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Image Parsing: Unifying Segmentation,
Detection, and Recognition

Zhuowen Tu, Xiangrong Chen, Alan Yuille, and Song Chun Zhu

Department of Statistics, UCLA. Los Angeles, CA 90095. USA
{ztu,xrchen,yuille,sczhu}@stat.ucla.edu

Abstract. In this chapter we present a Bayesian framework for pars-
ing images into their constituent visual patterns. The parsing algorithm
optimizes the posterior probability and outputs a scene representation
as a “parsing graph”, in a spirit similar to parsing sentences in speech
and natural language. The algorithm constructs the parsing graph and
re-configures it dynamically using a set of moves, which are mostly re-
versible Markov chain jumps. This computational framework integrates
two popular inference approaches – generative (top-down) methods and
discriminative (bottom-up) methods. The former formulates the pos-
terior probability in terms of generative models for images defined by
likelihood functions and priors. The latter computes discriminative prob-
abilities based on a sequence (cascade) of bottom-up tests/filters. In our
Markov chain algorithm design, the posterior probability, defined by the
generative models, is the invariant (target) probability for the Markov
chain, and the discriminative probabilities are used to construct pro-
posal probabilities to drive the Markov chain. Intuitively, the bottom-up
discriminative probabilities activate top-down generative models. In this
chapter, we focus on two types of visual patterns – generic visual pat-
terns, such as texture and shading, and object patterns including human
faces and text. These types of patterns compete and cooperate to explain
the image and so image parsing unifies image segmentation, object detec-
tion, and recognition (if we use generic visual patterns only then image
parsing will correspond to image segmentation [48].). We illustrate our
algorithm on natural images of complex city scenes and show examples
where image segmentation can be improved by allowing object specific
knowledge to disambiguate low-level segmentation cues, and conversely
where object detection can be improved by using generic visual patterns
to explain away shadows and occlusions.

1 Introduction

1.1 Objectives of Image Parsing

We define image parsing to be the task of decomposing an image I into its
constituent visual patterns. The output is represented by a hierarchical graph
W — called the “parsing graph”. The goal is to optimize the Bayesian posterior
probability p(W |I). Figure 1 illustrates a typical example where a football scene
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is first divided into three parts at a coarse level: a person in the foreground,
a sports field, and the spectators. These three parts are further decomposed
into nine visual patterns in the second level: a face, three texture regions, some
text, a point process (the band on the field), a curve process (the markings on
the field), a color region, and a region for nearby people. In principle, we can
continue decomposing these parts until we reach a resolution limit (e.g. there is
not sufficient resolution to detect the blades of grass on the sports field). The
parsing graph is similar in spirit to the parsing trees used in speech and natural
language processing [33] except that it can include horizontal connections (see
the dashed curves in Figure 1) for specifying spatial relationships and boundary
sharing between different visual patterns.

a football match scene

texture

text

face

person

color region

curve groups
texture

sports field spectator

texture

persons

point process

Fig. 1. Image parsing example. The parsing graph is hierarchical and combines gen-
erative models (downward arrows) with horizontal connections (dashed lines), which
specify spatial relationships between the visual patterns. See Figure 4 for a more ab-
stract representation including variables for the node attributes.

As in natural language processing, the parsing graph is not fixed and depends
on the input image(s). An image parsing algorithm must construct the parsing
graph on the fly1. Our image parsing algorithm consists of a set of reversible
Markov chain jumps [21] with each type of jump corresponding to an operator
for reconfiguring the parsing graph (i.e. creating or deleting nodes or changing
the values of node attributes). These jumps combine to form an ergodic and
reversible Markov chain in the space of possible parsing graphs. The Markov

1 Unlike most graphical inference algorithms in the literature which assume fixed
graphs, such as belief propagation [58].



Lecture Notes in Computer Science 3

chain probability is guaranteed to converges to the invariant probability p(W |I)
and the Markov chain will simulate fair samples from this probability.2. Our
approach is built on previous work on Data-Driven Markov Chain Monte Carlo
(DDMCMC) for recognition [61], segmentation [48], grouping [49] and graph
partitioning [1, 2].

Image parsing seeks a full generative explanation of the input image in terms
of generative models, p(I|W ) and p(W ), for the diverse visual patterns which
occur in natural images, see Figure 1. This differs from standard approaches
to computer vision tasks — such as segmentation, grouping, and recognition –
which usually involve isolated vision modules which only explain different parts
(or aspects) of the image. The image parsing approach enables these different
modules to cooperate and compete to give a consistent interpretation of the
entire image.

The integration of visual modules is of increasing importance as progress
on the individual modules starts approaching performance ceilings. In partic-
ular, work on segmentation [45, 48, 17] and edge detection [26, 8] has reached
performance levels where there seems little room for improvement when only
low-level cues are used. For example, the segmentation failures in Figure 2 can
only be resolved by combining segmentation with object detection and recog-
nition. Combining these cues is made easier because of recent successful work
on the detection and recognition of objects [30, 56, 42, 4, 55, 57] and the classifi-
cation of natural scenes [3, 39] using, broadly speaking, discriminative methods
based on local bottom-up tests.

But combining different visual modules requires a common framework which
ensures consistency. Despite the effectiveness of discriminative methods for com-
puting scene components, such as object labels and categories, they can also
generate redundant and conflicting results. Mathematicians have argued [6] that
discriminative methods must be followed by more sophisticated processes to (i)
remove false alarms, (ii) amend missing objects by global context information,
and (iii) reconcile conflicting (overlapping) explanations through model compar-
ison. In this chapter, we impose such processes by using generative models for
the entire image.

As we will show, our image parsing algorithm is able to integrate discrimi-
native and generative methods so as to take advantage of their complementary
strengths. Moreover, we can couple modules such as segmentation and object
detection by our choice of the set of visual patterns used to parse the image.
In this chapter, we focus on two types of patterns: – generic visual patterns for
low/middle level vision, such as texture and shading, and object patterns for
high level vision, such as frontal human faces and text.

These two types of patterns illustrate different ways in which the parsing
graph can be constructed (see Figure 16 and the related discussion). The object
patterns (face and text) have comparatively little variability so they can often

2 For many natural images the posterior probabilities P (W |I) are strongly peaked
and so fair samples are close to the posterior maximum arg maxW P (W |I). So in
this chapter we do not distinguish between sampling and inference (optimization).
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/
a. Input image b. Segmentation c. Synthesized image d. Manual segmentation

Fig. 2. Examples of image segmentation failure by an algorithm [48] which uses only
generic visual patterns (i.e. only low-level visual cues). The results (b) show that low-
level visual cues are not sufficient to obtain good intuitive segmentations. The limi-
tations of using only generic visual patterns are also clear in the synthesized images
(c) which are obtained by stochastic sampling from the generative models after the
parameters have been estimated by DDMCMC. The right panels (d) show the seg-
mentations obtained by human subjects who, by contrast to the algorithm, appear
to use object specific knowledge when doing the segmentation (though they were not
instructed to) [35]. We conclude that to achieve good segmentation on these types of
images requires combining segmentation with object detection and recognition.

be effectively detected as a whole by bottom-up tests and their parts can be
located subsequentially. Thus their parsing sub-graphs can be constructed in a
“decompositional” manner from whole to parts. By contrast, a generic texture
region has arbitrary shape and its intensity pattern has high entropy. Detecting
such a region by bottom-up tests will require an enormous number of tests
to deal with all this variability, and so will be computationally impractical.
Instead, the parsing subgraphs should be built by grouping small elements in a
“compositional” manner [5].

We illustrate our algorithm on natural images of complex city scenes and
give examples where image segmentation can be improved by allowing object
specific knowledge to disambiguate low-level cues, and conversely object detec-
tion can be improved by using generic visual patterns to explain away shadows
and occlusions.

This chapter is structured as follows. In Section (2), we give an overview
of the image parsing framework and discuss its theoretical background. Then
in Section (3), we describe the parsing graph and the generative models used
for generic visual patterns, text, and faces. In Section (4) we give the control
structure of the image parsing algorithm. Section (5) gives details of the com-
ponents of the algorithm and show how AdaBoost can be used to get proposals
for detecting objects such as text and faces. In Section (6) we present experi-
mental results. Section (7) addresses some open problems in further developing
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the image parser as a general inference engine. We summarize the chapter in
Section (8).

2 Overview of Image Parsing Framework

2.1 Bottom-Up and Top-Down Processing

A major element of our work is to integrate discriminative and generative meth-
ods for inference. In the recent computer vision literature, top-down and bottom-
up procedures can be broadly categorized into two popular inference paradigms
– generative methods for “top-down” and discriminative methods for “bottom-
up”, illustrated in Figure 3. From this perspective, integrating generative and dis-
criminative models is equivalent to combining bottom-up and top-down process-
ing3.

The role of bottom-up and top-down processing in vision has been often dis-
cussed. There is growing experimental evidence (see [46, 28]) that humans can
perform high level scene and object categorization tasks as fast as low level tex-
ture discrimination and other so-called pre-attentive vision tasks. This suggests
that humans can detect both low and high level visual patterns at early stages in
visual processing. It contrasts with traditional bottom-up feedforward architec-
tures [34] which start with edge detection, followed by segmentation/grouping,
before proceeding to object recognition and other high-level vision tasks. These
experiments also relate to long standing conjectures about the role of the bottom-
up/top-down loops in the visual cortical areas [38, 54], visual routines and path-
ways [53], the binding of visual cues [47], and neural network models such as
the Helmholtz machine [14]. But although combining bottom-up and top-down
processing is clearly important, there has not yet been a rigorous mathematical
framework for how to achieve it.

In this chapter, we combine generative and discriminative approaches to de-
sign an DDMCMC algorithm which uses discriminative methods to perform
rapid inference of the parameters of generative models. From a computer vi-
sion perspective, DDMCMC combines bottom-up processing, implemented by
the discriminative models, together with top-down processing by the generative
models. The rest of this section gives an overview of our approach.

2.2 Generative and Discriminative Methods

Generative methods specify how the image I is generated from the scene repre-
sentation W ∈ Ω. It combines a prior p(W ) and a likelihood function p(I|W )
to give a joint posterior probability p(W |I). These can be expressed as proba-
bilities on graphs, where the input image I is represented on the leaf nodes and
W denotes the remaining nodes and node attributes of the graph. The structure
3 Recently the term ”discriminative model” has been extended to cover almost any

approximation to the posterior distribution P (W |I), e.g. Kumar and Hebert [27].
We will use “discriminative model” in its traditional sense of categorization.
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of the graph, and in particular the number of nodes, is unknown and must be
estimated for each input image.

To perform inference using generative methods requires estimating W ∗ =
arg max P (W |I). This is often computationally demanding because there are
usually no known efficient inference algorithms (certainly not for the class of
P (W |I) studied in this chapter).

In this chapter, we will perform inference by stochastic sampling W from the
posterior:

W ∼ p(W |I) ∝ p(I|W )p(W ). (1)

This enables us to estimate W ∗ = arg maxP (W |I). Stochastic sampling is
attractive because it is a general technique that can be applied to any inference
problem. Moreover, it generate samples that can be used to validate the model
assumptions. But the dimension of the sample space Ω for image parsing is very
high and so standard sampling techniques are computationally expensive.

By contrast, discriminative methods are very fast to compute. They do not
specify models for how the image is generated. Instead they give discriminative
(conditional) probabilities q(wj |Tstj(I)) for components {wj} of W based on
a sequence of bottom-up tests Tstj(I) performed on the image. The tests are
based on local image features {Fj,n(I)} which can be computed from the image
in a cascade manner (e.g. AdaBoost filters, see Section (5.2)),

Tstj(I) = (Fj,1(I), Fj,2(I), ..., Fj,n(I)), j = 1, 2, ...,K. (2)

The following theorem (proved in [51]) shows that the KL-divergence be-
tween the true marginal posterior p(wj |I) and the optimal discriminant approx-
imation q(wj |Tst(I)) using test Tst(I) will decrease monotonically as new tests
are added4.

Theorem 1 The information gained for a variable w by a new test Tst+(I) is
the decrease of Kullback-Leibler divergence between p(w|I) and its best discrim-
inative estimate q(w|Tstt(I)) or the increase of mutual information between w
and the tests.

EI[KL(p(w|I) || q(w|Tst(I)))]− EI[KL(p(w|I) || q(w|Tst(I), Tst+(I)))]
= MI(w || Tst, Tst+)−MI(w || Tst)
= ETst,Tst+KL(q(w |Tstt,Tst+) || q(w |Tstt) ≥ 0,

where EI is the expectation with respect to P (I), and ETst,Tst+ is the expectation
with respect to the probability on the test responses (Tst, Tst+) induced by P (I).

The decrease of the Kullback-Leibler divergence equals zero if and only if
Tst(I) are sufficient statistics with respect to w.

In practice discriminative methods, particularly standard computer vision
algorithms – see subsection (4.1), will typically only use a small number of
4 The optimal approximation occurs when q(wj |Tst(I)) equals the probability

p(wj |Tst(I)) induced by P (I|W )P (W ).
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features for computational practicality. Also their discriminative probabilities
q(wj |Tst(I)) will often not be optimal. Fortunately the image parsing algorithm
in this chapter only requires the discriminative probabilities q(wj |Tst(I)) to be
rough approximations to p(wj |I).

1 2 kW = ( , ,..., )w w w

����������	
�����

I p(W|I)

1 2W ( , ,..., )kw w w

I
j j jq( |Tst (I)) p( | I)w w→

������
�������	
�����

j=1...k

�����	���������	����������� 
�������	���������	�������������

Fig. 3. Comparison of two inference paradigms: Top-down generative methods versus
bottom-up discriminative methods. The generative method specifies how the image
I can be synthesized from the scene representation W . By contrast, the discrimina-
tive methods are based by performing tests Tstj(I) and are not guaranteed to yield
consistent solutions, see crosses explained in the text.

The difference between discriminative and generative models is illustrated in
Figure 3. Discriminative models are fast to compute and can be run in parallel
because different components are computed independently (see arrows in Fig-
ure 3). But the components {wi} may not yield a consistent solution W and,
moreover, W may not specify a consistent model for generating the observed im-
age I. These inconsistencies are indicated by the crosses in Figure 3. Generative
models ensure consistency but require solving a difficult inference problem.

It is an open problem whether discriminative methods can be designed to
infer the entire state W for the complicated generative models that we are dealing
with. Recent work [27] is a step in this direction. But mathematicians [6] have
argued that this will not be practical and that discriminative models will always
require additional post-processing.

2.3 Markov Chain Kernels and Sub-Kernels

Formally, our DDMCMC image parsing algorithm simulates a Markov chain
MC =< Ω, ν,K > with kernel K in space Ω and with probability ν for the
starting state. An element W ∈ Ω is a parsing graph. We let the set of parsing
graphs Ω be finite as images have finite pixels and grey levels.

We proceed by defining a set of moves for reconfiguring the graph. These
include moves to: (i) create nodes, (ii) delete nodes, and (iii) change node at-
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tributes. We specify stochastic dynamics for these moves in terms of transition
kernels5.

For each move we define a Markov Chain sub-kernel by a transition ma-
trix Ka(W ′|W : I) with a ∈ A being an index. This represents the prob-
ability that the system makes a transition from state W to state W ′ when
sub-kernel a is applied (i.e.

∑
W ′ Ka(W ′|W : I) = 1, ∀ W ). Kernels which

alter the graph structure are grouped into reversible pairs. For example, the
sub-kernel for node creation Ka,r(W ′|W : I) is paired with the sub-kernel for
node deletion Ka,l(W ′|W : I). This can be combined into a paired sub-kernel
Ka = ρarKa,r(W ′|W : I) + ρalKa,l(W ′|W : I) (ρar + ρal = 1). This pairing
ensures that Ka(W ′|W : I) = 0 if, and only if, Ka(W |W ′ : I) = 0 for all states
W,W ′ ∈ Ω. The sub-kernels (after pairing) are constructed to obey the detailed
balance condition:

p(W |I)Ka(W ′|W : I) = p(W ′|I)Ka(W |W ′ : I). (3)

The full transition kernel is expressed as:

K(W ′|W : I) =
∑

a

ρ(a : I)Ka(W ′|W : I),
∑

a

ρ(a : I) = 1, ρ(a : I) > 0. (4)

To implement this kernel, at each time step the algorithm selects the choice
of move with probability ρ(a : I) for move a, and then uses kernel Ka(W ′|W ; I)
to select the transition from state W to state W ′. Note that both probabilities
ρ(a : I) and Ka(W ′|W ; I) depend on the input image I. This distinguishes our
DDMCMC methods from conventional MCMC computing [29, 7].

The full kernel obeys detailed balance, equation (3), because all the sub-
kernels do. It will also be ergodic, provided the set of moves is sufficient (i.e. so
that we can transition between any two states W,W ′ ∈ Ω using these moves).
These two conditions ensure that p(W |I) is the invariant (target) probability of
the Markov Chain [7] in the finite space Ω.

Applying the kernel Ka(t) updates the Markov chain state probability µt(W )
at step t to µt+1(W ′) at t + 1, 6:

µt+1(W ′) =
∑

W

Ka(t)(W ′|W : I)µt(W ). (5)

In summary, the DDMCMC image parser simulates a Markov chainMC with
a unique invariant probability p(W |I). At time t, the Markov chain state (i.e. the

5 We choose stochastic dynamics because the Markov chain probability is guaranteed
to converge to the posterior P (W |I). The complexity of the problem means that
deterministic algorithms for implementing these moves risk getting stuck in local
minima.

6 Algorithms like belief propagation [58] can be derived as approximations to this
update equation by using a Gibbs sampler and making independence assumptions
[43].
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parse graph) W follows a probability µt which is the product of the sub-kernels
selected up to time t,

W ∼ µt(W ) = ν(Wo) · [Ka(1) ◦ Ka(2) ◦ · · · ◦ Ka(t)](Wo,W ) −→ p(W |I). (6)

where a(t) indexes the sub-kernel selected at time t. As the time t increases,
µt(W ) approaches the posterior p(W |I) monotonically [7] at a geometric rate [15]
independent of the starting configuration. The following convergence theorem is
useful for image parsing because it helps quantify the effectiveness of the different
sub-kernels.

Theorem 2 The Kullback-Leibler divergence between the posterior p(W |I) and
the Markov chain state probability decreases monotonically when a sub-kernel
Ka(t),∀ a(t) ∈ A is applied,

KL(p(W |I) ||µt(W ))−KL(p(W |I) ||µt+1(W )) ≥ 0 (7)

The decrease of KL-divergence is strictly positive and is equal to zero only after
the Markov chain becomes stationary, i.e. µ = p.

[Proof] See [51].
The theorem is related to the second law of thermodynamics [13], and its

proof makes use of the detailed balance equation (3). This KL divergence gives
a measure of the “power” of each sub-kernel Ka(t) and so it suggests an efficient
mechanism for selecting the sub-kernels at each time step, see Section (7). By
contrast, classic convergence analysis (c.f. [51]) show that the convergence of
the Markov Chain is exponentially fast, but does not give measures of power of
sub-kernels.

2.4 DDMCMC and Proposal Probabilities

We now describe how to design the sub-kernels using proposal probabilities and
discriminative models. This is at the heart of DDMCMC.

Each sub-kernel7 is designed to be of Metropolis-Hastings form [36, 24]:

Ka(W ′|W : I) = Qa(W ′|W : Tsta(I))min{1,
p(W ′|I)Qa(W |W ′ : Tsta(I))
p(W |I)Qa(W ′|W : Tsta(I))

},
(8)

where a transition from W to W ′ is proposed (stochastically) by the proposal
probability Qa(W ′|W : Tsta(I)) and accepted (stochastically) by the acceptance
probability:

α(W ′|W : I) = min{1,
p(W ′|I)Qa(W |W ′ : Tsta(I))
p(W |I)Qa(W ′|W : Tsta(I))

}. (9)

The Metropolis-Hastings form ensures that the sub-kernels obey detailed
balance (after pairing) [7].
7 Except for one that evolves region boundaries.
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The proposal probabilities Qa(W ′|W : Tsta(I)) will be built from discrimi-
native probabilities using tests Tsta(I) performed on the image. The design of
the proposal probabilities is a trade-off. Ideally the proposals would be sampled
from the posterior p(W ′|I), but this is impractical. Instead the trade-off requires:
(i) it is possible to make large moves in Ω at each time step, (ii) the proposals
should encourage moves to states with high posterior probability, and (iii) the
proposals must be fast to compute.

More formally, we define the scope Ωa(W ) = {W ′ ∈ Ω : Ka(W ′|W : I) > 0}
to be the set of states which can be reached from W in one time step using
sub-kernel a. We want the scope Sa(W ) to be large so that we can make large
moves in the space Ω at each time step (i.e. jump towards the solution and not
crawl). The scope should also, if possible, include states W ′ with high posterior
p(W ′|I) (i.e. it is not enough for the scope to be large, it should also be in the
right part of Ω).

The proposals Qa(W ′|W : Tsta(I)) should be chosen so as to approximate

p(W ′|I)∑
W ′′∈Ωa(W ) p(W ′′|I) if W ′ ∈ Ωa(W ), = 0, otherwise. (10)

The proposals will be functions of the discriminative models for the com-
ponents of W ′ and of the generative models for the current state W (because
it is computationally cheap to evaluate the generative models for the current
state). The details of the model p(W |I) will determine the form of the proposals
and how large we can make the scope while keeping the proposals easy to com-
pute and able to approximate equation (10). See the detailed examples given in
Section (5).

This description gives the bare bones of DDMCMC. We refer to [49] for
further details of these issues from an MCMC perspective. In the discussion
section, we describe strategies to improve DDMCMX. Preliminary theoretical
results for the convergence of DDMCMC are encouraging for a special case, see
[51]. We refer to [51] for the important practical issue of how to maintain detailed
balance when there are multiple routes to transition between two state W and
W ′. We describe two ways to do this and the trade-offs involved.

3 Generative Models and Bayesian Formulation

This section describes the graph structure and the generative models used for
our image parsing algorithm in this chapter.

Figure 1 illustrates the general structure of a parsing graph. In this chapter,
we use a two-layer-graph illustrated in Figure 4. The top node (“root”) of the
graph represents the whole scene (with a label). It has K intermediate nodes
for the visual patterns (face, text, texture, and shading). Each visual pattern
has a number of pixels at the bottom (“leaves”). In this graph no horizontal
connections are considered between the visual patterns except the constraint
that they share boundaries and form a partition of the image lattice (see [49] for
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Fig. 4. Abstract representation of the parsing graph used in this chapter. The inter-
mediate nodes represent the visual patterns. Their child nodes correspond to the pixels
in the image.

an example of image parsing where horizontal connections are used, but without
object patterns).

The number K of intermediate nodes is a random variable, and each node
i = 1, ..., K has a set of attributes (Li, ζi, Θi) defined as follows. Li is the
shape descriptor and determines the region Ri = R(Li) of the image pixels
covered by the visual pattern of the intermediate node. Conceptually, the pix-
els within Ri are child nodes of the intermediate node i. (Regions may contain
holes, in which case the shape descriptor will have internal and external bound-
aries). The remaining attribute variables (ζi, Θi) specify the probability models
p(IR(Li)|ζi, Li, Θi) for generating the sub-image IR(Li) in region R(Li). The vari-
ables ζi ∈ {1, ..., 66} indicate the visual pattern type (3 types of generic visual
patterns, 1 face pattern, and 62 text character patterns), and Θi denotes the
model parameters for the corresponding visual pattern (details are given in the
following subsections). The complete scene description can be summarized by:

W = (K, {(ζi, Li, Θi) : i = 1, 2, ..., K}).

The shape descriptors {Li : i = 1, ..., K} are required to be consistent so that
each pixel in the image is a child of one, and only one, of the intermediate nodes.
The shape descriptors must provide a partition of the image lattice Λ = {(m,n) :
1 ≤ m ≤ Height(I), 1 ≤ n ≤ Width(I)} and hence satisfy the condition

Λ = ∪K
i=1R(Li), R(Li) ∩R(Lj) = ∅, ∀i 6= j.
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The generation process from the scene description W to I is governed by the
likelihood function:

p(I|W ) =
K∏

i=1

p(IR(Li)|ζi, Li, Θi).

The prior probability p(W ) is defined by

p(W ) = p(K)
K∏

i=1

p(Li)p(ζi|Li)p(Θi|ζi).

In our Bayesian formulation, parsing the image corresponds to computing
the W ∗ that maximizes a posteriori probability over Ω, the solution space of W ,

W ∗ = arg max
W∈Ω

p(W |I) = arg max
W∈Ω

p(I|W )p(W ). (11)

It remains to specify the prior p(W ) and the likelihood function p(I|W ). We
set the prior terms p(K) and p(Θi|ζi) to be uniform probabilities. The term
p(ζi|Li) is used to penalize high model complexity and was estimated for the
three generic visual patterns from training data in [48].

3.1 Shape Models

We use two types of shape descriptor in this chapter. The first is used to define
shapes of generic visual patterns and faces. The second defines the shapes of text
characters.
1. Shape descriptors for generic visual patterns and faces

In this case, the shape descriptor represents the boundary8 of the image
region by a list of pixels Li = ∂Ri. The prior is defined by:

p(Li) ∝ exp{−γ|R(Li)|α − λ|Li|}. (12)

In this chapter, we set α = 0.9. For computational reasons, we use this prior
for face shapes though more complicated priors [11] can be applied.
2. Shape descriptors for text characters

We model text characters by 62 deformable templates corresponding to the
ten digits and the twenty six letters in both upper and lower cases. These de-
formable templates are defined by 62 prototype characters and a set of defor-
mations. The prototypes are represented by an outer boundary and, at most,
two inner boundaries. Each boundary is modeled by a B-spline using twenty five
control points. The prototype characters are indexed by ci ∈ {1, ..., 62} and their
control points are represented by a matrix TP (ci).

We now define two types of deformations on the templates. One is a global
affine transformation, and the other is a local elastic deformation. First we allow
8 The boundary can include an “internal boundary” if there is a hole inside the image

region explained by a different visual pattern.
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Fig. 5. Random samples drawn from the shape descriptors for text characters.

the letters to be deformed by an affine transform Mi. We put a prior p(Mi) to
penalize severe rotation and distortion. This is obtained by decomposing Mi as:

Mi =
(

σx 0
0 σy

)(
cosθ −sinθ
sinθ cosθ

)(
1 h
0 1

)
.

where θ is the rotation angle, σx and σy denote scaling, and h is for shearing.
The prior on Mi is

p(Mi) ∝ exp{−a|θ|2 + b(
σx

σy
+

σy

σx
)2 + ch2},

where a, b, c are parameters.
Next, we allow local deformations by adjusting the positions of the B-spline

control points. For a digit/letter ci and affine transform Mi, the contour points
of the template are given by GTP (Mi, ci) = U×Ms×Mi×TP (ci). Similarly the
contour points on the shape with control points Si are given by GS(Mi, ci) =
U × Ms × Si (U and Ms are the B-Spline matrices). We define a probability
distribution p(Si|Mi, ci) for the elastic deformation given by Si,

p(Si|Mi, ci) ∝ exp{−γ|R(Li)|α −D(GS(Mi, ci)||GTP (Mi, ci))},
where D(GS(Mi, ci)||GTP (Mi, ci)) is the overall distance between contour tem-
plate and the deformed contour (these deformations are small so the correspon-
dence between points on the curves can be obtained by nearest neighbor matches,
see [50] for how we can refine this). Figure 5 shows some samples drawn from
the above model.

In summary, each deformable template is indexed by ci ∈ {1..62} and has a
shape descriptor:

Li = (ci,Mi, Si),

The prior distribution on Li is specified by:

p(Li) = p(ci)p(Mi)p(Si|Mi, ci).

Here p(ci) is a uniform distribution on all the digits and letters (we do not
place a prior distribution on text strings, though it is possible to do so [25]).
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3.2 Generative Intensity Models

We use four families of generative intensity models for describing intensity pat-
terns of (approximately) constant intensity, clutter/texture, shading, and face.
The first three are similar to those defined in [48].
1. Constant intensity model ζ = 1:.

This assumes that pixel intensities in a region R are subject to independently
and identically distributed (iid) Gaussian distribution,

p1(IR(L)|ζ = 1, L, Θ) =
∏

v∈R(L)

G(Iv − µ; σ2), Θ = (µ, σ)

2. Clutter/texture model ζ = 2:.
This is a non-parametric intensity histogram h() discretized to take G values

(i.e. is expressed as a vector (h1, h2, ..., hG)). Let nj be the number of pixels in
R(L) with intensity value j.

p2(IR(L)|ζ = 2, L,Θ) =
∏

v∈R(L)

h(Iv) =
G∏

j=1

h
nj

j , Θ = (h1, h2, ..., hG).

3. Shading model ζ = 3 and ζ = 5, ..., 66:.
This family of models are used to describe generic shading patterns, and text

characters. We use a quadratic form

J(x, y;Θ) = ax2 + bxy + cy2 + dx + ey + f,

with parameters Θ = (a, b, c, d, e, f, σ). Therefore, the generative model for pixel
(x, y) is

p3(IR(L)|ζ ∈ {3, (5, ..., 66)}, L, Θ) =
∏

v∈R(L)

G(Iv−Jv;σ2), Θ = (a, b, c, d, e, f, σ).

4. The PCA face model ζ = 4:.
The generative model for faces is simpler and uses Principal Component

Analysis (PCA) to obtain representations of the faces in terms of principal com-
ponents {Bi} and covariances Σ. Lower level features, also modeled by PCA,
can be added [37]. We also add other features such as the occlusion process, as
described in Hallinan et al [22].

p4(IR(L)|ζ = 4, L, Θ) = G(IR(L) −
∑

i

λiBi; Σ), Θ = (λ1, .., λn, Σ).

4 Overview of the Algorithm

This section gives the control structure of an image parsing algorithm based on
the strategy described in section (2), see the diagram in Figure 7. Our algorithm
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must construct the parse graph on the fly and estimate the scene interpretation
W .

Figure 6 illustrates how the algorithm selects the Markov chain moves (dy-
namics or sub-kernels) to search through the space of possible parse graphs of
the image by altering the graph structure (by deleting or adding nodes) and by
changing the node attributes. An equivalent way of visualizing the algorithm is
in terms of a search through the solution space Ω, see [48, 49] for more details
of this viewpoint.

split

merge

diffusion

diffusion

'
1W 2W1W

),,( '
1

'
11 ΘLζ

),,( '
2

'
22 ΘLζ

),,( 111 ΘLζ
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),,( 111 ΘLζ

),,( 222 ΘLζ

),,( 333 ΘLζ

Fig. 6. Examples of Markov chain dynamics that change the graph structure or the
node attributes of the graph giving rise to different ways to parse the image.

We first define the set of moves to reconfigure the graph. These are: (i) birth or
death of face nodes, (ii) birth or death of text characters, (iii) splitting or merging
of regions, (iv) switching node attributes (region type ζi and model parameters
Θi), (v) boundary evolution (altering the shape descriptors Li of nodes with
adjacent regions). These moves are implemented by sub-kernels. The first four
moves are reversible jumps [21], and will be implemented by the Metropolis-
Hastings equation (8). The fifth move, boundary evolution, is implemented by a
stochastic partial differential equation.

The sub-kernels for these moves require proposal probabilities driven by el-
ementary discriminative methods, which we review in the next subsection. The
proposal probabilities are designed using the criteria in subsection (2.4), and full
details are given in Section (5).

The control structure of the algorithm is described in Section (4.2). The full
transition kernel for the image parser is built by combining the sub-kernels, as
described in subsection (2.3) and Figure 7. The algorithm proceeds (stochasti-
cally) by selecting a sub-kernel, selecting where in the graph to apply it, and
then deciding whether or not to accept the operation.
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4.1 The Discriminative Methods

The discriminative methods give approximate posterior probabilities q(wj |Tstj(I))
for the elementary components wj of W . For computational efficiency, these
probabilities are based only on a small number of simple tests Tstj(I).

We briefly overview and classify the discriminative methods used in our im-
plementation. Section (5) shows how these discriminative methods are composed,
see crosses in Figure 7, to give proposals for making moves in the parsing graph.

1. Edge Cues. These cues are based on edge detectors [9],[8],[26]. They are
used to give proposals for region boundaries (i.e. the shape descriptor attributes
of the nodes). Specifically, we run the Canny detector at three scales followed
by edge linking to give partitions of the image lattice. This gives a finite list
of candidate partitions which are assigned weights, see section (5.1) and [48].
The discriminative probability is represented by this weighted list of particles.
In principle, statistical edge detectors [26] would be preferable to Canny because
they give discriminative probabilities q(wj |Tstj(I)) learnt from training data.

2. Binarization Cues. These cues are computed using a variant of Niblack’s
algorithm [40]. They are used to propose boundaries for text characters (i.e.
shape descriptors for text nodes), and will be used in conjunction with propos-
als for text detection. The binarization algorithm, and an example of its output,
are given in Section (5.2). Like edge cues, the algorithm is run at different para-
meters settings and represents the discriminative probability by a weighted list
of particles indicating candidate boundary locations.

3. Face Region Cues. These cues are learnt by a variant of AdaBoost
[44],[55] which outputs discriminative probabilities [19], see Section (5.2). They
propose the presence of faces in sub-regions of the image. These cues are com-
bined with edge detection to propose the localization of faces in an image.

4. Text Region Cues. These cues are also learnt by a probabilistic version
of AdaBoost, see Section (5.2). The algorithm is applied to image windows (at a
range of scales). It outputs a discriminative probability for the presence of text
in each window. Text region cues are combined with binarization to propose
boundaries for text characters.

5. Shape Affinity Cues. These act on shape boundaries, produced by
binarization, to propose text characters. They use shape context cues [4] and
information features [50] to propose matches between the shape boundaries and
the deformable template models of text characters.

6. Region Affinity Cues. These are used to estimate whether two regions
Ri, Rj are likely to have been generated by the same visual pattern family and
model parameters. They use an affinity similarity measure [45] of the intensity
properties IRi , IRj .

7. Model Parameter and Visual Pattern Family cues. These are used
to propose model parameters and visual pattern family identity. They are based
on clustering algorithms, such as mean-shift [12]. The clustering algorithms de-
pend on the model types and are described in [48].

In our current implementation, we conduct all the bottom-up tests Tstj(I), j =
1, 2, ...,K at an early stage for all the discriminative models qj(wj |Tstj(I)), and
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they are then combined to form composite tests Tsta(I) for each subkernel Ka

in equations (8,9). It may be more efficient to perform these test as required, see
discussion in section (7).

face
sub-kernel

text 
sub-kernel

generic
sub-kernel

model 
switching
sub-kernel

Markov kernel

deathbirth deathbirth split merge

input image

face detectiontext detection edge partition parameter clustering

+

generative
inference

discriminative
inference

weighted 
particles

Fig. 7. Integrating generative (top-down) and discriminative (bottom-up) methods for
image parsing. This diagram illustrates the main points of the image parser. The dy-
namics are implemented by an ergodic Markov chain K, whose invariant probability is
the posterior p(W |I), and which is composed of reversible sub-kernels Ka for making
different types of moves in the parse graph (e.g. giving birth to new nodes or merging
nodes). At each time step the algorithm selects a sub-kernel stochastically. The selected
sub-kernel proposes a specific move (e.g. to create or delete specific nodes) and this
move is then evaluated and accepted stochastically, see equation (8). The proposals
are based on both bottom-up (discriminative) and top-down (generative) processes,
see subsection (2.4). The bottom-up processes compute discriminative probabilities
q(wj |Tstj(I)), j = 1, 2, 3, 4 from the input image I based on feature tests Tstj(I). An
additional sub-kernel for boundary evolution uses a stochastic partial differential equa-
tion will be described later.

4.2 Control Structure of the Algorithm

The control strategy used by our image parser is illustrated in Figure 7. The
image parser explores the space of parsing graphs by a Markov Chain Monte
Carlo sampling algorithm. This algorithm uses a transition kernel K which is
composed of sub-kernels Ka corresponding to different ways to reconfigure the
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parsing graph. These sub-kernels come in reversible pairs9 (e.g. birth and death)
and are designed so that the target probability distribution of the kernel is the
generative posterior p(W |I). At each time step, a sub-kernel is selected sto-
chastically. The sub-kernels use the Metropolis-Hasting sampling algorithm, see
equation (8), which proceeds in two stages. First, it proposes a reconfiguration
of the graph by sampling from a proposal probability. Then it accepts or rejects
this reconfiguration by sampling the acceptance probability.

To summarize, we outline the control strategy of the algorithm below. At
each time step, it specifies (stochastically) which move to select (i.e. which sub-
kernel), where to apply it in the graph, and whether to accept the move. The
probability to select moves ρ(a : I) was first set to be independent of I, but
we got better performance by adapting it using discriminative cues to estimate
the number of faces and text characters in the image (see details below). The
choice of where to apply the move is specified (stochastically) by the sub-kernel.
For some sub-kernels it is selected randomly and for others is chosen based on
a fitness factor (see details in section (5)), which measures how well the current
model fits the image data. Some annealing is required to start the algorithm
because of the limited scope of the moves in the current implementation (the
need for annealing will be reduced if the compositional techniques described in
[1]) are used).

We improved the effectivenss of the algorithm by making the move selection
adapt to the image (i.e. by making ρ(a : I) depend on I). In particular, we
increased the probability of giving birth and death of faces and text, ρ(1) and
ρ(2), if the bottom-up (AdaBoost) proposals suggested that there are many
objects in the scene. For example, let N(I) be the number of proposals for faces
or text above a threshold Ta. Then we modify the probabilities in the table by
ρ(a1) 7→ {ρ(a1) + kg(N(I))}/Z, ρ(a2) 7→ {ρ(a2) + kg(N)}/Z, ρ(a3) 7→ ρ(a3)/Z,
ρ(a4) 7→ ρ(a4)/Z, where g(x) = x, x ≤ Tb g(x) = Tb, x ≥ Tb and Z = 1 + 2k is
chosen to normalize the probability.

9 Except for the boundary evolution sub-kernel which will be described separately.
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The basic control strategy of the image parsing algorithm

1. Initialize W (e.g. by dividing the image into four regions), setting their shape
descriptors, and assigning the remaining node attributes at random.

2. Set the temperature to be Tinit.
3. Select the type a of move by sampling from a probability ρ(a), with ρ(1) = 0.2

for faces, ρ(2) = 0.2 for text, ρ(3) = 0.4 for splitting and merging, ρ(4) = 0.15 for
switching region model (type or model parameters), and ρ(5) = 0.05 for boundary
evolution. This was modified slightly adaptively, see caption and text.

4. If the selected move is boundary evolution, then select adjacent regions (nodes)
at random and apply stochastic steepest descent.

5. If the jump moves are selected, then a new solution W ′ is randomly sampled as
follows:

− For the birth or death of a face, we propose to create or delete a face. This
includes a proposal for where in the image to do this.

− For the birth of death of text, we propose to create a text character or delete
an existing one. This includes a proposal for where to do this.

− For region splitting, a region (node) is randomly chosen biased by its fitness
factor. There are proposals for where to split it and for the attributes of the
resulting two nodes.

− For region merging, two neighboring regions (nodes) are selected based on a
proposal probability. There are proposals for the attributes of the resulting
node.

− For switching, a region is selected randomly according to its fitness factor
and a new region type and/or model parameters is proposed.

• The full proposal probabilities, Q(W |W : I) and Q(W ′|W : I) are computed.
• The Metropolis-Hastings algorithm, equation (8), is applied to accept or re-

ject the proposed move.

6. Reduce the temperature T = 1 + Tinit × exp(−t × c|R|), where t is the current
iteration step, c is a constant and |R| is the size of the image.

7. Repeat the above steps and until the convergence criterion is satisfied (by reaching
the maximum number of allowed steps or by lack of decrease of the negative log
posterior).

5 The Markov Chain Kernels

This section gives an example of the Markov Chain kernels, the proposal prob-
abilities, and their fitness factors.

We first need boundary evolution, see Figure (8). This evolves the positions
of the region boundaries but preserve the graph structure. It is implemented by a
stochastic partial differential equation (Langevin equation) driven by Brownian
noise and can be derived from a Markov Chain [20]. The deterministic component
of the PDE is obtained by performing steepest descent on the negative log-
posterior, as derived in [60].

The other sub-kernels alter the graph structure. See Figure (9) for an example
where regions are split or merged. We will describe below the sub-kernel for the
birth and death of text. We refer to [51] for the other subkernels.
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Control 
Points

Template

Fig. 8. The evolution of the region boundaries is implemented by stochastic partial
differential equations which are driven by models competing for ownership of the re-
gions.
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Fig. 9. An example of the split-merge sub-kernel. State W consists of three regions
and proposals are computed for 7 candidate splits. One is selected, see arrow, which
changes the state to W ′. Conversely, there are 5 candidate merges in state W ′ and the
one selected, see arrow, returns the system to state W .

5.1 Markov Chain Sub-Kernel for the Birth and Death of text

This pair of jumps is used to create or delete text characters. We start with
a parse graph W and transition into parse graph W ′ by creating a character.
Conversely, we transition from W ′ back to W by deleting a character.

The proposals for creating and deleting text characters are designed to ap-
proximate the terms in equation (10). We obtain a list of candidate text character
shapes by using AdaBoost to detect text regions followed by binarization to de-
tect candidate text character boundaries within text regions (see section (5.2)).
This list is represented by a set of particles which are weighted by the similarity
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Fig. 10. An example of the birth-death of text. State W consists of three generic
regions and a character “T”. Proposals are computed for 3 candidate characters, “E”,
“X”, and “T”, obtained by AdaBoost and binarization methods (see section (5.2)). One
is selected, see arrow, which changes the state to W ′. Conversely, there are 2 candidate
in state W ′ and the one selected, see arrow, returns the system to state W .

to the deformable templates for text characters (see below):

S1r(W ) = { (z(µ)
1r , ω

(µ)
1r ) : µ = 1, 2, ..., N1r}.

Similarly, we specify another set of weighted particles for removing text charac-
ters:

S1l(W ′) = { (z(ν)
1l , ω

(ν)
1l ) : ν = 1, 2, ..., N1l}.

{z(µ)
1r } and {z(ν)

1l } represent the possible (discretized) shape positions and text
character deformable templates for creating or removing text, and {ω(µ)

1r } and
{ω(ν)

1l } are their corresponding weights. The particles are then used to compute
proposal probabilities

Q1r(W ′|W : I) =
ω1r(W ′)

∑N1r

µ=1 ω
(µ)
1r

, Q1l(W |W ′, I) =
ω1l(W )

∑N1l

ν=1 ω
(ν)
1l

.

The weights ω
(µ)
1r and ω

(ν)
1l for creating new text characters are specified by

shape affinity measures, such as shape contexts [4] and informative features [50].
For deleting text characters we calculate ω

(ν)
1l directly from the likelihood and

prior on the text character. Ideally these weights will approximate the ratios
p(W ′|I)
p(W |I) and p(W |I)

p(W ′|I) .
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5.2 AdaBoost for Discriminative Probabilities for Face and Text

This section describes how we use AdaBoost techniques to compute discrimina-
tive probabilities for detecting faces and text (strings of letters). We also describe
the binarization algorithm used to detect the boundaries of text characters.

The standard AdaBoost algorithm, for example for distinguishing faces from
non-faces [55], learns a binary-valued strong classifier HAda by combining a set of
n binary-valued “weak classifiers” or feature tests TstAda(I) = (h1(I), ..., hn(I))
using a set of weights αAda = (α1, ..., αn)[18],

HAda(TstAda(I)) = sign(
n∑

i=1

αihi(I)) = sign < αAda, TstAda(I) > . (13)

The features are selected from a pre-designed dictionary ∆Ada. The selection
of features and the tuning of weights are posed as a supervised learning problem.
Given a set of labeled examples, {(Ii, `i) : i = 1, 2, ..., M} (`i = ±1), AdaBoost
learning can be formulated as greedily optimizing the following function [44]

(α∗Ada,Tst∗Ada) = arg min
TstAda⊂∆Ada

arg min
αAda

M∑

i=1

exp−`i<αAda,TstAda(Ii)> . (14)

To obtain discriminative probabilities we use a theorem [19] which states
that the features and test learnt by AdaBoost give (asymptotically) posterior
probabilities for the object labels (e.g. face or non-face). The AdaBoost strong
classifier can be rederived as the log posterior ratio test.

Theorem 3 (Friedman et al 1998) With sufficient training samples M and fea-
tures n, AdaBoost learning selects the weights α∗Ada and tests Tst∗Ada to satisfy

q(` = +1|I) =
e`<αAda,TstAda(Ii)>

e<αAda,TstAda(Ii)> + e−<αAda,TstAda(Ii)>
.

Moreover, the strong classifier converges asymptotically to the posterior prob-
ability ratio test

HAda(TstAda(I)) = sign(< αAda, TstAda(I) >) = sign(
q(` = +1|I)
q(` = −1|I) ).

In practice, the AdaBoost classifier is applied to windows in the image at
different scales. Each window is evaluated as being face or non-face (or text
versus non-text). For most images the posterior probabilities for faces or text
are negligible for almost all parts of an image. So we use a cascade of tests [55,
57] which enables us to rapidly reject many windows by setting their marginal
probabilities to be zero.

Of course, AdaBoost will only converge to approximations to the true poste-
rior probabilities p(`|I) because only a limited number of tests can be used (and
there is only a limited amount of training data).
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Note that AdaBoost is only one way to learn a posterior probability, see
theorem (1). It has been found to be very effective for object patterns which
have relatively rigid structures, such as faces and text (the shapes of letters are
variable but the patterns of a sequence are fairly structured [10]).

We refer to Viola and Jones [55] and Chen and Yuille [10] for details of how
AdaBoost learning [18, 19] can be performed to detect face and text.

In both cases, we evaluated the log posterior ratio test on testing datasets
using a number of different thresholds (see [55]). In agreement with previous work
on faces [55], AdaBoost gave very high performance with very few false positives
and false negatives, see table (1). But these low error rates are slightly misleading
because of the enormous number of windows in each image, see table (1). A small
false positive rate may imply a large number of false positives for any regular
image. By varying the threshold, we can either eliminate the false positives or the
false negatives but not both at the same time. We illustrate this by showing the
face regions and text regions proposed by AdaBoost in Figure 11. If we attempt
classification by putting a threshold then we can only correctly detect all the
faces and the text at the expense of false positives.

Object False Positive False Negative Images Subwindows

Face 65 26 162 355,960,040

Face 918 14 162 355,960,040

Face 7542 1 162 355,960,040

Text 118 27 35 20,183,316

Text 1879 5 35 20,183,316

Table 1. Performance of AdaBoost at different thresholds.

When Adaboost is integrated with the generic region models in the image
parser, the generic region proposals can remove false positives and find text that
AdaBoost misses. For example, the ’9’ in the right panel of Figure 11 is not
detected because our AdaBoost algorithm was trained on text segments and can
fail to detect isolated letters. Instead it is detected as a generic shading region
and later recognized as a letter ‘9’, see Figure 13. Some false positive text and
faces in Figure 11 are removed in Figures 13 and 15.

The AdaBoost algorithm for text needs to be supplemented with a bina-
rization algorithm, described below, to determine text character location. This
is followed by appling shape contexts [4] and informative features [50] to the
binarization results to make proposals for the presence of specific letters and
digits.

In many cases, see Figure 12, the results of binarization are so good that the
letters and digits can be detected immeadiately (i.e. the proposals made by the
binarization stage are automatically accepted). But this will not always be the
case. We note that binarization gives far better results than alternatives such as
edge detection [9].
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Fig. 11. The boxes show faces and text as detected by the AdaBoost log posterior ratio
test with fixed threshold. Observe the false positives due to vegetation, tree structure,
and random image patterns. It is impossible to select a threshold which has no false
positives and false negatives for this image. As it is shown in our experiments later,
the generative models will remove the false positives and also recover the missing text.

Fig. 12. Example of binarization on the detected text.

The binarization algorithm is a variant of one proposed by Niblack [40]. We
binarize the image intensity using an adaptive thresholding based on a adaptive
window size. Adaptive methods are needed because image windows containing
text often have shading, shadow, and occlusion. Our binarization method de-
termines the threshold Tb(v) for each pixel v by the intensity distribution of its
local window r(v) (centered on v).

Tb(v) = µ(Ir(v)) + k · std(Ir(v)),

where µ(Ir(v)) and std(Ir(v)) are the intensity mean and standard deviation
within the local window. The size of the local window is selected to be the
smallest possibble window whose intensity variance is above a fixed threshold.
The parameter k = ±0.2, where the ± allows for cases where the foreground is
brighter or darker than the background.
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6 Experiments

The image parsing algorithm was applied to a number of outdoor/indoor images.
The speed in PCs (Pentium IV) is comparable to segmentation methods such as
normalized cuts [32] or the DDMCMC algorithm in [48]. It typically runs around
10-20 minutes. The main portion of the computing time is spent in segmenting
the generic patterns and by boundary diffusion [60].

a. Input image b. Segmentation c. Object recognition d. Synthesized image

Fig. 13. Results of segmentation and recognition on two images. The results are im-
proved compare to the purely bottom-up (AdaBoost) results displayed in Figure 11.

a. Input image b. Synthesis 1 c. Synthesis 2

Fig. 14. A close-up look of an image in Figure 13. The dark glasses are explained by the
generic shading model and so the face model does not have to fit this part of the data.
Otherwise the face model would have difficulty because it would try to fit the glasses
to eyes. Standard AdaBoost only correctly classifies these faces at the expense of false
positives, see Figure 11. We show two examples of synthesized faces, one (Synthesis 1)
with the dark glasses (modelled by shading regions) and the other (Synthesis 2) with
the dark glasses removed (i.e. using the generative face model to sample parts of the
face (e.g. eyes) obscured by the dark glasses.
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Figures 13, 14, and 15 show some challenging examples which have heavy
clutter and shading effects. We present the results in two parts. One shows the
segmentation boundaries for generic regions and objects, and the other shows the
text and faces detected with text symbols to indicate text recognition, i.e. the
letters are correctly read by the algorithm. Then we synthesize images sampled
from the likelihood model p(I|W ∗) where W ∗ is the parsing graph (the faces,
text, regions parameters and boundaries) obtained by the parsing algorithm. The
synthesized images are used to visualize the parsing graph W ∗, i.e. the image
content that the computer “understand”.

In the experiments, we observed that the face and text models improved the
image segmentation results by comparison to our previous work [48] which only
used generic region models. Conversely, the generic region models improve object
detection by removing some false alarms and recovering objects which were not
initially detected. We now discuss specific examples.

In Figure 11, we showed two images where the text and faces were detected
purely bottom-up using AdaBoost. It is was impossible to select a threshold so
that our AdaBoost algorithm had no false positives or false negatives. To ensure
no false negatives, apart from the ’9’, we had to lower the threshold and admit
false positives due to vegetation and heavy shadows (e.g. the shadow in the sign
“HEIGHTS OPTICAL”).

The letter ’9’ was not detected at any threshold. This is because our Ad-
aBoost algorithm was trained to detect text segments, and so did not respond
to a single digit.

By comparison, Figure 13 shows the image parsing results for these two
images. We see that the false alarms proposed by AdaBoost are removed because
they are better explained by the generic region models. The generic shading
models help object detection by explaining away the heavy shading on the text
“HEIGHTS OPTICAL” and the dark glasses on the women, see Figure 14.
Moreover, the missing digit ’9’ is now correctly detected. The algorithm first
detected it as a generic shading region and then reclassified as a digit using the
sub-kernel that switches node attributes.

The ability to synthesize the image from the parsing graph W ∗ is an advan-
tage of the Bayesian approach. The synthesis helps illustrate the successes, and
sometimes the weaknesses, of the generative models. Moreover, the synthesized
images show how much information about the image has been captured by the
models. In table (2), we give the number of variables used in our representation
W ∗ and show that they are roughly proportional to the jpeg bytes. Most of the
variables in W ∗ are used to represent points on the segmentation boundary, and
at present they are counted independently. We could reduce the coding length of
W ∗ substantially by encoding the boundary points effectively, for example, using
spatial proximity. Image encoding is not the goal of our current work, however,
and more sophisticated generative models would be needed to synthesize very
realistic images.
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a. Input image b. Segmentation c. Object recognition d. Synthesized image

Fig. 15. Results of segmentation and recognition on outdoor images. Observe the abil-
ity to detect faces and text at multiple scale.

7 Discussion

In this section, we describe two challenging technical problems for image parsing.
Our current work addresses these issues.

1. Two mechanisms for constructing the parsing graph
In the introduction to this chapter we stated that the parsing graph can

be constructed in compositional and decompositional modes. The compositional
mode proceeds by grouping small elements while the decompositional approach
involves detecting an object as a whole and then locating its parts, see Figure 16.

The compositional mode appears most effective for Figure 16(a). Detect-
ing the cheetah by bottom-up tests, such as those learnt by AdaBoost, seems
difficult owing to the large variability of shape and photometric properties of
cheetahs. By contrast, it is quite practical using Swendsen-Wang Cuts [2] to
segment the image and obtain the boundary of the cheetah using a bottom-up
compositional approach and a parsing tree with multiple levels. The parsing
graph is constructed starting with the pixels as leaves (there are 46, 256 pixels in
Figure 16(a)). The next level of the graph is obtained using local image texture
similarities to construct graph nodes (113 of them) corresponding to “atomic
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Image Stop Soccer Parking Street Westwood

jpg bytes 23,998 19,563 23,311 26,170 27,790

|W ∗| 4,886 3,971 5,013 6,346 9,687

Table 2. The number of variables in W ∗ for each image compared to the JPG bytes.

4 Object Regions

113 Atomic Regions

46,256 Pixels

PCA faces 

parts 

image pixels

(a) “composition” (b) “decomposition”

Fig. 16. Two mechanisms for constructing the parsing graph. See text for explanation.

regions” of the image. Then the algorithm contructs nodes (4 of them) for “tex-
ture regions” at the next level by grouping the atomic regions (i.e. each atomic
region node will be the child of a texture region node). At each level, we com-
pute a discriminative (proposal) probability for how likely adjacent nodes (e.g.
pixels or atomic regions) belong to the same object or pattern. We then apply a
transition kernel implementing split and merge dynamics (using the proposals).
We refer to [2] for more detailed discussion.

For objects with little variability, such as the faces shown in Figure 16(b), we
can use bottom-up proposals (e.g. AdaBoost) to activate a node that represents
the entire face. The parsing graph can then be constructed downwards (i.e. in
the decompositional mode) by expanding the face node to create child nodes for
the parts of the face. These child nodes could, in turn, be expanded to grandchild
nodes representing finer scale parts. The amount of node expansion can be made
adaptive to depend on the resolution of the image. For example, the largest face
in Figure 16(b) is expanded into child nodes but there is not sufficient resolution
to expand the face nodes corresponding to the three smaller faces.

The major technical problem is to develop a mathematical criterion for which
mode is most effective for which types of objects and patterns. This will enable
the algorithm to adapt its search strategy accordingly.

2. Optimal ordering strategy for tests and kernels
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The control strategy of our current image parsing algorithm does not select
the tests and sub-kernels in an optimal way. At each time step, the choice of
sub-kernel is independent of the current state W (though the choice of where
in the graph to apply the sub-kernel will depend on W ). Moreover, bottom-up
tests are performed which are never used by the algorithm.

It would be more efficient to have a control strategy which selects the sub-
kernels and tests adaptively, provided the selection process requires low com-
putational cost. We seek to find an optimal control strategy for selection which
is effective for a large set of images and visual patterns. The selection criteria
should select those tests and sub-kernels which maximize the gain in information.

We propose the two information criteria that we described in Section (2).
The first is stated in Theorem 1. It measures the information gained for vari-

able w in the parsing graph by performing a new test Tst+. The information
gain is δ(w||Tst+) = KL(p(w|I) || q(w|Tst(I)))−KL(p(w|I) || q(w|Tstt(I), F+)),
where Tst(I) denotes the previous tests (and KL is the Kullback-Leibler diver-
gence).

The second is stated in Theorem 2. It measures the power of a sub-kernel Ka

by the decrease of the KL-divergence δ(Ka) = KL(p ||µt)−KL(p ||µtKa). The
amount of decrease δa gives a measure of the power of the sub-kernel Ka when
informed by Tstt(I).

We need also take into account the computational cost of the selection pro-
cedures. See [6] for a case study for how to optimally select tests taking into
account their computational costs.

8 Summary and Future Work

This chapter introduces a computational framework for parsing images into basic
visual patterns. We formulated the problem using Bayesian probability theory
and designed a stochastic DDMCMC algorithm to perform inference. Our frame-
work gives a rigourous way to combine segmentation with object detection and
recognition. We give proof of concept by implementing a model whose visual pat-
terns include generic regions (texture and shading) and objects (text and faces).
Our approach enables these different visual patterns to compete and cooperate
to explain the input images.

This chapter also provides a way to integrate discriminative and generative
methods of inference. Both methods are extensively used by the vision and ma-
chine learning communities and correspond to the distinction between bottom-
up and top-down processing. Discriminative methods are typically fast but can
give sub-optimal and inconsistent results, see Figure 3. By contrast, generative
methods are optimal (in the sense of Bayesian Decision Theory) but can be slow
because they require extensive search. Our DDMCMC algorithm integrates both
methods, as illustrated in Figure 7, by using discriminative methods to propose
generative solutions.

The goal of our algorithm is to construct a parse graph representing the
image. The structure of the graph is not fixed and will depend on the input image.
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The algorithm proceeds by constructing Markov Chain dynamics, implemented
by sub-kernels, for different moves to configure the parsing graph – such as
creating or deleting nodes, or altering node attributes. Our approach can be
scaled-up by adding new sub-kernels, corresponding to different vision models.
This is similar in spirit to Ullman’s concept of “visual routines” [54]. Overall,
the ideas in this chapter can be applied to any other inference problem that can
be formulated as probabilistic inference on graphs.

Other work by our group deals with a related series of visual inference tasks
using a similar framework. This includes image segmentation [48], curve grouping
[49], shape detection [50], motion analysis [2], and 3D scene reconstruction [23].
In the future, we plan to integrate these visual modules and develop a general
purpose vision system.

Finally, we are working on ways to improve the speed of the image parsing
algorithm as discussed in Section (7). In particular, we expect the use of the
Swendsen-Wang cut algorithms [1, 2] to drastically accelerate the search. We
anticipate that this, and other improvements, will reduce the running time of
DDMCMC algorithms from 10-20 minutes [48] to well under a minute.
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