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Draft genome sequence of Collimonas sp. strain H4R21, an 
effective mineral-weathering bacterial strain isolated from the 
beech rhizosphere
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ABSTRACT We present the draft genome sequence of Collimonas sp. strain H4R21, 
isolated from the rhizosphere of Fagus sylvatica in the forest experimental site of 
Montiers (France). This genome features coding capacity for plant growth promotion, 
such as the ability to solubilize minerals, to produce siderophores and antifungal 
secondary metabolites.
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I n nutrient-poor soils, tree rhizosphere is typically enriched for mineral weathering 
bacteria (1–8). In such low nutrient conditions, beech trees are known to increase 

root exudation, which derivates can be used as carbon substrate by bacteria (9, 
10). Collimonads are particularly effective at weathering (11) and share the ability to 
hydrolyze chitin, to produce antifungal molecules and to promote plant growth (11–15). 
To date, six species have been described (C. anthrihumi, C. arenae, C. fungivorans, C. 
pratensis, C. humicola, and C. silvisoli) (16–19). Collimonads belong to the Oxalobactera­
ceae family and are usually found in acidic and nutrient-poor soils (3, 5, 11). Strain H4R21 
was retained for detailed analyses because of its effectiveness at weathering. It was 
isolated from beech rhizosphere on the Montiers site (France) (1). In October 2014, 5 g of 
fresh roots and adhering soil were suspended in 25 mL sterile distilled water and serial 
dilutions were done on 1/10 TSA medium to purify bacteria before cryo-preservation in 
40% glycerol (1).

To extract DNA for sequencing, a culture on 1/10 TSA was done from the glycerol 
stock, and a single colony was used to inoculate 1/10 TSB medium. The culture was 
grown 2 days to reach late exponential phase. DNA was obtained after lysozyme 
(1 mg/mL) and proteinase K (1 mg/mL) treatments as described by Pospiech and 
Neumann (20). The library was prepared using the Nextera XT DNA library preparation kit 
(Illumina), following the manufacturer’s instructions. The library was sequenced as 150 × 
2 bp paired reads that were generated on an Illumina MiSeq instrument (Illumina Inc.).

For all of the following programs, default parameters were used except where 
otherwise specified.

The sequencing resulted in 3,652,095 pairs of raw reads, which were trimmed 
with Trimmomatic (v0.36; (21) and assembled using SPAdes v3.9.0 (22). Gene predic­
tion was done using prodigal v2.6.3 (23), classic RAST (24), and the NCBI Prokaryotic 
Genome Annotation Pipeline (PGAP) (25). RAST was used as it permits an expert and 
continual annotation. tRNA-scan-SE v2.0.12 (26) and Barrnap v0.9 (https://github.com/
tseemann/barrnap) were used for tRNA and rRNA prediction, respectively. Complete 
statistics of the draft genome can be found in Table 1. A 99.9% genome completeness 
was estimated with BUSCO (27) compared to the Burkholderiales lineage data set.
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Digital DNA-DNA hybridization (dDDH) analysis (28) revealed that strain H4R21 scored 
values ranging with the type strains from 37.4% with C. antrihumi (DSM104040) and C. 
arenae (Ter10) to 44% with C. pratensis (Ter291) and C. humicola (RLT1W55), 45.8% with C. 
silvisoli (RXD178), and 63.1% with C. fungivorans (Ter331).

Homologs of proteins with a central role in the mineral-weathering ability of 
collimonads, including a Glucose-Methanol-Choline oxidoreductase (29) and a non-
ribosomal polypeptide synthetase (NRPS) encoding for the synthesis of the siderophore 
malleobactin were detected (30, 31). Antismash (32) analyses revealed the presence of 
most of the genes encoding the production of collimomycin, an antifungal metabolite 
identified in C. fungivorans strain Ter331(13). These findings suggest that H4R21 is well 
equipped to survive and thrive in the rhizosphere of plants growing in nutrient-poor 
soils, to inhibit fungi, and to mobilize nutrients, making it a promising agent for the 
protection and/or promotion of plants (7, 14).
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TABLE 1 Genome information and statistics

Genome project information
  GenBank accession JBANDC000000000
  Bioproject no. PRJNA1081282
  SRA accession number SRR28162545
Genome assembly statistics
  Total length (bp) 5,613,331
  No. of contigs (≥500 bp) 46
  N50 (bp) 281,801
  L50 (contig) 8
  Largest contig 531,299
  GC content (%) 59.52
  Genome coverage 189.97x
Genome features
  Protein-coding genes 5,144
  tRNAs 47
  Complete rRNAs (5S,16S,23S) 3
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DATA AVAILABILITY

The whole-genome and raw sequences are available under the accession no. 
JBANDC000000000 and SRR28162545 for the raw data and the genome assembly, 
respectively.
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