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Learning Multiple Fault Diagnosis 

Yousri El Fattah (fattah@ics.uci.edu) Paul O'Rorke (fattah@ics.uci.edu) 

Department of Information and Computer Science 
University of California, Irvine, CA 92717 

Abstract 
This paper describes two methods for integrating mode/­
based diagnosis (MBD) and explanation-based learn­
ing. The first method (EBL} uses a generate-test-debug 
paradigm, generating diagnostic hypotheses using learned 
associational rules that summarize model-based diagnostic 
experiences. This strategy is a form of "learning while do­
ing" model-based troubleshooting and could be called "on­
line learning." The second diagnosis and learning method 
described here (EEL-STATIC) involves ''learning in ad­
vance." Learning begins in a training phase prior to per­
formance or testing. Empirical results of computational 
experiments comparing the learning methods with MBD 
on two devices {the polybox and the binary full adder) 
are reported. For the same diagnostic performance, EBL­
STATIC is several orders of magnitude faster than MBD 
while EBL can cause performance slow-down. 

AI Topic: Machine Learning, Model-based diagnosis. 

Domain Area: Digital systems diagnosis. 

Language/Tool: PROLOG on Sun3/60 workstations. 

Status: Implemented and tested. 

Effort: 0.5 person year. 

Impact: Diagnosis speedup learning. 

1 INTRODUCTION 
Two major approaches to diagnosis have been proposed. 
First generation expert systems used rules to encode asso­
ciations between symptoms and diagnoses. Imperfections 
such as incorrectness or incompleteness in the rule-base 
encoding the diagnostic knowledge of these systems made 
them "fragile" or "brittle" [7]. Model-based reasoning was 
proposed as a way of overcoming these problems [2]. 

Researchers in diagnosis now believe that causal mod­
els and associational knowledge are complementary and 
they should be combined in systems that use each tech­
nique when it is most appropriate [11, 6]. In the work 
reported here, reasoning based on device models and first 
principles provides robust diagnostic performance. Asso­
ciational rules provide efficient recognition of conflict sets 
and diagnoses directly from symptoms. 

Learning methods are used to convert model-based di­
agnostic experience into associational rules. The learn­
ing methods, derived from research on explanation-based 
learning (EBL) [4, 12], are intended to improve the per­
formance of the diagnostic system. 

There is some controversy surrounding the question 
about whether EBL can improve the performance of 
model-based diagnostic systems. Davis [1] has argued 
that attempts to apply EBL to model-based diagnosis are 
misguided. He claims EBL 

is simply not applicable in the current case. 
Model-based systems do not deliberate in an 
unguided fashion and they do not deliberate 
before every action. The reasoning processes 
are sharply focused procedures typically realiz­
able as computationally trivial graph traversal; 
hence they do not significantly affect speed (Ex­
cept for finding multiple faults, which is inher­
ently exponential, so nothing helps.) 

Keller [10] has argued that diagnostic systems are not im­
mune to improvement by EBL. We view this controversy 
as an empirical question and attempt to shed some light 
on it using computational experiments. 

Previous works have considered the EBL to speed up 
model based diagnosis. See Resnick [8] and Zercher [13]. 
Those works operate under the single-fault assumption. 

We consider a model based diagnosis (MBD) system for 
diagnosing multiple faults. Our goal is to determine the 
effectiveness of ways of employing EBL to speed up the 
MBD system's performance without sacrificing precision 
or completeness. We are interested in finding all minimal 
candidates (multiple as well as single faults) for a collec­
tion of observations. A candidate is a set of correctness 
assumptions that account for all occurring conflicts (con­
tradictions between predictions and observations) ,i.e., the 
conjunctive retraction (suspension) of those assumptions 
would remove the contradictions. The question is: Can 
EBL speed up diagnosis while generating the same collec­
tion of minimal candidates as a non-learning MBD system 
would? 

We explain in the next section three systems for diag­
nosing multiple faults. The first, called MBD, performs 
multiple fault diagnosis with no learning. The second, 
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called EBL, learns as it solves actual diagnostic problems 
and constructs macros for later use. The third, called 
EBL-STATIC, performs static learning before starting 
any actual diagnostic problem solving. We study the per­
formance of the three systems on two simple circuits. 

2 METHODS 
We describe three systems for multiple fault diagnosis. 
The first system (MBD) performs no learning, but is the 
basis on which the other two systems (EBL) and (EBL­
STATIC) are built. The latter two systems incorporate 
explanation-based learning in different forms. 

2.1 MBD 

. The MBD system uses the theory given by Reiter [9] and 
emulates the GDE system of de Kleer and Williams [3]. 
The general system architecture is shown in figure 1. 
Our candidate generation procedure, get-all-diagnoses, is 
based on Reiter's HS-Tree algorithm for computing hit­
ting sets [9]. 

2.2 EBL 
In this system, EBL is used to construct macro-rules for 
various diagnostic tasks while solving actual problems us­
ing model-based machinery. Two types of macro rules 
are learnt by the system: conflict set recognition rules c­

rules and diagnosis recognition rules d-rules. The overall 
EBL system operates according to the procedure EBL, 
depicted in figure 2. Diagnosis verification via constraint 
suspension as required in the algorithm is aimed at pre­
serving correctness and completeness. The checking is 
needed because rules learned from previously diagnosed 
cases may suggest an overly-general diagnosis on the cur­
rent problem. An example to demonstrate this point is 
this. Consider the polybox example (section 3.1) where 
EBL is given a problem where two conflicts are found, 
namely [m2,ml,al] and [m3,ml,al,a2]. EBL learns two c­
rules corresponding to those conflicts. Next, EBL is given 
a problem where three conflicts are present; the previ­
ous two as well as the additional conflict: [m3,m2,a2]. 
Since c-rules exist, EBL will apply them, and since they 
succeed EBL will conclude that the set of all diagnoses 
is the same as the previous case, viz. [[al], [a2,m2], [ml], 
[m3,m2]]. The candidates [al], [ml] are overgeneral. Run­
ning the constraint suspension checking on either candi-
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Figure 1: MBD Diagnosis System 
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Figure 2: EBL Diagnosis System 

date will produce the additional conflict [m3,m2,a2]. The 
debugging module will then specialize the candidate [al] 
to [a2,al], [m2,al], [m3,al] and the candidate [ml] to 
[[a2,ml], [m2,ml], [m3,ml]]. 

2.3 EBL-STATIC 

In this system, we need only to specify what the observ­
able parameters are. We then assign symbolic values to 
those parameters and propagate the constraints in sym­
bolic form. Once a complete set of c-rules is statically 
learnt, the system during actual diagnosis will only use 
those rules to determine all potential conflicts. Based on 
the conflicts found, the diagnoses are determined via a 
d-rule, if one succeeds. Otherwise, the procedure learn-d-

Observations 

Apply c-rules 

No 

All-diagnoses All-diagnoses 

Figure 3: EBL-STATIC Diagnosis System 
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Figure 4: The Polybox Circuit 

conflict..set([m2,ml,al],1) :-
obs(a,_a), obs(c,_c), obs(b,_b), obs(d,_d), 
obs(f,_f), diff(_f,...a* _c+_b* _d). 

conflict_set([m3,m2,a2],2) :-
obs(b,_b), obs(d,_d), obs(c,_c), obs(e,_e), 
obs(g,_g), diff(_g,_b* _d+_c* _e). 

conflict_set([m3,ml,al,a2],3) :-
obs(a,_a), obs(f,_f), obs(c,_c), obs(e,_e), 
obs(g,_g), diff(_g,_f-...a* _c+_c* _e). 

f 

g 

Figure 5: Complete set of c-rules for the polybox cir­
cuit 

rule is applied. 
Compared to the EBL system, there is no constraint 

suspension checking and learning is divided into static 
and dynamic parts. Learning c-rules is static, while d­
rules are learnt dynamically. 

The EBL-STATIC system architecture is shown in fig­
ure 3. 

3 Examples 

3.1 Polybox 

Consider the polybox circuit depicted in figure 4. For the 
set of observable parameters: a, b, c, d, e, f, g, the EBL­
STATIC system will learn statically the complete set of 
c-rules shown in figure 5. The first rule simply says that 
if the output of the first adder is different from the value 
of a times the value of c plus the value of b times the 
value of d then al, ml, and m2 are suspect. The cpu 
time for EBL-STATIC-learn-c-rules is 1.44 seconds. In a 
set of 100 problems, the EBL system was able to learn 

d_table([l,2],[[ a2,al ],[ a2,ml ], [m2],[ m3,al ],[m3,ml ]]). 
d_table([2,3],[[al,m2],[a2],[ml,m2],[m3]]). 
d_table([l,2,3],[[a2,al],[a2,ml],[a2,m2],[m2,al], 

[m2,ml],[m3,al],[m3,ml],[m3,m2]]). 
d_table{[l,3],[[al],[a2,m2],[m1J,[m3,m2]]). 

Figure 6: Complete set of d-rules for the polybox 
circuit 

oxl x 

)~ y 

Cl 

Figure 7: Binary Full Adder 

conflict..set([ xorl ,xor2], 1) :-
obs( x,..x), obs(y,_y), obs(ci,_ci), xor(_x,_y,A), 
xor(A,_ci,B), obs(s,..s), diff(..s,B). 

conflict..set([andl,xorl,and2,orl],2) :-

co 

obs(ci,_ci), obs(x,..x), obs(y,_y), and(_x,_y,A), 
xor(_x,_y,B), and(B,_ci,C), or(C,A,D), 
obs(co,_co), diff(_co,D). 

conflict..set([andl,xor2,and2,orl],3) :­
obs(s,..s), obs(ci,_ci), obs(x,_x), obs(y,_y), 
and(_x,_y,A), xor(B,_ci,..s), and(B,_ci,C), 
or(C,A,D), obs(co,_co), diff(_co,D). 

conflict..set([andl,and2,orl],4) :-
obs(ci,O), obs(x,_x), obs(y,_y), and(_x,_y,A), 
obs( co,_co ), diff( _co,A). 

conflict..set([xorl,and2,orl],5) :-
obs(x,..x), obs(y,_y), obs(ci,1), 
diff(_x,_y), obs(co,_co), diff(_co,1). 

conflict_set([xor2,and2,orl],6) :-
obs(s,O), obs(ci,1), obs(co,_co), diff(_co,1). 

conflict..set([andl,orl],7) :-
obs(x,l), obs(y,1), obs(co,_co), diff(_co,l). 

Figure 8: Complete set of c-rules for the full adder 
circuit 

all three c-rules. For the same set of 100 problems, both 
EBL and EBL-STATIC learn dynamically the same set 
of d-rules. The cl-rules are represented as table entries, 
indexed by the collection of conflict set labels. The d­
table is shown in figure 6. The first rule in figure 6 says 
that if the conflict sets are those labeled 1 and· 2, namely 
[m2,ml,al] and [m3,m2,a2] then the set of all diagnoses 
is [[a2,al ],[ a2,ml J,[m2],[m3,al],[m3,ml]]. 

3.2 Binary Full Adder 
Consider the 1-bit binary full adder in figure 7. 

For the collection of observable parameters: x, y, ci, s, 
co, the EBL-STATIC system learns 7 c-rules in 1 second. 
The c-rules are shown in figure 8. For the same set of 
100 problems, both EBL and EBL-STATIC learn dynam­
ically the same set of d-rules. The d-rules are represented 
as table entries, indexed by the collection of conflict set 
labels. The cl-table is shown in figure 9. 
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d_table([l], [[xor 1], [ xor2]]). 
d_table([2,3], [[ andl ],[ and2] ,[ orl ],[ xor2,xorl ]]). 
d_table( [ 6, 5], [[ and2], [or 1], [ xor l ,xor2]]). 
d_table([l,3],[[andl,xorl],[and2,xorl],[orl,xorl],[xor2]]). 
d_table([6,l],[[xorl,and2],[xorl,orl],[xor2]]). 
d_table([7 ,1,6] ,[[xorl ,andl ],[xorl ,orl] ,[xor2,andl] ,[xor2,orl]]). 
d_table([5,l],[[xorl],[xor2,and2],[xor2,orl]]). 
d_table([l,2],[[andl,xor2],[and2,xor2],[orl,xor2],[xorl]]). 
d_table([ 4], [[ andl ], [ and2], [orl]]). 
d_table([ 4, l], [[xorl, andl] ,[ xorl ,and2],[xorl ,or 1], 

[xor2,andl],[xor2,and2],[xor2,orl]]). 
d_table([7] ,[[ andl ],[ orl ]]). 

Figure 9: Complete set of d-rules for the full adder 
circuit 

4 Empirical Evaluation 
We have carried out an empirical study to compare the 
performance of the three diagnosis systems: MBD, EBL, 
and EBL-STATIC. We studied the performance on the 
polybox and the binary full adder circuits. 

A batch of 100 problems was generated. Diagnosis 
problems were created by randomly inducing single to 
triple faults in the circuit and then simulating the circuit 
behavior. Faults were assumed independent. 

We fed the same problem batch to each of the three 
diagnosis systems. All three systems produced exactly 
the same output (all diagnoses) for the same problem, but 
took different cpu times. We plotted the cumulative cpu 
time for each diagnosis system for each circuit example. 
See figures 10, 11. 

Cumulative Time 

(CPU Seconds) 
150 -.-~~~..--~~~...---~~~.---~~---.~~~---. 

20 40 fill 80 100 
Number of Problems 

Figure 10: Polybox Empirical Results 

In EBL, the net effect of speed-up from the c- and d­
rule learning on one hand, and the constraint-suspension 
checking slow-down on the other hand, may depend on the 

Cumulative Time 
(CPU Seconds) 
100 .-~~-...,~~~-.-~~~-r-~~~.--~~--. 

6.ll SD 100 
Number of Problems 

Figure 11: Binary full adder Empirical Results 

size and the nature of the circuit. For the polybox circuit 
EBL contributed a net marginal speed-up, but for the full 
adder caused slow-down. This is because constraint prop­
agation died quickly in the constraint suspension phase for 
the polybox circuit, but not so quickly for the full adder. 

For EBL-STATIC, conflict sets were generated on the 
basis of the pre-determined c-rules. The circuit model 
was no longer needed. The complete set of d-rules was 
learnt while solving a few problems. This meant that 
most of the time (96% for the polybox, and 89% for the 
full adder), all diagnoses were generated solely on the ba­
sis of associational rules. The time to match the rules 
conditions was extremely small in comparison with the 
time required for constraint propagation/suspension plus 
the hit set construction, as in the MBD or EBL cases. 
The effect of speed-up is very significant, as is evident 
from the performance plots of figures 10 and 11. On the 
average, EBL-STATIC was able to solve 10 to 30 prob­
lems in the same time required by MBD or EBL to solve 
one problem. 

For the full adder, the speed-up effect of EBL-STATIC 
is less pronounced than in the case of the polybox. This 
can be explained by the increase in the number of c-rules, 
and the possibility of non-minimal conflict sets. The pres­
ence of non-minimal conflict sets slows down the system 
due to the computation wasted in matching their c-rules 
conditions, and then eliminating those sets later on be­
fore applying the hit set algorithm. For example, if c-rule 
number 5 in figure 8 succeeds then so will c-rule number 
2. This means that there will be cases where the con­
flict sets:[andl,xorl,and2,orl], and [xorl,and2,orl] will be 
found. In such cases, the system will then have to elim­
inate the non-minimal set: [andl,xorl,and2,orl]; since 
[xorl,and2,orl] is a subset of that set. This means that 
the time required to match the conditions of the c-rule 
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number 2 was actually wasted. 

5 CONCLUSION 
This pa.per describes two methods for integrating model­
based diagnosis and explanation-based learning, illustrat­
ing them in terms of the well-known "polybox" and full 
adder examples. The first method uses a genera.te-test­
debug paradigm, generating diagnostic hypotheses using 
learned associational rules tha.t summarize model-based 
diagnostic experiences. The rules associate violations of 
abstract constraints on observed inputs and outputs di­
rectly with multiple fault diagnoses. Unfortunately, the 
diagnoses suggested by the rules may be incorrect. If too 
few examples have been observed, the system ma.y not 
have encountered relevant constraint violations and the 
rules may suggest diagnoses that are too general, miss­
ing components that may actually be faulted. Constraint 
suspension is used to test whether the proposed diagnoses 
actually explain the fault. If not, additional constraint 
violations occur leading immediately to further learning. 
This strategy is a form of "learning while doing" model­
based troubleshooting and could be called "on-line lea.m­
ing." 

The second diagnosis and learning method described 
here involves "learning in advance" since some learning 
occurs in a training phase prior to performance or test­
ing. Constraint suspension testing can be avoided if all 
possible constraint violations are known in advance. In 
the training phase, an analysis of the model is done and 
abstract constraints between inputs and outputs are iden­
tified. Associations between combinations of constraint 
violations and diagnoses are made given examples of ac­
tual faults. The performance system avoids having to fall 
back on the model. This approach is similar to recent 
work on precomputing the kinds of information tradition­
ally learned from examples in explanation-based learn­
ing. Our EBL-STATIC diagnosis system was inspired by 
Etzioni's work on STATIC, a "learning in advance" sys­
tem for the planner PRODIGY. Etzioni [5] showed that 
analyses of domain descriptions can be used to achieve 
performance gains equivalent to EBL in the absence of 
examples. Our work indicates that, when it is feasible, 
explanation-based caching in advance is to be preferred 
over standard EBL in learning to diagnose multiple faults. 
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