm2, etc) which provide support, organization and mechanical 

signals to the niche were extensively down-regulated in Villin-Cre;Ihhflox/flox mice (Figure 

7D). Additionally, several integrins (Itga1, Itga8, Itga9, Itgav, Itgb6) which attach 

epithelial cells to the ECM and mediate epithelial cell-matrix interactions were also 

down-regulated in mutant mice (Figure 7D). Overall, the expression analysis 

demonstrates that mesenchymal ISC niche components are compromised when Ihh is 

deleted in the intestine, supporting the hypothesis that disruption of the mesenchymal ISC 

niche may be the key mechanism that leads to abnormal epithelial cell development in 

Villin-Cre;Ihhflox/flox mice.   

 We next analyzed the signaling pathways that have been implicated in gut 

development including, Notch, BMP and Ras/MAPK pathway genes. We found that the 

BMP pathway was one of the major targets for Ihh signaling during gut morphogenesis 

(Figure 7F). For example, BMPs including BMP2, BMP4 and BMP5 were all down-

regulated. BMP antagonists showed a more complicated pattern of expression: some were 

up-regulated, such Gremlin1 and Chordin-like-2, while others were down-regulated, such 

as Gremlin2 and Twsg1. Nevertheless, analysis of transcriptional targets of BMP 

signaling, including ID1, ID2, and ID4, revealed that all these genes were down-regulated 

in the mutant mice, suggesting an overall decrease in BMP signaling in conditional Ihh 

knockout mice.  
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Figure 7. Genes differentially expressed in colon tissues from control and Villin-
Cre;Ihhflox/flox mice.  Heat maps of genes which are differentially expressed in control 
and Ihh KO mice are displayed by functional categories: (A): Hh target genes; (B) Wnt 
target and ISC-related genes; (C) Globet cell and enteroendocrine-related genes; (D) 
ECM-related genes; (E) Muscle-related genes; (F) BMP signaling pathway genes.  
 

Inactivation of Ihh Disrupts Stromal Compartment 

Given that the gene expression profiling data suggested that the smooth muscle character 

and ECM of the niche undergo marked changes in Villin-Cre;Ihhflox/flox mice, we decided 

to investigate how the loss of Hh signaling directly affects expression of muscle and 

ECM-related genes in ISEMFs. Quantitative RT-PCR performed on ISEMFs treated with 

the Gli transcription inhibitor GANT61 found a significant down-regulation of Mef2c and 

Myocd, two transcription factors known to regulate smooth muscle development (Figure 

8A). These results are consistent with the microarray analysis, suggesting cultured 

ISEMFs closely resemble the in vivo situation. Furthermore, these findings imply that Hh 

signals may promote the differentiation of fibroblasts towards a myofibroblast phenotype 

in the intestine. We next examined the ability of ISEMFs to produce matrix proteins in 
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the absence of Hh signals. Expression of laminin4 was significantly down-regulated in 

GANT61 treated ISEMFs (Figure 8A), while other ECM genes such as fibronectin and 

collagen showed no significant change (data not shown). Strikingly, MMPs, including 

MMP-3 and MMP-10 were significantly up-regulated by 3.3 and 14-fold, respectively, in 

GANT61 treated ISEMFs (Figure 8A). These data suggest that loss of Hh signaling 

amplifies the expression of MMPs in intestinal stromal cells, potentially leading to the 

degradation of ECM components.   

 The finding that MMPs are strongly up-regulated while ECM genes are down-

regulated in the absence of Ihh suggested that ECM components may be significantly 

compromised in Villin-Cre;Ihhflox/flox mice. In normal colon, collagen IV expression was 

detected throughout the lamina propria. In mutant mice, collagen IV staining was 

significantly reduced in the colon (Figure 8B). Another basement membrane protein, 

laminin, was expressed in the lamina propria with intense staining at the epithelial-

mesenchymal interface corresponding to the basement membrane in control colon. In 

contrast, laminin staining appeared diffusely weak and completely absent from the 

basement membrane in the mutant mice (Figure 8B). Thus, inactivation of Ihh in the gut 

leads to the down-regulation of ECM genes and matrix protein degradation, resulting in a 

weaker ECM that is vulnerable to crypt expansion. 
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Figure 8. Disruption of Stromal Compartment upon Ihh Loss. (A) Quantitative RT-
PCR analysis of Ptch1, Hhip, Mef2c, Myocd, Lama4, MMP10 and MMP3 expression in 
18Co cells after GANT61 treatment.  *, P < 0.05; **, P < 0.01. (B) Extracellular matrix 
molecules collagen IV and laminin are expressed in the stromal cells and basement 
membrane of the crypt in control colon.  In Ihh mutant mice, there is decreased 
expression of both collagen IV and laminin.  
 

 

 



 95

Discussion 

Hh signaling is one of the key pathways that are required for proper gut morphogenesis. 

Initial analysis suggested that Hh functions in an autocrine fashion and regulates Paneth 

cell differentiation and colonic epithelial cell growth (30, 31). However, several recent 

studies support that Hh signaling, in most cases, including during intestinal development, 

functions in a paracrine manner by directly regulating surrounding stromal cells (20, 32). 

In this study, we showed that depletion of Ihh in gut epithelial cells leads to disruption of 

the ISC niche, which subsequently leads to deregulated ISC self-renewal and abnormal 

epithelial cell differentiation. As a control, deletion of the required Hh signaling receptor 

Smo in gut epithelial cells caused no morphological phenotypes. These results provide, 

for the first time, functional evidence that Hh signaling is strictly paracrine during 

intestinal morphogenesis. 

 Pericryptic ISEMF cells are believed to be the key ISC niche cells. On the other 

hand, cells within the muscularis mucosae layer, despite its vicinity to the ISCs, are not 

known to be involved in ISC niche maintenance. In fact, muscularis mucosae cells are so 

poorly studied that little evidence exists describing its precise functional role, although 

some reports suggest that cells within the muscularis mucosae may participate in 

regulating gut motility (33). In our current study, we find that muscularis mucosae cells 

within the mouse small intestine are predominantly myofibroblast cells, as those cells 

were α-SMA positive and desmin negative. In contrast, SMCs are the major component 

in the mouse colon muscularis mucosae layer. We found the development of muscularis 

mucosae cells are strictly dependent on epithelial Ihh signaling, as deletion of Ihh leads to 

total ablation of the muscularis mucosae both in the colon and the small intestine. Our 
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studies suggest that loss of the muscularis mucosae layer may contribute to ISC 

expansion and deregulation of intestinal epithelial cell differentiation. These results 

provide, for the first time,  genetic evidence of a possible functional role for the 

muscularis mucosae as an important component of the ISC niche and demonstrate that 

the muscularis mucosae together with pericryptic myofibroblasts regulate ISC self-

renewal and differentiation. 

 The epithelial phenotypes we observed in the conditional Ihh knockout mice are 

overall consistent with other mouse models that disrupt Hh signaling during gut 

morphogenesis, such as mice overexpressing the Hh inhibitor Hhip, or mice with a 

conditional deletion of Ptch1 (22, 23).  However, none of these studies addressed the 

critical question of whether paracrine Hh signaling affects ISC self-renewal or whether 

the epithelial phenotypes are due to the disruption of trans-amplifying/progenitor cells 

near the crypt base. Our study showed that in conditional Ihh knockout mice, there is a 

clear expansion of the ISC compartment, demonstrating that Hh regulates ISC cell fate by 

modulating its niche. In addition, previous studies have suggested that the mesenchymal 

ISC niche is a source of Wnt and functions primarily to maintain ISC proliferation. Here, 

we discover another dimension of niche function, which is to restrict crypt size and 

prevent abnormal stimulation. Thus, a delicate balance between the proliferative and 

restrictive activity by the ISC niche likely exists to refine the shape, size and function of 

the gut epithelium to form proper crypt-villus structures. Our analysis of ISCs is based on 

the quick-cycling Lgr5+ ISC population located at the crypt base. Further studies will be 

necessary to determine if there are any changes in Bmi-1+ stem cells at the +4 position 

upon intestinal deletion of Ihh.  The descending gradient of Bmi-1-expressing cells from 
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the proximal to distal end of the small intestine, however, opposes the ascending gradient 

of Ihh expression as well as the degree of phenotypic changes observed in the Ihh 

mutants. Thus, it is possible that Bmi-1+ stem cells may not be affected by Ihh loss in the 

intestine. 

 As mentioned above, we noticed the severity of morphological changes that 

occurred in Ihh conditional knockout mice followed a gradient along the proximal to 

distal axis of the gut, with the mildest phenotypes in the duodenum, and the more severe 

phenotypes occurring distally in regions of the colon. The morphological changes we 

observed affected both stromal and epithelial cells. For example, we found that deletion 

of Ihh consistently reduced the number of pericryptal myofibroblasts in the colon, 

whereas in the small intestine, pericryptal myofibroblasts were typically maintained. 

However, myofibroblasts in the region between pericryptal myofibroblasts and the 

muscularis mucosae were generally decreased, although somewhat variable. The more 

pronounced phenotypes in the colon may reflect recent findings that show there is 

decreased Shh levels in the colon compared to the small intestine (20).  In other words, 

little to no Hh is available to maintain myofibroblasts in the colon when Ihh is deleted, 

while the small intestine still has some crypt Shh which may contribute to myofibroblast 

proliferation and less severe phenotypes. Clearly, further studies are needed to address 

the contribution of Shh signaling in regulating the ISC niche.  

 What are the molecular mechanisms behind the expansion of the ISC 

compartment upon Ihh loss during gut morphogenesis? Our analyses indicate that Ihh 

likely regulates ISC self-renewal and cell fate determination via multiple mechanisms. 

Consistent with previous reports (34, 35), we find Ihh is a key regulator of BMP 
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signaling in gut mesenchymal cells. Our studies showed that loss of Ihh leads to the 

deregulation of multiple BMPs and BMP antagonists, with the overall consequence of 

reduced BMP signaling in the gut.  The reduction of BMP signaling in the ISC niche 

upon Ihh deletion could constitute one possible mechanism that leads to the described 

phenotype, as BMP signaling normally acts to inhibit ISC self-renewal and repress crypt 

formation in the gut, while reduced BMP signaling causes an expansion of intestinal 

stem/progenitor cells and ectopic crypt formation (14, 36).  

 Nevertheless, the reduced BMP signaling does not account for all the phenotypes 

observed in conditional Ihh knockout mice. For example, in villin-noggin mice in which 

BMP signaling is completely abrogated, no morphological alternations are detected till 4 

weeks of age (36). Other factors that likely contribute to the severe phenotypes seen in 

mutant mice are the complete loss of muscularis mucosae cells and the disruption of the 

ECM that surrounds ISCs. One can image muscularis mucosae cells likely provide solid 

structural support for ISCs at the crypt base. It is also likely that muscularis mucosae cells 

secrete additional factors that maintain proper ISC number and crypt structure such as the 

growth factor Pdgfc (Platelet derived growth factor C) and the Wnt antagonist Sfrp2 

(Secreted frizzled-related protein 2), two down-regulated genes identified by microarray 

analysis in conditional Ihh knockout mice. In addition, via our expression array analysis, 

we found profound loss of ECM gene expression in conditional Ihh knockout mice at 

RNA levels. The ECM components were further impaired by the up-regulation of MMPs, 

the major enzymes that degrade ECM proteins. Altogether, these niche changes provide a 

pro-growth microenvironment for ISCs, promoting ISC expansion and subsequent 

expansion of the transit amplifying compartment. These findings imply a very interesting 
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possibility that Ihh deletion, resulting in the loss of structural ECM integrity and the loss 

of the muscularis mucosae may precede colon cancer invasion and metastasis. In line 

with this hypothesis, recent data show that the Hh signaling components Gli1, Gli2, and 

Ptch are expressed in benign human colonic tissue samples, but are significantly reduced 

or lost in malignant colonic samples (37). Taken together, we show that paracrine 

signaling of Ihh is essential for muscularis mucosae perpetuation.  Its loss leads to a 

severe disruption of the ISC niche architecture and the subsequent down-regulation of 

BMP signaling causes the observed phenotype of stem cell compartment expansion, 

uncontrolled proliferation and inhibition of differentiation, cumulating in neoplastic 

transformation.  

 

Experimental Procedures 

Mice 

The Ihhflox/flox mice were kindly provided to us by Dr. Beate Lanske of Harvard 

University (38). Villin-Cre mice (24) and Smoflox/flox mice (39) were obtained from the 

Jackson Laboratory. Ihhflox/flox and Villin-Cre mice were mated and the offspring were 

backcrossed to generate Villin-Cre;Ihhflox/flox mice. Genotyping was performed by 

polymerase chain reaction on genomic DNA from tail clips as previously described (24, 

38). The Villin-Cre:Ihhflox/flox pups suffer early lethality and were sacrificed when they 

displayed lethargy and inability to feed. All mice were housed, fed, and treated in 

accordance with protocols approved by the committee for animal research at the 

University of California, San Francisco. 
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Histology, Immunohistochemistry, Immunoflorescence and in Situ Hybridization 

Animals were euthanized and their intestine was removed and flushed with PBS.  

Samples collected from the intestine were either immediately frozen for RNA extraction 

or fixed overnight in 4% paraformaldehyde.   Fixed tissue samples were embedded in 

paraffin.  Five micron sections were placed on slides, deparaffinized, rehydrated and 

stained with hematoxylin and eosin to observe cell morphology. Antigen retrieval was 

performed for immunostaining by microwaving the slides for 10 minutes in 10mM 

sodium citrate buffer (pH 6.0) followed by a 20 minute cooling period at room 

temperature.  Immunohistochemistry staining was conducted using the ABC kit (Vector 

Laboratories, Burlingame, CA) as previously described (15). For immunofluorescene 

staining, slides were subsequently blocked in 3% normal goat serum and incubated with 

the primary antibody.  Goat anti-mouse conjugated to Alexa 568, goat anti-mouse 

conjugated to FITC and goat anti-rabbit conjugated to Alexa 594 were used as secondary 

antibodies at a dilution of 1:500 (Invitrogen). The slides were mounted with Vectashield 

mounting medium containing DAPI (Vector Laboratories).  Images were acquired using 

the Olympus BX51 fluorescence microscope. For double immunofluorescence staining 

the two primary antibody procedures were performed separately in succession. Primary 

antibodies and their dilutions were as follows: mouse anti-β-catenin, 1:200 (BD 

Bioscience); goat anti-Ihh, 1:400 (Santa Cruz Biotechnology); rabbit anti-Ki67, 1:150 

(SP4); rabbit anti-desmin, 1:80; rabbit anti-chromogranin A, 1:400 (Lab vision); mouse 

anti-villin, 1:100 (Immunotech); mouse anti-SMA, 1:50 (DAKO); rabbit anti-Sox9, 1:200 

(Millipore); rabbit anti-Fabp, 1:50 (Novus Biologicals); rat anti-CD44v6, 1:800 (Bender 

MedSystems); rabbit anti-collagen IV, 1:100 (Millipore); rabbit anti-lamanin, 1:100 
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(NeoMarkers). For Alcian Blue staining, rehydrated paraffin sections were stained for 30 

minutes at room temperature in 1% Alcian Blue solution, pH2.5 (Newcommer Supply). 

Slides were then washed in water, and counterstained with nuclear fast red. Olfm4 in situ 

hybridization was performed as previously described (6).   

 

Electron Microscopy 

Intesinal tissue was thinly sliced (2-3mm thick) and placed in Karnovsky’s fixative: 0.8% 

paraformaldehyde, 2.8 % glutaraldehyde in 0.1M Sodium cacodylate buffer pH 7.4 at 

room temperature for 2-4 hours before storing at 4°C.  Fixed tissue was then rinsed in 

water, post-fixed in 2% OsO4 and stained en bloc with Uranyl acetate before being 

dehydrated in ethanol, cleared with propylene oxide and embedded in Eponate 12 (Ted 

Pella Co).  Thick sections (1 micron) were cut and stained with Toludine Blue, examined 

under a light microscope to select the areas for thin sections.  Thin sections (`70-90 nm) 

were cut on a Leica ultracut UCT microtome (Bannock, Il), stained with Uranyl acetate 

and Reynold’s Lead to enhance the contrast and examined under a Phlilips Tecnai 10 

electron microscope (Eidhoven, Netherland). 

 

Microarrays and data analysis 

Three sets of colon tissues were harvested from Villin-Cre:Ihhflox/flox pups and their 

control littermates. Total RNA was isolated using Trizol reagent, and hybridized to 

Affymetrix Gene 1.0 ST mouse arrays. The raw data are available at Gene Expression 

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/projects/geo) under the accession no. 
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GSE18393.  Paired Significance Analysis of Microarrays (SAM) (40) was performed to 

identify genes differentially expressed in control and mutant colon samples. 

 

Cell Culture and treatment 

Two primary intestinal ISEMF cell lines were used in the study: 18Co cells were 

purchased from ATCC, and IMF11B cells were established from histologically normal 

margins of surgically resected ileal (IMF) tissue using the outgrowth method described 

(41).  The myofibroblast phenotype was verified by immunohistochemistry and flow 

cytometry as described (42). The primary myofibroblasts were cultured in DMEM that 

was supplemented with 10% NuSerum, 200 µM L-glutamine penicillin (50 U/ml), and 

streptomycin (50 µg/ml).  GANT61 was purchased from Alexis Biochemicals and 

dissolved in DMSO to the final concentration of 10mM.  The WST-1 assay (Roche) was 

used to quantify cell grow per manufacturer’s instruction. The quantification of apoptosis 

was performed using the Caspase-Glo 3/7 Assay kit (promega) according the 

manufacturer’s instruction. In both assays, 18Co and IMF11B cells were seated in 96 

well plates and treated with DMSO or 10µM GANT61 for 72 hours. For BrdU labeling, 

cells were cultured on glass slides, treated with DMSO or Gant61 for 48 hours, and 

incubated with 10µM BrdU for 4 hours. Cells were then fixed in 4% paraformaldehyde, 

denatured with 2N HCl for 30 minutes at 37oC, and neutralized with 0.1M pH8.5 Boric 

acid buffer. Cells were incubated with mouse anti-BrdU antibody, 1:200 (Lab Vision). 

The primary antibody binding was detected with goat anti-mouse antibody conjugated to 

Alexa 568 (Invitrogen).  The slides were mounted with Vectashield mounting medium 

containing DAPI (Vector Laboratories).  Images were acquired using the Olympus BX51 
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fluorescence microscope.  18Co cells were treated for 48 hours with GANT61 for 

quantitative RT-PCR studies. 

 

Real-Time Quantitative Reverse-Transcription Polymerase Chain Reaction 

Total RNA was extracted from frozen intestinal tissues or cultured ISEMF cells using 

Trizol (Invitrogen) and digested with DNase I to remove genomic DNA contamination. 

SYBR green based real-time RT-PCR was carried out as described (15) and rRNA or 

GAPDH was used as an internal control. The primer pair sequences are available in Table 

S2. 

 

Statistical Analysis 

Student’s t-test was used to evaluate statistical significance. Values of P < 0.05 were 

considered significant. Data are expressed as means ± SD. 
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Figure S1B 

 

 

 
Figure S1. Loss of ISC Niche Cells in Villin-Cre;Ihhflox/flox Mice through Postnatal 
Development. α-SMA staining of colon (1A) and jejunum (1B) in control and Ihh KO 
mice at different ages (P5, P9 and P19). 
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Figure S2. Loss of ISC Niche Cells in Villin-Cre;Ihhflox/flox Mice. The figure shows the 
individual color channels of double immunofluorescent staining of SMA (green) and 
desmin (red) to distinguish ISEMF cells and SMCs in the small intestine and colon in 
control and Ihh mutant mice. 
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Figure S3. Abnormal Intestinal Epithelial Phenotypes in Colon Tissues of Villin-
Cre;Ihhflox/flox Mice. (A) Control mice exhibit crypts that are uniform in size and shape 
with (B) Ki67 positive cells restricted to crypt bottoms. Note goblet cells are present in 
the upper two-thirds of the crypt (A); (C, E) Ihh KO mice display dilated, distorted crypts 
with increased goblet cells spanning the whole crypt. Note the mutant mice have increase 
incidences of crypt fission; (D, F) In Ihh KO mice, Ki67 immunostaining is detected in 
regions along the entire crypt length. 
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Figure S4: Abnormal Activation of Wnt/β-catenin Signaling in Villin-Cre;Ihhflox/flox 
Mice. (A-D) Small intestinal sections showing immunostaining of Wnt/β-catenin target 
genes (EphB2 and Sox9) is expanded in Ihh KO mice (B, D) compared to control (A, C). 
Cytoplasmic and nuclear β-catenin staining detected in Ihh KO mice (F), while control 
mice (E) predominantly displayed membrane β-catenin staining in the small intestine. 
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Figure S5. Vacuolation of enterocytes in Villin-Cre;Ihhflox/flox Mice. H&E staining of 
control (A, C) and conditional Ihh KO (B, D) mice showing the failure of enterocyte 
maturation with arrest in the vacuolated cell stage in the jejunum and colon of conditional 
Ihh KO mice. 
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Figure S6. Transmission Electron Microscopy of the Microvillar Brush Border. 
Representative transmission electron micrographs of the apical membrane of epithelial 
cells isolated from the small intestine (A and B) and colon (C and D) of control (A and C) 
and Villin-Cre;Ihhflox/flox mice (B and D); 
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Table S1. Genes Differentially Expressed in Villin-Cre;Ihhflox/flox Mice versus 
Control Mice (Full List). For all genes scored, the fold change was calculated by 
dividing the mutant value by the control value.  Paired Significance Analysis of 
Microarrays (SAM) was performed to identify genes differentially expressed in control 
and mutant colon samples. 
 
Genes Down-regulated in Conditional Ihh Mutant Mice versus Control Mice 
 
Gene Title 
 

Gene Symbol 
 

Fold 
Change

RIKEN cDNA 1110001D15 gene 1110001D15Rik 0.31 
RIKEN cDNA 1190002N15 gene 1190002N15Rik 0.66 
RIKEN cDNA 1200009O22 gene 1200009O22Rik 0.59 
RIKEN cDNA 1700025G04 gene 1700025G04Rik 0.69 
RIKEN cDNA 1700029G01 gene 1700029G01Rik 0.70 
RIKEN cDNA 1810010M01 gene 1810010M01Rik 0.64 
RIKEN cDNA 1810011H11 gene 1810011H11Rik 0.73 
RIKEN cDNA 1810041L15 gene 1810041L15Rik 0.52 
RIKEN cDNA 2010003K11 gene 2010003K11Rik 0.69 
RIKEN cDNA 2010011I20 gene 2010011I20Rik 0.77 
RIKEN cDNA 2010110P09 gene 2010110P09Rik 0.59 
RIKEN cDNA 2810022L02 gene 2810022L02Rik 0.79 
RIKEN cDNA 4631426J05 gene 4631426J05Rik 0.71 
RIKEN cDNA 4833424O15 gene 4833424O15Rik 0.67 
RIKEN cDNA 4930503L19 gene 4930503L19Rik 0.73 
RIKEN cDNA 9230105E10 gene 9230105E10Rik  0.73 
RIKEN cDNA 9930111J21 gene 9930111J21Rik  0.74 
RIKEN cDNA 9930111J21 gene 9930111J21Rik  0.75 
RIKEN cDNA A430107O13 gene A430107O13Rik 0.52 
alanine and arginine rich domain containing protein Aard 0.62 
ATP-binding cassette, sub-family G (WHITE), member 2 Abcg2 0.71 
ABI gene family, member 3 (NESH) binding protein Abi3bp 0.45 
ankyrin repeat and BTB (POZ) domain containing 2 Abtb2 0.72 
alkaline ceramidase 1 Acer1 0.65 
actin, alpha, cardiac muscle 1 Actc1 0.54 
actin, gamma 2, smooth muscle, enteric Actg2 0.64 
activin A receptor, type II-like 1 Acvrl1 0.71 
a disintegrin and metallopeptidase domain 19 (meltrin beta) Adam19 0.70 
a disintegrin and metallopeptidase domain 23 Adam23 0.68 
ADAM-like, decysin 1 Adamdec1 0.40 
a disintegrin-like and metallopeptidase type1 motif, 18 Adamts18 0.70 
a disintegrin-like and metallopeptidase type1 motif, 19 Adamts19 0.68 
a disintegrin-like and metallopeptidase type1 motif, 9 Adamts9 0.60 
a disintegrin-like and metallopeptidase type1 motif, 9 Adamts9 0.61 
a disintegrin-like and metallopeptidase type1 motif, 9 Adamts9 0.61 
a disintegrin-like and metallopeptidase type1 motif, 9 Adamts9 0.61 
a disintegrin-like and metallopeptidase type1 motif, 9 Adamts9 0.63 
a disintegrin-like and metallopeptidase type1 motif, 9 Adamts9 0.73 
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ArfGAP with dual PH domains 2 Adap2 0.71 
AF4/FMR2 family, member 3 Aff3 0.73 
angiotensinogen (serpin peptidase inhibitor, clade A, member 8) Agt 0.48 
aryl-hydrocarbon receptor Ahr 0.71 
aryl-hydrocarbon receptor repressor Ahrr 0.73 
allograft inflammatory factor 1 Aif1 0.77 
A kinase (PRKA) anchor protein 6 Akap6 0.74 
aldehyde dehydrogenase 2, mitochondrial Aldh2 0.67 
arachidonate 12-lipoxygenase Alox12 0.78 
amyotrophic lateral sclerosis 2 (juvenile) chromosome region, cnd 4 Als2cr4 0.70 
angiopoietin-like 7 Angptl7 0.62 
ankyrin repeat domain 37 Ankrd37 0.59 
ankyrin repeat and sterile alpha motif domain containing 4B Anks4b 0.78 
anoctamin 1, calcium activated chloride channel Ano1 0.40 
annexin A6 Anxa6 0.71 
amine oxidase, copper containing 3 Aoc3 0.56 
adaptor-related protein complex 1, sigma 2 subunit Ap1s2 0.81 
adenomatosis polyposis coli down-regulated 1 Apcdd1 0.74 
apelin receptor Aplnr 0.65 
apolipoprotein L 10a Apol10a 0.56 
aquaporin 4 Aqp4 0.57 
aquaporin 8 Aqp8 0.41 
Rho GTPase activating protein 28 Arhgap28 0.45 
arrestin, beta 1 Arrb1 0.78 
ankyrin repeat and SOCS box-containing 2 Asb2 0.65 
achaete-scute complex homolog 2 (Drosophila) Ascl2 0.69 
asporin Aspn 0.63 
ATPase, Na+/K+ transporting, alpha 2 polypeptide Atp1a2 0.76 
ATPase, Ca++ transporting, plasma membrane 4 Atp2b4 0.59 
AXL receptor tyrosine kinase Axl 0.77 
bradykinin receptor, beta 2 Bdkrb2 0.68 
bone gamma-carboxyglutamate protein, related sequence 1 Bglap-rs1 0.54 
 bone gamma carboxyglutamate protein 1 Bglap1  0.62 
bone morphogenetic protein 2 Bmp2 0.55 
bone morphogenetic protein 4 Bmp4 0.49 
bone morphogenetic protein 5 Bmp5 0.27 
BTB (POZ) domain containing 3 Btbd3 0.69 
calcium channel, voltage-dependent, alpha2/delta subunit 3 Cacna2d3 0.73 
calbindin 2 Calb2 0.54 
calcitonin-related polypeptide, beta Calcb 0.77 
calcitonin receptor-like Calcrl 0.63 
caldesmon 1 Cald1 0.67 
CAP, adenylate cyclase-associated protein, 2 (yeast) Cap2 0.58 
calpain 2 Capn2 0.73 
carbonic anhydrase 3 Car3 0.43 
carbonic anhydrase 4 Car4 0.38 
calsequestrin 1 Casq1 0.66 
caveolin 1, caveolae protein Cav1 0.62 
carbonyl reductase 3 Cbr3 0.73 
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coiled-coil domain containing 3 Ccdc3 0.50 
coiled-coil domain containing 68 Ccdc68 0.73 
cholecystokinin A receptor Cckar 0.52 
CD34 antigen Cd34 0.75 
CD74 antigen  Cd74 0.55 
CD93 antigen Cd93 0.69 
cadherin 11 Cdh11 0.77 
cadherin 13 Cdh13 0.80 
cadherin 5 Cdh5 0.75 
cadherin 6 Cdh6 0.64 
cyclin-dependent kinase inhibitor 1A (P21) Cdkn1a 0.51 
cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) Cdkn2b 0.52 
carbohydrate (chondroitin 6/keratan) sulfotransferase 3 Chst3 0.77 
creatine kinase, brain Ckb 0.70 
chloride channel calcium activated 3 Clca3 0.46 
C-type lectin domain family 14, member a Clec14a 0.71 
chloride intracellular channel 5 Clic5 0.53 
clusterin Clu 0.52 
calponin 1 Cnn1 0.61 
contactin 3 Cntn3 0.76 
collagen, type XII, alpha 1 Col12a1 0.46 
collagen, type XV, alpha 1 Col15a1 0.55 
collagen, type IV, alpha 1 Col4a1 0.64 
collagen, type IV, alpha 5 Col4a5 0.63 
collagen, type IV, alpha 6 Col4a6 0.54 
collagen, type VI, alpha 2 Col6a2 0.64 
carboxypeptidase A6 Cpa6 0.59 
carboxypeptidase X 2 (M14 family) Cpxm2 0.37 
crystallin, alpha B Cryab 0.66 
colony stimulating factor 1 (macrophage) Csf1 0.71 
cystathionase (cystathionine gamma-lyase) Cth 0.60 
cathepsin E Ctse 0.66 
CUG triplet repeat, RNA binding protein 2 Cugbp2 0.76 
chemokine (C-X3-C) receptor 1 Cx3cr1 0.73 
chemokine (C-X-C motif) ligand 14 Cxcl14 0.47 
chemokine (C-X-C motif) receptor 7 Cxcr7 0.61 
cytochrome P450, family 2, subfamily c, polypeptide 40  Cyp2c40  0.59 
cytochrome P450, family 2, subfamily c, polypeptide 55 Cyp2c55 0.48 
cytochrome P450, family 2, subfamily c, polypeptide 67 Cyp2c67 0.65 
cytochrome P450, family 2, subfamily c, polypeptide 68 Cyp2c68 0.49 
cytochrome P450, family 2, subfamily d, polypeptide 13 Cyp2d13 0.58 
cytochrome P450, family 2, subfamily s, polypeptide 1 Cyp2s1 0.64 
cytochrome P450, family 3, subfamily a, polypeptide 44 Cyp3a44 0.69 
cytochrome P450, family 4, subfamily f, polypeptide 14 Cyp4f14 0.60 
cytochrome P450, family 4, subfamily f, polypeptide 16 Cyp4f16 0.51 
DNA segment, human D4S114 D0H4S114 0.74 
DNA segment, Chr 10, ERATO Doi 610, expressed D10Ertd610e 0.72 
dishevelled associated activator of morphogenesis 2 Daam2 0.69 
disabled homolog 2 (Drosophila) Dab2 0.71 
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dachshund 1 (Drosophila) Dach1 0.58 
discoidin, CUB and LCCL domain containing 2 Dcbld2 0.67 
discoidin domain receptor family, member 2 Ddr2 0.66 
DENN/MADD domain containing 5A Dennd5a 0.73 
desmin Des 0.56 
deiodinase, iodothyronine, type I Dio1 0.46 
dystrophia myotonica-protein kinase Dmpk 0.62 
deoxyribonuclease 1-like 3 Dnase1l3 0.58 
dedicator of cytokinesis 4 Dock4 0.79 
docking protein 5 Dok5 0.80 
dipeptidylpeptidase 10 Dpp10 0.65 
dysferlin Dysf 0.74 
DAZ interacting protein 1 Dzip1 0.64 
DAZ interacting protein 1 Dzip1 0.79 
RIKEN cDNA E030049G20 gene E030049G20Rik 0.61 
RIKEN cDNA E030049G20 gene E030049G20Rik 0.74 
RIKEN cDNA E130203B14 gene E130203B14Rik 0.62 
early B-cell factor 1 Ebf1 0.80 
extracellular matrix protein 2, female organ and adipocyte specific Ecm2 0.74 
endothelin receptor type A Ednra 0.69 
epidermal growth factor-containing fibulin-like extracellular matrix protein 
1 Efemp1 0.44 
ephrin B2 Efnb2 0.74 
predicted gene, EG638904 EG638904 0.73 
predicted gene, EG665033 EG665033 0.58 
EGF-like, fibronectin type III and laminin G domains Egflam 0.57 
EMI domain containing 1 Emid1 0.70 
echinoderm microtubule associated protein like 1 Eml1 0.57 
endonuclease domain containing 1 Endod1 0.64 
enolase 3, beta muscle Eno3 0.51 
ectonucleotide pyrophosphatase/phosphodiesterase 2 Enpp2 0.38 
endothelial PAS domain protein 1 Epas1 0.63 
Eph receptor A7 Epha7 0.68 
avian erythroblastosis virus E-26 (v-ets) oncogene related Erg 0.80 
E26 avian leukemia oncogene 1, 5' domain Ets1 0.75 
fatty acid desaturase 1 Fads1 0.57 
family with sequence similarity 105, member A Fam105a 0.73 
family with sequence similarity 162, member B Fam162b 0.64 
family with sequence similarity 171, member B Fam171b 0.74 
FAT tumor suppressor homolog 3 (Drosophila) Fat3 0.54 
FAT tumor suppressor homolog 3 (Drosophila) Fat3 0.64 
FAT tumor suppressor homolog 3 (Drosophila) Fat3 0.66 
FAT tumor suppressor homolog 3 (Drosophila) Fat3 0.67 
FAT tumor suppressor homolog 4 (Drosophila) Fat4 0.42 
fibrillin 1 Fbn1 0.71 
Fc fragment of IgG binding protein Fcgbp 0.61 
fibroblast growth factor 9 Fgf9 0.59 
filamin, alpha Flna 0.69 
fibronectin 1 Fn1 0.63 
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fibronectin type III domain containing 1 Fndc1 0.55 
forkhead box F1a Foxf1a 0.60 
forkhead box F2 Foxf2 0.42 
forkhead box L1 Foxl1 0.71 
Fraser syndrome 1 homolog (human) Fras1 0.60 
Fras1 related extracellular matrix protein 2 Frem2 0.51 
follistatin-like 1 Fstl1 0.70 
Fyn proto-oncogene Fyn 0.77 
frizzled homolog 4 (Drosophila) Fzd4 0.65 
gamma-aminobutyric acid (GABA-A) receptor, subunit alpha 2 Gabra2 0.72 
growth arrest specific 5 Gas5 0.74 
globoside alpha-1,3-N-acetylgalactosaminyltransferase 1 Gbgt1 0.80 
gamma-glutamyl hydrolase Ggh 0.63 
gamma-glutamyl hydrolase Ggh 0.63 
gamma-glutamyltransferase 1 Ggt1 0.57 
GLI-Kruppel family member GLI1 Gli1 0.58 
glycine receptor, beta subunit Glrb 0.70 
glycosyltransferase 25 domain containing 2 Glt25d2 0.74 
gene model 967, (NCBI) Gm967 0.71 
guanine nucleotide binding protein (G protein), alpha inhibiting 1 Gnai1 0.67 
G protein-coupled receptor 177 Gpr177 0.74 
G protein-coupled receptor 37 Gpr37 0.77 
glutathione peroxidase 8 (putative) Gpx8 0.77 
growth factor receptor bound protein 14 Grb14 0.71 
gremlin 2 homolog, cysteine knot superfamily (Xenopus laevis) Grem2 0.50 
glutamate receptor ionotropic, NMDA3A Grin3a 0.52 
gasdermin C2 Gsdmc2 0.60 
gasdermin C3 Gsdmc3 0.53 
glutathione S-transferase, alpha 3 Gsta3 0.60 
glycophorin C Gypc 0.72 
histocompatibility 2, class II antigen A, beta 1 H2-Ab1 0.53 
hyaluronan synthase 2 Has2 0.76 
Hedgehog-interacting protein Hhip 0.22 
hemicentin 1 Hmcn1 0.59 
hemicentin 1 Hmcn1 0.60 
hemicentin 1 Hmcn1 0.62 
hemicentin 1 Hmcn1 0.63 
hemicentin 1 Hmcn1 0.66 
hemicentin 1 Hmcn1 0.66 
hemicentin 1 Hmcn1 0.67 
hemicentin 1 Hmcn1 0.69 
hemicentin 1 Hmcn1 0.69 
hemicentin 1 Hmcn1 0.69 
hemicentin 1 Hmcn1 0.71 
hemicentin 1 Hmcn1 0.73 
hemicentin 1 Hmcn1 0.75 
HtrA serine peptidase 1 Htra1 0.51 
hormonally upregulated Neu-associated kinase Hunk 0.75 
inhibitor of DNA binding 1 Id1 0.67 
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inhibitor of DNA binding 2 Id2 0.73 
inhibitor of DNA binding 4 Id4 0.61 
insulin-like growth factor binding protein 2 Igfbp2 0.54 
immunoglobulin superfamily, member 9 Igsf9 0.57 
interleukin 34 Il34 0.77 
integrin alpha 1 Itga1 0.67 
integrin alpha 8 Itga8 0.64 
integrin alpha 9 Itga9 0.54 
integrin alpha V Itgav 0.81 
integrin beta 6 Itgb6 0.75 
iodotyrosine deiodinase Iyd 0.61 
potassium voltage gated channel, Shab-related subfamily, member 2 Kcnb2 0.80 
potassium voltage-gated channel, Shal-related family, member 3 Kcnd3 0.57 
potassium inwardly-rectifying channel, subfamily J, member 16 Kcnj16 0.53 
kinase insert domain protein receptor Kdr 0.66 
Kruppel-like factor 4 (gut) Klf4 0.71 
kelch-like 23 (Drosophila) Klhl23 0.71 
kallikrein related-peptidase 15 Klk15 0.40 
laminin, alpha 3 Lama3 0.55 
laminin, alpha 4 Lama4 0.68 
laminin, alpha 5 Lama5 0.74 
laminin B1 subunit 1 Lamb1-1 0.59 
laminin, gamma 1 Lamc1 0.64 
leptin receptor Lepr 0.67 
leprecan-like 1 Leprel1 0.50 
lectin, galactose binding, soluble 1 Lgals1 0.73 
lin-7 homolog A (C. elegans) Lin7a 0.74 
LIM domain only 3 Lmo3 0.64 
latrophilin 3 Lphn3 0.52 
LIM domain containing preferred translocation partner in lipoma Lpp 0.77 
leucine rich repeat containing 61  Lrrc61  0.73 
latent transforming growth factor beta binding protein 1 Ltbp1 0.66 
latent transforming growth factor beta binding protein 4 Ltbp4 0.61 
latexin Lxn 0.78 
v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B  Mafb 0.66 
MAM domain containing 2 Mamdc2 0.68 
mucolipin 3 Mcoln3 0.72 
mast cell protease 1 Mcpt1 0.35 
mast cell protease 2 Mcpt2 0.39 
myocyte enhancer factor 2C Mef2c 0.75 
meprin 1 alpha Mep1a 0.66 
meprin 1 beta Mep1b 0.71 
microfibrillar associated protein 5 Mfap5 0.47 
monoglyceride lipase Mgll 0.74 
MON2 homolog (yeast) /// Eph receptor B6 Mon2 /// Ephb6 0.78 
major histocompatibility complex, class I-related Mr1 0.66 
metallothionein 2 Mt2 0.59 
myotubularin related protein 11 Mtmr11 0.65 
MAX dimerization protein 1 Mxd1 0.63 
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v-myc myelocytomatosis viral related oncogene Mycn 0.61 
myc target 1 Myct1 0.71 
myosin, heavy polypeptide 10, non-muscle Myh10 0.64 
myosin, heavy polypeptide 11, smooth muscle Myh11 0.68 
myosin, light polypeptide 4 Myl4 0.72 
myosin, light polypeptide 9, regulatory Myl9 0.73 
myosin XVB Myo15b 0.75 
myocardin Myocd 0.68 
myomesin 1 Myom1 0.60 
neural cell adhesion molecule 1 Ncam1 0.47 
nexilin Nexn 0.65 
nidogen 1 Nid1 0.71 
NK2 transcription factor related, locus 3 (Drosophila) Nkx2-3 0.61 
neuromedin U Nmu 0.37 
natriuretic peptide receptor 2 Npr2 0.71 
NAD(P)H dehydrogenase, quinone 1 Nqo1 0.43 
nuclear receptor subfamily 2, group F, member 1 Nr2f1 0.75 
neuregulin 1 Nrg1 0.59 
5' nucleotidase, ecto Nt5e 0.46 
neurotrophin 3 Ntf3 0.51 
nuclear RNA export factor 7 Nxf7 0.72 
osteoglycin Ogn 0.37 
olfactory receptor 165 Olfr165 0.32 
olfactory receptor 178 Olfr178 0.77 
olfactory receptor 558 Olfr558 0.72 
purinergic receptor P2Y, G-protein coupled, 14 P2ry14 0.57 
par-6 partitioning defective 6 homolog gamma (C. elegans) Pard6g 0.73 
protocadherin 20 Pcdh20 0.58 
protocadherin 7 Pcdh7 0.65 
Purkinje cell protein 4 Pcp4 0.74 
proprotein convertase subtilisin/kexin type 6 Pcsk6 0.70 
phosphodiesterase 7B Pde7b 0.73 
platelet-derived growth factor, C polypeptide Pdgfc 0.70 
platelet derived growth factor receptor, alpha polypeptide Pdgfra 0.75 
PDZ and LIM domain 3 Pdlim3 0.62 
PDZ domain containing 2 Pdzd2 0.68 
phosphatidylinositol 3 kinase, regulatory subunit, polypeptide 3 (p55) Pik3r3 0.73 
phosphatidylinositol-5-phosphate 4-kinase, type II, alpha Pip4k2a 0.72 
paired-like homeodomain transcription factor 1 Pitx1 0.51 
protein kinase inhibitor, alpha Pkia 0.73 
plasminogen activator, urokinase Plau 0.47 
pleckstrin homology domain containing, family G  member 1 Plekhg1 0.68 
pleckstrin homology domain containing, family H member 2 Plekhh2 0.67 
phospholamban Pln 0.74 
plastin 3 (T-isoform) Pls3 0.79 
phospholipid transfer protein Pltp 0.66 
plasmalemma vesicle associated protein Plvap 0.65 
plexin C1 Plxnc1 0.76 
plexin D1 Plxnd1 0.66 
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prostate transmembrane protein, androgen induced 1 Pmepa1 0.70 
peripheral myelin protein 22 Pmp22 0.60 
periostin, osteoblast specific factor Postn 0.67 
phosphatidic acid phosphatase type 2B Ppap2b 0.63 
protein phosphatase 1, regulatory (inhibitor) subunit 3B Ppp1r3b 0.68 
phosphatidylinositol-3,4,5-trisphosphate-dependent Rac factor 2 Prex2 0.62 
prickle-like 2 (Drosophila) Prickle2 0.72 
protein kinase C, delta binding protein Prkcdbp 0.69 
protein kinase D1 Prkd1 0.68 
protein kinase, cGMP-dependent, type I Prkg1 0.73 
prion protein dublet Prnd 0.47 
patched homolog 1 Ptch1 0.37 
prostaglandin E receptor 1 (subtype EP1) Ptger1 0.46 
prostaglandin-endoperoxide synthase 1 Ptgs1 0.63 
protein tyrosine phosphatase, non-receptor type 14 Ptpn14 0.79 
protein tyrosine phosphatase, receptor type, B Ptprb 0.71 
protein tyrosine phosphatase, receptor type, M Ptprm 0.67 
polymerase I and transcript release factor Ptrf 0.66 
peroxidasin homolog (Drosophila) Pxdn 0.60 
muscle glycogen phosphorylase Pygm 0.65 
quaking Qk 0.77 
retinoic acid induced 2 Rai2 0.70 
receptor (calcitonin) activity modifying protein 2 Ramp2 0.70 
RAS related protein 2a Rap2a 0.76 
retinoic acid receptor, beta Rarb 0.74 
RAS-like, family 11, member B Rasl11b 0.74 
ribonucleoprotein, PTB-binding 2 Raver2 0.53 
regulator of calcineurin 2 Rcan2 0.72 
RCSD domain containing 1 Rcsd1 0.74 
RAS-like, estrogen-regulated, growth-inhibitor Rerg 0.65 
regulator of G-protein signalling 10 Rgs10 0.55 
regulator of G-protein signaling 5 Rgs5 0.70 
regulator of G-protein signaling 5 Rgs5 0.73 
ring finger protein 152 Rnf152 0.68 
roundabout homolog 1 (Drosophila) Robo1 0.61 
roundabout homolog 4 (Drosophila) Robo4 0.76 
ribosomal protein S6 kinase, polypeptide 2 Rps6ka2 0.77 
serum amyloid A 1 /// serum amyloid A 2 Saa1 /// Saa2 0.20 
sal-like 1 (Drosophila) Sall1 0.58 
sterile alpha motif domain containing 5 Samd5 0.77 
sterile alpha motif domain containing 9-like Samd9l 0.76 
scavenger receptor class B, member 1 Scarb1 0.70 
stearoyl-Coenzyme A desaturase 2 Scd2 0.41 

schwannomin interacting protein 1 /// predicted gene, EG208426 
Schip1 /// 

EG208426 0.67 
scinderin Scin 0.65 
sodium channel, voltage-gated, type II, alpha 1 Scn2a1 0.73 
sodium channel, nonvoltage-gated 1 alpha Scnn1a 0.63 
secreted and transmembrane 1B Sectm1b 0.69 
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secreted, (semaphorin) 3A Sema3a 0.45 
serine (or cysteine) peptidase inhibitor, clade B, member 9e Serpinb9e 0.68 
secreted frizzled-related protein 2 Sfrp2 0.49 
sarcoglycan, epsilon Sgce 0.79 
SH3-binding domain glutamic acid-rich protein Sh3bgr 0.74 
solute carrier family 11 (proton-coupled divalent metal ion transporters), 2 Slc11a2 0.60 
solute carrier family 13 (sodium-dependent dicarboxylate transporter), 2 Slc13a2 0.54 
solute carrier family 16 (monocarboxylic acid transporters), member 9 Slc16a9 0.73 
solute carrier family 17 (sodium phosphate), member 4 Slc17a4 0.55 
solute carrier family 39 (zinc transporter), member 2 Slc39a2 0.61 
solute carrier family 3, member 1 Slc3a1 0.38 
solute carrier family 40 (iron-regulated transporter), member 1 Slc40a1 0.65 
solute carrier family 46, member 1 Slc46a1 0.46 
solute carrier family 6 (neurotransmitter transporter), member 14 Slc6a14 0.70 
solute carrier family 8 (sodium/calcium exchanger), member 1 Slc8a1 0.73 
solute carrier family 9 (sodium/hydrogen exchanger), member 9 Slc9a9 0.68 
solute carrier organic anion transporter family, member 2a1 Slco2a1 0.46 
SLIT and NTRK-like family, member 6 Slitrk6 0.46 
MAD homolog 6 (Drosophila) Smad6 0.68 
small muscle protein, X-linked Smpx 0.74 
snail homolog 2 (Drosophila) Snai2 0.69 
synuclein, alpha interacting protein (synphilin) Sncaip 0.78 
sorting nexin 18 Snx18 0.80 
sorbin and SH3 domain containing 1 Sorbs1 0.69 
spermatogenesis associated glutamate (E)-rich protein 7, pseudogene 1 Speer7-ps1  0.52 
Spi-B transcription factor (Spi-1/PU.1 related) Spib 0.70 
sparc/osteonectin, cwcv and kazal-like domains proteoglycan 3 Spock3 0.57 
small proline-rich protein 2E Sprr2e 0.74 
sushi-repeat-containing protein, X-linked 2 Srpx2 0.46 
beta galactoside alpha 2,6 sialyltransferase 2 St6gal2 0.72 
STEAP family member 4 Steap4 0.54 
serine/threonine kinase 10 Stk10 0.76 
serine/threonine kinase 36 (fused homolog, Drosophila) Stk36 0.77 
storkhead box 2 Stox2 0.65 
storkhead box 2 Stox2 0.71 
syntaxin binding protein 1 Stxbp1 0.59 
sulfotransferase family, cytosolic, 1C, member 2 Sult1c2 0.67 
syncollin Sycn 0.60 
synaptotagmin XIII Syt13 0.77 
tachykinin receptor 2 Tacr2 0.57 
T-box 2 Tbx2 0.59 
transcription elongation factor A (SII)-like 6 Tceal6 0.74 
transcription factor 4 Tcf4 0.65 
tet oncogene 1 Tet1 0.65 
tet oncogene 1 Tet1 0.66 
tet oncogene 1 Tet1 0.68 
transglutaminase 3, E polypeptide Tgm3 0.28 
tyrosine kinase with immunoglobulin-like and EGF-like domains 1 Tie1 0.74 
tissue inhibitor of metalloproteinase 3 Timp3 0.69 
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transmembrane protein 47 Tmem47 0.64 
transmembrane and tetratricopeptide repeat containing 1 Tmtc1 0.68 
tensin 4 Tns4 0.69 
tripartite motif-containing 12 Trim12 0.59 
transient receptor potential cation channel, subfamily A, member 1 Trpa1 0.58 
tetratricopeptide repeat domain 28 Ttc28 0.68 
tubulin tyrosine ligase-like family, member 7 Ttll7 0.77 
twisted gastrulation homolog 1 (Drosophila) Twsg1 0.71 
vasohibin 2 Vash2 0.79 
versican Vcan 0.68 
WAP four-disulfide core domain 1 Wfdc1 0.60 
wingless-related MMTV integration site 4 Wnt4 0.70 
wingless-related MMTV integration site 5A Wnt5a 0.62 
WSC domain containing 2 Wscd2 0.71 
X-linked lymphocyte-regulated 4B  Xlr4b  0.61 
 X-linked lymphocyte-regulated 4C Xlr4c 0.64 
zinc finger E-box binding homeobox 2 Zeb2 0.63 
zinc finger protein 536 Zfp536 0.51 
zinc finger protein 791 Zfp791 0.74 
zinc finger protein, multitype 2 Zfpm2 0.76 

 
 
 
Genes Up-regulated in Conditional Ihh Mutant Mice versus Control Mice 
 

Gene Title Gene Symbol 
Fold 

Change
RIKEN cDNA 1300002K09 gene 1300002K09Rik 1.46 
RIKEN cDNA 1600029D21 gene 1600029D21Rik 2.61 
RIKEN cDNA 1700001L05 gene 1700001L05Rik 1.37 
RIKEN cDNA 1700019H03 gene 1700019H03Rik 1.54 
RIKEN cDNA 1810010D01 gene 1810010D01Rik 1.30 
RIKEN cDNA 1810033B17 gene 1810033B17Rik 1.53 
RIKEN cDNA 2010002N04 gene 2010002N04Rik 1.66 
RIKEN cDNA 2010106E10 gene 2010106E10Rik 2.87 
RIKEN cDNA 2210407C18 gene 2210407C18Rik 2.77 
RIKEN cDNA 2210417D09 gene 2210417D09Rik 1.50 
RIKEN cDNA 2310016C08 gene 2310016C08Rik 1.60 
RIKEN cDNA 4732429D16 gene 4732429D16Rik 1.39 
RIKEN cDNA 4833403I15 gene 4833403I15Rik 1.46 
RIKEN cDNA 4921506M07 gene 4921506M07Rik 1.30 
RIKEN cDNA 4933409K07 gene 4933409K07Rik 1.73 
RIKEN cDNA 4933409K07 gene 4933409K07Rik 1.72 
RIKEN cDNA 4933409K07 gene 4933409K07Rik 1.66 
RIKEN cDNA 4933409K07 gene 4933409K07Rik 1.72 
RIKEN cDNA 4933409K07 gene 4933409K07Rik 1.53 
RIKEN cDNA 4933409K07 gene 4933409K07Rik 1.46 
RIKEN cDNA 4933409K07 gene 4933409K07Rik 1.42 
RIKEN cDNA 5330417C22 gene 5330417C22Rik 1.46 
RIKEN cDNA 5330438D12 gene 5330438D12Rik 1.32 
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RIKEN cDNA 6330406I15 gene 6330406I15Rik 1.38 
RIKEN cDNA 9030619P08 gene 9030619P08Rik 1.96 
RIKEN cDNA 9130221D24 gene 9130221D24Rik 1.47 
RIKEN cDNA A230067G21 gene A230067G21Rik 1.34 
alpha-1,4-N-acetylglucosaminyltransferase A4gnt 2.54 
acetyl-Coenzyme A carboxylase beta Acacb 1.35 
acyl-CoA thioesterase 1 Acot1 1.71 
acyl-CoA thioesterase 2 Acot2 1.41 
acyl-CoA synthetase family member 2 Acsf2 1.73 
acyl-CoA synthetase family member 2 Acsf2 1.71 
adenylate cyclase 8 Adcy8 1.80 
alcohol dehydrogenase 1 (class I) Adh1 1.70 
alcohol dehydrogenase 5 (class III), chi polypeptide Adh5 1.33 
adenosine A1 receptor Adora1 1.31 
angiotensin II receptor, type 2 Agtr2 1.34 
aldo-keto reductase family 1, member B8 Akr1b8 1.82 
aminolevulinic acid synthase 2, erythroid Alas2 1.30 
arachidonate 5-lipoxygenase activating protein Alox5ap 1.53 
alpha-kinase 1 Alpk1 1.29 
amphiphysin Amph 1.34 
angiopoietin-like 4 Angptl4 2.03 
ankyrin repeat domain 22 Ankrd22 1.61 
annexin A13 Anxa13 1.43 
aquaporin 1 Aqp1 1.66 
aquaporin 3 Aqp3 2.20 
amphiregulin Areg 1.70 
arginase type II Arg2 1.66 
asparagine synthetase Asns 1.52 
asparaginase homolog (S. cerevisiae) Aspg 1.46 
atonal homolog 1 (Drosophila) Atoh1 1.32 
ATPase, H+ transporting, lysosomal accessory protein 2 Atp6ap2 1.35 
AU RNA binding protein/enoyl-coenzyme A hydratase Auh 1.28 
expressed sequence AW551984 AW551984 1.57 
UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 6 B3gnt6 2.45 
beta-1,4-N-acetyl-galactosaminyl transferase 2 B4galnt2 1.71 
UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, 4 B4galt4 1.38 
beta-site APP-cleaving enzyme 2 Bace2 1.31 
cDNA sequence BC021891 BC021891 1.42 
betaine-homocysteine methyltransferase 2 Bhmt2 1.47 
B-cell linker Blnk 1.30 
B-box and SPRY domain containing Bspry 1.28 
bone marrow stromal cell antigen 1 Bst1 1.67 
RIKEN cDNA C130090K23 gene C130090K23Rik 1.54 
C1GALT1-specific chaperone 1 C1galt1c1 1.35 
C1q and tumor necrosis factor related protein 7 C1qtnf7 1.30 
complement component 3 C3 2.07 
complement component 4B (Childo blood group)  C4b  1.75 
carbonic anyhydrase 12 Car12 1.55 
caspase 14 Casp14 1.40 
carbonyl reductase 2 Cbr2 1.76 
cystathionine beta-synthase Cbs 1.47 
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coiled-coil domain containing 101 Ccdc101 1.31 
cholecystokinin Cck 2.62 
chemokine (C-C motif) ligand 25 Ccl25 1.63 
chemokine (C-C motif) ligand 6 Ccl6 1.39 
chemokine (C-C motif) ligand 9 Ccl9 1.80 
chemokine (C-C motif) receptor 2 Ccr2 1.74 
CD14 antigen Cd14 1.32 
CD177 antigen Cd177 5.29 
CD24a antigen Cd24a 1.89 
CD55 antigen Cd55 1.63 
carcinoembryonic antigen-related cell adhesion molecule 10 Ceacam10 5.34 
CCAAT/enhancer binding protein (C/EBP), delta Cebpd 1.52 
cystic fibrosis transmembrane conductance reg. homolog Cftr 1.44 
cell growth regulator with EF hand domain 1 Cgref1 1.56 
chromodomain helicase DNA binding protein 7 Chd7 1.37 
chromodomain helicase DNA binding protein 7 Chd7 1.24 
chromodomain helicase DNA binding protein 7 Chd7 1.26 
chitinase 3-like 1 Chi3l1 2.03 
chordin-like 2 Chrdl2 2.82 
chloride channel calcium activated 2 Clca2 1.80 
chloride channel calcium activated 4 Clca4 1.47 
claudin 2 Cldn2 2.13 
claudin 4 Cldn4 1.52 
C-type lectin domain family 4, member d Clec4d 1.59 
colipase, pancreatic Clps 1.62 
colony stimulating factor 3 receptor (granulocyte) Csf3r 1.46 
cubilin (intrinsic factor-cobalamin receptor) Cubn 1.71 
chemokine (C-X-C motif) ligand 5 Cxcl5 2.51 
cytochrome P450, family 2, subfamily j, polypeptide 5 Cyp2j5 1.51 
delta-like 1 homolog (Drosophila) Dlk1 2.48 
dual oxidase 2 Duox2 1.66 
dual oxidase maturation factor 2 Duoxa2 1.66 
dual specificity phosphatase 4 Dusp4 1.51 
dynein cytoplasmic 1 intermediate chain 1 Dync1i1 1.39 
EF-hand calcium binding domain 5 Efcab5 1.37 
predicted gene, EG245472 EG245472 1.32 
predicted gene, EG434181 EG434181 1.29 
predicted gene, EG665783 EG665783 1.41 
epidermal growth factor Egf 1.44 
enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A 
dehydrogenase Ehhadh 1.65 
eukaryotic translation initiation factor 1A  Eif1a  1.26 
eukaryotic translation initiation factor 2B, subunit 1 (alpha) Eif2b1 1.33 
embigin Emb 1.32 
ectonucleotide pyrophosphatase/phosphodiesterase 3 Enpp3 1.44 
ectonucleoside triphosphate diphosphohydrolase 7 Entpd7 1.29 
epsin 3 Epn3 1.50 
epiregulin Ereg 1.68 
ecotropic viral integration site 1 Evi1 1.46 
extracellular proteinase inhibitor Expi 1.65 
coagulation factor XIII, A1 subunit F13a1 1.71 
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coagulation factor III F3 1.35 
family with sequence similarity 55, member B Fam55b 2.27 
family with sequence similarity 57, member A Fam57a 1.65 
Fc receptor, IgG, low affinity IIb Fcgr2b 1.67 
fibroblast growth factor 15 Fgf15 3.54 
FK506 binding protein 5 Fkbp5 3.02 
forkhead box A3 Foxa3 1.48 
formyl peptide receptor 2 /// formyl peptide receptor 3 Fpr2 /// Fpr3 1.50 
FERM domain containing 3 Frmd3 1.87 
fucosyltransferase 2 Fut2 1.50 
FXYD domain-containing ion transport regulator 3 Fxyd3 1.47 
FXYD domain-containing ion transport regulator 4 Fxyd4 1.64 
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase 3 Galnt3 1.55 
glucagon Gcg 3.98 
glucosaminyl (N-acetyl) transferase 3, mucin type Gcnt3 1.53 
guanine deaminase Gda 2.01 
glycerophosphodiester phosphodiesterase domain  1 Gdpd1 1.63 
GTP binding protein  Gem 1.43 
gene model 1123, (NCBI) Gm1123 1.38 
gene model 379, (NCBI) Gm379 1.61 
gene model 73, (NCBI) Gm73  1.47 
GDP-mannose 4, 6-dehydratase Gmds 1.52 
glycoprotein 49 A Gp49a 2.26 
G protein-coupled receptor 120 Gpr120 1.46 
glutathione peroxidase 2 Gpx2 1.47 
gene regulated by estrogen in breast cancer protein Greb1 1.34 
gremlin 1 Grem1 1.41 
grainyhead-like 3 (Drosophila) Grhl3 1.33 
guanylate cyclase 2c Gucy2c 1.32 
guanylate kinase 1 Guk1 1.39 
hemoglobin alpha, adult chain 1  Hba-a1  1.62 
hemoglobin alpha, adult chain 2 Hba-a2 1.60 
hepatocyte growth factor activator Hgfac 1.61 
hypoxia inducible factor 3, alpha subunit Hif3a 1.99 
high mobility group AT-hook 2 Hmga2 1.41 
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 Hmgcs2 1.63 
hepatocyte nuclear factor 4, gamma Hnf4g 1.56 
HOP homeobox Hopx 1.46 
haptoglobin Hp 2.16 
4-hydroxyphenylpyruvic acid dioxygenase Hpd 1.67 
interferon induced transmembrane protein 1 Ifitm1 1.66 
interferon induced transmembrane protein 1 Ifitm1 1.64 
insulin-like growth factor 2 receptor Igf2r 1.31 
interleukin 1 beta Il1b 3.50 
interleukin 1 receptor, type I Il1r1 1.45 
interleukin 8 receptor, beta Il8rb 3.03 
insulin-like 5 Insl5 1.93 
insulin receptor-related receptor Insrr 1.63 
inositol 1,3,4,5,6-pentakisphosphate 2-kinase Ippk 1.33 
interleukin-1 receptor-associated kinase 3 Irak3 1.41 
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integrin alpha M Itgam 1.44 
potassium channel, subfamily K, member 1 Kcnk1 1.61 
potassium voltage-gated channel, subfamily Q, member 1 Kcnq1 1.40 
keratin 18 Krt18 1.51 
LAG1 homolog, ceramide synthase 6 Lass6 1.50 
lipopolysaccharide binding protein Lbp 1.66 
lipocalin 2 Lcn2 2.34 
leucine-rich repeat LGI family, member 1 Lgi1 1.42 
leucine rich repeat containing G protein coupled receptor 5 Lgr5 1.60 
leukocyte immunoglobulin-like receptor, subfamily B,  4 Lilrb4 1.84 
similar to Heparanase-2 (Hpa2) LOC545291 1.39 
lactoperoxidase Lpo 1.49 
lactotransferrin Ltf 1.41 
lymphocyte antigen 6 complex, locus A Ly6a 1.72 
lymphocyte antigen 6 complex, locus D Ly6d 2.08 
maternally expressed 3 Meg3 1.97 
matrix Gla protein Mgp 2.98 
mohawk homeobox Mkx 1.36 
matrix metallopeptidase 10 Mmp10 1.77 
matrix metallopeptidase 3 Mmp3 1.81 
matrix metallopeptidase 7 Mmp7 2.49 
matrix metallopeptidase 8 Mmp8 1.59 
membrane protein, palmitoylated 3 (MAGUK p55 subfamily 3) Mpp3 1.53 
mucin 1, transmembrane Muc1 1.45 
mucin 2 Muc2 1.27 
myelocytomatosis oncogene Myc 1.39 
nuclear factor, interleukin 3, regulated Nfil3 1.57 
nuclear factor of kappa light polypeptide gene enhancer in B-cells 
inhibitor Nfkbiz 1.34 
NADPH oxidase activator 1 Noxa1 1.87 
neuritin 1 Nrn1 1.43 
neurotensin Nts 1.82 
nuclear protein 1 Nupr1 2.06 
olfactory receptor 1463 Olfr1463 1.38 
olfactory receptor 624 Olfr624 1.29 
oncostatin M receptor Osmr 1.74 
organic solute transporter beta Ostb 2.24 
predicted gene, OTTMUSG00000000971 OTTMUSG00000000971 2.28 
predicted gene, OTTMUSG00000002043 OTTMUSG00000002043 1.43 
pappalysin 2 Pappa2 2.23 
pappalysin 2 Pappa2 1.92 
pappalysin 2 Pappa2 1.56 
phosphoenolpyruvate carboxykinase 1, cytosolic Pck1 1.58 
proprotein convertase subtilisin/kexin type 1 Pcsk1 1.71 
phosphodiesterase 8B Pde8b 1.74 
phosphodiesterase 9A Pde9a 1.38 
protein disulfide isomerase associated 5 Pdia5 1.32 
pyruvate dehydrogenase kinase, isoenzyme 4 Pdk4 2.74 
peroxisomal delta3, delta2-enoyl-Coenzyme A isomerase Peci 1.38 
period homolog 1 (Drosophila) Per1 1.38 
peroxisomal biogenesis factor 11a Pex11a 1.43 
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peptidoglycan recognition protein 1 Pglyrp1 1.66 
phytanoyl-CoA hydroxylase Phyh 1.26 
polymeric immunoglobulin receptor Pigr 1.46 
proviral integration site 3 Pim3 1.31 
phospholipase A2, group IIF Pla2g2f 1.74 
phospholipase A2, group VII  Pla2g7 1.60 
plasminogen activator, tissue Plat 2.20 
plasminogen activator, urokinase receptor Plaur 1.74 
pleckstrin homology domain containing, family H  member 1 Plekhh1 1.42 
phospholipid scramblase 1 Plscr1 1.43 
phospholipid scramblase 1 Plscr1 1.36 
phosphomannomutase 2 Pmm2 1.39 
peptidylprolyl isomerase F (cyclophilin F) Ppif 1.34 
peroxiredoxin 6 Prdx6 1.39 
protease, serine, 22 Prss22 1.33 
prostate stem cell antigen Psca 1.94 
peptide YY Pyy 1.60 
quiescin Q6 sulfhydryl oxidase 2 Qsox2 1.44 
Ras association (RalGDS/AF-6) domain family member 4 Rassf4 1.55 
regenerating islet-derived 3 beta Reg3b 6.22 
regenerating islet-derived 3 gamma Reg3g 5.71 
regenerating islet-derived family, member 4 Reg4 2.74 
resistin like beta Retnlb 5.44 
resistin like gamma Retnlg 2.17 
Rho-guanine nucleotide exchange factor Rgnef 1.27 
RNA imprinted and accumulated in nucleus Rian 1.78 
receptor-interacting serine-threonine kinase 3 Ripk3 1.51 
ring finger protein 39 Rnf39 1.28 
rabphilin 3A-like (without C2 domains) Rph3al 1.28 
radical S-adenosyl methionine domain containing 1 Rsad1 1.45 
S100 calcium binding protein A8 (calgranulin A) S100a8 2.86 
S100 calcium binding protein A9 (calgranulin B) S100a9 1.95 
sphingosine-1-phosphate receptor 3 S1pr3 1.40 
sodium channel, nonvoltage-gated 1 beta Scnn1b 1.80 
serine (or cysteine) peptidase inhibitor, clade A,  3N Serpina3n 2.44 
secreted frizzled-related protein 1 Sfrp1 1.73 
serum/glucocorticoid regulated kinase 1 Sgk1 1.36 
sphingomyelin synthase 2 Sgms2 1.45 
serine hydroxymethyltransferase 1 (soluble) Shmt1 1.42 
SID1 transmembrane family, member 1 Sidt1 2.20 
signal-regulatory protein beta 1 Sirpb1 1.77 
solute carrier family 10, member 2 Slc10a2 2.24 
solute carrier family 12, member 2 Slc12a2 1.60 
solute carrier family 12, member 8 Slc12a8 1.47 
solute carrier family 18 (vesicular monoamine), member 1 Slc18a1 1.80 
solute carrier family 19 (sodium/hydrogen exchanger), 1 Slc19a1 1.30 
solute carrier family 27 (fatty acid transporter), member 2 Slc27a2 2.29 
solute carrier family 35 (CMP-sialic acid transporter),1 Slc35a1 1.40 
solute carrier family 39 (zinc transporter), member 4 Slc39a4 2.81 
solute carrier family 39 (metal ion transporter), member 8 Slc39a8 1.89 
solute carrier family 5 (sodium-dependent vitamin transporter), 6 Slc5a6 1.53 
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solute carrier family 6 (neurotransmitter transporter), 19 Slc6a19 1.60 
solute carrier family 7 (cationic amino acid transporter, y+ system), 
11 Slc7a11 1.41 
solute carrier family 9 (sodium/hydrogen exchanger), member 3 Slc9a3 2.46 
solute carrier family 9 (sodium/hydrogen exchanger), member 4 Slc9a4 1.27 
secretory leukocyte peptidase inhibitor Slpi 2.11 
SPARC related modular calcium binding 2 Smoc2 1.49 
sterol O-acyltransferase 1 Soat1 1.41 
suppressor of cytokine signaling 3 Socs3 1.43 
SRY-box containing gene 9 Sox9 1.47 
SAM pointed domain containing ets transcription factor Spdef 1.74 
serine peptidase inhibitor, Kazal type 4 Spink4 1.73 
small proline-rich protein 1A Sprr1a 2.61 
serglycin Srgn 1.46 
signal sequence receptor, delta Ssr4 1.36 
ST3 beta-galactoside alpha-2,3-sialyltransferase 5 St3gal5 1.65 
stefin A2 Stfa2 1.74 
stefin A2 like 1 /// stefin A2 Stfa2l1 /// Stfa2 4.57 
stefin A3 Stfa3 1.61 
sulfotransferase family 1A, phenol-preferring, member 1 Sult1a1 2.01 
tachykinin 1 Tac1 1.82 
tumor-associated calcium signal transducer 2 Tacstd2 1.93 
T-cell activation GTPase activating protein 1 Tagap1 1.37 
TRAF-interacting protein with forkhead-associated domain Tifa 2.16 
tissue inhibitor of metalloproteinase 1 Timp1 1.85 
transmembrane 4 superfamily member 4 Tm4sf4 1.61 
transmembrane 4 superfamily member 5 Tm4sf5 1.62 
transmembrane channel-like gene family 5 Tmc5 1.44 
transmembrane emp24 protein transport domain containing 5 Tmed5 1.40 
transmembrane protein 56 Tmem56 1.62 
transmembrane and immunoglobulin domain containing 1 Tmigd1 1.59 
transmembrane protease, serine 11a Tmprss11a 1.26 
transmembrane protease, serine 2 Tmprss2 1.50 
tumor necrosis factor, alpha-induced protein 8-like 1 Tnfaip8l1 1.35 
tumor necrosis factor receptor superfamily, member 11b  Tnfrsf11b 1.34 
tumor necrosis factor receptor superfamily, member 23 Tnfrsf23 1.40 
tumor necrosis factor receptor superfamily, member 8 Tnfrsf8 1.40 
triggering receptor expressed on myeloid cells 1 Trem1 1.61 
tripartite motif-containing 71 Trim71 1.37 
transient receptor potential cation channel, subfamily M, member 6 Trpm6 2.10 
twinfilin, actin-binding protein, homolog 1 (Drosophila) Twf1 1.40 
twinfilin, actin-binding protein, homolog 1 (Drosophila) Twf1 1.31 
UDP-N-acetylglucosamine pyrophosphorylase 1 Uap1 1.34 
UDP glucuronosyltransferase 2 family, polypeptide B35 Ugt2b35 1.50 
uroplakin 1B Upk1b 1.48 
vav 3 oncogene Vav3 1.53 
vasoactive intestinal peptide receptor 1 Vipr1 1.36 
vomeronasal 2, receptor 68 Vmn2r68 1.32 
vanin 1 Vnn1 3.38 
V-set and immunoglobulin domain containing 2 Vsig2 1.49 
zinc finger and BTB domain containing 16 Zbtb16 1.62 
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Table S2. Primer Sequences 

Primers for Genotyping  
Primer Forward Reverse 
flIhh AGCACCTTTTTTCTCGACTGCCTG TGTTAGGCCGAGAGGGATTTCGTG 
fSmo CCACTGCGAGCCTTTGCGCTAC CCCATCACCTCCGCGTCGCA 
VillinCre GTGTGGGACAGAGAACAAACC ACATCTTCAGGTTCTGCGGG 
 
Murine Primers for Quantitative RT-PCR  
Primer Forward Reverse 
GAPDH GGAGTTGCTGTTGAAGTCGCA GGAGTTGCTGTTGAAGTCGCA 
Ihh CCATCTTCATCCCAGCCTTCG CACCCCCAACTACAATCCCG 
Ptch1 TACGTGGAGGTGGTTCATCA CACCAACACCAAGAGCAAGA 
Gli1 CCTGGTGGCTTTCATCAACT TCATCTGAGGTGGGAATCCT 
 
Human Primers for Quantitative RT-PCR  
Primer Forward Reverse 
GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC 
Ptch1 GGTGGCTTCTCTAGGTGTCG TACCCTGAGGTTCCAGCATC 
Hhip1 CCCACACTTCAACAGCACCA GCACATCTGCCTGGATCGT 
Mef2c ATGCCATCAGTGAATCAAAGGAT CTGGTAAAGTAGGAGTTGCTACG 
Myocd GCACTGCACAGAACTCAGGAG CCGCTTTCAATAAGCACGTCC 
Lama4 GCAGTGGAAATTCAGATCCCA TAACCGCAGGTCATCAGTCAG 
MMP10 TGCTCTGCCTATCCTCTGAGT TCACATCCTTTTCGAGGTTGTAG 
MMP3 AGTCTTCCAATCCTACTGTTGCT TCCCCGTCACCTCCAATCC 
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Implications 

Reciprocal signaling events between the gut epithelium and the underlying mesenchyme 

are essential for proper intestinal development, regional patterning, maintenance of the 

stem cell population, and homeostasis.  Significant advances have been made towards 

identifying the location (epithelium and/or mesenchyme) of signaling molecules in the 

intestine, but many questions remain about the specific signals that emanate from or 

target the mesenchymal intestinal stem cell (ISC) niche and how signaling pathways 

coordinately control intestinal morphogenesis, ISC self-renewal and differentiation.  The 

work presented in this thesis provides new insights toward the definition of the 

mesenchymal ISC niche.  In particular, we have identified new secreted niche factors that 

influence epithelial cell behavior and determine that Indian hedgehog (Ihh), an epithelial-

to-mesenchymal signal, maintains the niche environment and indirectly controls ISC fate.  

Furthermore, our findings highlight the dual nature of the ISC niche in that it acts to both 

promote and restrict ISC self-renewal. 

 We performed expression profiling of the normal human colon and identified nine 

hundred sixty-nine cDNA clones that were differentially expressed between the top and 

bottom crypt compartments.  Two clusters of genes were found up-regulated in crypt 

bottoms.  The first cluster consisted of genes associated with cell proliferation and cell 

cycle regulation.  It is conceivable that among the genes included in this cluster are 

candidate ISC markers.  In fact, Olfm4, which we showed to be enriched in crypt bottoms 

was recently identified as a definitive ISC marker (1).  Determining the staining pattern 

of these genes in the crypt will further clarify the specific role each gene plays (e.g., 

proliferation, stem cell renewal, maturation of Paneth cells (in the small intestine)).  The 
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second cluster consisted of genes that encode secretory proteins and genes involved in 

extracellular matrix organization.  Among the genes identified in this cluster were three 

BMP antagonists, Gremlin 1, Gremlin 2, and Chordin-like 1.  In situ hybridization and 

RT-PCR revealed that these BMP antagonists are expressed by intestinal subepithelial 

myofibroblasts and smooth muscle cells at the crypt base. Further experimentation 

demonstrated that Gremlin 1 concurrently activates Wnt signaling and inhibits 

differentiation in intestinal epithelial cells.  Taken together, these results suggest BMP 

antagonists are secreted ISC niche factors that coordinate with Wnt signals to promote 

ISC self-renewal.  

 The identification of BMP antagonists as ISC niche factors raised the question of 

what signals may act on the ISC niche and direct paracrine regulators of stem cell 

activity.  Here we show that Indian hedgehog (Ihh) regulates the expression of BMP 

signaling components and is required for the proper development of the ISC niche.  

Inactivation of intestinal epithelial Ihh in mice resulted in loss of the muscularis mucosae 

in the small intestine and colon, reduced myofibroblasts around the crypt base, and a 

compromised ECM.  Furthermore, BMP signaling, which is believed to block crypt 

formation, was reduced in Ihh-deficient mice.  Disruption of the ISC niche subsequently 

led to an increase in ISC numbers, enlarged crypts, increased incidences of crypt fission, 

and de novo crypts.  In regions along the colon of Ihh-deficient mice where the 

muscularis mucosae remained intact, the size and shape of crypts were normal with 

proliferating cells restricted to the bottom.  This finding suggests that the function of the 

muscularis mucosae may extend beyond contractile activity and include a previously 

unrecognized role as an ISC niche element that acts together with myofibroblasts to 
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restrain crypt expansion and prevent abnormal stimulation of ISCs.  Until now, no study 

has distinguished between the effects of Ihh on ISCs versus the progenitor compartment.  

This is the first demonstration that Ihh controls ISC numbers. Furthermore, we show Ihh-

mediated regulation of ISCs is paracrine, rather than cell-autonomous, as inactivation of 

Hh signaling in intestinal epithelial cells results in no obvious epithelial or mesenchymal 

defects, including changes in ISC numbers.  Finally, we provide novel mechanistic 

evidence that Ihh modulates ISC fate via the deregulation of BMP signaling and the 

disruption of extracellular matrix proteins that surround ISCs. 

 

Future Perspectives 

Does loss of Ihh in the gut promote colorectal cancer? Abnormal activation of the Hh 

pathway has been implicated in multiple tumor types, including basal cell carcinoma, 

medulloblastoma, pancreatic adenocarcinomas, prostrate and ovarian cancer (2-5).  

However, involvement of the Hh pathway in colorectal cancer remains unclear and 

controversial with numerous conflicting reports existing in the literature.  Expression 

analysis of key members of the Hh signaling pathway in colon cancer cell lines (e.g., 

Colo205, Colo320, HT29, Caco-2, SW480) found no cell line that expressed all the 

components necessary to activate the Hh pathway (6).  In agreement, Berman et al. 

showed that colon-derived tumor cell lines lacked expression of the Hh target gene Ptch 

and maintained viability in vitro and in vivo when treated with the Hh-specific antagonist 

cyclopamine (7).  In contrast to these studies, Qualtrough et al. detected Ptch, Smo, and 

Gli1 in colon-derived tumor cell lines and observed increased apoptosis in colon tumor 

cells treated with cyclopamine (8).  Nevertheless, as more evidence accumulates 
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suggesting that Hh signals target gut mesenchymal cells in vivo, the significance of Hh-

responsiveness in colon tumor epithelial cells seems low.  The recent finding that Hh-

induced mesenchymal signals are required for the tumorigenesis of Hh-expressing 

cancers raises more questions about the relevance of in vitro cell experiments, as cell 

culture systems do not accurately recapitulate the in vivo microenvironment (9).  Human 

pathological studies on colorectal cancer have produced conflicting reports as well.  

Tissue samples obtained from patients with familial adenomatous polyposis (FAP), a 

syndrome caused by the loss of APC expression, leading to uncontrolled Wnt activity and 

polyp formation, were shown to have loss of Ihh expression from dysplastic epithelial 

cells (10).  In contrast to these results, Sonic hedgehog (Shh) expression was found to be 

up-regulated in hyperplastic polyps, adenomas, and adenocarcinomas of the colon (11).  

Most recently, analysis of benign and malignant colonic lesions showed that expression 

of Shh, Gli1, Gli2, and Ptch was maintained in benign lesions, whereas malignant lesions 

displayed reduced or lost expression of Hh signaling components (12). 

 The majority of colorectal tumors are characterized by their inability to regulate 

β-catenin/TCF-mediated transcription (13).  Ihh has been shown to abrogate Wnt 

signaling in a colon cancer cell line and transgenic expression of the pan-hedgehog 

inhibitor, Hhip (hedgehog interacting protein) augments Wnt activity in the small 

intestine. In our study, we found that loss of intestinal Ihh increased activation of Wnt 

signaling and led to neoplastic transformation of the small intestinal and colonic 

epithelium in 4 week old mice.  Furthermore, we observed Ihh-deficient mice have 

increased expression of matrix metalloproteinases (MMPs) and reduced expression of 

ECM proteins.  The ECM imparts strength and acts as a physical barrier to migrating 
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cells.  Additionally, it supports cell adhesion, induces differentiation, cell division, and 

apoptosis, and contributes to the architectural layout of the crypt-villus axis.  Disruption 

of the ECM components can alter epithelial cell behavior towards uncontrolled cell 

growth and enhance the metastatic potential of neoplastic colonic cells.  Our studies 

suggest that loss of Ihh may contribute to colorectal cancer, playing distinct roles during 

different stages of tumor development. Loss of Ihh results in increased expression of the 

Wnt pathway and increased nuclear β-catenin levels, leading to single crypt adenomas.  

In our microarray study, we detected marked increases in immuno-response genes, 

including cytokines, chemokines and their receptors (e.g., IL1b, IL1 receptor 1, CCL6, 

CCL9).  Whether the increase in inflammatory stimuli, in concert with increased Wnt 

activity, is responsible for the development of tubular adenoma in the mutant mice 

remains to be addressed.  Additionally, we observed a compromised ECM compartment, 

increased MMP expression, and loss of the muscularis mucosae in the mutant mice, a 

situation that favors cancer metastasis during late stages of colon cancer.  Further studies 

will be necessary to determine whether Ihh loss accelerates cancer progression and 

metastasis.  This question may be addressed by assessing the effect of the combined 

deletion of Apc and Ihh. 

 

Is Ihh required for adult intestinal homeostasis? We have demonstrated that Ihh is 

required for the proper development of the mesenchymal compartment of the gut, 

including the establishment of the muscularis mucosae and structural integrity of the 

ECM; these mesenchymal changes, secondarily affect the epithelium and include dilated 

crypts, branching villi, increased proliferation, and aberrant differentiation.  An important 
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question is once the mesenchymal compartment is formed, is Ihh signaling necessary to 

maintain it.  For example, we show that MMPs are up-regulated in the colon of postnatal 

mice, but it is unknown whether loss of Ihh will have the same effect in the adult.  MMPs 

are normally involved in intestinal remodeling during the postnatal stages of murine 

development, whereas in adult mice, intestinal morphogenesis is complete and MMP 

activity is reduced (14).  Thus, Ihh may play a role in regulating MMP activity when 

MMP expression is induced during development, but not in adulthood when MMP 

expression is more stable.  Another question that remains is how will Ihh signaling 

integrate with the signaling pathways that are active during intestinal homeostasis?  

These questions may be resolved by the conditional knockout of Ihh in adult mice.  These 

mice may be generated by crossing Ihhflox/flox mice with AhCre mice (Cre transgrene is 

activated in intestinal epithelial cells and hepatocytes by the cytochrome P450 1A1 

promoter after injection of β-naphthoflavone). 

 

Does Ihh regulate gut motility? The enteric nervous system (ENS) acts together with 

gastrointestinal smooth muscle and pacemakers known as Interstitial Cells of Cajal (ICC) 

to propagate coordinated gut contractions (15).  Abnormalities in the ENS, gut muscle, 

and ICCs may lead to gut motility disorders.  A study by Ramalho-Santos et al. found 

that Ihh is involved in the development of the ENS and that Ihh-null mice display a 

phenotype with features resembling Hirschsprung’s disease, a disorder characterized by 

the lack of ganglion cells in the colon, leading to severe chronic constipation (16).  

However, subsequent studies have found that Ihh is not a major gene in Hirschsprung’s 

disease (17) and transgenic mice expressing Hhip exhibit no defects in neuronal 
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patterning (18).  Furthermore, it was reported that enteric neurons lack Gli1 expression, 

indicating they do not respond to Hh signals (19).  The conditional Ihh mutants from our 

study displayed distended stomachs and small intestines and yellow liquid stool or no 

stool in the colon.  These pathological findings suggest that the mutant mice may have 

impaired gut motility.  It is possible that this phenotype is due to indirect effects of Ihh on 

the ENS, such that Ihh indirectly disrupts the migration, differentiation, or proliferation 

of the neuron or glial cells that make up the ENS.  However, because Ihh has been shown 

to target mesenchymal cells, it seems more likely that Ihh affects gut motility by 

regulating the development of smooth muscle cells or ICCs, which originate from the 

intestinal mesenchyme.  Alterations in the position, number, and size of enteric neurons 

and ICCs may be examined by immunohistochemical analysis.  These initial studies will 

provide new insights into the role of Ihh in the mechanisms of gut motility. 
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