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Review 

Dietary fructose as a model to explore the influence of peripheral 
metabolism on brain function and plasticity 

Fernando Gomez-Pinilla a,c,*, Rafael Parcianello Cipolat b, Luiz Fernando Freire Royes b 

a Department of Neurosurgery, UCLA Brain Injury Research Center, University of California Los Angeles, USA 
b Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria – UFSM, Santa Maria, RS, Brazil 
c Department of Integrative Biology and Physiology, UCLA Brain Injury Research Center, University of California Los Angeles, USA   
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A B S T R A C T   

High consumption of fructose has paralleled an explosion in metabolic disorders including obesity and type 2 
diabetes. Even more problematic, sustained consumption of fructose is perceived as a threat for brain function 
and development of neurological disorders. The action of fructose on peripheral organs is an excellent model to 
understand how systemic physiology impacts the brain. Given the recognized action of fructose on liver meta-
bolism, here we discuss mechanisms by which fructose can impact the brain by interacting with liver and other 
organs. The interaction between peripheral and central mechanisms is a suitable target to reduce the patho-
physiological consequences of neurological disorders.   

1. Introduction 

Nutritional overload induced by high dietary intake of fats and 
sugars is one of the main causes of obesity [1]. Increased consumption of 
fructose (30% in the last 40 years) has been associated with the preva-
lence of metabolic syndrome (MetS) and obesity. MetS is a group of 
conditions that elevate risk of cardiovascular disease, stroke, and dia-
betes type 2, and include glucose intolerance, hypertension, and 
hyperlipidemia [2], and only recently neurological dysfunction have 
become part of the scenario [3]. Fructose (β-D-fructofuranose, C6H12O6) 
is a functional/constitutional isomer of glucose naturally found in fruits 
and honey, and high fructose consumption is getting recognition as a 
major cause of MetS (Fig. 1). 

Fructose is a natural sugar that when consumed as part of fruits, 
vegetables and honey has healthy benefits. For example, blueberry 
powder dietary supplementation, which contains a high concentration 
of fructose, counteracts several of the deleterious effects of brain trauma 
[4]. Since fructose has a chemical structure similar to glucose, and does 
not directly stimulate insulin secretion (mechanism deficient in di-
abetics), the presence of this compound in the diet produces a lower 
increase in blood glucose when compared to the amount of other car-
bohydrates [5]. Furthermore, the presence of water, fiber and antioxi-
dants in the fruit causes fructose to be absorbed more slowly and thus 
tolerable to the body. 

On the other hand, fructose when ingested in high concentration for 
a prolonged time as an additive to meals has a myriad of unhealthy 
consequences within the spectrum of MetS, such as obesity, systemic 
inflammation, and behavioral dysfunction [6]. In addition, the long- 
term consumption of high fructose can result in development of non- 
alcoholic fatty liver disease, a manifestation of MetS which is common 
in Western industrialized countries (6–35% prevalence, median 20%) 
[7]. An increasing line of clinical and experimental evidence indicates 
that high fructose consumption correlates with rising rates of neurologic 
disorders [8], such that the study of the mechanisms involved on the 
impact of fructose on the brain is becoming an area of intense research. 
Research so far indicates that fructose can affect the brain directly and/ 
or indirectly by involving peripheral metabolism. This review will 
mainly discuss how fructose affects the brain via systemic physiology, as 
the direct effects of fructose on brain cells have been thoroughly 
reviewed somewhere else [9]. Most fructose is metabolized in the liver 
after being absorbed by the intestine to the bloodstream [8]. Given the 
action of liver on detoxification, synthesis of lipids and proteins essential 
for brain homeostasis, liver dysfunction can have devastating conse-
quences for the brain. We are starting to understand that liver disorders 
such as hepatic encephalopathy have serious neurological consequences 
[10,11] that have been out of sight of mainstream studies. It is becoming 
to be understood that byproducts of fructose metabolism in the liver 
such as triglycerides and other lipid forms may influence brain function. 
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2. Brief story of the long evolutionary history of fructose 
consumption 

Before agriculture was developed around 10,000 years ago, hunting, 
gathering, and fishing were the main strategies to procure food. Food 
was scarce and unpredictable to obtain such that accumulation of cal-
ories in the form of adipose tissue was an important strategy to survive 
times of scarcity. In this context, consumption of foods high in caloric 
content provided to our ancestors a secure way to cope with times of 
rainy days. Although it is difficult to establish how much sugar our 
prehistoric ancestors consumed, it is plausibly that wild fruits and honey 
were accessible to our ancestors, particularly to those who lived in re-
gions of warm climate and forest such as in the African continent. 
Nowadays, regions in Tanzania are considered living remnant of full- 
time hunter-gatherers, in which contemporary inhabitants live on 
what they find: game, plants, honey and fruits rich in fructose [12]. It is 
important to consider that food procurement demanded high levels of 
physical activity for our ancestors, and this activity seems to have pro-
vided the caloric balance necessary to maintain overall health. 

The advent of agriculture approximately 10,000 years ago provided 
a more secure supply of foods, including fruits rich in fructose. The 

industrial revolution of the nineteen century represents a dramatic game 
changer for dietary practices as it enabled massive production of pro-
cessed foods containing high levels of sugary components. In particular, 
high-fructose corn syrup (HFCS), main form of currently consumed 
fructose in the U.S., was launched to market in 1970 based on enhanced 
sweetness and low price. Depending on the type of HFCS, fructose oc-
cupies between 42% and 55% of its composition. Today, fructose is 
widely consumed in many types of processed foods and fructose appears 
as an important factor in metabolic and neurological disorders [9]. 

It has been shown that fructose exerts an impact on metabolic genes 
related to several metabolic disorders [13]. It is noteworthy that the 
genomic makeup of living individuals is the product of dietary habits 
occurring thousands of years ago, as mutations occur in the range of 
many thousands of years. Therefore, increases in fructose consumption 
pose a big challenge to our conservative genes, and current habits can tip 
homeostatic balance towards disease stages. These limitations are even 
more alarming when considering that sudden increases in sugar con-
sumption post-industrialization have been accompanied by a dramatic 
decrease in exercise. 

Fig. 1. Proposed mechanism by which fructose consumption affects cell metabolism in body and brain. Fructose is absorbed across the apical membrane of intestinal 
epithelial cells via an energy-independent mechanism, which requires the transmembrane transporter protein GLUT5. The majority of absorbed fructose enters the 
circulation across enterocytes via the GLUT2 transporter. Fructose consumption promotes release of appetite hormones such as peptide YY (PYY) and ghrelin. There is 
also increase in neuropeptide Y (NPY) and agouti-related protein (AgRP), orexigenic neuropeptides that stimulate food intake by decreasing the satiety peptide pro- 
opiomelanocortin (POMC) and cocaine-amphetamine-regulated transcript (CART) in arcuate nucleus of hypothalamus [108]. In the hypothalamus, high fructose 
elevates AMP kinase (AMPK), leading to inactivation of acetyl-CoA carboxylase (ACC) and malonyl-CoA, and increased food intake. Excessive fructose catabolism in 
liver also induces ATP depletion which, in turn, activates AMPK and protein c-jun-N terminal kinase-1 (JNK1). This protein leads to insulin resistance through the 
phosphorylation of IRS-1 on Serine307 residue (IRS-1Ser307). Fructose can also induce Uric Acid (UA) that inhibits pathways associated with management of cell 
energy metabolism in liver. High serum UA after fructose consumption causes inflammation in pancreas contributing to irregular insulin secretion. Fructose interferes 
with signaling of both insulin receptor and BDNF receptor inhibiting pathways associated with managements of cell energy metabolism and plasticity, such as cAMP 
response element-binding protein (CREB) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1a), and SIRT1. PGC-1a and mito-
chondrial transcription factor A (TFAM) influence mitochondrial biogenesis, and they may convey the effects of fructose on decreasing oxidative phosphorylation and 
bioenergetics. SIRT1 modulates synaptic plasticity and memory formation via posttranscriptional regulation of CREB therefore, the interaction among SIRT1, PGC- 
1a, and TFAM may be important to regulate cognitive function. The loss in energy homeostasis results in ROS, and the harmful by-product of lipid peroxidation 4- 
hydroxynonenal (4HNE), thereby compromised plasma membrane function. Excessive consumption of fructose may result in lipid peroxidation of the plasma 
membrane affecting synaptic plasticity and cognition. 
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3. Intestine acts as a gate for fructose action on body and brain 

Although isolated fructose is poorly absorbed by the intestine [14], 
over-consumption of fructose results in unhealthy metabolic phenotypes 
including increased intrahepatic fat content, decreased insulin sensi-
tivity, dyslipidemia and adiposity [15]. In spite of the slow absorption 
rate of fructose by part of the intestine, excessive dietary fructose can 
remain in the gut for extensive time as fructose can reach up to a con-
centration of 2–3 mM before being utilized [5]. The fructose in the gut is 
transported into the enterocyte through the specific fructose transporter 
GLUT5, independently from ATP hydrolysis and sodium absorption. 
Once inside the enterocyte, fructose is transported into the bloodstream 
via the GLUT2 transporter [16]. It is noteworthy that excessive dietary 
fructose can overwhelm the absorptive capacity of the small intestine 
leading to incomplete absorption of fructose [17]. The non-absorbed 
fructose can be rapidly propelled into the colon, where its contact 
with the anaerobic flora causes fermentation, bloating and diarrhea 
[18]. It is remarkable that this action of dietary fructose on intestinal 
microbes can generate byproducts that influence systemic physiology 
and brain. 

Fructose entering the enterocyte cytosol may be phosphorylated by 
Ketohexokinase (KHK) enzyme resulting in rapid depletion of ATP and 
accumulation of pyruvate and acetyl-CoA. Although these events help 
maintain the downhill fructose gradient into the cytosol, they also 
reduce intestinal Ca2+ [19] and inorganic phosphate (Pi) transport [20] 
that compromises absorption of certain minerals essential for bone 
health. Under normal conditions, systemic fructose concentration is 
relatively low (<0.05 mM) in healthy humans [21] and tissues such that 
liver and kidneys are sensitive to small changes in circulating fructose 
[2]. Excessive fructose intake also stimulates endogenous glucose pro-
duction and lipid synthesis in the liver [22], events associated with the 
spectrum of MetS, such as obesity and systemic inflammation [6]. 
Regarding fructose metabolism in intestine, the enteroendocrine (EEC) 
cells after detecting fructose in the gut, activate a cascade of endocrine 
events. In particular, luminal fructose stimulates secretion of human 
PYY, cholecystokinin, neurotensin [23], and serotonin by secretory in-
testinal cells [2]. 

4. Fructose metabolism in liver – brain axis 

A large body of literature indicates that most fructose is metabolized 
in the liver after being absorbed by the intestine to the bloodstream [24]. 
The liver is the primary organ for processing lipids and proteins, which 
are exported to brain and other tissues and organs. Lipids are essential 
for brain function and behavior, being part of plasma membranes, 
working as molecular transport systems, neuronal signaling systems, etc. 
[25]. The brain contains the second highest concentration of lipids in the 
human body. The metabolism of brain lipids is tightly regulated through 
a liver-brain interaction in which the autonomic nervous system plays a 
crucial role. Liver dysfunction can be aggravated by consumption of 
fructose as fructose is mainly metabolized in the liver where is converted 
into fatty acids that can reach the brain and expand the inflammatory 
reaction started in the periphery [27]. Fructose is metabolized in liver 
via fructolysis, and the primary metabolites and by-products include 
glucose, lactate, triglyceride, free fatty acid, uric acid and methyl-
glyoxal. GLUT5 is widely expressed in adipose tissue, kidney, muscle 
skeletal tissue, testis and brain [28] that could also participate in fruc-
tose metabolism. 

It can be noted that fructose metabolism differs from that of glucose 
since hepatic fructose is converted rapidly to triose-phosphate inde-
pendently of insulin control and without a citrate feedback [16]. A large 
portion of fructose is converted into glucose which can be released into 
the bloodstream or stored as glycogen. Another portion of fructose is 
converted into fatty acids, which under exacerbation can contribute to 
the formation of hypertriglyceridemia and fatty liver disease. Further-
more, experimental long-term fructose (30% solution for 10 weeks) 

consumption decreases mitochondrial enzymes that catalyze β-oxida-
tion in the liver [29]. Excessive lipid accumulation elicited by fructose in 
hepatocytes can also disrupt mitochondrial function [30] and elevate 
levels of oxidative stress and inflammation [2]. When compared with 
glucose, fructose overconsumption exerts divergent effects on hepatic 
mitochondrial function. Quantitative electron microscopy revealed that 
fructose but not glucose increases the number of mitochondria in the 
liver, and increases fission and/or decreases fusion [29]. These experi-
mental data indicate that fructose-induced mitochondrial dysfunction 
may contribute to the development of fatty liver disease. Fructose con-
sumption also induces pancreatic β-cells hyper-responsivity to glucose- 
stimulated insulin secretion which can affect peripheral metabolism 
given the extreme sensitivity of adipose and other tissues to the action of 
insulin [31]. The enzyme fructokinase C that rapidly phosphorylates 
fructose in the liver, reduces ATP, activates purine nucleotide turnover 
that culminates in the formation of uric acid as well as Reactive Oxygen 
Species (ROS) and mitochondrial dysfunction [2,32,33]. 

Uric acid is a waste product from the breakdown of purines in the 
liver that once released to the circulation can reach the brain [5]. 
Fructose catabolism in liver induces rapidly ATP depletion and release of 
uric acid to the systemic circulation resulting in hyperuricemia [28]. In 
situations of high fructose consumption, oxidative stress promoted by 
accumulation of uric acid triggers an inflammatory response in liver and 
extrahepatic tissues, causing inflammation and lipid accumulation [34]. 
Uric acid can harm the brain as seen in patients with Alzheimer’s and 
Parkinson’s disease in which uric acid acts as a risk factor for disease 
progression and a possible marker of cognitive dysfunction. [35]. The 
uric acid-mediated oxidative stress-induced lipid peroxidation causes 
DNA damage and activates inflammatory factors that lead to cell dam-
age [36]. 

5. Effects of fructose on microbiota 

The gut is the largest microbial, endocrine, and immune organ in 
humans and mice. The bacterial composition of the gut has emerged as 
profound regulator of whole-body metabolism and contributing to host 
immune homeostasis [37,38], and influencing brain function and dis-
ease [39–42]. Gut microbiota plays an important role in brain-gut 
interaction and behavior by producing metabolites, hormones and im-
mune factors that can influence the brain [43]. Fructose affects micro-
biota composition and abundance that associate with metabolic 
dysregulation and select pro-inflammatory phenotypes in hypothala-
mus, liver and adipose tissues [44]. Proinflammatory microbiota and its 
byproducts such as LPS recruit macrophages that bind toll-like receptors 
leading to the release of cytokines (TNF-α) causing inflammation of the 
intestinal mucosa. As a consequence, there is a decrease in tight junction 
proteins resulting in a greater permeability of the intestinal barrier 
increasing the penetration of pathogens into the bloodstream [45]. 

6. Role of hypothalamus on regulating the action of fructose on 
brain-body interaction and behavior 

The hypothalamus is the master center for regulation of brain and 
body metabolism and control of appetite and feeding behavior, and 
works with the hippocampus to regulate cognitive function. The hypo-
thalamus controls all body organs via the pituitary endocrine axis and 
the autonomic nervous system. Fructose affects food intake by stimu-
lating release of glucocorticoid hormones [46] which feedback on the 
hypothalamus. Fructose overconsumption (10% solutions), reduces 
total protein kinase B (Akt), Ser473-phosphorylated Akt (pAkt-Ser473), 
and insulin receptor phosphorylation in the hypothalamus [47]. Insulin 
inhibits the expression of neuropeptide Y (NPY) and agouti-related 
protein (AgRP), which are orexigenic neuropeptides that stimulate 
food intake in the hypothalamus. Therefore, excess of circulating insulin 
secondary to fructose-induced insulin resistance dysregulates energy 
homeostasis leading to AgRP/NPY overexpression, in association with 
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an increase in appetite and body weight [48]. 
Fructose affects appetite hormones like ghrelin, leptin and peptide 

YY (PYY), which are secreted in the periphery and travel via circulation 
to the hypothalamus. Fructose stimulates release of leptin from adipo-
cytes and promotes leptin resistance together with an enhancement of 
satiety signals in the hypothalamus [49]. Leptin resistance involves 
Janus Kinase (JAK)-mediated phosphorylation, activation of transcrip-
tion 3 (pSTAT3) functions, and impairment of leptin transport through 
the BBB [50]. The leptin resistance elicited by high fructose (60% so-
lutions), can occur on the absence of body weight gain or circulating 
leptin levels [51]; therefore, it is possible that leptin resistance is an 
early feature in the chronic process of development of a fructose-induced 
metabolic disorder. On the other hand, a short period of fructose con-
sumption (15% solutions) in humans has been shown to result in lower 
levels of circulating insulin and leptin, and fails to suppress post-meal 
ghrelin levels [52]. Therefore, it seems that the length and concentra-
tion of fructose intake are crucial determinants for the type of physio-
logical response. It is notable the strong interaction between pathways 
that regulate food reward and metabolism in the brain, and that they 
become dysfunctional in metabolic disorders such as obesity [53,54]. 

The hypothalamus harbors neurons that express the endocannabi-
noid receptor 1 (CB1) [55]. The endocannabinoid system seems to play a 
regulatory role on the rewarding aspect of the consumption of palatable 
foods, and particularly high fructose [56]. Endocannabinoids levels are 
increased in response to fasting and are suppressed postprandially [57]. 
In addition, a single intravenous injection of leptin, which regulates 
energy balance and eliminates hunger, reduces endocannabinoid release 
from the hypothalamus [58]. Experimental evidence indicates that 
short-term (two weeks) consumption of fructose (23% solutions) but not 
glucose increases mRNA levels of CB1 receptor [59] and affects enzymes 
involved in the synthesis/degradation of endocannabinoids (ananda-
mide and 2-arachidonoyl-glycerol) [60]. 

The hypothalamus plays a crucial role on the control of brain and 
body homeostasis. Fructose has several metabolic effects in the hypo-
thalamus such as depletion of ATP, increase in activation of AMP kinase, 
inactivation of acetyl-CoA carboxylase, reduction of malonyl-CoA, 
together with stimulation of food intake [61,62]. Furthermore, 
fructose-induced hypothalamic AMPK activation increases hepatic 
gluconeogenesis by the elevation of circulating corticosterone level, 
further contributing to systemic insulin resistance [63]. Fructose but not 
glucose has been shown to reduce hypothalamic cerebral blood flow in 
healthy volunteers [64]. Ancillary, fructose is metabolized faster than 
glucose in the brain [55], pointing out another difference between 
fructose and glucose. Fructose consumption can elicit robust changes in 
oxidative stress in the hypothalamus. For example, high-fructose (60% 
solutions) consumption for 10 weeks decreases levels of antioxidant 
enzymes, including cytoplasmic copper-zinc superoxide dismutase 1, 
mitochondrial manganese superoxide dismutase 2, glutathione peroxi-
dase, glutathione reductase, and catalase [65]. 

The actions of fructose on hypothalamic metabolism may be opera-
tional for regulation of metabolic disorders such as obesity, insulin 
resistance [48], and other disorders [6]. Using systems nutrigenomics in 
a rodent model of high fructose consumption, it has been reported that 
fructose uses the extracellular matrix biglycan gene (Bgn) to alter mo-
lecular pathways related to oxidative phosphorylation, glucose meta-
bolism and fatty acid metabolism in the hypothalamus [13,66]. This 
prominent response of Bgn in hypothalamus elicited by fructose is 
crucial to understand how metabolic disorders (e.g. diabetes and 
obesity) influence brain centers. 

7. Metabolic action of fructose on cognitive function – 
hippocampus 

The hippocampus plays a preponderant role on learning and memory 
processing and works with the hypothalamus to integrate feeding 
behavior with higher order functions. The hippocampus is highly 

susceptible to the action of fructose such that high fructose consumption 
results in alterations in cognitive function [67,68]. Experimental evi-
dence in rodents shows that overconsumption of fructose (15% solu-
tions) for a duration (6 weeks), sufficient to disrupt peripheral 
metabolism reduces hippocampal insulin receptor signaling, which is 
commensurable to poor learning and memory performance [69]. In 
addition, 15% fructose by 8 weeks compromises the capacity of the 
hippocampus to sustain synaptic plasticity in the forms of long-term 
potentiation (LTP) and long-term depression (LTD), followed by 
reduction of synaptic contact zones and neurogenesis [70]. Even a 
shorter period of fructose or sucrose consumption (4 weeks, 23% solu-
tions) but not glucose, reduces hippocampal neurogenesis [71]. 

Fructose consumption is currently perceived as an important cause of 
metabolic disorders with subsequent detriment of cognitive function. In 
this context, several mechanisms have been suggested for the action of 
fructose on cognitive function such as disruption in oxidative meta-
bolism [56], decreases in neurotrophic factor expression, increases in 
oxidative stress and inflammation [72]. A comprehensive study [73] 
showed that high fructose consumption in rodents (15% solutions) for 6 
weeks disrupts pathways associated with cell energy metabolism 
involving peroxisome proliferation-activated receptor gamma coac-
tivator 1-alpha (PGC-1α), mitochondrial transcription factor A (TFAM) 
and sirtuin 1, and synaptic plasticity modulators such as cAMP response 
element-binding protein (CREB). The fact that PGC-1α interacts with 
TFAM on mitochondrial biogenesis [74] and SIRT-1 affects synaptic 
plasticity via posttranscriptional regulation of CREB [75] suggests that 
fructose may disrupt the interface between cell metabolism and synaptic 
plasticity, making the brain susceptible to neurological disorders. 

Interestingly, the effects of fructose on cognition may also involve 
inflammatory pathways that are affected by hepatic metabolism. For 
example, translocation of high mobility group box 1 (HMGB1), a highly 
conserved non-histone DNA-binding protein, from nucleus to cytoplasm 
in response to high fructose consumption (30% solution) elicits an in-
flammatory cascade involving Toll like receptor 4 (TLR4), nuclear 
factor-kappa B (NF-κB) and the transcription of proinflammatory cyto-
kines [76]. The TLR4/NF-κB signaling pathway activation elicited by 
HMGB1 induces apoptosis in hippocampal cells and subsequent cogni-
tive deficits in animal models of obesity [77,78]. 

The overconsumption of fructose-sweetened beverages is particu-
larly relevant to young individuals [79]. Experimental short-term fruc-
tose (20% solution for 7 days) consumption in young rodents results in 
increased levels of inflammatory and oxidative damage markers in the 
hippocampus [80]. These studies reinforce the idea that oxidative stress 
and inflammation play a central role in fructose-induced damage to the 
brain even in offspring. In turn, studies showing increases in cerebral 
protein nitration followed by cytochrome c oxidase and Citrate synthase 
activity in the hippocampus from adult, but not young, suggest that 
aging might exacerbate the oxidative condition induced by this diet [81] 
and this is particularly relevant since protein nitration plays a role in the 
progression of neurological disease [82]. 

8. Fructose impacts the substrates for neurological and 
psychiatric disorders 

Chronic fructose consumption disrupts various cellular processes 
such as inflammation and oxidative metabolism which reduces the 
threshold for a range of neurological and psychiatric disorders [83]. 
Metabolic dysfunction is an important aspect of the pathogenesis of 
several neurological diseases [72]. For example, visceral fat and serum 
triglycerides induced by high fructose consumption have been associ-
ated with anxiety and depression-like behaviors [84]. Furthermore, it is 
known that fructose modulates the serotonergic system, which has 
important actions on the regulation of emotions and cognition [85]. 
Consumption of a 30% fructose diet for 8weeks resulted in a decrease in 
serotonin reuptake transporter (SERT) protein levels in mouse duo-
denum [64]. Interestingly, SERT-deficient mice are used as a relevant 
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model for depression, suggesting a link between fructose consumption 
and psychological effects [86]. 

Experimental evidence indicates that consumption of a high-fructose 
diet (55%) starting during juvenile life promotes a pro-inflammatory 
state involving both the Central and Peripheral Nervous Systems, and 
resulting in psychiatric-like disorders in adulthood [87]. Obese pheno-
type in female rats caused by high fructose consumption (20% diet) is 
associated with an increase in IL-1β production, microglial reactivity 
and hyperphosphorylation of tau in the hippocampus, concomitant to 
neuronal loss and neurological dysfunction at 48 h post-stroke [88]. 

Fructose-induced insulin resistance is closely associated with the two 
neuropathological biomarkers of Alzheimer’s disease namely senile 
plaques (SPs) and neurofibrillary tangles (NFTs) [89]. Under fructose- 
induced hyperinsulinemic conditions, insulin competes with amyloid b 
protein (Aβ) for insulin-degrading enzyme, leading to the accumulation 
of Aβ and deposition of SPs [90]. In addition, the fructose-induced 
impairment of the insulin receptor (IR) signaling culminates in loss of 
insulin-mediated activation of phosphoinositide 3-kinase (PI3-K)/Akt 
pathway, and subsequent dephosphorylation of glycogen synthase 
kinase-3b (GSK-3b), which potentiates the phosphorylation and forma-
tion of NFTs [91]. The significant correlation between Akt activity/ 
protein levels found in human Alzheimer’s disease indicates a time- 
dependent and insulin-stimulated PI3-K signaling [92]. 

Experimental studies have demonstrated that fructose consumption 
aggravates the effects of brain trauma on molecular systems engaged in 
cell energy homeostasis (SIRT1, PGC-1α) and synaptic plasticity (BDNF, 
TrkB, CREB, synaptophysin) in the hippocampus. Fructose also aggra-
vates the effects of brain trauma on spatial memory in association with a 
decrease in hippocampal insulin receptor signaling [73]. High fructose 
consumption under the threshold for establishment of MetS exacerbates 
the disruptive effects of brain trauma on inflammation and lipid per-
oxidation in the liver [22]. These effects seem to engage the neuroen-
docrine growth hormone system with increases of a metabolic/ 
inflammatory cascade and lipid peroxidation, and disruption of cell 
energy homeostasis and insulin signaling. Diet-induced metabolic dis-
orders pose a risk for incidence of post-stroke depression [93], and 
exacerbate damage caused by ischemic stroke in cerebral vessels [94]. 
These events result in an increase in BBB permeability and pro- 
inflammatory response that may exacerbate infarct volume [95,96]. 

9. How much and for how long fructose exposure can harm 
systemic physiology and brain function 

The period of fructose exposure seems a critical factor for the 
involvement of systemic metabolism and subsequent effects on brain. A 
minimum of 6 weeks of fructose in rodents is crucial for development of 
MetS with concomitant effects on brain function and cognition [97,98]. 
Long-term high fructose consumption (15% solutions for 6 weeks) in 
rodents results in decrements in brain plasticity and learning and 
memory performance [69]. Fructose alters brain molecular pathways 
involved in mitochondrial bioenergetics and plasma membrane ho-
meostasis, neuronal signaling, and synaptic plasticity [72]. Neverthe-
less, several studies indicate that a short period of fructose feeding for a 
duration insufficient to disrupt peripheral metabolism can also affect the 
brain by reducing cerebral blood flow [64], myelin basic protein, and 
the axonal growth-associated protein 43 (GAP-43), concomitant with a 
decline in hippocampal weight [99]. Two weeks fructose (20.4 g/100 g) 
diet induce inflammation, oxidative stress, impairment of insulin 
signaling as well as a significant decrease in mitochondrial function in 
the hippocampus [80]. Although the greater amount of fructose is 
intuitively worse for systemic physiology, information derived from 
animal studies is not conclusive since animals adjust their own fructose 
consumption based on caloric contents. 

Although the BBB has low affinity for fructose [100], a short term (7 
days) fructose consumption (20% solutions) seem to enable neuronal 
cells to metabolize fructose [101] as evidenced by increased levels of 

GLUT5 in hippocampal microglia [102] and cerebellar Purkinje cells 
[103]. Short fructose consumption also produces insulin signaling al-
terations accompanied by neurite and synaptic reduction and astroglial 
activation in the rat hippocampus [104]. Also, the hippocampus and 
hypothalamus [105] contains the enzyme Ketohexokinase (KHK) that 
degrades fructose reinforcing the possibility that fructose can be 
metabolized in the brain [106,107]. 

10. Concluding remarks and perspectives 

Although fructose, as a natural component of fruits and honey, 
available to our ancestors for thousands of years of evolution, current 
overconsumption of dietary fructose is a major concern for public 
health. Studies indicate that several of the peripheral actions of fructose 
such as increased adiposity, triglycerides, and pro-inflammatory agents, 
can impact brain function. Current evidence indicates fructose disrupts 
function of several organs and systems that contribute to brain pathol-
ogy. These actions of fructose can affect appetite, motivation and 
reward, and cognition by involving the hypothalamus and hippocam-
pus. Excess dietary fructose fosters neurological and psychiatric disor-
ders like anxiety, depression and Alzheimer’s disease, in addition to 
brain trauma. Peripheral metabolism is a sensitive target to develop 
dietary management initiatives to reduce the silent epidemic of meta-
bolic disorders that ultimately disrupts brain and body function. 
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