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ABSTRACT OF THE DISSERTATION

Numerical Integration and Optimization of Motions for Multibody Dynamic Systems

By

Joan Aguilar Mayans

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2017

Professor Kenneth D. Mease, Chair

This thesis considers the optimization and simulation of motions involving rigid body sys-

tems. It does so in three distinct parts, with the following topics: optimization and analysis

of human high-diving motions, efficient numerical integration of rigid body dynamics with

contacts, and motion optimization of a two-link robot arm using Finite-Time Lyapunov

Analysis.

The first part introduces the concept of eigenpostures, which we use to simulate and analyze

human high-diving motions. Eigenpostures are used in two different ways: first, to reduce

the complexity of the optimal control problem that we solve to obtain such motions, and

second, to generate an eigenposture space to which we map existing real world motions to

better analyze them. The benefits of using eigenpostures are showcased through different

examples.

The second part reviews an extensive list of integration algorithms used for the integration

of rigid body dynamics. We analyze the accuracy and stability of the different integrators in

R3 and SO(3). Integrators with an accuracy higher than first order perform more efficiently

than integrators with first order accuracy, even in the presence of contacts.

xii



The third part uses Finite-time Lyapunov Analysis to optimize motions for a two-link robot

arm. Finite-Time Lyapunov Analysis diagnoses the presence of time-scale separation in

the dynamics of the optimized motion and provides the information and methodology for

obtaining an accurate approximation to the optimal solution, avoiding the complications

that timescale separation causes for alternative solution methods.
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Chapter 1

Introduction

As robotic and other multibody dynamic systems become more complex, agile, and human-

like, there is an increasing need to find motions for them that achieve a desired goal. In

most cases, this goal consists of attaining certain configurations, but also doing so with a

limited amount of time or energy. This thesis is divided into three distinct parts, each of

them considering a different topic on the numerical integration or optimization of motions

for rigid body systems.

The first part, Part I, considers the case of human high-divers. Free-falling motions are a

classic case of reorientation using only internal forces [23, 33, 34, 65]. We obtain simulated

diving motions by solving an optimal control problem and use eigenpostures to reduce the

degrees of freedom of said problem. Eigenpostures were coined by Troje [59]; they were

obtained using a principal component analysis and used for gender classification of walking

motions. Young [67] developed an algorithm that used eigenpostures to classify real world

competitive diving motions. We extend Young’s classification algorithm so it can classify

simulated motions.
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The second part, Part II, considers the numerical integration of rigid body dynamics with

contacts. Being able to obtain accurate motions in an efficient manner is a fundamental

part of the simulation and optimization of rigid body systems. A well-known integration

algorithm for rigid body dynamics is semi-implicit Euler [32, 46, 15, 57, 58], but it is known

to be only first order accurate [12, 29]. In this part we adapt different first and higher order

integration schemes for rigid body dynamics in search for one that is accurate, efficient, and

numerically stable.

The third part, Part III, discusses the use of Finite-Time Lyapunov Analysis to find ap-

proximations to optimal motions. It is known that the optimization of rigid body systems

can lead to a two-timescale behavior [39]. We use the information from the Finite-Time

Lyapunov Analysis to locate the so-called center manifold and to find approximations to

optimal motions for a two-link robot arm.

It is hoped that advances on the different topics discussed in this thesis will provide a

foundation for the control and simulation of more complex multibody systems found in the

future. The reader can find more extensive and detailed introductions specific to each part

in Sections 2.1, 5.1, and 8.1.
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Part I

Motion Analysis and Synthesis Using

Eigenpostures
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Chapter 2

Eigenpostures

2.1 Introduction

This part of the dissertation discusses the use of eigenpostures [59] to generate and analyze

motions for human high-divers. Eigenpostures enable a systematic approach for model re-

duction and motion analysis. Eigenpostures are especially suited for diving motions because

said motions are inherently complex and defined by a predefined set of postures.

2.1.1 Background and Motivation

There exists extensive literature regarding the solution of problems involving the reorien-

tation of a dynamic system using only internal motions and forces. Kane & Scher [33] use

dynamics to provide an explanation to the then mysterious falling cat phenomenon. The

falling cat phenomenon refers to the fact that falling cats can start at rest in the upside-

down position, and still manage to land on their feet. This may be counter intuitive as

angular momentum is zero for the entire motion. Walsh & Sastry [63] studied the motions

5



of a planar skater and a satellite with two rotors, both examples of momentum-conserving

motions, and provided different algorithms for reorientation. Frohlich [23] provided an ex-

planation on how a diver can use different strategies to perform somersaults and twists even

though angular momentum is unaltered during the motion.

In the particular case of human high-divers, different strategies have been used to simulate

dives. Murthy & Keerthi [44] set up an optimal control problem with a two-dimensional two

to four link version of a human model and parametrized either joint torque or joint position,

having better results with the latter. Liu & Cohen [14] also used a two-dimensional four

link simplified model of a human. Furthermore, they broke out the problem in three simpler

subproblems and simplified the conservation of angular momentum constraint. Crawford &

Sastry [16] used an asymmetrical version of the planar skater defined in [63] as the diver model

and applied an adaptive control strategy to compute different dives. Wooten & Hodgins [65]

used a three-dimensional, 15 link and 32 controlled-degrees-of-freedom model and used a

PD controller to drive the model to the desired position during the dive. Bobrow & Sohl

[6] and Koschorreck & Mombaur [34] both follow an optimal control approach to generate

three-dimensional dives using a 19 and 17 degree-of-freedom diver model respectively.

While there is much interest in solving reorientation problems for complex multibody sys-

tems, a fast and reliable algorithm has not been developed yet.

In the context of human motion analysis, there has been a substantial amount of research

on motion classification. Some of these studies have emerged from N. Troje’s work [59] in

which he used Principal Component Analysis (PCA) for gender classification in walking mo-

tions. This use of PCA enabled him not only to classify the gender of a given motion but to

synthesize new ones. Inside this wave of studies that used PCA for motion recognition/clas-

sification we include the works of Davis & Gao [18] [19], Casile & Giese [11], and Wrigley et

al. [66] to cite a few. This PCA methodology enables a systematic approach to synthesize,

analyze, and classify motions.

6



To the best of our knowledge, there are at least two studies that have applied this PCA

methodology to analyze motions related to sports. Bourne et al. [7] used PCA to inves-

tigate variations in the dynamical structure of handball penalty shots as a factor of target

location and phase of shot. In his Master’s Thesis, Young [67] used a variation of this PCA

methodology to train an algorithm to judge competitive dives.

More recently, Pirsiavash et al. [48] presented a regression based method capable of scoring

a dive better than a non-expert human. The work from Young [67] and Pirsiavash et al. [48]

have the particularity of classification using a continuous output (dive score) rather than a

discrete output.

While there have been advances in the classification of actions using a continuous measure-

ment, the performance of current algorithms still cannot compare to the performance of an

expert human [48]. A reliable approach to classify motions is of interest in different competi-

tive sports, as it would provide athletes and coaches with a tool to judge motion performance

[37].

2.1.2 Scope

This part of the dissertation revolves around two points. One, the development of a fast and

reliable algorithm capable of generating motions for complex multibody systems (current

Chapter and Chapter 3). We develop an approach inspired by the Principal Component

Analysis (PCA) methodology used mostly for motion recognition initiated by Troje [59].

This methodology relies on the definition of different eigenpostures which act as modes and

reduce the dimensionality of the problem to solve. And two, the use of eigenpostures to

systematically analyze and score diving motions (Chapter 4). The scoring algorithm is a

modification of the one presented by Young in [67]. We also assess if the motions generated

with our optimization approach compare favorably with actual human motions.

7



2.2 Optimal Control Problem

We model a diver as a set of articulated rigid bodies. A diving motion can then be found

as the solution of an Optimal Control Problem (OCP) [6]. In a general sense, an OCP is

defined as finding the control function u(t) that minimizes the cost functional

J(x(·), u(·), t0, tf ) = Φ(x(t0), x(tf )) +

∫ tf

t0

L(x(t), u(t))dt (2.1)

subject to the system dynamics

ẋ(t) = f(x(t), u(t), t) (2.2)

path constraints

h(x(t), u(t), t) = 0 (2.3a)

g(x(t), u(t), t) ≤ 0 (2.3b)

and boundary conditions

x(t0) = x0 (2.4a)

x(tf ) = xf (2.4b)

where x(t) is the system state, u(t) is the control input, and t is time, with initial and final

time defined by t0 and tf respectively [26]. Φ(x(0), x(tf )) and L(x(t), u(t))dt are the so-called

Mayer and Lagrange cost.

In the case of the diver, the state corresponds to the diver position, orientation, velocity,

angular velocity, joint configuration and joint velocity. The control input corresponds to the

torques applied at the joints. The boundary conditions (2.4a) and (2.4b) are given by the

8



diver initial and final position and velocity, and the path constraints (2.3) will consist of the

physical posture limitations of the diver. The system dynamics (2.2) are given by the diver’s

dynamic model.

2.3 Motions as a Solution to the OCP

In order to obtain a diving motion one has to solve an OCP as the one introduced in Section

2.2. We choose to discretize the OCP and solve a Constrained Optimization Problem (COP)

where we parametrize for each joint either control input or joint motion.

2.3.1 Time Discretization

In order to convert the OCP into a COP we use Euler discretization. This involves discretiz-

ing time as

t(n) = t0 + n∆t (2.5)

where ∆t is the time step, and n is an integer between 0 and N that determines the number

of step. Specifically, at n = 0 and n = N we have t(0) = t0 and t(N) = t0 + ∆t · N = tf

respectively. We are going to note the variables that are dependent on time as a function of

the step number n.

The time discretization scheme defined in (2.5) requires an approximation of the Lagrange

cost and makes convenient the use of discrete system dynamics. We approximate the La-

grange cost using Euler’s method as

∫ tf

t0

L(x(t), u(t))dt ≈
N−1∑
n=0

∆t · L(x(n), u(n), n) (2.6)
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and use the discrete dynamics

x(n+ 1) = f̃(x(n), u(n), t(n),∆t) (2.7)

f̃(x(n), u(n), t(n)) is obtained by applying Euler’s method to the continuous dynamics (2.2)

f̃(x(n), u(n), t(n),∆t) = x(n) + ∆t · f(x(n), u(n), t(n)) (2.8)

2.3.2 Active and Passive Joints

An underactuated OCP is a specific case of the OCP previously presented in Section 2.2 in

which there are more degrees of freedom than control inputs. Specifically, for the case of the

diving motion we have some null control inputs implying that for some j

uj(n) = 0 (2.9)

∀n = 0, 1, ..., N − 1.

These null control inputs correspond to the rigid body modes of the diver. We will refer to

these degrees of freedom as the passive joints. In contrast, we are going to refer to the rest

of degrees of freedom -which correspond to the joint angles- as the active joints. The system

state is now defined as

x(n) =



qp(n)

qa(n)

q̇p(n)

q̇a(n)


(2.10)
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where qp(n), qa(n), q̇p(n), and q̇a(n) respectively contain: passive joint position, active joint

position, passive joint velocity, and active joint velocity, all at time step n.

In general, one would parametrize passive joint torque and active joint motion (see Appendix

A). In the case of the diver, passive joint torque is known to be zero and we are going to

parametrize active joint motion using eigenpostures as described in Section 2.4.

2.4 Eigenpostures

The term eigenposture was first used by Troje [59] to define configurations that described

most of the variability of a motion. Troje extracted these eigenpostures using a Principal

Component Analaysis (PCA) and used them in a similar manner as mode shapes. Mode

shapes are commonly used to reduce the number of degrees of freedom of structural systems

[22] or to describe complex motions of vibrating elastic solids such as beams, strings, or

circular membranes [5, 54, 60], see Figure 2.1. Troje approximated the motion with a set

of eigenpostures and time-varying weights associated to each of the eigenpostures (eigen-

weights).

We now consider the case of motion synthesis. Each eigenposture is defined as a constant

vector ϕ in which each element is associated with a joint angle. We pick the fundamental

eigenposture to be ϕ0, and associate an eigenweight wi(n) to the rest. We define active joint

position as

qa(n) = ϕ0 +
ne∑
i=1

wi(n)(ϕi − ϕ0) (2.11)
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Figure 2.1: An example on the use of mode shapes: the complex configuration of a vibrating
string (black) can be described by the sum of five of its modes (blue). We will use a similar
approach to generate diver configurations, but using eigenpostures rather than mode shapes.

where ne is the number of non-fundamental eigenpostures and n is the time step number.

The joint velocities and accelerations are

q̇a(n) =
ne∑
i=1

ẇi(n)(ϕi − ϕ0) (2.12)

q̈a(n) =
ne∑
i=1

ẅi(n)(ϕi − ϕ0) (2.13)

We will call the set of eigenpostures Φ = [ϕ0, ϕ1, ..., ϕne ] the eigenposture base. Note that it

is desirable to have rank([ϕ1 − ϕ0, ϕ2 − ϕ0, ..., ϕne − ϕ0]) = ne, otherwise configurations may

be described in a non-unique way.

The active joint motion of the model is defined solely by the eigenweights and eigenpostures.

Keeping the model inside this “posture space” will decrease the number of degrees of freedom

of the system and improve numerical stability and computational time.

In the case of a competitive dive we can use a priori information to choose suitable eigen-

postures. We will select eigenpostures from a set of postures that the diver will typically

12



Figure 2.2: Set of common postures used by divers and trampolinists defined by Frohlich.
Extracted from [23].
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use. Frohlich compiled a set of such postures [23] (Figure 2.2). We expect the motion of a

competitive dive to be mostly described by a subset of such postures.

2.4.1 Parametrization of the Eigenweights Using B-splines

We use uniform quintic B-spline basis functions [49] to parametrize the eigenweights, ωi(n).

The methodology we use is equivalent to the one found in [47] but parametrizing eigenweights

rather than joint angles.

The quintic B-splines used in this text are of the type

bj(s) =

(
1

120

)(
{s− (j − 3)}5+ − 6{s− (j − 2)}5+ + 15{s− (j − 1)}5+−

−20{s− j}5+ + 15{s− (j + 1)}5+ − 6{s− (j + 2)}5+ + {s− (j + 3)}5+
)

(2.14)

where

{x}+ =


x x ≥ 0

0 x < 0

(2.15)

bj(s) is positive if s satisfies j − 3 < s < j + 3 and zero otherwise. We linearly map time t

onto s such that there are only npar non-zero B-splines in the time range t = [t0, tf ]. The

non-zero time-dependent B-splines evaluated at time step n form the npar × 1 vector B(n).

For a full derivation of vector B(n) and its derivatives see Appendix B.

We parametrize the eigenweights as

w(n, p) = P (p)B(n) (2.16)
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where P (p) is a ne × npar array of parameters p with npar corresponding to the number of

parameters associated to each eigenweight. Differentiating with respect to time (2.16) once

and twice we get

ẇ(n, p) = P (p)Ḃ(n) (2.17)

ẅ(n, p) = P (p)B̈(n) (2.18)

where Ḃ(n) and B̈(n) contain respectively the first and second derivative of the quintic

B-splines.

2.4.2 Constrained Optimization Problem

Using the time discretization introduced in Section 2.3.1 and the function approximation

introduced in Section 2.4.1, the OCP is now approximated by the following parameter opti-

mization problem: find the values for ψ =

qp(0)
q̇p(0)

 and p that minimize the cost function

J(ψ, p) = Φ(x(0, ψ, p), x(N,ψ, p)) +
N−1∑
n=0

∆tL(x(n, ψ, p), u(n, ψ, p), n) (2.19)

where

x(n, ψ, p) =



qp(n, ψ, p)

qa(n, p)

q̇p(n, ψ, p)

q̇a(n, p)


(2.20)

and

u(n, ψ, p) =

 0

ua(n, ψ, p)

 (2.21)
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subject to the state constraints

x(n+ 1, ψ, p) = f̃(x(n, ψ, p), u(n, ψ, p), t(n),∆t) (2.22)

∀n = 0, 1, ..., N − 1

and possible path constraints

h(x(n, ψ, p), u(n, ψ, p), t(n)) = 0 (2.23a)

g(x(n, ψ, p), u(n, ψ, p), t(n)) ≤ 0 (2.23b)

∀n = 0, 1, ..., N

and boundary conditions

x(0, ψ, p) = x0 (2.24a)

x(N,ψ, p) = xf (2.24b)

We compute the active control input ua and the passive joint acceleration q̈p by solving

the equations of motion (see Appendix C). We solve the COP using a gradient descent

method which, in order to decrease computation time, uses an analytical gradient. For a full

derivation of the analytical gradient, see Appendix D.
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Chapter 3

Motion Synthesis

In order to generate diving motions, we set up and solve a COP as defined in Section 2.4.2.

We want to drive the diver from some initial state (right after leaving the springboard) x0

to some other final state (right before entering the water) xf . In between, the motion is

constrained by the system dynamics and path constraints. Also, there is a cost functional

to be minimized which will penalize the system state and/or joint torques.

We compute the active elements of the state vector using equations (2.11) and (2.12) together

with (2.16) and (2.17). As shown in Appendix C, the active joint torques can be computed

by solving the equations of motion at each time step, and the passive elements of the state

vector by recursively applying the passive components of the discretized dynamics (2.7) with

initial conditions vector ψ. We constrain the eigenweights to be positive and their sum to

be less than or equal to one by using constraint (2.23b). Constraints (2.24a) and (2.24b) are

relaxed and softly constrained by using a high cost penalty in the cost function (2.19).
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3.1 Forward Three-and-a-half Somersaults Pike

We use eigenpostures A and H in Figure 2.2 to simulate a three-and-a-half forward somer-

sault pike dive in which we penalize eigenweight velocities and we softly constrain some of

the initial and final states, including angular velocity. Eigenposture A is the fundamental

eigenposture and corresponds to a standing position with arms up while eigenposture H

corresponds to a pike position and is expected to be used during the flight phase of the dive

in order to increase the angular velocity of the diver.

The starting and final positions of the diver are taken from the competitive dives analyzed

by Young in [67]. Diving time is set to tf − t0 = 1.7 seconds.

3.1.1 Dynamic Model

We use a two-dimensional human model to provide the state constraints (2.22), it is derived

from the one that Wooten & Hodgins used [65]. The model removes lateral displacements

and has twelve degrees of freedom listed in Table 3.1. It assumes that right and left limbs

have the exact same configuration. A sideview of the model in a standing position can be

seen in Figure 3.1.

3.1.2 Numerical Results

The introduction of eigenpostures and function parametrization using B-splines in Section

2.4 reduces the number of parameters in the optimization problem from N · na + 2np to

npar · ne + 2np. This corresponds to a decrease from 1806 to 16.
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# of DoF Description
1 Horizontal translation of the torso
2 Vertical translation of the torso
3 Orientation of the torso
4 Pelvis joint
5 Hip joint
6 Knee joint
7 Ankle joint
8 Toe-foot joint
9 Head tilt/neck joint
10 Shoulder joint
11 Elbow joint
12 Wrist joint

Table 3.1: Description of the degrees of freedom of the two-dimensional model.

Figure 3.1: Representation of the two-dimensional twelve degree-of-freedom model in a stand-
ing position. The model is facing towards the right.
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The resulting motion can be seen in Figure 3.2 and the value of the eigenweight can be

seen in Figure 3.3. The resulting motion is smooth and human-like. The use of a third

eigenposture did not provide a substantial change in the final motion and was disregarded.

The use of two eigenpostures reduced the number of control inputs from nine to one. The

COP is not only faster to solve, but easier and more intuitive to set up. While there are

some postures that the diver cannot attain, these do not seem to compromise the motion

shown in Figure 3.2.

3.2 Forward Three-and-a-half Somersaults with Two

Twists Free

We use the eigenpostures needed to perform somersaults and twists and to transition between

them to simulate a forward three-and-a-half somersaults with two twists free dive. This

includes eigenpostures A, C, D, E, and I, from Figure 2.2, with eigenposture C as the

fundamental eigenposture. The starting position corresponds to the diver using eigenposture

C at a platform 10 meters above the water and the final position corresponds to the diver

entering the water 2 meters ahead of the platform using eigenposture A. Diving time is set

to tf − t0 = 2.

We define somersaults as full rotations of the diver along the lateral axis in the fixed reference

frame (green axis in Figure 3.4), and twists as full rotations along the vertical axis in the

body frame (blue axis in Figure 3.4). We integrate the projection of the angular velocity

onto the respective axis in order to measure somersault angle θsom and twist angle θtwist and

softly constraint final values to 7π rad and 4π rad respectively. As in the forward three-and-

a-half somersaults pike, we penalize eigenweight velocities and we softly constraint some of

the initial and final states, including angular velocity.
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Figure 3.2: Equally time-spaced frames of the forward three-and-a-half somersaults pike dive
simulation.
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Figure 3.3: Value of the eigenweight with respect to time for the forward three-and-a-half
somersault pike dive simulation.

3.2.1 Dynamic Model

We use a three-dimensional model to provide the state constraints (2.22). As in Section

3.1.1, it is also derived from the one that Wooten & Hodgins used [65]. The model has 27

degrees of freedom, listed in Table 3.2, and uses two different sets of Euler angles for degrees

of freedom 4-6 in order to avoid singularities.

3.2.2 Numerical Results

The introduction of function parametrization and eigenpostures reduced the number of pa-

rameters in the optimization problem from 4212 to 92.

The resulting motion can be seen in Figure 3.5. Although the diver performs the required

twists and somersaults, the solution does not resemble a competitive dive. Usually, a diver

would perform twists and somersaults in separate phases of the dive, in contrast, they are

performed simultaneously in the solution.
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Figure 3.4: Partial decomposition of the diver’s angular velocity into somersault and twist
components. The green axis (somersault axis) is perpendicular to the diving plane while the
blue axis (twist axis) is the vertical axis in the body frame. The angular velocity ω can be
decomposed into somersault ωsom and twist ωtwist components.
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# of DoF Description
1-3 Translation of the torso
4-6 Orientation of the torso
7-8 Pelvis joint (twist and bend)
9 Right hip joint
10 Right knee joint
11 Right ankle joint
12 Right toe-foot joint
13 Left hip joint
14 Left knee joint
15 Left ankle joint
16 Left toe-foot joint
17 Head tilt/neck joint

18-20 Right shoulder joint
21 Right elbow joint
22 Right wrist joint

23-25 Left shoulder joint
26 Left elbow joint
27 Left wrist joint

Table 3.2: Description of the degrees of freedom of the three-dimensional model.

Figure 3.5: From left to right, top to bottom: equally time-spaced frames of the forward
three-and-a-half somersaults with two twists free dive simulation.
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In a competitive dive, one would expect the diver to first engage in a somersaulting motion

and then initiate a twisting motion by performing a throwing movement. This throwing

movement corresponds to a switch from posture C to posture E in Figure 2.2 and tilts the

vertical axis of body. Because angular momentum must be conserved, this tilting of the

vertical axis initiates a twisting motion. See [23] and [24] for more details.

3.3 Conclusions

The use of eigenpostures accomplishes the purpose of simplifying the Optimal Control Prob-

lem (OCP) making generating dives by means of a solution to the OCP, more intuitive, faster

and numerically more stable. These benefits come from the use of eigenpostures (Section

2.4) and B-splines (Section 2.4.1) to parametrize the motion of the active joints. The reduc-

tion in dimensionality drastically decreases the computational cost of the optimization at

the expenses of hiding optimal solutions. The use of eigenpostures generates quasi-optimal

motions in an efficient way and can be of interest in fields such as computer animation [42].
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Chapter 4

Motion Analysis

4.1 Dive Scoring

We use judges scores and eigenpostures extracted from a set of competitive dives to train an

algorithm capable of scoring dives.

4.1.1 Scoring algorithm

Troje [59] designed an algorithm that used two Principal Component Analysis (PCA) and

a linear regression to classify walking motions by gender. The first PCA is used to extract

relevant information from each motion while the second PCA is used to extract the most

significant differences across the motions. Finally, a linear regression is used to classify the

motions.

Young used a variation of this algorithm to score competitive dives in [67]. The algorithm we

use is similar to the one from Young but it underwent some modifications in order to score

the generated dive in Section 3.1. We use only body markers that correspond to certain
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points on the model introduced in Section 3.1.1 and, because the generated dive does not

provide information regarding the springboard motion or the water splash, we do not use

this information to predict the score.

Algorithm Training

We normalize each dive in the training set to the same number of frames and extract the

coordinates of the body markers at each frame. We stack the coordinate position of all the

markers into a matrix and perform a PCA to extract eigenpostures and eigenweights. We

store quantifiable information about the dive (eg. eigenpostures, eigenweights, time duration,

diver path, etc.) in what we call a dive vector.

We stack all the dive vectors into a matrix and perform a second PCA. This second PCA

reveals information on how the dives differ the most. This information comes in vectors

that we call Eigendives. At this point, each dive vector can be approximated by multiplying

the different Eigendives by an associated weight. We linearly map the values of the weights

assigned to the most significant Eigendives to the scores obtained by each dive in the training

set.

Scoring

In order to score a dive, we perform the first PCA to the dive motion to obtain the dive vector.

We use least squares to map the dive vector to the Eigendives and obtain the associated

weights. We use the associated weights together with the linear mapping obtained when

training the algorithm to predict the score.
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4.1.2 Numerical Results

We use the same training set as Young in [67] to train the algorithm (16 dives, score average

of 7.26, standard deviation of 1.02). The dives are forward three-and-a-half somersaults pike

which correspond to the same dive generated in Section 3.1.

We use a combination of markers different to the one used by Young in order to match

markers with joints in the model. As Young did, we normalize the dives to a duration of 60

frames and use the first four eigenweights and body path to predict the score. We do not

use eigenpostures, board tip motion, or splash area.

We score the dive generated in Section 3.1. The algorithm predicts a score of 4.2. The score

is relatively low when compared to the other dives in the training set and it corresponds to

deficient qualification.

Young provided evidence in [67] that the algorithm is capable to score real dives in a way

similar to that of a human judge. However, the capabilities of the algorithm to reliably score

generated dives are not known. We will qualitatively compare the dive generated in Section

3.1 to real dives in Section 4.2.1.

4.2 Dive Analysis

We can map a real dive to an eigenposture space by solving an optimization problem that

consists in matching a scalable version of the diver model to real dive data. In order to do

so, we minimize the distance between body markers from the model to the real dive. We

scale, position, and orient the model to the configuration which minimizes marker error.

We map the competitive dive data that Young extracted in [67]. We separate the data in

two different groups: best dives and worst dives. In the best dives group there are four
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competitive dives, three with a score of 8/10 and a dive with a score of 9/10 while in the

worst dives group there are three dives, with scores of 6.33/10, 6.5/10, and 6.67/10. The

data consists of forward three-and-a-half somersaults pike dives which are normalized to 60

frames regardless of the duration. The model is constrained to lie inside the eigenposture

space used in Section 3.1. By our a priori knowledge of the dives, we expect the eigenpostures

used to be able to explain most of the variability across the dives.

Figure 4.1 shows aggregate data we extracted by mapping the two groups onto the eigenpos-

ture space. There is a difference between the two groups of dives right before they exit the

pike position (frames 35-50). For the best scoring dives, there is a subtle drop in the eigen-

weight value (Figure 4.1a), a peak in the least squares error (Figure 4.1b), and a drop in the

scaling factor (Figure 4.1c). There are two findings about these differences: first, that the

best score dives exit the pike position in a different way compared to the worst score dives,

and second, that this exiting uses some unmodeled position, as supported by the increase in

marker error in Figure 4.1b. The use of a third eigenposture in the eigenposture base may

help to keep the marker error lower. However, it is likely that the diver uses postures that

span outside the two-dimensional plane.

Mapping the real dives into an eigenposture space provides information that could otherwise

remain unrevealed. By looking at Figures 4.1b and 4.1c, it is clear that the two groups

perform the dive differently. This type of information can be used by coaches and divers to

compare and improve diving performance.

4.2.1 Comparison to Generated Dives

We included the eigenweight and rotation value from the dive generated in Section 3.1 in

Figures 4.1a and 4.1d. There are two significant differences between the generated dive

and the real dives: first, the generated dive uses a higher eigenweight value throughout the
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Figure 4.1: Mapped eigenweight, marker error, scaling factor, and rotation value at each
frame. The thicker line corresponds to the mean while the shaded area corresponds to the
values inside one standard deviation of the mean. The blue line corresponds to the dive
generated in Section 3.1
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motion, especially during the middle part of the dive (Figure 4.1a) and second, it uses a

lower angular velocity (Figure 4.1d).

Recall from Section 3.1 that the initial angular velocity is penalized in the cost function. The

use of a higher eigenweight value is explained by the fact that a tight pike position has the

minimum angular momentum, thus requiring less initial angular momentum to perform the

rotations. The same reasoning can be used to explain why angular velocity is less than the

one from the real dives, angular momentum is proportional to angular velocity. The reason

why the generated dive is able to perform most of the dive with a slower angular velocity is

the delay in the exiting of the pike position.

4.3 Conclusions

The Principal Component Analysis (PCA) approach can be used for motion analysis. One

type of analysis consists of training an algorithm to obtain a quality measurement of the

motion, in the case of the diver, the predicted score (Section 4.1). Knowledge on how a dive

is scored provides feedback on how a dive can be performed better [37] [48]. A second type of

analysis consists of the user selecting an eigenposture base and then projecting the motion of

interest onto the base (Section 4.2). This projection can reveal certain traits of the motion

in an easy and intuitive way. These motion analyses can be of special interest in a variety

of competitive sports, and provide a tool to identify which traits improve performance the

most.
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Part II

Efficient Integration of Rigid Body

Motions

32



Chapter 5

Integrators

5.1 Introduction

Simulation of rigid bodies with frictional impacts are useful in a wide range of engineering

applications. Most physics engines such as Bullet Physics [15], Havok [32], Open Dynamics

Engine [57], PhysX [46], and MuJoCo [58], use a semi-implicit Euler approach to integrate

the equations of motion1. Semi-implicit Euler is a symplectic single step integrator which

has been deemed to provide good numerical stability and collision handling with a first

order accuracy [12, 29]. While there exist many other general purpose numerical integration

schemes, most of these methods are more complex and require an increase in the number of

computations in order to improve accuracy. The ideal method would require the computation

of the equations of motion as infrequently as possible while still maintaining a high accuracy

and numerical stability for the translational (R3) and rotational (SO(3)) parts of the motion.

In this work, we assess the numerical stability and accuracy of a broad range of integrators.

An introduction to the different integrators can be found in Section 5.2 and a pseudo-code

1MuJoCo provides two integrators: semi-implicit Euler and the classic fourth order Runge-Kutta method.
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representation of the implementation in Appendix E. In Sections 6.1 and 6.2 we test the

translational and rotational numerical stability of the integrators respectively. In the former,

we follow the approach presented by Gear [25] which is a definition for second order systems

of the A-stability criterion defined by Dahlquist [17]. In the latter, we numerically track the

change in energy for motions of freely-rotating rigid bodies for different sets of integration

parameters. If the increase of energy is substantial, the motion is deemed unstable. We

discuss the numerical accuracy of the integrators in Sections 7.1 and 7.2.

Sections 7.2.1 and 7.3.2, show the performance of the different integrators for two rigid body

motions: a freely-rotating rigid body and a spinning top motion. We use a compliant contact

model for the spinning top motion.

A discussion about the obtained results can be found in Sections 6.3 and 7.4. We show that

high order methods are the most efficient of the algorithms tested, even when taking into

account the increased number of function evaluations. We also show how Euler and semi-

implicit Euler both perform consistently less efficiently compared to the rest of integrators.

5.2 Integration Schemes

We introduce in this Section the different integration schemes used in this part. For a detailed

implementation of the integrators see Appendix E.

5.2.1 Euler’s Method

Euler’s method is the most basic general purpose explicit method for the integration of

ordinary differential equations. Given the equation ẏ(t) = f(t, y(t)) an integration step is
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defined as

yn+1 = yn + f(tn, yn)∆t (5.1)

where ˙ notes derivative with respect to time, and n notes the time step number with ∆t the

time step length. Euler’s method is first order accurate.

Semi-Implicit Euler

Semi-implicit Euler [45] (sometimes known as symplectic Euler) is a variation of Euler’s

method to integrate second order systems. Given the equation ÿ(t) = f(t, y(t), ẏ(t)) an

integration step is defined as

ẏn+1 = ẏn + f(t, yn, ẏn)∆t (5.2)

yn+1 = yn + ẏn+1∆t (5.3)

Semi-implicit Euler is a first order accurate method and is known to be symplectic [20].

5.2.2 Störmer-Verlet

The Störmer-Verlet method is named after Carl Störmer and Loup Verlet who both used it

in the past [61]. The method is second order accurate for systems of the type ÿ(t) = f(t, y(t))

(independent of ẏ(t)). An integration step is defined as

yn+1 = 2yn − yn−1 + f(t, yn)∆t
2 (5.4)

The Störmer-Verlet method is symplectic for Hamiltonian systems [30].
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5.2.3 Runge-Kutta Methods

The term “Runge-Kutta methods” refers to a family of methods for the integration of ordi-

nary differential equations of the type ẏ = f(t, y(t)). Runge-Kutta methods satisfy

yn+1 = yn +∆t
s∑
i=1

biki (5.5)

where

ki = f

(
tn + ci∆t, yn +∆t

s∑
j=1

aijkj

)
(5.6)

and the values of aij, bi, and ci, characterize the method [9]. We usually represent Runge-

Kutta methods using the Butcher Tableau (named after Professor John C. Butcher [9])

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass

b1 b2 . . . bs

Midpoint Method

The Midpoint Method is a second order Runge-Kutta method. It is given by the Butcher

tableau

0 0 0

1
2

1
2

0

0 1
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Heun’s Method

Heun’s method is a second order Runge-Kutta method, it is named after mathematician

Karl Heun. The method is given by the Butcher tableau [36]

0 0 0

1 1 0

1
2

1
2

Fourth Order Runge-Kutta Method

The classic fourth order Runge-Kutta method is one of the most well-known integration

methods (see for instance [50]). The method is given by the Butcher tableau

0 0 0 0 0

1
2

1
2

0 0 0

1
2

0 1
2

0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

While the method has fourth order accuracy for ordinary differential equations, it is only

second order accurate when integrating differential equations acting on a Lie group [8].

5.2.4 Linear Multistep Methods

The term “Linear Multistep Methods” refers to a family of methods for the integration of

ordinary differential equations of the type ẏ = f(t, y(t)). Linear multistep methods satisfy

yn+s+as−1yn+s−1+. . .+a0yn = ∆t (bsf(tn+s, yn+s) + bs−1f(tn+s−1, yn+s−1) + . . .+ b0f(tn, yn))
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(5.7)

where coefficients as−1, as−2, . . . , a0 and bs, bs−1, . . . , b0 characterize the method [10].

Two-Step Adams-Bashforth

The Adams-Bashforth methods are named after John C. Adams and Francis Bashforth and

they correspond to a family of explicit linear multistep methods. Given equation ẏ(t) =

f(t, y(t)), an integration step of the two-step variation of the Adams-Bashforth method is

defined as

yn+1 = yn +∆t

(
3

2
f(tn, yn)−

1

2
f(tn−1, yn−1)

)
(5.8)

and is second order accurate.

Four-Step Adams-Bashforth

Given equation ẏ(t) = f(t, y(t)), an integration step of the four-step variation of the Adams-

Bashforth method is defined as

yn+1 = yn+∆t

(
55

24
f(tn, yn)−

59

24
f(tn−1, yn−1) +

37

24
f(tn−2, yn−2)−

3

8
f(tn−3, yn−3)

)
(5.9)

and is fourth order accurate.

5.2.5 Semi-Implicit Linear Multistep Methods

Because of the popularity of the semi-implicit Euler mehtod, we generalize the concept of

semi-implicit Euler to linear multistep methods by performing an Adams-Bashforth velocity
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update followed by an Adams-Moulton position update. We call these methods semi-implicit

Adams-Bashforth-Moulton methods.

Two-Step Semi-Implicit Adams-Bashforth-Moulton

Given equation ÿ(t) = f(t, y(t), ẏ(t)), we define a two-step semi-implicit Adams-Bashforth-

Moulton update as

ẏn+1 = ẏn +∆t

(
3

2
f(tn, yn, ẏn)−

1

2
f(tn−1, yn−1, ẏn−1)

)
(5.10)

yn+1 = yn +∆t

(
1

2
ẏn+1 +

1

2
ẏn

)
(5.11)

Both, velocity and position updates, are second order accurate.

Four-Step Semi-Implicit Adams-Bashforth-Moulton

Given equation ÿ(t) = f(t, y(t), ẏ(t)), we define a four-step semi-implicit Adams-Bashforth-

Moulton update as

ẏn+1 = ẏn +∆t

(
55

24
f(tn, yn)−

59

24
f(tn−1, yn−1) +

37

24
f(tn−2, yn−2)−

3

8
f(tn−3, yn−3)

)
(5.12)

yn+1 = yn +∆t

(
3

8
ẏn+1 +

19

24
ẏn −

5

24
ẏn−1 +

1

24
ẏn−2

)
(5.13)

Both, velocity and position updates, are fourth order accurate.
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5.2.6 Rotation Integrators

We introduce in this Section integrators specifically thought to be used on ordinary differ-

ential equations acting on a Lie group or rigid body rotations.

Buss’s Augmented Second Order

The Augmented Second Order update used in this text was first presented by Buss in [8].

An integration update is defined as

Rn+1 = e
ˆ̄ωn∆tRn (5.14)

ωn+1 = In+1
−1Ln+1 (5.15)

where

ω̄n = ωn +
1

2
αn∆t+

1

12
(αn × ωn)∆t2 (5.16)

and whereˆis the skew-symmetrical operator.

The method is well suited to integrate freely-rotating rigid body motions as the angular

momentum L satisfies Ln+1 = Ln. In other cases, one has to choose how to integrate L. We

suggest using a two-step Adams-Bashforth update as it maintains the second order accuracy

of the orientation update. The suggested angular momentum update is

Ln+1 = Ln +∆t

(
3

2
Mn −

1

2
Mn−1

)
(5.17)

where M is the torque applied to the rigid body.
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The main two differences of this approach compared to other common integration schemes

are: first, the orientation update is done with the maximum information available, that in-

cludes angular velocity and acceleration and second, it integrates angular momentum instead

of angular velocity. We have found that the integration of the equations of motion through

angular momentum rather than angular velocity is unconditionally stable when integrating

the motion of freely-rotating bodies, but also more sensitive to numerical errors (see Section

6.2.1).

Discrete Moser-Veselov

The discrete Moser-Veselov method [41] is a second order symplectic algorithm for the freely-

rotating rigid body dynamics which can be implemented explicitly when using the body

frame. An integration update is defined as

Rn+1 = ΩnRn (5.18)

L̂B(n+1) = ΩnL̂BnΩ
T
n (5.19)

where LB is the angular momentum in the body frame. Ωn is a skew-symmetrical matrix

that satisfies the equation

ΩT
nD −DΩn = ∆tL̂Bn (5.20)

Assuming the body frame corresponds with the principal axes of inertia, matrix D is a

diagonal matrix determined by [31]

d11 + d22 = IB11 d22 + d33 = IB22 d11 + d33 = IB33 (5.21)
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The algorithm is known to be equivalent to the RATTLE algorithm [31, 38]. The main

computational effort to run the algorithm is solving the Moser-Veselov equation (5.20) at

each iteration.

Runge-Kutta-Munthe-Kaas

The Runge-Kutta-Munthe-Kaas method [43] is a variation of the fourth order Runge-Kutta

method which maintains fourth order accuracy when integrating on Lie groups. The Runge-

Kutta-Munthe-Kaas method is stated as follows: given a first order system as

σ = h(S) (5.22)

where S is a rotation matrix and σ is the angular velocity, we compute the coefficients

k1 =h(Sn) (5.23)

k2 =h(e
0.5k̂1∆tSn) (5.24)

k̃2 =k2 − 0.25k1 × k2∆t (5.25)

k3 =h(e
0.5

ˆ̃
k2∆tSn) (5.26)

k4 =h(e
k̂3∆tSn) (5.27)

and integrate using

Sn+1 = e
ˆ̄σ∆tSn (5.28)

where

σ̄ =
1

6
(k1 + 2k2 + 2k3 + k4 − 0.5k1 × k4∆t) (5.29)
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Chapter 6

Integration Stability

6.1 Translational Stability

It is known that explicit methods can show an unstable behavior if the integration step is not

chosen properly. Dahlquist [17] formally introduced the concept of A-stability as a desirable

property for an integrator to have. Despite the common use of the definition, A-stability is

not clearly defined for integrators for second order systems or for integrators acting on a Lie

group. Gear [25] and Niiranen [45] define and perform an equivalent test which we will use

for the translational update.

An integrator is said to be A-stable if its stability region comprises the left half plane. In

order to compute the stability region, we take the equation of motion of a second order

system with two complex conjugate roots (λ, λ̄)

ÿ = 2λRẏ − (λR
2 + λI

2)y (6.1)
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Method Order Area Corrected
Euler One 3.14 3.14
Semi-implicit Euler One 2.28 2.28
Störmer-Verlet One 2.28 2.28
Midpoint Two 5.87 1.47
Heun Two 5.87 1.47
Two-step Adams-Bashforth Two 1.31 1.31
Two-step semi-implicit Adams-Bashforth-Moulton Two 1.27 1.27
Fourth order Runge-Kutta Four 12.70 0.79

Table 6.1: Stability region areas for some of the integration schemes introduced in Section
5.2. The Corrected column corresponds to the area when using a time step such that the
number of computations of the equations of motion is one per time step.

where λR and λI are the real and imaginary parts of the roots respectively. By applying

one step of the desired integrator to equation (6.1) and by using Z-transform with time step

∆t = 1 one can find the characteristic equation for the integrator. The stability region is

comprised by the values of λ where the roots of the characteristic equations satisfy ∥z∥ < 1.

One can find stability regions for some of the methods used in this text in [25] or [55].

We present the stability regions and its areas for some of the integrators presented in Section

5.2 in Figure 6.1 and Table 6.1. If we measure the stability of an integrator by the area of

the stability region, of the integrators tested, the classic Runge-Kutta fourth order method

has the largest area, followed by the Midpoint method and Heun’s method. However, these

methods benefit of multiple computations of the equations of motion per time step. If we

correct the time step for these methods such that there is only one computation of the

equations of motion per time step (rightmost column in Table 6.1), then the larger areas

correspond to first order methods. A particular characteristic to take into account is that

semi-implicit Euler, Störmer-Verlet, and fourth order Runge-Kutta, are stable for a range of

purely imaginary roots.
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Figure 6.1: Stability region for some of the integration schemes introduced in Section 5.2.
The semi-implicit Euler stability region is consistent with the one found by Niiranen [45].
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6.2 Rotational Stability

We assess the stability for rotational motions for some of the different algorithms introduced

in Section 5.2, by integrating the motion of a freely-rotating rigid body. We take the tensor

of inertia of the rigid body to be

IB =


2

l2y+l
2
z

0 0

0 2
1+l2z

0

0 0 2
1+l2y

 (6.2)

in the body frame. Where ly and lz can vary between 0+ and 1. Initial angular velocity is

set to

ω0 =
1√
3


1

1

1

 (6.3)

We integrate the motion with a time step of ∆t = 1 for 10,000 different combinations of

ly and lz. We monitor the combinations with maximum and minimum change in energy

after 1, 2, 5, 10, 20, 50, and 100 time steps. Even though the obtained results cannot be

treated as a final measurement of stability, they do show different trends. The maximum

and minimum energy ratios across all the combinations can be found in Table 6.2 and the

numerical behavior in Table 6.3. Only three of the algorithms tested show an unconditionally

stable behavior: Euler’s method, Midpoint method, and the discrete Moser-Veselov method.

The rest of the algorithms show some kind of instability.

It is important to note that an unconditionally stable method may still be preferred over

the stable ones. Take as an example the four-step Adams-Bashforth method and the Runge-

Kutta-Munthe-Kaas method: after 10 steps the Adams-Bashforth method has a minimum
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Max/Min Energy Ratio Time Step (n)
Method 1 2 5 10 20 50 100
Euler 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.61 0.05 0.00 0.00 0.00 0.00 0.00
Semi-implicit Euler 1.33 2.39 7.57 3.06× 103 Inf Inf Inf

1.00 1.00 1.00 1.00 1.00 1.00 1.00
Störmer-Verlet 1.08 1.89 2.75 2.48 105.78 Inf Inf

1.00 1.00 1.00 1.00 0.91 1.00 1.00
Midpoint 1.01 1.00 1.00 1.01 1.01 1.03 1.06

0.94 0.88 0.70 0.30 0.07 0.00 0.00
Heun 1.32 1.52 2.12 56.39 Inf Inf Inf

0.93 0.92 0.92 0.92 0.98 1.00 1.00
Fourth order Runge-Kutta 1.05 1.03 1.05 1.07 1.12 1.21 1.23

0.98 0.97 0.97 0.97 0.97 0.89 0.66
Two-step Adams-Bashforth 1.00 1.00 33.99 3.91× 1031 Inf Inf Inf

0.61 0.43 0.05 0.02 0.02 0.12 0.27
Two-step semi-implicit 1.33 1.72 556.92 6.19× 1081 Inf Inf Inf
Adams-Bashforth-Moulton 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Four-step Adams-Bashforth 1.00 1.00 982.41 4.62× 1093 Inf Inf Inf

0.61 0.43 0.08 0.02 0.06 0.06 0.06
Four-step semi-implicit 1.33 1.72 2.48× 103 2.57× 10116 Inf Inf Inf
Adams-Bashforth-Moulton 1.00 1.00 0.02 0.01 0.02 0.05 0.04
Discrete Moser-Veselov 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00
Runge-Kutta-Munthe-Kaas 1.00 1.03 1.02 1.05 1.11 1.19 1.20

1.00 0.99 1.00 0.99 0.99 0.99 0.99

Table 6.2: Maximum and minimum energy ratio for some of the integration schemes intro-
duced in Section 5.2. The name of the newly introduced algorithms are typed in bold font.
The energy ratio is computed as Tn

T0
. Inf corresponds to a number larger than the largest

64-bit double-precision floating-point number, 1.79× 10308.
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Method Order Numerical Behavior
Euler One Unconditionally stable
Semi-implicit Euler One Unconditionally unstable1

Störmer-Verlet Two2 Unconditionally unstable
Midpoint Two Unconditionally stable
Heun Two Unconditionally unstable
Fourth order Runge-Kutta Two3 Conditionally stable
Two-step Adams-Bashforth Two Conditionally stable
Two-step SI Adams-Bashforth-Moulton Two Unconditionally unstable
Four-step Adams-Bashforth Two4 Conditionally stable
Four-step SI Adams-Bashforth-Moulton Two4 Conditionally stable
Discrete Moser-Veselov Two Unconditionally stable5

Runge-Kutta-Munthe-Kaas Four Unconditionally unstable
1 Although semi-implicit Euler shows an unstable behavior when integrating
rotations, one can compute the centrifugal term in the equations of motion
in an implicit way to make it unconditionally stable. For further details see [35].

2 Using angular momentum update.

3 It is known that the classic fourth order Runge-Kutta method has only second
order accuracy in SO(3) (see [8]).

4 See Section 7.2.

5 Discrete Moser-Veselov algorithm is energy preserving [38, 41].

Table 6.3: Stable/unstable behavior for some of the integration schemes introduced in Section
5.2.
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and maximum energy ratios of 0.02 and 4.62e93 while after 100 steps the Runge-Kutta-

Munthe-Kaas method has energy ratios of 0.99 and 1.20. One may prefer an almost guar-

anteed increase in energy of at most 20% after 100 steps rather than the risk of an increase

of energy of up to 4.62e93 times the initial one after 10 steps.

When using a large time step to integrate freely-rotating rigid body motions, semi-implicit

Euler incurs large momentum and energy errors. A solution to this instability was proposed

by LaCoursière [35] which consists in computing the centrifugal term in the equations of

motion in an implicit way. In order to make the integration stable, some physics engines

-such as Open Dynamics Engine [57]- use the implementation proposed by LaCoursière

while others -such as Havok [32] and PhysX [46]- directly ignore the centrifugal term in the

equations of motion [21].

6.2.1 Integrating Rotations Using Angular Momentum

The methodology by which the angular velocity is integrated has an important effect on

the stability of the integration of torque-free rotations. Some of the integrators admit an

integration using conservation of angular momentum which is guaranteed to have an upper

bound on the rotational kinetic energy, namely

max Trot =
1

2IB33

∥L∥2 (6.4)

where IB33 is the smallest of principal moments of inertia [28]. This upper bound does not

make the integration of orientation and angular velocity any more accurate but it does make

it unconditionally stable. However, our experience (see Section 7.2.1) shows that it also

makes integration more sensitive to numerical errors, and it should be used with care.
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6.3 Discussion

While stability regions can give some insight about the stability of the integrators -especially

when modelling contacts and collisions- we have found them to misrepresent the overall

stability. For instance, semi-implicit Euler shows an unstable behavior when integrating

torque-free rotations (see Section 6.2), a behavior that is not captured by the stability

regions in Figure 6.1.

Only three of the integrators tested showed an unconditionally stable behavior when inte-

grating the dynamics of a freely-rotating rigid body: Euler’s method, Midpoint method,

and the discrete Moser-Veselov method. However, even integrators that show an unstable

behavior may still be preferred over stable ones, as the energy increase may not outweigh

other advantages. In the case of a freely-rotating rigid body, integration can be made uncon-

ditionally stable by integrating angular momentum rather than angular velocity (see Section

6.2.1).

Some authors (such as in [21]) completely obviate stability regions and focus on accuracy

as a measurement of stability. To the best of our knowledge, a reliable and representative

test of the stability of an integrator when integrating rigid body dynamics has not been

developed yet.

While semi-implicit Euler is commonly used in physics engines (see [15], [57], [29]) and it

is deemed stable because of its symplectic nature (see [12]), we have found otherwise. Its

stability region is smaller than the one from Euler’s method, the main difference being that

semi-implicit Euler is stable for systems with purely imaginary roots. When integrating the

rotation of a freely-rotating body, semi-implicit Euler suffers from a monotonic increase in

angular velocity. One can use the implementation proposed by LaCoursière [35] to make the

integration stable, but this implementation is also known to make the integrator physically

inaccurate.
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Chapter 7

Integration Accuracy

7.1 Translational Accuracy

Most of the integrators introduced in Section 5.2 have well-known properties when integrating

a translational motion. Table 7.1 shows the integration order for the integrators capable of

integrating a translational motion. For more information, we refer the reader to [10].

7.2 Rotational Accuracy

The integration accuracy when integrating a rotational motion is well-known for some of

the integrators introduced in Section 5.2. However, we will experimentally assess numerical

accuracy in Section 7.2.1. Table 7.2 shows the integration order for the integrators capable

of integrating a rotational motion.
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Method Order
Euler One
Semi-implicit Euler One
Störmer-Verlet Two1

Midpoint Two
Heun Two
Two-step Adams-Bashforth Two
Two-step semi-implicit Adams-Bashforth-Moulton Two2

Fourth order Runge-Kutta Four
Four-step Adams-Bashforth Four
Four-step semi-implicit Adams-Bashforth-Moulton Four2

1 When integrating motions of the type r̈ = f(r), independent
of v. Otherwise, the order depends on the accuracy of the
velocity update.
2 See Section 5.2.5.

Table 7.1: Integration order for translational motions for some of the integration schemes
introduced in Section 5.2.

Method Order
Euler One
Semi-implicit Euler One
Störmer-Verlet Two
Midpoint Two
Heun Two
Fourth order Runge-Kutta Two1

Two-step Adams-Bashforth Two
Buss’s Augmented Second Order Two
Discrete Moser-Veselov Two2

Two-step semi-implicit Adams-Bashforth-Moulton Two3

Four-step Adams-Bashforth Two3

Four-step semi-implicit Adams-Bashforth-Moulton Two3

Runge-Kutta-Munthe-Kaas Four4

1 It is known that the classic fourth order Runge-Kutta
method has only second order accuracy in SO(3) (see [8]).

2 Ernst Hairer provides higher order implementations in [31].

3 See Section 7.2.1.

4 See [43].

Table 7.2: Integration order for rotational motions for the integration schemes introduced in
Section 5.2.
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7.2.1 Example: Freely-Rotating Rigid Body

In order to assess the performance of the integration schemes introduced in Section 5.2 when

integrating a rotational motion, we integrate the orientation and angular velocity of three

different freely-rotating rigid bodies. We will refer at each of the simulations as a case and

we will compare the error incurred in each case by each integration scheme.

All three bodies tensor of inertia satisfy

IB =
1

12


l2y + l2z 0 0

0 l2x + l2z 0

0 0 l2x + l2y

 (7.1)

in the body frame. We use values


lx

ly

lz

 =
1
3
√
5


1

1

5

 =


0.58

0.58

2.92

 (7.2)

to get

IB1 =


0.74 0 0

0 0.74 0

0 0 0.06

 (7.3)

for case 1,


lx

ly

lz

 =
1

3
√
10


1

2

5

 =


0.46

0.93

2.32

 (7.4)
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to get

IB1 =


0.52 0 0

0 0.47 0

0 0 0.09

 (7.5)

for case 2, and


lx

ly

lz

 =
1

3
√
25


5

5

1

 =


1.71

1.71

0.34

 (7.6)

to get

IB1 =


0.25 0 0

0 0.25 0

0 0 0.49

 (7.7)

for case 3. The tensors of inertia correspond to prismatic bodies with mass m = 1 kg, a total

volume of 1 m3, and with proportions 1:1:5, 1:2:5 and 5:5:1, respectively. We set the initial

angular velocity to

ω0 =


0
√
2π
√
2π

 (7.8)

for cases 1 and 3 and to

ω0 =


0

2π

2π10−4

 (7.9)
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for case 2. The body frame matches the inertial reference frame at the initial instant of time.

Case 2 corresponds to a motion that exhibits the Dzhanibekov or twisting tennis racket effect

[1].

We integrate the motions for 10 seconds using different time steps in the range [10−6, 10−1]

and compute the error for the final value of orientation and angular velocity. We use the

values from the analytical solution obtained using the implementation in [13] as reference.

We define orientation or angle error as the minimum angle between the final orientation of

the current motion and the final orientation of the analytical solution. And we define angular

velocity error as the error between the final angular velocity of the current motion and the

final angular velocity of the analytical solution.

Figures 7.1 and 7.2 show the final errors as a function of computation time. We can separate

the performance level of the algorithms into three groups: order one algorithms, Euler’s

method and semi-implicit Euler; order two algorithms: Störmer-Verlet, Midpoint method,

Heun’s method, classic fourth order Runge-Kutta, two and four step Adams-Bashforth, semi-

implicit two and four step Adams-Bashforth-Moulton, Buss’s augmented second order and,

discrete Moser-Veselov; and finally, order four algorithms which includes only Runge-Kutta-

Munthe-Kaas.

In cases 1 and 3, Runge-Kutta-Munthe-Kaas clearly outperforms order two algorithms

which simultaneously outperform order one algorithms. However, in case 2, classic fourth

order Runge-Kutta, four-step Adams-Bashforth, four-step semi-implicit Adams-Bashforth-

Moulton, and discrete Moser-Veselov, perform exceptionally more accurate than the rest of

second order algorithms while Euler’s method performs in a particularly inaccurate way.

Methods that use angular momentum integration, Störmer-Verlet and Buss’s augmented

second order, suffer numerical errors the most.
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(a) Case 1

(b) Case 2

(c) Case 3

Figure 7.1: Orientation error as a function of computation time. Missing points for RKMK
and DMV2 are due to numerical error buildup prior to a computation of an arccosine.
Correspondence to abbreviations in the legend can be found in Table 7.3.

56



(a) Case 1

(b) Case 2

(c) Case 3

Figure 7.2: Orientation error as a function of computation time. Correspondence to abbre-
viations in the legend can be found in Table 7.3.
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Abbreviation Method
Euler Euler’s method
SIE Semi-implicit Euler
SV Störmer-Verlet
MP Midpoint method
Heun Heun’s method
RK4 Classic fourth order Runge-Kutta
AB2 Two-step Adams-Bashforth
SIABM2 Two-step semi-implicit Adams-Bashforth-Moulton
ASO Buss’s augmented second order
DMV2 Discrete Moser-Veselov
AB4 Four-step Adams-Bashforth
SIABM4 Four-step semi-implicit Adams-Bashforth-Moulton
RKMK Runge-Kutta-Munthe-Kaas

Table 7.3: Abbreviations used in the legends of Figures 7.1, 7.2 and 7.5.

7.3 Accuracy for Rigid Body Motions with Contacts

Up to this point, we have only assessed the accuracy of the integrators for either transla-

tional motions or rotational motions. In this section, we are going to assess accuracy of the

integrators for systems with rigid body with contacts by the means of an example.

7.3.1 Compliant Contact Model

For the rest of this section we are going to use a compliant contact model defined as a spring

damper system. The normal force F provided by the contact model is defined as

F =

 −k∆x− c∆ẋ if ∆x < 0 & ∆ẋ < −k
c
∆x

0 otherwise
(7.10)

where k and c are the spring and damper coefficients respectively and ∆x and ∆ẋ are the

interpenetration distance and velocity respectively.
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Figure 7.3: Vertical section diagram of the spinning top system.

7.3.2 Example: Spinning Top Motion

We assess the performance of the integrators introduced in Section 5.2 by integrating the

motion of a spinning symmetric rotor which is provided a single contact point. The system

is intended to approximate the motion of a spinning top. The rotor is given as a disk of

mass m = 0.2 kg, diameter d = 0.08 m and thickness h = 0.01 m. The contact is set at a

distance of L = 0.05 m below the center of mass in the z-direction in the body frame. The

body can make contact with the ground, located at z = 0 m, and the starting position of

the center of mass of the body is r0 = (0, 0, 0.05)T m. Figures 7.3 and 7.4 show a drawing of

the definition of the system and a rendered image of a simulation, respectively.
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Figure 7.4: Rendered image of a simulation of the spinning top.

The tensor of inertia of the body is

IB = 10−4


0.817 0 0

0 0.817 0

0 0 1.6

 kg m2 (7.11)

At the initial time, the x-axis of the body frame and inertial reference frame are parallel

and the z-axis of the body frame is parallel to the direction given by (0, 1, 4)T . The initial

angular velocity in the body frame is set to

ω0B =


0

0

32π

 rad/s (7.12)
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while the velocity of the center of mass is set to zero. The ground contact is modelled as

shown in Section 7.3.1 where we use a spring and damper coefficients such that the natural

frequency of the spinning top–ground system is ωn = 50 Hz and the damping ratio is ζ = 0.1.

These correspond to constants k = mω2
n = 19, 739 N/m and c = 2mωnζ = 12.566 N s/m.

We integrate the motions for one second using different time steps in the range [10−6, 10−2]

and compare the performance across some of the integrators introduced in Section 5.2. We

compute the error for the final value of: position of the center of mass, orientation, velocity

of the center of mass, and angular velocity. Because of the lack of analytical solution, the

final measurements are compared to the ones of a reference motion provided by integrating

the equations of motion with the Runge-Kutta-Munthe-Kaas method with a time step of

10−6.

We show the final time position, orientation, velocity, and angular velocity errors as a func-

tion of computation time in Figure 7.5. Unlike Section 7.2.1, the integrators can be separated

in two groups rather than three: first order methods and higher order methods. Euler and

semi-implicit Euler are consistently less efficient than most of other methods but the dif-

ferences are smaller than in Section 7.2.1. We have found that Störmer-Verlet and Buss’s

augmented second order methods, which use angular momentum integration, are able to

provide a solution for larger time steps although accuracy is low.

7.4 Discussion

When integrating motions with contacts, all of the integrators behave with first order ac-

curacy. However, there is a significant offset in favor of methods that are second order or

higher. While higher order methods are not as advantageous when integrating motions of

rigid bodies with contacts as when integrating translational motions or rotational motions
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Figure 7.5: Position, orientation, velocity, and angular velocity error as a function of compu-
tation time for the spinning top simulation. Correspondence to abbreviations in the legend
can be found in Table 7.3.
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independently, they still are more accurate than first order methods for the same computa-

tion time. Therefore, they are recommended when efficiency is the top priority. We believe

the loss of high order accuracy is related to the discontinuity generated by the contact but

this matter needs to be investigated further. A starting point would be to use a polynomial

of the same of order of the method to approximate the time of impact and split the time

step where a collision happens in two. We believe that if the time of impact is approximated

with enough accuracy, the integration will maintain the order.

Integrators used for translational motions do not necessarily maintain accuracy when inte-

grating rotational motions. It is the case of classic fourth order Runge-Kutta method and

some linear multistep methods. However, adaptations of these methods may exist, as it is the

case of Runge-Kutta-Munthe-Kaas, which maintains fourth order accuracy when integrating

rotations.
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Part III

Motion Optimization Using

Finite-Time Lyapunov Analysis
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Chapter 8

Problem Setup

8.1 Introduction

There is an interest in finding minimum-torque motions for robotic manipulators [27, 56,

62, 64]. These optimal motions are usually obtained as the solutions of an optimal control

problem (OCP). An OCP is said to be hyper-sensitive when there are fast-expanding and

fast-contracting rates compared to the final time [2, 3, 52, 53]. If these fast-expanding

and fast-contracting rates only affect some directions, the problem is further categorized as

partially hyper-sensitive. This type of system can exhibit what is known as a two-timescale

behavior with optimal motions that are qualitatively described by three separate segments:

a fast-stable transient, a steady “cruise” middle stage, and fast-unstable transient.

OCPs are commonly solved by methods broadly categorized as either direct methods or indi-

rect methods. In particular, indirect methods aim to solve the Hamiltonian boundary value

problem (HBVP) obtained through Pontryagin’s Maximum Principle that corresponds to

the first-order necessary conditions for optimality. When using an indirect shooting method,

the HBVP associated with a hyper-sensitive OCP may become ill-conditioned, requiring
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very high accuracy when determining the boundary conditions. Even though one can use

a different method to find solutions to the OCP, the fast-contracting/expanding directions

can reveal a geometric structure of the state-costate system that generally remains unused.

In particular, a so-called center manifold can be present during the cruise middle stage.

When searching for optimal motions for robotic manipulators one can end up with a hyper-

sensitive HBVP. We are interested in finding a method, capable of finding approximations to

optimal motions for hyper-sensitive systems and of giving insight about the geometric struc-

ture of the problem. For this type of OCPs, we perform a Finite-Time Lyapunov Analysis

(FTLA) to gather information about the fast-expanding and fast-contracting directions and

the presence of a center manifold. This information is used to suppress undesired directions

and to obtain an approximation to the optimal solution. This is a first step in assessing the

use of FTLA to gain insight into and simplify the solution of OCPs for robot motions.

We want to design a robotic manipulator that exhibits a two-timescale behavior for certain

optimal motions. The idea is to use this system as a testcase on the use of FTLA in robotic

systems. FTLA is used to suppress undesired directions when integrating forward/backward

in time, therefore reducing the numerical sensitivity. By doing so, we can obtain approximate

optimal solutions via by matching a forward-in-time integrated motion and backward-in-

time integrated motion. We do so by placing the initial point on the center-stable manifold,

placing the final point on the center-unstable manifold, and letting the matching happen on

the center manifold (Figure 8.1). The obtained approximate optimal solutions are compared

to an optimal solution obtained with the optimal control software GPOPS.

This part is structured as follows: In this chapter, we define a two-link robot arm system

which can lead to a hyper-sensitive HBVP (Section 8.2), we define the OCP that is intended

to be solved (Section 8.3), and we obtain a benchmark motion using the optimal control

software GPOPS (Section 8.4). In Chapter 9, we describe the FTLA methodology which we

use to obtain approximations to the theoretical optimal solution. In Chapter 10, we show how
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Initial point

Center-stable 

manifold

Final point

Center-unstable 

manifold

Matching point

Center manifold

Figure 8.1: Qualitative example of the strategy used to obtain approximate optimal mo-
tions using FTLA shown in the Hamiltonian phase space. The initial and final points are
placed, respectively, on the center-stable and center-unstable manifolds, and the motions are
matched on the center manifold. Original figure by Marco Maggia, Ph.D. student, Mechan-
ical and Aerospace Engineering, University of California, Irvine.

67



FTLA can be used to suppress undesired directions when integrating the Hamiltonian system

(Section 10.1), and we describe a strategy to obtain an approximation to the theoretical

optimal solution (Section 10.2). The conclusions can be found in Section 10.3.

8.2 Two-Link Robot Arm

We define here a two-link robot arm system for which we desire to obtain optimal motions.

The system is defined by the following parameters: the masses of the two links, m1 and m2;

the length of each link, L1 and L2; and the viscous friction at each joint, c1 and c2. The

moment of inertia about the center of mass for each link is computed as IG1 =
1
12
m1L1

2 and

IG2 =
1
12
m2L2

2.

θ1 is the rotation angle of the first link with respect to an inertial reference frame and θ2 is

the rotation angle of the second link with respect to the first one. The robot arm is fully

extended for θ2 = 0 (see Figure 8.2). The two-link robot arm is lying on the horizontal plane.

The equations of motion were derived using Euler-Lagrange equations and are shown next:

M(q)q̈ + C(q, q̇) = u (8.1)

where q = (θ1, θ2)
T with ˙ and¨noting derivation with respect to time once and twice respec-

tively. u = (u1, u2)
T corresponds to the torques applied at each joint. The matrix M(q) and

vector C(q, q̇) are defined as

M(q) =

 m1

4
L2
1 +m2

(
L2
1 + L1L2cos(θ2) +

L2
2

4

)
+ IG1 + IG2

m2

4
(L2

2 + L1L2cos(θ2)) + IG2

m2

4
(L2

2 + L1L2cos(θ2)) + IG2
m2

4
L2

2 + IG2


(8.2)
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Figure 8.2: Drawing of the two-link robot arm. Top view.
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m1 0.5
m2 0.5
L1 2
L2 0.5
c1 0.2
c2 0

Table 8.1: Parameters used for the two-link robot arm system.

C(q, q̇) =

 −1
2
L1L2m2θ̇2sin(θ2)

(
2θ̇1 + θ̇2

)
+ c1θ̇1

1
2
L1L2m2θ̇

2
1sin(θ2) + c2θ̇2

 (8.3)

8.2.1 System Parameters

The parameters chosen for the robot system can be found in Table 8.1. These parameters are

chosen so that the robot exhibits the two-timescale behavior when moving from an extended

configuration to a different extended configuration. The goal is to achieve a motion that

consists of the three following stages: a first fast stage in which the short undamped second

link folds rapidly to a colinear configuration with respect to the first link, a middle cruise

stage where the robotic arm rotates maintaining the previously achieved configuration, and

a second fast stage in which the second link unfolds and extends in order to reach the final

configuration. We achieve so by setting up a shorter second link (when compared to the first

one) and by having viscous damping on joint Q in Figure 8.2. See Figure 8.3 for a qualitative

description of the desired motion.
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Figure 8.3: Desired robot arm motion. Stage 1 consists of the second link rapidly folding to
an opposite orientation. In stage 2, the robot arm cruises roughly to the final value of θ1.
Finally, in stage 3, the second link rapidly unfolds and the robot arm reaches an extended
configuration.

8.3 Optimal Control Problem

We define the state of the system as

x =



θ1

θ2

θ̇1

θ̇2


(8.4)

We are interested in finding motions that solve the following Lagrangian optimal control

problem. Find the control torques at each joint, u1(·) and u2(·), such that

x(t0) = x0 (8.5)
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x(tf ) = xf (8.6)

with tf > t0 and that minimize the cost functional

J =
1

2

∫ tf

t0

γ1u1
2 + γ2u2

2dt (8.7)

while the dynamics

ẋ = f(x, u) =

 q̇

M−1(q)(u− C(q, q̇))

 (8.8)

are satisfied. γ1 and γ2 are the penalty weighting for each of the components of the control

vector u.

We obtain the Hamiltonian as H(x, λ, u) = λTf(x, u) + γ1u1
2 + γ2u2

2 and we acquire the

costate equations using Pontryagin’s Maximum Principle. The augmented state-costate

system is defined as

ṗ = h(p) (8.9)

where p =

 x

λ

 and

h(p) =

 ∂H∗(x,λ,u∗)
∂λ

−∂H∗(x,λ,u∗)
∂x

 =

 f(x, u∗)

−∂H∗(x,λ,u∗)
∂x

 (8.10)

withH∗(x, λ, u∗(x, λ)) the Hamiltonian evaluated at the optimal control u∗(x, λ) = argmin
u

H(x, λ, u).

The first-order necessary conditions (FONC) lead to the Hamiltonian Boundary Value Prob-

lem (HBVP) consisting of (8.5), (8.6), and (8.10).
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We define the linearized state-costate system as

v̇ = D(p)v (8.11)

where D(p) = ∇ph(p) is the linearized dynamics matrix. Some of the terms in matrix D(p)

can be found in Appendix F.

8.4 GPOPS Optimal Motion

We want the robot arm to move from an almost fully extended configuration to a different

almost fully extended configuration opposite to the initial one. This correspond to initial

and final states

x0 =



−π
2

0.05

0

0


(8.12)

xf =



π
2

0.05

0

0


(8.13)

respectively. We use GPOPS [51] to generate an optimal solution by numerically solving the

optimal control problem introduced in Section 8.3. We set the control penalty weightings to

γ1 = 1 and γ2 = 0.5 and allow ten seconds for the motion to be performed (i.e. t0 = 0 s and

tf = 10 s). The tolerances are set to: 10−3 for the mesh refining, and 10−6 and 2× 10−6 for

the NLP solver feasibility and optimality tolerances, respectively.
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There are reasons to think that the numerical solution obtained using GPOPS is close to

the theoretical optimum: first, the initial guess used was already optimized using a direct

method capable of generating an approximation to the optimal solution; second, tolerances

for the NLP solver are set low and satisfied and; third, changes in value of the Hamiltonian

are small (10−4 in absolute terms, see Figure 8.6) and converge towards zero as the tolerances

get tighter.

We will use this solution as a benchmark to compare the results obtained using FTLA. The

evolution of the states and costates for the GPOPS solution -which shows the two-timescale

behavior- can be seen in Figure 8.4, the evolution of the control torques can be seen in

Figure 8.5, and the evolution of the value of the Hamiltonian can be seen in Figure 8.6.

The theoretical optimum would show a constant value of the Hamiltonian throughout the

motion.

In Figure 8.7, we show the evolution of different solutions (with different final time tf ) in

a subspace of the phase space. We see how the motions start at the center-stable manifold

(in green), continue through the center manifold (in blue), and finish at the center-unstable

manifold (in red). Note how the motions shown in Figure 8.7 resemble the example shown

in Figure 8.1.
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Figure 8.4: State and costate evolution for the GPOPS optimal solution, which exhibits the
two-timescale behavior. We can see the three different stages of the motion: a fast stable
transient, a steady cruise middle stage, and a fast unstable transient, in this respective order.
The change in value of the different variables happens faster during the transient stages and
slower during the middle stage.
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Figure 8.5: Control torque evolution for the GPOPS optimal solution.

76



0 2 4 6 8 10

Time (s)

-0.093

-0.0925

-0.092

-0.0915

-0.091

-0.0905

H
am

ilt
on

ia
n

10 -4

10 -5

10 -6

Figure 8.6: Evolution of the value of the Hamiltonian with respect to time for the solution
shown in Figure 8.4 (in blue) and for solutions computed with higher tolerances (10× higher
tolerances in red and 100× higher tolerances in green). Tighter tolerances result in more
constant Hamiltonian values.
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Figure 8.7: Projection of different solutions (with different final time tf ) onto the 3D subspace
θ2− λ3− λ4 and 2D subspaces θ2− λ3, θ2− λ4, and λ3− λ4 (in grey). The initial points are
located at the green tip and the final points at the red tip. Approximately, points in green
are on the center-stable manifold, points in blue are on the center manifold, and points in
red are on the center-unstable manifold.
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Chapter 9

Finite-Time Lyapunov Analysis

We have been using GPOPS [51] to obtain motions such as the one discussed in Section 8.4.

However, in many cases, it proved difficult for GPOPS to converge to a feasible continuous

solution. These difficulties may be attributed to hyper-sensitivity as the solution obtained

shows a two-timescale behavior. In this section, we investigate an alternative approach to

obtain approximations to such motions based on Finite-Time Lyapunov Analysis (FTLA).

We follow the FTLA methodology presented in [2, 3], see those references for more detail.

FTLA can be used to quantitatively assess the existence of fast-expanding, fast-contracting,

and center (neither fast-expanding or fast-contracting) directions. We can do so by com-

puting the Finite-Time Lyapunov Exponents (FTLEs), to determine existence, and by com-

puting the Finite-Time Lyapunov Vectors (FTLVs), to determine said directions. FTLEs

determine the average exponential rates and, if any of these exponential rates are fast com-

pared to the time of interest, the system is deemed hyper-sensitive. In the case of partially

hyper-sensitive problems, the case where fast exponential rates only affect some directions,

it is reasonable to construct motions with three separate stages: a fast-contracting transient,

a steady middle stage, and fast-expanding transient; in this respective order.
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For a hyper-sensitive motion, and when using an indirect shooting method, the HBVP may

become ill-conditioned; an effect of the fast exponential rates. However, we can find motions

that reach the region not affected by the fast exponential rates in a well-conditioned way.

The mentioned region corresponds to the center manifold. The general idea is to find an

approximation to the solution to the HBVP by matching two separate motions on the center

manifold: a forward motion generated by integrating the equations of motion forward in

time, and a backward motion generated by integrating the equations of motion backward in

time. The key in keeping the problem well-conditioned is avoiding fast-expanding (unstable)

directions in the forward motion and avoiding fast-contracting (stable) directions in the

backward motion (see Figure 8.1).

We compute the forward and backward in time Finite-Time Lyapunov Exponents (FTLEs)

as

µ+(T, p, v) =
1

T
ln
∥Φ(T, p)v∥
∥v∥

(9.1)

µ−(T, p, v) =
1

T
ln
∥Φ(−T, p)v∥
∥v∥

(9.2)

respectively, where Φ(T, p) is the transition matrix for the linearized dynamics (8.11) when

integrating for a T amount of time, that is v(t+ T ) = Φ(T, p(t))v(t). The transition matrix

Φ(T, p) also satisfies Φ̇(T, p) = D(p)Φ(T, p) and Φ(0, p) = I2n×2n where n is the number

of states. We use the superscripts + and − to indicate forward and backward in time,

respectively.

One way to obtain the Finite-Time Lyapunov Vectors (FTLVs) is by computing the Singular

Value Decomposition (SVD) of Φ(T, p) as

Φ(T, p) = N+(T, p)Σ+(T, p)L+(T, p) (9.3)
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with the elements on the diagonal of Σ+(T, p) in increasing order. The values of the diago-

nal elements of Σ+(T, p) correspond to Teµ
+
i (T,p,v). The column vectors of matrix L+(T, p),

l+i (T, p), are the forward-in-time FTLVs. Analogously, we obtain the backward-in-time

FTLVs, l−i (T, p), by computing the SVD of matrix

Φ(−T, p) = N−(T, p)Σ−(T, p)L−(T, p) (9.4)

with the elements on the diagonal of Σ−(T, p) in decreasing order.

We can use FTLA to determine a tangent space splitting for (8.1) as TpR2n(p) = Es(p) ⊕

Ec(p)⊕ Eu(p), where all the directions in Es(p) contract exponentially fast (tangent stable

subspace), all the directions in Eu(p) expand exponentially fast (tangent unstable subspace),

and the rate of change of the directions in Ec(p) is slower (tangent center subspace) [39, 40].

We also define the combined subspaces Ecs(p) = Ec(p) ⊕ Es(p) (tangent center-stable sub-

space), which avoids directions that expand exponentially fast, and Ecu(p) = Ec(p)⊕Eu(p)

(tangent center-unstable subspace), which avoids directions that contract exponentially fast.

In the asymptotic theory of hyperbolic sets [4], the splitting is invariant, however, in terms

of the FTLA, the splitting only approximates the invariant splitting.

Approximations to the tangent stable, center-stable, center, center-unstable, and unstable

subspaces, at point p are found as

Es(T, p) = span(l+1 (T, p), . . . , l
+
ns(T, p)) (9.5)

Ecs(T, p) = span(l+1 (T, p), . . . , l
+
ns+nc(T, p)) (9.6)

Ec(T, p) = span(l+1 (T, p), . . . , l
+
ns+nc(T, p)) ∩ span(l−ns+1(T, p), . . . , l

−
2n(T, p)) (9.7)

Ecu(T, p) = span(l−ns+1(T, p), . . . , l
−
2n(T, p)) (9.8)

Eu(T, p) = span(l−ns+nc+1(T, p), . . . , l
−
2n(T, p)) (9.9)
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respectively and where ns, nc, and nu, are the number of stable, center, and unstable di-

rections, respectively. The number of directions in each category is found by analyzing the

values of the FTLEs: the number of highly positive FTLEs determines the number of unsta-

ble directions; the number of highly negative FTLEs, the number of stable directions; and

the number of small-valued FTLEs, the number of center directions.

We want to find a point p̃ on the center-stable subspace by satisfying

h(p̃) ∈ Ecs(T, p̃) ⇐⇒ h(p̃) ⊥ Ecs(T, p̃)⊥ (9.10)

when integrating forward in time and on the center-unstable subspace by satisfying

h(p̃) ∈ Ecu(T, p̃) ⇐⇒ h(p̃) ⊥ Ecu(T, p̃)⊥ (9.11)

when integrating backwards in time. Note that stable (or fast-contracting) components

become fast-expanding when analyzed backwards in time. The right hand sides of (9.10)

and (9.11) are referred to as orthogonality conditions.

The matching on the center manifold is done by finding points p(t0) and p(tf ) that satisfy

(9.10) and (9.11) respectively, and also satisfy the matching condition

∥p+(tm)− p−(tm)∥ ≤ δm (9.12)

where p+(tm) is obtained by propagating p(t0) forward in time and p−(tm) by propagating

p(tf ) backwards in time, with tm a matching time satisfying t0 < tm < tf , and δm a specified

tolerance. In the assumed two-timescale situation, with a final time that allows a segment

of the solution to lie approximately on the center manifold, the matching time tm is near

the middle of the time interval and the solution is essentially on the center manifold. The

resulting motion provides an approximation to the solution to the HBVP. We will show in
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Sections 10.1 how to find points p(t0) and p(tf ) that satisfy the orthogonality conditions,

and in Section 10.2 we will show how to find points p(t0) and p(tf ) that also satisfy the

matching condition (9.12).
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Chapter 10

Solution Approximation

10.1 Suppressing Undesired Directions

By analyzing the FTLEs at different state-costate points for the two-link robot arm, we

determine that FTLEs can be grouped as: two highly positive FTLEs (fast-expanding di-

rections), two highly negative FTLEs (fast-contracting directions), and four small-valued

FTLEs (neither fast-expanding or fast-contracting directions), see Figure 10.1. Therefore,

the number of stable, center, and unstable directions are


ns

nc

nu

 =


2

4

2

 (10.1)

The values of the FTLEs identify the exponential rates of the associated directions, while the

gap between stable, center, and unstable FTLEs, dictates the exponential rate of convergence

of the splitting towards an invariant splitting. In all four cases in Figure 10.1 the gap between
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(a) Forward in time FTLEs at the initial
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(b) Forward in time FTLEs at the middle
point p(5)
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(c) Backward in time FTLEs at the middle
point p(5)
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(d) Backward in time FTLEs at the final
point p(10)

Figure 10.1: Evolution of the FTLEs as a function of averaging time T at three different
points along the GPOPS solution. Note the symmetry with respect to the x axis.
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center and stable subspaces and center and unstable subspaces is larger than 2 for at least

3.5 seconds which corresponds to a normalized convergence time of 7 time constants.

At the initial point there are four boundary conditions for the state (8.5) while the costate

is unconstrained. By imposing the orthogonality conditions (9.10), the degrees of freedom

are reduced to two. In particular, if two costates are specified, the remaining two can be

determined from the orthogonality conditions. Thus, with the orthogonality conditions there

is a two-parameter family of solutions. This reasoning is analogous for the final point. The

remaining degrees of freedom are used to satisfy the matching condition (9.12).

We take the value of costates λ1 and λ3 as the two available degrees of freedom and find values

for λ2 and λ4 such that the orthogonality conditions are satisfied. We call this operation

placing the point or placing the costate, and perform it by means of Algorithms 1 and 2 or

the later introduced Algorithms 3 and 4.

Choosing λ1 and λ3 as degrees of freedom was not arbitrary. We expect the tangent to the

center manifold to be close to the hyperplane defined by λ1 and λ3, meaning that a change

in any of these two variables carries a smaller change in λ2 and λ4.

Although a particular point p̃ may satisfy the orthogonality conditions, the orthogonality

conditions will not be satisfied at subsequent points either forward or backward in time.

Points are only placed approximately on the center-stable (center-unstable) manifold and

this is due to two reasons: first, FTLVs (and the computation of Ecs(T, p̃) and Ecu(T, p̃))

are only approximate, and second, the orthogonality conditions are only solved to within a

tolerance. The direct implication is that fast-expanding (unstable) directions will inevitably

appear forward in time, and fast-contracting (stable) directions backward in time. In order

to suppress undesired directions from a trajectory, we enforce the orthogonality conditions at

certain time intervals. We do so using Algorithms 1 and 2 or the later introduced Algorithms

3 and 4.
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Algorithm 1 Costate placement procedure when integrating forward in time used to find a
point p satisfying (9.10). The procedure places costates λ2 and λ4 so that h(p) is orthogonal
to (Ecs)⊥ computed with averaging time T and with a tolerance of θ̄ degrees. Note that we
keep the state x and costates λ1 and λ3 fixed.

Require: x, λ, T , θ̄

1: p←
(
x
λ

)
2: L+ ← computeForwardFTLVs(p, T )
3: (Ecs)⊥ ← span(l+ns+nc(T, p), . . . , l+2n(T, p))
4: while ∠h(p)(Ecs)⊥ ≥ θ̄ do

5:

(
λ2
λ4

)
← arg

λ2 λ4

(
h

(
x
λ

)
⊥ (Ecs)⊥

)
6: p←

(
x
λ

)
7: L+ ← computeForwardFTLVs(p, T )
8: (Ecs)⊥ ← span(l+1 (T, p), . . . , l

+
ns+nc

(T, p))
9: end while
10: return p

Algorithm 2 Costate placement procedure when integrating backwards in time used to
find a point p satisfying (9.11). The procedure places costates λ2 and λ4 so that h(p) is
orthogonal to (Ecu)⊥ computed with averaging time T and with a tolerance of θ̄ degrees.
Note that we keep the state x and costates λ1 and λ3 fixed.

Require: x, λ, T , θ̄

1: p←
(
x
λ

)
2: L− ← computeBackwardFTLVs(p, T )
3: (Ecu)⊥ ← span(l−ns+1(T, p), . . . , l

−
2n(T, p))

4: while ∠h(p)(Ecu)⊥ ≥ θ̄ do

5:

(
λ2
λ4

)
← arg

λ2 λ4

(
h

(
x
λ

)
⊥ (Ecu)⊥

)
6: p←

(
x
λ

)
7: L− ← computeBackwardFTLVs(p, T )
8: (Ecu)⊥ ← span(l−ns+1(T, p), . . . , l

−
2n(T, p))

9: end while
10: return p
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10.1.1 Adaptive Time Costate Placement

It is possible that the methodology described in Section 10.1 is not successful in providing

points that satisfy the orthogonality conditions. In general, larger averaging times are ca-

pable of providing better approximations of a subspace. However, this requires the initial

point to be relatively close to the subspace of interest as, otherwise, the integration of the

states and costates will depart the region of interest. In these cases, we proceed by sequen-

tially applying Algorithms 1 or 2 with increasing values of averaging time T . The idea is

to sequentially find points closer to the subspace of interest at each iteration, which can

concurrently give a better approximation by using a larger averaging time T .

We use Algorithms 3 and 4 to sequentially call Algorithms 1 and 2 with increasing values of

averaging time T .

Algorithm 3 Adaptive time costate placement. We recursively use Algorithm 1 to find a
resulting point p that satisfies (9.10). The averaging time values are in the range [T0, Tmax]
and differ by ∆T between iterations.

Require: x, λ, T0, ∆T , Tmax, θ̄
1: T ← T0
2: while T ≤ Tmax do

3:

(
x
λ

)
← Algorithm1(x, λ, T , θ̄)

4: T ← T +∆T
5: end while

6: p←
(
x
λ

)
7: return p

10.1.2 Numerical Results

Even though the GPOPS solution is accurate, it is obtained using a collocation method.

This implies that even though the solution values at the discrete times chosen by GPOPS

closely approximate the theoretical solution, there is no guarantee that one can take any one
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Algorithm 4 Adaptive time costate placement. We recursively use Algorithm 2 to find a
resulting point p that satisfies (9.11). The averaging time values are in the range [T0, Tmax]
and differ by ∆T between iterations.

Require: x, λ, T0, ∆T , Tmax, θ̄
1: T ← T0
2: while T ≤ Tmax do

3:

(
x
λ

)
← Algorithm2(x, λ, T , θ̄)

4: T ← T +∆T
5: end while

6: p←
(
x
λ

)
7: return p

point, such as the initial or final points, and integrate to get an accurate approximation of

the theoretical solution. This is especially unlikely when fast exponential rates are present.

We take the initial and final points of the GPOPS solution to create two new motions. A

first motion, shown as the red line in Figure 10.2, obtained by integrating (8.9) forward in

time from 0 to 5 s followed by the result obtained by integrating (8.9) backwards in time

from 10 to 5 s (No projection). A second motion, shown as the green line in Figure 10.2,

obtained in a similar manner but using Algorithms 3 and 4 on the initial and final points

respectively (Adaptive time).

The evolution of the states and costates for the two new motions and the GPOPS solution

can be seen in Figure 10.2. We see how the motion obtained using Algorithms 3 and 4,

shown as the green line, follows the GPOPS solution, shown as a blue line, for a longer

period of time than the motion obtained without using the placement algorithms, shown

as the red line. This behavior indicates that the procedure introduced in Section 10.1.1 is

successful at reducing fast-expanding (unstable) modes when integrating forward in time

and fast-contracting (stable) modes when integrating backwards in time.
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Figure 10.2: Comparison between: the GPOPS solution (blue), the motion obtained by
integrating (8.9) forward in time from 0 to 5 s followed by the result obtained by integrating
(8.9) backwards in time from 10 to 5 s (No projection, red), and the motion obtained by
integrating (8.9) forward in time from 0 to 5 s after using Algorithm 3 on the initial point
followed by the result obtained by integrating (8.9) backwards in time from 10 to 5 s after
using Algorithm 4 on the final point (Adaptive time, green).
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10.2 Matching Trajectories

Algorithms 1, 2, 3, and 4, are capable of placing points on the center-stable manifold for

forward-time integration and on the center-unstable manifold for backward-time integration.

However, this is only part of the process in finding an approximation to a solution to the

HBVP. In addition, the part of the solution that is integrated forward in time has to ap-

proximately match the part of the solution that is integrated backward in time. We use an

automated search engine to find an initial and final point, which are approximately on the

center-stable and center-unstable manifolds respectively, and such that the corresponding

forward and backward motions approximately match.

The automated search engine consists of creating two costate grids at the initial and final

points. Each point in the costate grids corresponds to a pair of values for costates λ1 and

λ3, with λ2 and λ4 found using Algorithms 3 and 4. We integrate the points in the initial

grid forward in time from t0 = 0 s to tm = 5 s, performing midcourse corrections at t = 2 s

and t = 4 s, to obtain a set of points p+ij(5) associated to each starting point in the grid. We

repeat the process analogously for the final grid, integrating backward in time from tf = 10

s to tm = 5 s, performing midcourse corrections at t = 8 s and t = 6 s, to obtain points

p−kl(5). The midcourse corrections consist of reapplying Algorithms 3 or 4 while integrating

forward or backward in time in order to keep the problem well-conditioned.

Once the points p+ij(5) and p
−
kl(5) are obtained, the mismatch is computed using (9.12) and

the initial and final point grids are updated accordingly. An update procedure for two 3× 3

grids is shown in Appendix G. We repeat this procedure in order to find points with matching

trajectories. The procedure stops when the mismatch is less than a certain threshold, or the

distance between points in the grid is too small, or the procedure has run a set number of

times and none of the previous conditions have been satisfied.
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Var. p+(tm) p−(tm) Mismatch
θ1 −0.027597 −0.027650 5.316266× 10−5

θ2 3.068603 3.068761 1.579764× 10−4

θ̇1 0.477425 0.477344 8.127070× 10−5

θ̇2 0.009792 0.009229 5.629493× 10−4

λ1 −0.203408 −0.203476 6.764173× 10−5

λ2 0.019078 0.019080 1.617024× 10−6

λ3 −0.209560 −0.209649 8.850634× 10−5

λ4 0.019651 0.019660 8.864982× 10−6

Table 10.1: Breakdown of mismatch at tm = 5 s, by variable.

Figure 10.3 compares the GPOPS solution obtained in Section 8.2, shown as the blue line, to

the one obtained using the automated search algorithm described in this section, shown as

the green line. The mismatch distance at the matching time tm = 5 s is ∥p+(tm)−p−(tm)∥ =

2.243 × 10−3, which accounts for 7.192 × 10−4 of the magnitude vector p+(tm). The error

between the two motions at any given time is always smaller than 0.03 as seen in Figure 10.4.

A breakdown of the mismatch by variable can be seen in Table 10.1. These results show

the automated search algorithm converges to an approximation very similar to the solution

found by GPOPS. There are slight differences on how the motions evolve (especially during

the fastest parts of the motion) which can be due to how the dynamics of the system (8.9)

are enforced (collocation method for GPOPS versus numerical integration for the automated

search engine).

10.3 Conclusions

Lyapunov vectors and exponents contain information that can be used to find points for

which fast-expanding (fast-contracting) directions are suppressed forward (backward) in

time. We use Finite-Time Lyapunov Analysis to find said points for a two-link robot arm

system exhibiting a two-timescale type behavior. The information about the different direc-

tions allows us to find motions that accurately approximate the optimal motion while having
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Figure 10.3: Comparison between the GPOPS solution (blue) and the motion obtained using
the automated search algorithm described in Section 10.2 (Automated search, green). The
two motions are so close, that only the automated search motion is observed.
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tained using the automated search algorithm described in Section 10.2.

94



to explore less degrees of freedom. We do so by placing points onto the center-stable manifold

(when integrating forwards in time) and the center-unstable (when integrating backwards in

time). We use an automated search algorithm that finds initial and final points for which

the trajectories match. Constraining the initial and final points to center-stable and center-

unstable manifolds respectively, reduces the degrees of freedom of our automated search

algorithm by half and reduces the numerical sensitivity that would otherwise plague the

solution process.

The work shown in this part can be considered as the first steps towards solving optimal

control problems for robotic manipulators using FTLA. The FTLA methodology is successful

in assessing the existence of fast exponential rates, suppressing undesired directions, and

revealing the existence of a center manifold. For robotic manipulator problems which show

a multiple timescale behavior, FTLA shows potential in becoming an alternative method to

obtain optimal motions. Future steps should focus on improving the computational efficiency

when computing the FTLVs and FTLEs and in the use of FTLA when discontinuities, such

as contacts or torque constraints, are present.
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Conclusions
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Chapter 11

Conclusions

In the three distinct parts of this thesis, we address three different topics on the simulation

and optimization of motions involving systems with rigid bodies.

In the first part, Part I, we use eigenpostures to generate and analyze human high-diving

motions. Eigenpostures reduce the dimensionality of the optimal control problem the solution

of which corresponds to the diving motion. This makes solving the optimal control problem

more intuitive, faster, and numerically more stable. The use of eigenpostures generates

quasi-optimal motions in an efficient way and can be of interest in fields such as computer

animation [42].

Eigenpostures are also used to analyze real dives. Real dive motions are projected to an

eigenposture space to reveal traits from the motion in an easy and intuitive way. Further-

more, the projected motion is used by a classification algorithm, similar to the one used

by Young [67], which predicts a score for the dive. These motion analyses can be of special

interest in a variety of competitive sports, and provide a tool to identify which traits improve

performance the most.
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In the second part, Part II, we review a broad range of integration algorithms and use

them to integrate rigid body dynamics. We especially focus in numerical stability and

accuracy. While previously established stability regions are commonly used to describe the

numerical stability of an integrator, we have found them to misrepresent the overall stability.

Integrators that show good numerical stability for translational motions (as extracted from

the stability regions) can be unconditionally unstable for torque free rotational motions.

We developed a numerical test to assess integrator stability when integrating torque free

rotations.

The Runge-Kutta-Munthe-Kaas algorithm was the most accurate of integrators tested (fourth

order) especially when integrating motions without contacts. In the presence of contacts, all

integrators behave as first-order accurate but with consistently better results for integrators

that are categorized as higher order. Semi-implicit Euler, a symplectic integrator commonly

used to integrate rigid body dynamics, is only first order accurate and performed in an

unstable manner when integrating torque free rotations.

In the third part, Part III, we use finite-time Lyapunov analysis to find approximations to

the optimal motion for a two-link robot arm. Lyapunov vectors and exponents contain infor-

mation that can be used to find points for which fast-expanding (fast-contracting) directions

are suppressed forward (backward) in time. We use this information to place points on the

center-stable manifold (when integrating forward in time) and the center-unstable mani-

fold (when integrating backward in time) This allows us to construct an automated search

algorithm to find optimal motions while using a reduced number of degrees of freedom. Fur-

thermore, by placing the points on the appropriate manifold, the numerical sensitivity is

reduced, a common issue when solving hyper-sensitive optimal control problems.

It is hoped that the combination of the three parts of this dissertation which address: one,

the reduction of degrees of freedom of optimal control problems; two, the use of efficient

numerical integration techniques for rigid body systems; and three, the approximation of
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optimal motions by means of FTLA; will provide a foundation for the control and simulation

of more complex multibody systems found in the future.
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A Example: Inverted Pendulum on a Cart

In this Appendix we set up and solve a COP, similar to the one introduced in Section 2.4.2,

with the difference that B-splines (Section 2.4.1) are used to parametrize active joint motion

directly, without the use of Eigenpostures. The COP is intended to find optimal motions for

an inverted pendulum on a cart.

A.1 Dynamic System

An inverted pendulum on a cart consists of a horizontally moving base with a pendulum

attached to it (see Figure A.1). The cart of mass Mc can move horizontally as measured by

distance r. A horizontal force F is applied to the cart. The pendulum consists of a massless

rod of lenght l with a mass m at the tip further away from the fulcrum. The pendulum is

free to rotate about the fulcrum (torque τ = 0) as measured by the angle θ. For θ = 0 the

pendulum is upright.

System Dynamics

We use Lagrange’s equations to get the equations of motion:

(Mc +m)r̈ −mlθ̈cosθ +mlθ̇2sinθ =F (A.1)

mlθ̈ −mr̈cosθ −mgsinθ =τ. (A.2)

which can be expressed in the form of

Mc +m mlcosθ

−mcosθ ml


r̈
θ̈

+

mlθ̇2sinθ
−mgsinθ

 =

F
τ

 (A.3)
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Figure A.1: Inverted pendulum on a cart.

We define the passive and active joints as

qp
qa

 =

θ
r

 (A.4)

with up
ua

 =

τ
F

 =

0

F

 (A.5)

and the system state is

x =



θ

r

θ̇

ṙ


(A.6)
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We manipulate (A.3) to get the system dynamics ẋ = f(x, u), and use Euler’s method to

get the discretized as

f̃(x(n), u(n)) = x(n) + ∆tf(x(n), u(n)) (A.7)

where ∆t is the time step length.

A.2 Problem Statement

The goal is to bring the system to a certain final position (which may be unstable) in a fixed

time interval with no control between the base and the rod, as would be the case if this

actuator were missing or faulty.

Using the time discretization defined in Section 2.3.1 and the function parametrization in-

troduced in Section 2.4.1, we define the state of the system as

x(n, ψ, p) =



θ(n, ψ, p)

r(n, p)

θ̇(n, ψ, p)

ṙ(n, p)


=



θ(n, ψ, p)

P (p) ·B(n)

θ̇(n, ψ, p)

P (p) · Ḃ(n)


(A.8)

where

ψ ≡

θ(0)
θ̇(0)

 (A.9)

The control vector is defined as

u(n, ψ, p) =

 0

F (n, ψ, p)

 (A.10)
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We use the following system parameters: Mc = 2, m = 1, and l = 1. The pendulum starts

at the initial state

x0 =



π

−1

0

0


(A.11)

and we want to drive it to the desired final unstable state

xf =



0

0

0

0


. (A.12)

where x(0, ψ, p) = x0 is set as a constraint and x(N,ψ, p) = xf is set as a soft constraint

through a strong penalty in the Mayer cost. We want the motion to last exactly two seconds,

therefore t0 = 0 and tf = 2.

In summary: at the initial state the pendulum is hanging from the cart vertically, while at

the final state the pendulum is upright with the cart having moved one meter towards the

right.

Cost function

The cost function used to solve this problem is

J(ψ, p) = Φ(x(N,ψ, p)) +
N−1∑
n=0

L̃(u(n, ψ, p)) (A.13)
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where

Φ(x(N,ψ, p)) =
1

2
(x(N,ψ, p)− xf )TQ (x(N,ψ, p)− xf ) (A.14)

and

L̃(u(n, ψ, p)) = 1

2
F (n, ψ, p)TRF (n, ψ, p) (A.15)

with

Q = 105



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(A.16)

and

R = ∆t (A.17)

where ∆t = 0.01 is the time step length.

A.3 Results

We integrate the equations of motion using first order Euler’s method and use gradient

descent with analytical gradient (Appendix D) to solve the COP. Computation time and

final cost depending on the number of parameters p used can be seen in Table A.1. The

resulting motion for Case B can be seen in Figure A.2. The position of the cart, angle of the

pendulum and force applied to the cart can be seen in Figure A.3.
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Case Number of Computation Final
parameters p time (s) cost

A 5 11.42 478.39
B 10 122.62 392.94
C 15 345.63 362.30
D 20 395.77 358.14
E 30 555.20 355.00
F 40 759.60 351.17
G 50 1197.56 345.02

Table A.1: Computation time and final value of the cost function for different number of
parameters p.

Figure A.2: Motion described by the inverted pendulum on a cart after the optimization of
Case B.
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Figure A.3: Position of the cart, angle of the pendulum, and force applied to the cart for
Case B.
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B Parametrization Using B-splines Extended

We want to map time t to the B-spline independent variable s such that there are npar

non-zero B-splines in the range t = [t0, tf ]. We take B-splines b1(s), b2(s), b3(s), . . . , bnpar(s)

as the non-zero B-splines to use and we note that

∀j < 1 : bj(s) = 0 if s > 3 (B.18)

and

∀j > npar : bj(s) = 0 if s < npar − 2 (B.19)

Therefore, we map the range t = [t0, tf ] onto s = [3, npar−2]. To do so, we define β = npar−5

tf−t0

and compute s as s(t) = β(t− t0) + 3. The vector B(t) is now defined as

B(t) =



b1(s(t))

b2(s(t))

...

bnpar(s(t))


(B.20)

We use the chain rule to compute the time derivatives of vector B(t). Noting that ds(t)
dt

= β

we get

Ḃ(t) = β



b1′(s(t))

b2′(s(t))
...

bnpar ′(s(t))


(B.21)
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and

B̈(t) = β2



b1′′(s(t))

b2′′(s(t))
...

bnpar ′′(s(t))


(B.22)

where ′ notes derivative with respect to s.

C Computing Active Joint Torque and Passive Joint

Acceleration

In order to integrate the equations of motion and in order to compute the Lagrange cost,

we need to know the acceleration and control inputs for both active and passive joints.

The acceleration of the active joints q̈a is obtained from the use of Eigenpostures and the

function parametrization introduced in Section 2.4.1 while the control input for passive joints

up is known to be zero. We need to compute the control input for active joints ua and the

acceleration of the passive joints q̈p.

In general, the nonlinear dynamics of robot systems can be expressed as

M(q)q̈ + h(q, q̇) = u (C.23)

where q is the generalized coordinates vector, M(q) is a nq × nq symmetric positive semi-

definite matrix, h(q, q̇) is a nq× 1 vector and u is the control vector. By splitting the system
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coordinates into passive and active joints we get

Mpp Mpa

Map Maa


q̈p
q̈a

+

hp
ha

 =

up
ua

 (C.24)

where the subscripts p and a refer to passive and active joints respectively and we simplified

the notation by dropping the dependence on q and q̇ for M and h.

We first solve the top part of (C.24) for the acceleration of the passive joints

q̈p = −Mpp
−1(Mpaq̈a + hp) (C.25)

and by evaluating the lower part of (C.24) and using (C.25) we get the control input of the

active joints

ua = (Maa −MapMpp
−1Mpa)q̈a −MapMpp

−1hp + ha (C.26)

D Cost Function Gradient

In order to efficiently solve the optimization problem posed in Section 2.4.2, we analytically

compute the gradient of the cost function J(ψ, p) with respect to ψ and p. We use the chain

rule to get

∂J(ψ, p)

∂ψj
=

N∑
n=0

∂J(ψ, p)

∂x(n, ψ, p)

∂x(n, ψ, p)

∂ψj
+

N−1∑
n=0

∂J(ψ, p)

∂u(n, ψ, p)

∂u(n, ψ, p)

∂ψj
(D.27)

∂J(ψ, p)

∂pk
=

N∑
n=0

∂J(ψ, p)

∂x(n, ψ, p)

∂x(n, ψ, p)

∂pk
+

N−1∑
n=0

∂J(ψ, p)

∂u(n, ψ, p)

∂u(n, ψ, p)

∂pk
(D.28)

We will compute each term in each summation in order to get the cost function gradient.
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D.1 Partial Derivatives of the Equations of Motion

We start by computing the terms ∂x(n,ψ,p)
∂ψj

, ∂u(n,ψ,p)
∂ψj

, ∂x(n,ψ,p)
∂pk

, and ∂u(n,ψ,p)
∂pk

. Assuming Euler

integration of the equations of motion, the derivatives with respect to pk of the active and

passive joint position are

∂qp(n, ψ, p)

∂pk
=
∂qp(n− 1, ψ, p)

∂pk
+∆t

∂q̇p(n− 1, ψ, p)

∂pk
(D.29)

∂qa(n, p)

∂pk
=

i=ne∑
i=1

(ϕi − ϕ0)Bk(n) (D.30)

The derivatives with respect to pk of the active and passive joint velocity are

∂q̇p(n, ψ, p)

∂pk
=
∂q̇p(n− 1, ψ, p)

∂pk
+∆t

∂q̈p(n− 1, ψ, p)

∂pk
(D.31)

∂q̇a(n, p)

∂pk
=

i=ne∑
i=1

(ϕi − ϕ0)Ḃk(n) (D.32)

The derivatives with respect to pk of the active and passive joint acceleration are

∂q̈p(n, ψ, p)

∂pk
=
∂q̈p(n, ψ, p)

∂q(n, ψ, p)

∂q(n, ψ, p)

∂pk
+
∂q̈p(n, ψ, p)

∂q̇(n, ψ, p)

∂q̇(n, ψ, p)

∂pk
+ · · ·

· · ·+ ∂q̈p(n, ψ, p)

∂q̈a(n, p)

∂q̈a(n, p)

∂pk
+
∂q̈p(n, ψ, p)

∂ua(n, ψ, p)

∂ua(n, ψ, p)

∂pk
(D.33)

∂q̈a(n, p)

∂pk
=

i=ne∑
i=1

(ϕi − ϕ0)B̈k(n) (D.34)

where q(n, ψ, p) =

qp(n, ψ, p)
qa(n, p)

.
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The derivatives with respect to pk of the active and passive controls are

∂up(n)

∂pk
= 0 (D.35)

∂ua(n, ψ, p)

∂pk
=
∂ua(n, ψ, p)

∂q(n, ψ, p)

∂q(n, ψ, p)

∂pk
+
∂ua(n, ψ, p)

∂q̇(n, ψ, p)

∂q̇(n, ψ, p)

∂pk
+ . . .

· · ·+ ∂ua(n, ψ, p)

∂q̈(n, ψ, p)

∂q̈(n, ψ, p)

∂pk
. (D.36)

Note that taking the partial derivative of (C.24) with respect to q(n, ψ, p), q̇(n, ψ, p), q̈a(n, ψ, p),

and up(n, ψ, p) leads to

∂q̈p(n, ψ, p)

∂q(n, ψ, p)
= −∂Mpp

−1

∂q
(Mpaq̈a + hp)−Mpp

−1

(
∂Mpa

∂q
q̈a +

∂hp
∂q

)
(D.37)

∂q̈p(n, ψ, p)

∂q̇(n, ψ, p)
= −Mpp

−1∂hp
∂q̇

(D.38)

∂q̈p(n, ψ, p)

∂q̈a(n, ψ, p)
= −Mpp

−1Mpa (D.39)

∂q̈p(n, ψ, p)

∂up(n, ψ, p)
=Mpp

−1 (D.40)

∂ua(n, ψ, p)

∂q(n, ψ, p)
=− ∂Mpa

∂q
Mpp

−1(Mpaq̈a + hp)−Mpa
∂Mpp

−1

∂q
(Mpaq̈a + hp)− . . .

· · · −MpaMpp
−1

(
∂Mpa

∂q
q̈a +

∂hp
∂q

)
+
∂Maa

∂q
q̈a +

∂ha
∂q

(D.41)

∂ua(n, ψ, p)

∂q̇(n, ψ, p)
= −MpaMpp

−1∂hp
∂q̇

+
∂ha
∂q̇

(D.42)
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∂ua(n, ψ, p)

∂q̈a(n, p)
= −MpaMpp

−1Map +Maa (D.43)

Using equations (D.29) to (D.43) it is possible to recursively compute ∂q(n,ψ,p)
∂pk

, ∂q̇(n,ψ,p)
∂pk

,

∂q̈(n,ψ,p)
∂pk

and ∂u(n,ψ,p)
∂pk

for any n and any k.

In order to compute the partial derivatives with respect to ψj we proceed analogously but

changing pk with ψj. The major difference being

∂qa(n, p)

∂ψj
= 0 (D.44)

∂q̇a(n, p)

∂ψj
= 0 (D.45)

∂q̈a(n, p)

∂ψj
= 0 (D.46)

for any n and any j.

With this information we can compute the terms ∂x(n,ψ,p)
∂ψj

, ∂u(n,ψ,p)
∂ψj

, ∂x(n,ψ,p)
∂pk

, and ∂u(n,ψ,p)
∂pk

,

for any n, j, and k.

D.2 Partial Derivatives of the Cost Function

These partial derivatives are dependent on the Mayer cost Φ(x(0, ψ, p), x(N,ψ, p)) and the

Lagrange cost L(x(n, ψ, p), u(n, ψ, p), n). We need to evaluate

∂Φ(x(0, ψ, p), x(N,ψ, p))

∂x(n, ψ, p)
(D.47)
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which is non-zero for n = 0 and n = N only, and

∂L(x(n, ψ, p), u(n, ψ, p), n)
∂x(n, ψ, p)

(D.48)

∂L(x(n, ψ, p), u(n, ψ, p), n)
∂u(n, ψ, p)

(D.49)

which are non-zero for n = 0, 1, . . . , N − 1.

The expressions for ∂J(ψ,p)
∂x(n,ψ,p)

and ∂J(ψ,p)
∂u(n,ψ,p)

are

∂J(ψ, p)

∂x(n, ψ, p)
=
∂Φ(x(0, ψ, p), x(N,ψ, p))

∂x(n, ψ, p)
+ ∆t

∂L(x(n, ψ, p), u(n, ψ, p), n)
∂x(n, ψ, p)

(D.50)

∂J(ψ, p)

∂u(n, ψ, p)
= ∆t

∂L(x(n, ψ, p), u(n, ψ, p), n)
∂u(n, ψ, p)

(D.51)

E Implementation of Integration Schemes for Rigid

Body Dynamics

We show in this Appendix pseudo-code implementations of the algorithms introduced in

Section 5.2 for rigid body dynamics. We will assume throughout this Appendix that position

(rn), orientation (Rn), velocity (vn), angular velocity (ωn), total force applied to the rigid

body (Fn), and total torque about the center of mass (Mn), are known up to step n; that the

time step is ∆t; and that acceleration (a) and angular acceleration (α) can be computed as

a function of position, orientation, velocity, and angular velocity and are known up to step

n− 1. Acceleration and angular acceleration are computed as

 a

α

 = f(r, R, v, ω) (E.52)
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We also assume the existence of a function rodrigues that takes a vector ν and returns a

rotation matrix corresponding to a rotation of angle ∥ν∥ about axis ν
∥ν∥ . The intention is

to use the algorithms to compute position (rn+1), orientation (Rn+1), velocity (vn+1), and

angular velocity (ωn+1), at the next time step (n+ 1).

E.1 Euler’s Method

See Algorithm 5.

Algorithm 5 Euler’s method implementation for rigid body dynamics. This implementation
is first order accurate.
Require: rn, Rn, vn, ωn

Compute linear and angular acceleration
1: (an, αn)← f(rn, Rn, vn, ωn)

Integrate
2: rn+1 ← rn + vn∆t
3: Rs ← rodrigues(ωn∆t)
4: Rn+1 ← RsRn

5: vn+1 ← vn + an∆t
6: ωn+1 ← ωn + αn∆t

Semi-Implicit Euler

See Algorithm 6.

E.2 Störmer-Verlet

See Algorithm 7.
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Algorithm 6 Semi-implicit Euler implementation for rigid body dynamics. This implemen-
tation is first order accurate.
Require: rn, Rn, vn, ωn

Compute linear and angular acceleration
1: (an, αn)← f(rn, Rn, vn, ωn)

Integrate velocities
2: vn+1 ← vn + an∆t
3: ωn+1 ← ωn + αn∆t

Integrate position and orientation
4: rn+1 ← rn + vn+1∆t
5: Rs ← rodrigues(ωn+1∆t)
6: Rn+1 ← RsRn

Algorithm 7 Störmer-Verlet implementation for rigid body dynamics. In the general case,
this implementation is first order accurate. In the case of a ballistic motion, the velocity
updates carry no error and this implementation is second order accurate. In other cases, one
can use a second order integrator for the velocity update in order to make this implementation
second order accurate.
Require: rn, Rn, vn, ωn,Mn, Ln

Compute linear and angular acceleration
1: (an, αn)← f(rn, Rn, vn, ωn)

Compute leapfrogged angular velocity
2: ωn− 1

2
← 1

2
(ωn + ωn−1)

Integrate position and orientation
3: rn+1 = 2rn − rn−1 + an∆t

2

4: Rs ← rodrigues((ωn− 1
2
+ αn∆t)∆t)

5: Rn+1 = RsRn

Integrate velocities
6: vn+1 ← vn + an∆t
7: Ln+1 ← Ln +Mn∆t
8: ωn+1 ← I−1

n+1Ln+1
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E.3 Runge-Kutta Methods

See Algorithms 8, 9, and 10.

Midpoint Method

See Algorithm 8.

Algorithm 8 Midpoint method implementation for rigid body dynamics. This implemen-
tation is second order accurate.
Require: rn, Rn, vn, ωn

Compute first set of coefficients
1: r̃1 ← rn
2: R̃1 ← Rn

3: ṽ1 ← vn
4: ω̃1 ← ωn
5: (ã1, α̃1)← f(rn, Rn, vn, ωn)

Compute second set of coefficients
6: r̃2 ← rn +

1
2
ṽ1∆t

7: R̃2 ← rodrigues(1
2
ω̃1∆t)Rn

8: ṽ2 ← vn +
1
2
ã1∆t

9: ω̃2 ← ωn +
1
2
α̃1∆t

10: (ã2, α̃2)← f(r̃2, R̃2, ṽ2, ω̃2)

Integrate
11: rn+1 ← rn + ṽ2∆t
12: Rs ← rodrigues(ω̃2∆t)
13: Rn+1 ← RsRn

14: vn+1 ← vn + ã2∆t
15: ωn+1 ← ωn + α̃2∆t

Heun’s Method

See Algorithm 9.
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Algorithm 9 Heun’s method implementation for rigid body dynamics. This implementation
is second order accurate.
Require: rn, Rn, vn, ωn

Compute first set of coefficients
1: r̃1 ← rn
2: R̃1 ← Rn

3: ṽ1 ← vn
4: ω̃1 ← ωn
5: (ã1, α̃1)← f(rn, Rn, vn, ωn)

Compute second set of coefficients
6: r̃2 ← rn + ṽ1∆t
7: R̃2 ← rodrigues(ω̃1∆t)Rn

8: ṽ2 ← vn + ã1∆t
9: ω̃2 ← ωn + α̃2∆t
10: (ã2, α̃2)← f(r̃2, R̃2, ṽ2, ω̃2)

Integrate
11: rn+1 ← rn +

1
2
(ṽ1 + ṽ2)∆t

12: Rs ← rodrigues(1
2
(ω̃1 + ω̃2)∆t)

13: Rn+1 ← RsRn

14: vn+1 ← vn +
1
2
(ã1 + ã2)∆t

15: ωn+1 ← ωn +
1
2
(α̃1 + α̃2)∆t
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Fourth Order Runge-Kutta Method

See Algorithm 10.

E.4 Linear Multistep Methods

See Algorithms 11 and 12.

Two-Step Adams-Bashforth

See Algorithm 11.

Four-Step Adams-Bashforth

See Algorithm 12.

E.5 Semi-Implicit Linear Multistep Methods

See Algorithms 13 and 14.

Two-Step Semi-Implicit Adams-Bashforth-Moulton

See Algorithm 13.

Four-Step Semi-implicit Adams-Bashforth-Moulton

See Algorithm 14.
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Algorithm 10 Fourth order Runge-Kutta method implementation for rigid body dynamics.
Despite the name, this implementation is second order accurate [8]. See Algorithm 16 for an
implementation of a similar algorithm with fourth order accuracy.

Require: rn, Rn, vn, ωn

Compute first set of coefficients
1: r̃1 ← rn
2: R̃1 ← Rn

3: ṽ1 ← vn
4: ω̃1 ← ωn
5: (ã1, α̃1)← f(rn, Rn, vn, ωn)

Compute second set of coefficients
6: r̃2 ← rn +

1
2
ṽ1∆t

7: R̃2 ← rodrigues(1
2
ω̃1∆t)Rn

8: ṽ2 ← vn +
1
2
ã1∆t

9: ω̃2 ← ωn +
1
2
α̃2∆t

10: (ã2, α̃2)← f(r̃2, R̃2, ṽ2, ω̃2)

Compute third set of coefficients
11: r̃3 ← rn +

1
2
ṽ2∆t

12: R̃3 ← rodrigues(1
2
ω̃2∆t)Rn

13: ṽ3 ← vn +
1
2
ã2∆t

14: ω̃3 ← ωn +
1
2
α̃2∆t

15: (ã3, α̃3)← f(r̃2, R̃2, ṽ2, ω̃2)

Compute fourth set of coefficients
16: r̃4 ← rn + ṽ3∆t
17: R̃4 ← rodrigues(ω̃3∆t)Rn

18: ṽ4 ← vn + ã3∆t
19: ω̃4 ← ωn + α̃3∆t
20: (ã4, α̃4)← f(r̃3, R̃3, ṽ3, ω̃3)

Integrate
21: rn+1 ← rn +

1
6
(ṽ1 + 2ṽ2 + 2ṽ3 + ṽ4)∆t

22: Rs ← rodrigues(1
6
(ω̃1 + 2ω̃2 + 2ω̃3 + ω̃4)∆t)

23: Rn+1 ← RsRn

24: vn+1 ← vn +
1
6
(ã1 + 2ã2 + 2ã3 + ã4)∆t

25: ωn+1 ← ωn +
1
6
(α̃1 + 2α̃2 + 2α̃3 + α̃4)∆t
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Algorithm 11 Two-step Adams-Bashforth implementation for rigid body dynamics. This
implementation is second order accurate.

Require: rn, Rn, vn, ωn, vn−1, ωn−1, an−1, αn−1

Compute linear and angular acceleration
1: (an, αn)← f(rn, Rn, vn, ωn)

Integrate
2: rn+1 ← rn +

(
3
2
vn − 1

2
vn−1

)
∆t

3: Rs ← rodrigues
((

3
2
ωn − 1

2
ωn−1

)
∆t
)

4: Rn+1 ← RsRn

5: vn+1 ← vn +
(
3
2
an − 1

2
an−1

)
∆t

6: ωn+1 ← ωn +
(
3
2
αn − 1

2
αn−1

)
∆t

Algorithm 12 Four-step Adams-Bashforth implementation for rigid body dynamics. We
have empirically assessed this implementation to be second order accurate (see Section 7.2).

Require: rn, Rn, vn, ωn, vn−1, ωn−1, an−1, αn−1, vn−2, ωn−2, an−2, αn−2, vn−3, ωn−3, an−3, αn−3

Compute linear and angular acceleration
1: (an, αn)← f(rn, Rn, vn, ωn)

Integrate
2: rn+1 ← rn +

(
55
24
vn − 59

24
vn−1 +

37
24
vn−2 − 3

8
vn−3

)
∆t

3: Rs ← rodrigues
((

55
24
ωn − 59

24
ωn−1 +

37
24
ωn−2 − 3

8
ωn−3

)
∆t
)

4: Rn+1 ← RsRn

5: vn+1 ← vn +
(
55
24
an − 59

24
an−1 +

37
24
an−2 − 3

8
an−3

)
∆t

6: ωn+1 ← ωn +
(
55
24
αn − 59

24
αn−1 +

37
24
αn−2 − 3

8
αn−3

)
∆t
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Algorithm 13 Two-step semi-implicit Adams-Bashforth-Moulton implementation for rigid
body dynamics. This implementation is second order accurate.

Require: rn, Rn, vn, ωn, an−1, αn−1

Compute linear and angular acceleration
1: (an, αn)← f(rn, Rn, vn, ωn)

Integrate velocities
2: vn+1 ← vn +

(
3
2
an − 1

2
an−1

)
∆t

3: ωn+1 ← ωn +
(
3
2
αn − 1

2
αn−1

)
∆t

Integrate position and orientation
4: rn+1 ← rn +

(
1
2
vn+1 +

1
2
vn
)
∆t

5: Rs ← rodrigues
((

1
2
ωn+1 +

1
2
ωn
)
∆t
)

6: Rn+1 ← RsRn

Algorithm 14 Four-step semi-implicit Adams-Bashforth-Moulton implementation for rigid
body dynamics. We have empirically assessed this implementation to be second order accu-
rate (see Section 7.2).

Require: rn, Rn, vn, ωn, vn−1, ωn−1, an−1, αn−1, vn−2, ωn−2, an−2, αn−2, an−3, αn−3

Compute linear and angular acceleration
1: (an, αn)← f(rn, Rn, vn, ωn)

Integrate velocities
2: vn+1 ← vn +

(
55
24
an − 59

24
an−1 +

37
24
an−2 − 3

8
an−3

)
∆t

3: ωn+1 ← ωn +
(
55
24
αn − 59

24
αn−1 +

37
24
αn−2 − 3

8
αn−3

)
∆t

Integrate position and orientation
4: rn+1 ← rn +

(
3
8
vn+1 +

19
24
vn − 5

24
vn−1 +

1
24
vn−2

)
∆t

5: Rs ← rodrigues
((

3
8
ωn+1 − 19

24
ωn − 5

24
ωn−1 +

1
24
ωn−2

)
∆t
)

6: Rn+1 ← RsRn
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E.6 Rotation Integrators

See Algorithms 15 and 16

Buss’s Augmented Second Order

See Algorithm 15.

Algorithm 15 Buss’s augmented second order method implementation for rigid body dy-
namics. This implementation uses a two-step Adams-Bashforth velocity and angular mo-
mentum update in order to achieve second order accuracy. Note that in the case of a ballistic
motion, the velocity updates carry no error making the use of the Adams-Bashforth update
unnecessary.

Require: rn, Rn, vn, ωn, Ln,Mn, an−1,Mn−1

Compute linear and angular acceleration
1: (an, αn)← f(rn, Rn, vn, ωn)

Integrate position and orientation
2: rn+1 = rn + vn∆t+

1
2
an∆t

2

3: Rs ← rodrigues(ωn∆t+
1
2
αn∆t

2 + 1
12
(αn × ωn)∆t3)

4: Rn+1 ← RsRn

Integrate velocities
5: vn+1 ← vn + (3

2
an − 1

2
an−1)∆t

6: Ln+1 ← Ln + (3
2
Mn − 1

2
Mn−1)∆t

7: ωn+1 ← I−1
n+1Ln+1

Runge-Kutta-Munthe-Kaas

See Algorithm 16.
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Algorithm 16 Runge-Kutta-Munthe-Kaas [43] and fourth order Runge-Kutta method im-
plementation for rigid body dynamics. This implementation is fourth order accurate.

Require: rn, Rn, vn, ωn

Compute first set of coefficients
1: r̃1 ← rn
2: R̃1 ← Rn

3: ṽ1 ← vn
4: ω̃1 ← ωn
5: (ã1, α̃1)← f(rn, Rn, vn, ωn)

Compute second set of coefficients
6: r̃2 ← rn +

1
2
ṽ1∆t

7: R̃2 ← rodrigues(1
2
ω̃1∆t)Rn

8: ṽ2 ← vn +
1
2
ã1∆t

9: ω̃2 ← ωn +
1
2
α̃2∆t

10: (ã2, α̃2)← f(r̃2, R̃2, ṽ2, ω̃2)

Compute third set of coefficients
11: r̃3 ← rn +

1
2
ṽ2∆t

12: R̃3 ← rodrigues(1
2
ω̃2∆t− 1

8
(ω̃1∆t× ω̃2∆t))Rn

13: ṽ3 ← vn +
1
2
ã2∆t

14: ω̃3 ← ωn +
1
2
α̃2∆t

15: (ã3, α̃3)← f(r̃2, R̃2, ṽ2, ω̃2)

Compute fourth set of coefficients
16: r̃4 ← rn + ṽ3∆t
17: R̃4 ← rodrigues(ω̃3∆t)Rn

18: ṽ4 ← vn + ã3∆t
19: ω̃4 ← ωn + α̃3∆t
20: (ã4, α̃4)← f(r̃3, R̃3, ṽ3, ω̃3)

Integrate
21: rn+1 ← rn +

1
6
(ṽ1 + 2ṽ2 + 2ṽ3 + ṽ4)∆t

22: Rs ← rodrigues(1
6
((ω̃1 + 2ω̃2 + 2ω̃3 + ω̃4)∆t− 1

2
(ω̃1∆t× ω̃4∆t)

23: Rn+1 ← RsRn

24: vn+1 ← vn +
1
6
(ã1 + 2ã2 + 2ã3 + ã4)∆t

25: ωn+1 ← ωn +
1
6
(α̃1 + 2α̃2 + 2α̃3 + α̃4)∆t
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G 3× 3 Costate Grid Update Procedure

We use initial and final grids that consist of the following pairs of λ1 and λ3 values

Λ0 =


(λ10 − δλ10, λ30 − δλ30) (λ10 − δλ10, λ30) (λ10 − δλ10, λ30 + δλ30)

(λ10, λ30 − δλ30) (λ10, λ30) (λ10, λ30 + δλ30)

(λ10 + δλ10, λ30 − δλ30) (λ10 + δλ10, λ30) (λ10 + δλ10, λ30 + δλ30)

 (G.62)

Λf =


(λ1f − δλ1f , λ3f − δλ3f ) (λ1f − δλ1f , λ3f ) (λ1f − δλ1f , λ3f + δλ3f )

(λ1f , λ3f − δλ3f ) (λ1f , λ3f ) (λ1f , λ3f + δλ3f )

(λ1f + δλ1f , λ3f − δλ3f ) (λ1f + δλ1f , λ3f ) (λ1f + δλ1f , λ3f + δλ3f )

 (G.63)

respectively. The center of each grid Λ0 and Λf correspond to points (λ10, λ30) and (λ1f , λ3f )

with the rest of the points being offset by δλ10, δλ30, δλ1f , and δλ3f . Each point in each

grid, Λ0ij and Λfkl, will result in propagated points p+ij(tm) and p
−
kl(tm), respectively.

We compute the mismatch using (9.12) for each combination of i, j, k, and l. If the com-

bination with the smallest mismatch satisfies i = j = 2 we shrink Λ0 while maintaining the

central point by using δ10 ← δ10
2

and δ30 ← δ30
2
. Analogously, if k = l = 2, we use δ1f ← δ1f

2

and δ3f ← δ3f
2
. In the other cases (i ̸= 2 ∨ j ̸= 2, or k ̸= 2 ∨ l ̸= 2) we shift the grid making

point Λ0ij the center of the grid Λ0 and point Λfkl the center of Λf . For instance, let’s assume

that the combination with the minimum mismatch satisfies i = j = 3, we would update Λ0

to

Λ0 =


(λ10, λ30) (λ10, λ30 + δλ30) (λ10, λ30 + 2δλ30)

(λ10 + δλ10, λ30) (λ10 + δλ10, λ30 + δλ30) (λ10 + δλ10, λ30 + 2δλ30)

(λ10 + 2δλ10, λ30) (λ10 + 2δλ10, λ30 + δλ30) (λ10 + 2δλ10, λ30 + 2δλ30)

 (G.64)

Note how what used to be point Λ033 is now the center of the grid but the spacing between

the points has been maintained. We proceed analogously for the final grid Λf .

132



H Matlab Code to Generate Symbolic Equations for

the Two-Link Robot Arm

clear ;

clc ;

c r e a t eM f i l e s = f a l s e ; % Set to t rue to c r ea t e m− f i l e s wi th de r i v ed r e s u l t s

%% System parameters

% syms m1 m2 IG1 IG2 L1 L2 c1 c2 C

% assume ( [m1 m2 IG1 IG2 L1 L2 c1 c2 C] , ’ rea l ’ ) ;

% assumeAlso ( [m1 m2 IG1 IG2 L1 L2 c1 c2 C] > 0 ) ;

m1 = 0 . 5 ;

m2 = 0 . 5 ;

c1 = 0 . 2 ;

c2 = 0 ;

L1 = 2 ;

L2 = 0 . 5 ;

IG1 = m1∗L1ˆ2/12 ;

IG2 = m2∗L2ˆ2/12 ;

syms th1 th2 th1d th2d th1dd th2dd u1 u2

assume ( [ th1 th2 th1d th2d th1dd th2dd u1 u2 ] , ’ r e a l ’ ) ;

%% Equations o f Motion

% F i r s t pendulum

QP1 = [ L1∗cos ( th1 ) ;
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L1∗ sin ( th1 ) ] ;

QG1 = QP1/2

vG1 = d i f f (QG1, th1 )∗ th1d

nvG1 = s imp l i f y ( sqrt (vG1(1)ˆ2 + vG1(2 ) ˆ2 ) )

T1 = 0.5∗m1∗nvG1ˆ2 + 0.5∗ IG1∗ th1dˆ2

V1 = sym(0)

% Second pendulum

P1P2 = [ L2∗cos ( th1 + th2 ) ;

L2∗ sin ( th1 + th2 ) ]

uP1P2perp = s imp l i f y ( (1/ sqrt (P1P2 . ’∗P1P2))∗ [−P1P2 ( 2 ) ;

P1P2 ( 1 ) ] ) ;

QG2 = QP1 + P1P2/2

vG2 = d i f f (QG2, th1 )∗ th1d + d i f f (QG2, th2 )∗ th2d

nvG2 = s imp l i f y ( sqrt (vG2(1)ˆ2 + vG2(2 ) ˆ2 ) )

T2 = 0.5∗m2∗nvG2ˆ2 + 0.5∗ IG2∗( th1d + th2d )ˆ2

V2 = sym(0)

% Lagrangian

T = T1 + T2

V = V1 + V2

L = T − V

DLDth1d = s imp l i f y ( d i f f (L , th1d ) )
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DDLDth1dDt = d i f f (DLDth1d , th1 )∗ th1d + d i f f (DLDth1d , th2 )∗ th2d + . . .

d i f f (DLDth1d , th1d )∗ th1dd + d i f f (DLDth1d , th2d )∗ th2dd

DLDth1 = s imp l i f y ( d i f f (L , th1 ) )

DLDth2d = s imp l i f y ( d i f f (L , th2d ) )

DDLDth2dDt = d i f f (DLDth2d , th1 )∗ th1d + d i f f (DLDth2d , th2 )∗ th2d + . . .

d i f f (DLDth2d , th1d )∗ th1dd + d i f f (DLDth2d , th2d )∗ th2dd

DLDth2 = s imp l i f y ( d i f f (L , th2 ) )

i f c r e a t eM f i l e s

matlabFunction (T, ’ F i l e ’ , ’ k ine t i cEnergy ’ ) ;

matlabFunction (V, ’ F i l e ’ , ’ potent ia lEnergy ’ ) ;

matlabFunction (L , ’ F i l e ’ , ’ l ag rang ian ’ ) ;

end

%% Dynamics

syms x1 x2 x3 x4

assume ( [ x1 x2 x3 x4 ] , ’ r e a l ’ ) ;

th1 = x1 ;

th2 = x2 ;

th1d = x3 ;

th2d = x4 ;

DDLDth1dDt = subs (DDLDth1dDt ) ;

DLDth1 = subs (DLDth1 ) ;

DDLDth2dDt = subs (DDLDth2dDt ) ;

DLDth2 = subs (DLDth2 ) ;
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x1d = x3 ;

x2d = x4 ;

[ x3d , x4d ] = so l v e (DDLDth1dDt − DLDth1 == u1 − c1∗th1d , . . .

DDLDth2dDt − DLDth2 == u2 − c2∗th2d , th1dd , th2dd ) ;

xd = s imp l i f y ( [ x1d ;

x2d ;

x3d ;

x4d ] ) ;

xd = s imp l i f y ( subs ( xd ) )

i f c r e a t eM f i l e s

matlabFunction (xd , ’ F i l e ’ , ’ fxu ’ ) ;

end

%% Pontryagin

syms l 1 l 2 l 3 l 4

assume ( [ l 1 l 2 l 3 l 4 ] , ’ r e a l ’ ) ;

g1 = 1 ;

g2 = 0 . 5 ;

% Lagrange co s t

L = 0.5∗ g1∗u1ˆ2 + 0.5∗ g2∗u2ˆ2

% Hamiltonian

l = [ l 1 ;

l 2 ;
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l 3 ;

l 4 ] ;

H = s imp l i f y ( l . ’∗ xd + L)

% Costate dynamics

ld = s imp l i f y ([− d i f f (H, x1 ) ;

−d i f f (H, x2 ) ;

−d i f f (H, x3 ) ;

−d i f f (H, x4 ) ] )

% Optimal c on t r o l

[ u1 , u2 ] = so l v e ( d i f f (H, u1 ) == 0 , d i f f (H, u2 ) == 0 , u1 , u2 )

i f c r e a t eM f i l e s

matlabFunction (L , ’ F i l e ’ , ’ LagrangeCost ’ ) ;

matlabFunction (H, ’ F i l e ’ , ’ hami l tonian ’ ) ;

matlabFunction ( ld , ’ F i l e ’ , ’ gxlu ’ ) ;

matlabFunction (u1 , u2 , ’ F i l e ’ , ’ opt imalContro l ’ ) ;

end

%% State−c o s t a t e dynamics

syms p1 p2 p3 p4 p5 p6 p7 p8

assume ( [ p1 p2 p3 p4 p5 p6 p7 p8 ] , ’ r e a l ’ ) ;

x1 = p1 ;

x2 = p2 ;

x3 = p3 ;

137



x4 = p4 ;

l 1 = p5 ;

l 2 = p6 ;

l 3 = p7 ;

l 4 = p8 ;

xd = subs ( xd ) ;

ld = subs ( ld ) ;

xd = subs ( xd ) ; % Repeat , to avoid v a r i a b l e s not subbed .

ld = subs ( ld ) ;

pd = [ xd ;

ld ]

i f c r e a t eM f i l e s

matlabFunction (pd , ’ F i l e ’ , ’ stateCostateDynamics ’ ) ;

end

%% Linear i z ed dynamics

D = sym( zeros ( 8 ) ) ;

for i = 1 :8

for j = 1 :8

D( i , j ) = d i f f (pd( i ) , eval ( [ ’ p ’ , num2str( j ) ] ) ) ;

end

end

D = s imp l i f y (D)

i f c r e a t eM f i l e s
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matlabFunction (D, ’ F i l e ’ , ’ l inear izedDynamicsMatr ix ’ ) ;

end
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