
UC Irvine
ICS Technical Reports

Title
Learning multiple fault diagnosis

Permalink
https://escholarship.org/uc/item/28d221hg

Authors
Fattah, Yousri El
O'Rorke, Paul

Publication Date
1991-01-30

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/28d221hg
https://escholarship.org
http://www.cdlib.org/

Learning Multiple Fault Diagnosi~

Yousri El Fattah
?" -;:::::--

fattah@ics.uci.edu
Paul O'Rorke

ororke@ics.uci.edu

Technical Report 91-06

January 30, 1991

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

z
(o f9
~3

filJ. f /-

To appear in Proceedings of the Seventh IEEE Conference on Artificial Intelligence Applica­
tions, February 24-28, 1991, Miami Beach, Florida.

This research was supported in part by National Science Foundation Grant Number IRI-
8813048, McDonnell Douglas Corporation, Douglas Aircraft Company, and the University
of California Microelectronics Innovation and Computer Research Opportunities Program.

Learning Multiple Fault Diagnosis

Yousri El Fattah (fattah@ics.uci.edu) Paul O'Rorke (fattah@ics.uci.edu)

Department of Information and Computer Science
University of California, Irvine, CA 92717

Abstract
This paper describes two methods for integrating mode/­
based diagnosis (MBD) and explanation-based learn­
ing. The first method (EBL} uses a generate-test-debug
paradigm, generating diagnostic hypotheses using learned
associational rules that summarize model-based diagnostic
experiences. This strategy is a form of "learning while do­
ing" model-based troubleshooting and could be called "on­
line learning." The second diagnosis and learning method
described here (EEL-STATIC) involves ''learning in ad­
vance." Learning begins in a training phase prior to per­
formance or testing. Empirical results of computational
experiments comparing the learning methods with MBD
on two devices {the polybox and the binary full adder)
are reported. For the same diagnostic performance, EBL­
STATIC is several orders of magnitude faster than MBD
while EBL can cause performance slow-down.

AI Topic: Machine Learning, Model-based diagnosis.

Domain Area: Digital systems diagnosis.

Language/Tool: PROLOG on Sun3/60 workstations.

Status: Implemented and tested.

Effort: 0.5 person year.

Impact: Diagnosis speedup learning.

1 INTRODUCTION
Two major approaches to diagnosis have been proposed.
First generation expert systems used rules to encode asso­
ciations between symptoms and diagnoses. Imperfections
such as incorrectness or incompleteness in the rule-base
encoding the diagnostic knowledge of these systems made
them "fragile" or "brittle" [7]. Model-based reasoning was
proposed as a way of overcoming these problems [2].

Researchers in diagnosis now believe that causal mod­
els and associational knowledge are complementary and
they should be combined in systems that use each tech­
nique when it is most appropriate [11, 6]. In the work
reported here, reasoning based on device models and first
principles provides robust diagnostic performance. Asso­
ciational rules provide efficient recognition of conflict sets
and diagnoses directly from symptoms.

Learning methods are used to convert model-based di­
agnostic experience into associational rules. The learn­
ing methods, derived from research on explanation-based
learning (EBL) [4, 12], are intended to improve the per­
formance of the diagnostic system.

There is some controversy surrounding the question
about whether EBL can improve the performance of
model-based diagnostic systems. Davis [1] has argued
that attempts to apply EBL to model-based diagnosis are
misguided. He claims EBL

is simply not applicable in the current case.
Model-based systems do not deliberate in an
unguided fashion and they do not deliberate
before every action. The reasoning processes
are sharply focused procedures typically realiz­
able as computationally trivial graph traversal;
hence they do not significantly affect speed (Ex­
cept for finding multiple faults, which is inher­
ently exponential, so nothing helps.)

Keller [10] has argued that diagnostic systems are not im­
mune to improvement by EBL. We view this controversy
as an empirical question and attempt to shed some light
on it using computational experiments.

Previous works have considered the EBL to speed up
model based diagnosis. See Resnick [8] and Zercher [13].
Those works operate under the single-fault assumption.

We consider a model based diagnosis (MBD) system for
diagnosing multiple faults. Our goal is to determine the
effectiveness of ways of employing EBL to speed up the
MBD system's performance without sacrificing precision
or completeness. We are interested in finding all minimal
candidates (multiple as well as single faults) for a collec­
tion of observations. A candidate is a set of correctness
assumptions that account for all occurring conflicts (con­
tradictions between predictions and observations) ,i.e., the
conjunctive retraction (suspension) of those assumptions
would remove the contradictions. The question is: Can
EBL speed up diagnosis while generating the same collec­
tion of minimal candidates as a non-learning MBD system
would?

We explain in the next section three systems for diag­
nosing multiple faults. The first, called MBD, performs
multiple fault diagnosis with no learning. The second,

Page 1

called EBL, learns as it solves actual diagnostic problems
and constructs macros for later use. The third, called
EBL-STATIC, performs static learning before starting
any actual diagnostic problem solving. We study the per­
formance of the three systems on two simple circuits.

2 METHODS
We describe three systems for multiple fault diagnosis.
The first system (MBD) performs no learning, but is the
basis on which the other two systems (EBL) and (EBL­
STATIC) are built. The latter two systems incorporate
explanation-based learning in different forms.

2.1 MBD

. The MBD system uses the theory given by Reiter [9] and
emulates the GDE system of de Kleer and Williams [3].
The general system architecture is shown in figure 1.
Our candidate generation procedure, get-all-diagnoses, is
based on Reiter's HS-Tree algorithm for computing hit­
ting sets [9].

2.2 EBL
In this system, EBL is used to construct macro-rules for
various diagnostic tasks while solving actual problems us­
ing model-based machinery. Two types of macro rules
are learnt by the system: conflict set recognition rules c­

rules and diagnosis recognition rules d-rules. The overall
EBL system operates according to the procedure EBL,
depicted in figure 2. Diagnosis verification via constraint
suspension as required in the algorithm is aimed at pre­
serving correctness and completeness. The checking is
needed because rules learned from previously diagnosed
cases may suggest an overly-general diagnosis on the cur­
rent problem. An example to demonstrate this point is
this. Consider the polybox example (section 3.1) where
EBL is given a problem where two conflicts are found,
namely [m2,ml,al] and [m3,ml,al,a2]. EBL learns two c­
rules corresponding to those conflicts. Next, EBL is given
a problem where three conflicts are present; the previ­
ous two as well as the additional conflict: [m3,m2,a2].
Since c-rules exist, EBL will apply them, and since they
succeed EBL will conclude that the set of all diagnoses
is the same as the previous case, viz. [[al], [a2,m2], [ml],
[m3,m2]]. The candidates [al], [ml] are overgeneral. Run­
ning the constraint suspension checking on either candi-

Observations

Prediction and

conflict-set recognition

All-diagnoses

Get-all-diagnoses

Figure 1: MBD Diagnosis System

No

No

r---- -----,
Generate

Candidates

Test
Candidates

(Constraint
suspension)

Model-based I
I

Diagnosis 1

Apply

I
I
I
I

Learn-c-rules :

Apply

I
I
I
I
I

Learn-d-rules I
Debug

Candidates [.C ____ f ____ ...J

All-diagnoses All-diagnoses

Figure 2: EBL Diagnosis System

date will produce the additional conflict [m3,m2,a2]. The
debugging module will then specialize the candidate [al]
to [a2,al], [m2,al], [m3,al] and the candidate [ml] to
[[a2,ml], [m2,ml], [m3,ml]].

2.3 EBL-STATIC

In this system, we need only to specify what the observ­
able parameters are. We then assign symbolic values to
those parameters and propagate the constraints in sym­
bolic form. Once a complete set of c-rules is statically
learnt, the system during actual diagnosis will only use
those rules to determine all potential conflicts. Based on
the conflicts found, the diagnoses are determined via a
d-rule, if one succeeds. Otherwise, the procedure learn-d-

Observations

Apply c-rules

No

All-diagnoses All-diagnoses

Figure 3: EBL-STATIC Diagnosis System

a
M1

b Ai

c M2

d A2

e Ma

Figure 4: The Polybox Circuit

conflict..set([m2,ml,al],1) :-
obs(a,_a), obs(c,_c), obs(b,_b), obs(d,_d),
obs(f,_f), diff(_f,...a* _c+_b* _d).

conflict_set([m3,m2,a2],2) :-
obs(b,_b), obs(d,_d), obs(c,_c), obs(e,_e),
obs(g,_g), diff(_g,_b* _d+_c* _e).

conflict_set([m3,ml,al,a2],3) :-
obs(a,_a), obs(f,_f), obs(c,_c), obs(e,_e),
obs(g,_g), diff(_g,_f-...a* _c+_c* _e).

f

g

Figure 5: Complete set of c-rules for the polybox cir­
cuit

rule is applied.
Compared to the EBL system, there is no constraint

suspension checking and learning is divided into static
and dynamic parts. Learning c-rules is static, while d­
rules are learnt dynamically.

The EBL-STATIC system architecture is shown in fig­
ure 3.

3 Examples

3.1 Polybox

Consider the polybox circuit depicted in figure 4. For the
set of observable parameters: a, b, c, d, e, f, g, the EBL­
STATIC system will learn statically the complete set of
c-rules shown in figure 5. The first rule simply says that
if the output of the first adder is different from the value
of a times the value of c plus the value of b times the
value of d then al, ml, and m2 are suspect. The cpu
time for EBL-STATIC-learn-c-rules is 1.44 seconds. In a
set of 100 problems, the EBL system was able to learn

d_table([l,2],[[a2,al],[a2,ml], [m2],[m3,al],[m3,ml]]).
d_table([2,3],[[al,m2],[a2],[ml,m2],[m3]]).
d_table([l,2,3],[[a2,al],[a2,ml],[a2,m2],[m2,al],

[m2,ml],[m3,al],[m3,ml],[m3,m2]]).
d_table{[l,3],[[al],[a2,m2],[m1J,[m3,m2]]).

Figure 6: Complete set of d-rules for the polybox
circuit

oxl x

)~ y

Cl

Figure 7: Binary Full Adder

conflict..set([xorl ,xor2], 1) :-
obs(x,..x), obs(y,_y), obs(ci,_ci), xor(_x,_y,A),
xor(A,_ci,B), obs(s,..s), diff(..s,B).

conflict..set([andl,xorl,and2,orl],2) :-

co

obs(ci,_ci), obs(x,..x), obs(y,_y), and(_x,_y,A),
xor(_x,_y,B), and(B,_ci,C), or(C,A,D),
obs(co,_co), diff(_co,D).

conflict..set([andl,xor2,and2,orl],3) :­
obs(s,..s), obs(ci,_ci), obs(x,_x), obs(y,_y),
and(_x,_y,A), xor(B,_ci,..s), and(B,_ci,C),
or(C,A,D), obs(co,_co), diff(_co,D).

conflict..set([andl,and2,orl],4) :-
obs(ci,O), obs(x,_x), obs(y,_y), and(_x,_y,A),
obs(co,_co), diff(_co,A).

conflict..set([xorl,and2,orl],5) :-
obs(x,..x), obs(y,_y), obs(ci,1),
diff(_x,_y), obs(co,_co), diff(_co,1).

conflict_set([xor2,and2,orl],6) :-
obs(s,O), obs(ci,1), obs(co,_co), diff(_co,1).

conflict..set([andl,orl],7) :-
obs(x,l), obs(y,1), obs(co,_co), diff(_co,l).

Figure 8: Complete set of c-rules for the full adder
circuit

all three c-rules. For the same set of 100 problems, both
EBL and EBL-STATIC learn dynamically the same set
of d-rules. The cl-rules are represented as table entries,
indexed by the collection of conflict set labels. The d­
table is shown in figure 6. The first rule in figure 6 says
that if the conflict sets are those labeled 1 and· 2, namely
[m2,ml,al] and [m3,m2,a2] then the set of all diagnoses
is [[a2,al],[a2,ml J,[m2],[m3,al],[m3,ml]].

3.2 Binary Full Adder
Consider the 1-bit binary full adder in figure 7.

For the collection of observable parameters: x, y, ci, s,
co, the EBL-STATIC system learns 7 c-rules in 1 second.
The c-rules are shown in figure 8. For the same set of
100 problems, both EBL and EBL-STATIC learn dynam­
ically the same set of d-rules. The d-rules are represented
as table entries, indexed by the collection of conflict set
labels. The cl-table is shown in figure 9.

Page 3

d_table([l], [[xor 1], [xor2]]).
d_table([2,3], [[andl],[and2] ,[orl],[xor2,xorl]]).
d_table([6, 5], [[and2], [or 1], [xor l ,xor2]]).
d_table([l,3],[[andl,xorl],[and2,xorl],[orl,xorl],[xor2]]).
d_table([6,l],[[xorl,and2],[xorl,orl],[xor2]]).
d_table([7 ,1,6] ,[[xorl ,andl],[xorl ,orl] ,[xor2,andl] ,[xor2,orl]]).
d_table([5,l],[[xorl],[xor2,and2],[xor2,orl]]).
d_table([l,2],[[andl,xor2],[and2,xor2],[orl,xor2],[xorl]]).
d_table([4], [[andl], [and2], [orl]]).
d_table([4, l], [[xorl, andl] ,[xorl ,and2],[xorl ,or 1],

[xor2,andl],[xor2,and2],[xor2,orl]]).
d_table([7] ,[[andl],[orl]]).

Figure 9: Complete set of d-rules for the full adder
circuit

4 Empirical Evaluation
We have carried out an empirical study to compare the
performance of the three diagnosis systems: MBD, EBL,
and EBL-STATIC. We studied the performance on the
polybox and the binary full adder circuits.

A batch of 100 problems was generated. Diagnosis
problems were created by randomly inducing single to
triple faults in the circuit and then simulating the circuit
behavior. Faults were assumed independent.

We fed the same problem batch to each of the three
diagnosis systems. All three systems produced exactly
the same output (all diagnoses) for the same problem, but
took different cpu times. We plotted the cumulative cpu
time for each diagnosis system for each circuit example.
See figures 10, 11.

Cumulative Time

(CPU Seconds)
150 -.-~~~..--~~~...---~~~.---~~---.~~~---.

20 40 fill 80 100
Number of Problems

Figure 10: Polybox Empirical Results

In EBL, the net effect of speed-up from the c- and d­
rule learning on one hand, and the constraint-suspension
checking slow-down on the other hand, may depend on the

Cumulative Time
(CPU Seconds)
100 .-~~-...,~~~-.-~~~-r-~~~.--~~--.

6.ll SD 100
Number of Problems

Figure 11: Binary full adder Empirical Results

size and the nature of the circuit. For the polybox circuit
EBL contributed a net marginal speed-up, but for the full
adder caused slow-down. This is because constraint prop­
agation died quickly in the constraint suspension phase for
the polybox circuit, but not so quickly for the full adder.

For EBL-STATIC, conflict sets were generated on the
basis of the pre-determined c-rules. The circuit model
was no longer needed. The complete set of d-rules was
learnt while solving a few problems. This meant that
most of the time (96% for the polybox, and 89% for the
full adder), all diagnoses were generated solely on the ba­
sis of associational rules. The time to match the rules
conditions was extremely small in comparison with the
time required for constraint propagation/suspension plus
the hit set construction, as in the MBD or EBL cases.
The effect of speed-up is very significant, as is evident
from the performance plots of figures 10 and 11. On the
average, EBL-STATIC was able to solve 10 to 30 prob­
lems in the same time required by MBD or EBL to solve
one problem.

For the full adder, the speed-up effect of EBL-STATIC
is less pronounced than in the case of the polybox. This
can be explained by the increase in the number of c-rules,
and the possibility of non-minimal conflict sets. The pres­
ence of non-minimal conflict sets slows down the system
due to the computation wasted in matching their c-rules
conditions, and then eliminating those sets later on be­
fore applying the hit set algorithm. For example, if c-rule
number 5 in figure 8 succeeds then so will c-rule number
2. This means that there will be cases where the con­
flict sets:[andl,xorl,and2,orl], and [xorl,and2,orl] will be
found. In such cases, the system will then have to elim­
inate the non-minimal set: [andl,xorl,and2,orl]; since
[xorl,and2,orl] is a subset of that set. This means that
the time required to match the conditions of the c-rule

Page 4

number 2 was actually wasted.

5 CONCLUSION
This pa.per describes two methods for integrating model­
based diagnosis and explanation-based learning, illustrat­
ing them in terms of the well-known "polybox" and full
adder examples. The first method uses a genera.te-test­
debug paradigm, generating diagnostic hypotheses using
learned associational rules tha.t summarize model-based
diagnostic experiences. The rules associate violations of
abstract constraints on observed inputs and outputs di­
rectly with multiple fault diagnoses. Unfortunately, the
diagnoses suggested by the rules may be incorrect. If too
few examples have been observed, the system ma.y not
have encountered relevant constraint violations and the
rules may suggest diagnoses that are too general, miss­
ing components that may actually be faulted. Constraint
suspension is used to test whether the proposed diagnoses
actually explain the fault. If not, additional constraint
violations occur leading immediately to further learning.
This strategy is a form of "learning while doing" model­
based troubleshooting and could be called "on-line lea.m­
ing."

The second diagnosis and learning method described
here involves "learning in advance" since some learning
occurs in a training phase prior to performance or test­
ing. Constraint suspension testing can be avoided if all
possible constraint violations are known in advance. In
the training phase, an analysis of the model is done and
abstract constraints between inputs and outputs are iden­
tified. Associations between combinations of constraint
violations and diagnoses are made given examples of ac­
tual faults. The performance system avoids having to fall
back on the model. This approach is similar to recent
work on precomputing the kinds of information tradition­
ally learned from examples in explanation-based learn­
ing. Our EBL-STATIC diagnosis system was inspired by
Etzioni's work on STATIC, a "learning in advance" sys­
tem for the planner PRODIGY. Etzioni [5] showed that
analyses of domain descriptions can be used to achieve
performance gains equivalent to EBL in the absence of
examples. Our work indicates that, when it is feasible,
explanation-based caching in advance is to be preferred
over standard EBL in learning to diagnose multiple faults.

Acknowledgement. This research was supported in
part by National Science Foundation Grant Number IRI-
8813048, McDonnell Douglas Corporation, Douglas Air­
craft Company, and the University of California Micro­
electronics Innovation and Computer Research Opportu­
nities Program.

References

[1] R. Davis. Form and content in model based reason­
ing. In Proceedings, AAAI-87 Workshop on Model
Based Reasoning, pages 11-27, 1987.

[2) R. Davis and W. Hamscher. Model-based reasoning:
Troubleshooting. In H. E. Shrobe, editor, Explor­
ing Artificial Intelligence, chapter 8, pages 297-346.
Morgan Kaufmann, 1988.

[3) J. de Kleer and B. C. Williams. Diagnosing multiple
faults. Artificial Intelligence, 32:97-130, 1987.

[4] G. DeJong. An introduction to explanation-based
learning. In H. E. Shrobe, editor, Exploring Arti­
ficial Intelligence, chapter 2, pages 45-81. Morgan
Kaufmann, 1988.

[5) 0. Etzioni. Why prodigy/ebl works. In Proceedings,
AAAI-90, pages 916-922, 1990.

[6] W. Horn. Causal AI Models- Steps Toward Ap­
plications. Hemisphere Publishing Co., New York,
1990.

[7] D. Partridge. The scope and limitations of first gen­
eration expert systems. Future Generation Computer
Systems, 3(1):1-10, 1987.

[8] P.Resnick. Generalizing on multiple grounds: Per­
formance learning in model-based troubleshooting.
Technical Report AI-TR 1052, MIT Artificial Intel­
ligence Laboratory, February 1989.

[9] R. Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32:57-95, 1987.

[10] R.M.Keller. In defence of compilation. Technical Re­
port FIA-90-06-25-1, NASA Ames Research Center,
May 1990.

[11] R.G. Simmons. Combining associational and causal
reasoning to solve interpretation and planning prob­
lems. Technical Report AI-TR 1048, MIT Artificial
Intelligence Laboratory, September 1988.

[12] S.T. Keda.r-Cabelli T.M. Mitchell, R.M. Keller.
Explanation-based generalization: A unifying view.
Machine Learning, 1:47-80, 1986.

[13] K. Zercher. Model-based learning of rules for error di­
agnosis. In W. Hoeppner, editor, Proceedings GWAI-
88, pages 196-205. Springer Verlag, Berlin, 1988.

Page 5

