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Large Language Models (LLMs, e.g., GPT-3, OPT, TNLG,. . . ) show remarkably high

performance on standard benchmarks, due to their high parameter count, extremely large

training datasets, and significant compute. Although the high parameter count in these models

leads to more expressiveness, it can also lead to higher memorization, which, coupled with

large, unvetted, web-scraped datasets can cause multiple different negative societal and ethical

impacts: leakage of private, sensitive information, generation of biased, hateful or stereotypical

text and much more. For example, it has been shown that given the appropriate prompt,

full training set instances (including people’s names and phone numbers) can be extracted
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from GPT-2 [26]. One might argue that since scraped data is public data, this is not a concern.

However, public data is not necessarily publicly-intended data, and there could be leaked infor-

mation online [16]. Further, LLMs are shown to have disparate, unfair performance on different

speakers and subjects of speech based on their properties (religion, gender identity, ethnicity,

etc.), and to display bias against certain subgroups [94,112]. For instance, [183] show that di-

alogue models display persona biases, attributing jobs to people based on their demographics.

In this dissertation, we strive to address such problems through work falling into three main

categories: first we discuss privacy auditing – attempting to discover different ways in which

language models could leak information, and analyze memorization in such models so that we

can better prevent possible ramifications [134,140] (Chapter 1). Then, we propose mechanisms

for protecting privacy – addressing existing threats and preventing leakage of private training

data from models [130,137] (Chapter 2), and finally, we propose attribute controlled text revision

and generation methods to address biased and stereotypical generations and to empower users

by giving them control over the attributes revealed in text written by them [132,133] (Chapter 3).

xvi



Introduction

Since natural language is the main medium of communication among humans, lan-

guage models can have a significant impact on people’s daily lives. Large Language Models

(LLMs) have already had a profound impact on real-world applications, such as summarizing

software, search engines, language translation, conversational agents, and copywriting. How-

ever, despite the demonstrated improvement in next-word prediction loss on the test set as

models increase in parameter count [77,91], some tasks do not seem to benefit from this scaling.

For instance, in the deductive reasoning task of modus tollens, where the model is presented

with two statements and a conclusion, model performance decreases as they get bigger [81], a

phenomenon named inverse scaling. Tasks whose performance does not necessarily improve

with scaling are not known ahead of time [54], and this poses a risk in terms of the reliability

and failure points of such large models, as they might exhibit undesired behavior. As such,

apart from benchmarking performance on target downstream tasks, LLMs need to be probed

for potentially harmful behavior, as they are shown to reinforce social biases [3, 83, 177],

generate offensive or toxic outputs [57], leak personally identifiable information from the

training data [26], generate disinformation [20], spread falsehoods [114], and more [12,17,55].

As LLMs continue to increase in size and are trained on more extensive datasets, the

potential for harm is expected to expand as well [54]. For example, it was shown in an attack

that given the appropriate prompt, full training set instances (including people’s names and

phone numbers) can be extracted from GPT-2 [26]. One might argue that since scraped data

is public data, this is not a concern. However, public data is not necessarily publicly-intended
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data, and there could be leaked information online [16], such as leaked company emails [41] or

financial documents [82]. This dissertation is a step forward in the direction of both auditing

privacy and bias risks, and mitigating them in LLMs. We attribute the leakage of private

data and generation of biased text to the high memorization capacity of LLMs (due to their

parameter count), and the large, unvetted, web-scraped datasets that these models are trained

on. Based on this, we try to address the three following questions in this dissertation:

1. How can we audit and quantify privacy risks of language models in terms of what

information they have memorized?

2. How can we limit the privacy risks of large language models by limiting leakage and

memorization during training?

3. How can we empower users with text revision tools that control for different attributes

of text directly, and limit bias and privacy leakage?

To answer these questions, we first introduce a memorization quantification algorithm

based on membership inference attacks, which attempts to distinguish whether a given

sequence was used during the training of a model, or not. Then using this algorithm, we

probe pre-trained clinical masked language models for how much of the training data they

memorized. We also apply the same algorithm to fine-tuning of auto-regressive models

and identify different phases in the training process, based on the privacy/utility trade-

off. Then, having observed high levels of memorization in language models, we propose

methods for limiting the leakage of private data during training. More specifically, we propose

algorithms based on differential privacy – the gold standard in providing worst-case privacy

guarantees – to produce compressed private language models. We also study other notions of

privacy, which do not provide worst-case guarantees and rely on adversarial learning to protect

sensitive attributes of the text during training. Finally, we take a step back and focus on natural
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language itself, and not the models. What this means is we try to revise text such that we

enforce certain attributes in it (for instance higher levels of agency and assertiveness in speech),

and hide others (for instance the writer’s identity or age). As such we propose two methods

for attribute-controlled generation and evaluate them on how well they can fool attribute

classifiers. The rest of this section delves deeper into how we answer these three questions in

the next three chapters of the dissertation and provides a road map of what will be introduced.

1 Privacy Auditing

To be able to safely deploy language models, we need to have mechanisms and tools

that can quantify the privacy leakage of these models and audit them. Auditing usually

involves playing the role of an adversary and trying to discover potential weaknesses and

vulnerabilities of the model by coming up with different types of attacks. Membership

inference attacks are widely used privacy analysis tools that test to what extent models have

memorized training data by revealing whether a given data point was used to train a given

model, and what the risk for individual users is [187].

Such mechanisms exist for simpler machine learning and auto-regressive language

models in abundance [22,211]. For masked language models, however, attempts at measuring

memorization have been inconclusive, due to the lack of a well-defined likelihood formulation.

For enabling auditing of masked language models, we devise a likelihood ratio-based

membership inference attack [134], which uses a reference model to better distinguish training-

set members from non-members and relies on an energy-based formulation to derive the

likelihood ratio. We demonstrated that, unlike prior belief, MLMs do memorize samples as

well, with a recall of 90%. To further probe LLMs we use this auditing method to quantify

and compare memorization in different fine-tuning methods, as the fine-tuning phase is most

likely to deal with private and sensitive data. Surprisingly, we find that fine-tuning only
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the final layer of the model demonstrates significant leakage, larger than that of full model

fine-tuning, although it updates fewer parameters. This finding is quite alarming, as head

fine-tuning is commonly used for domain adaptation. We also find that early stopping is

crucial for limiting unnecessary memorization in LLMs.

2 Privacy Protection and Risk Mitigation

The gold standard of privacy is Differential Privacy (DP), which provides a stringent

worst-case guarantee, trying to protect all aspects of the data. To train neural networks pri-

vately, DP-SGD [1], a private variant of SGD is used which requires clipping of the gradients

and the addition of noise in each update, to provide worst-case guarantees that reflect the

likelihood of leaking any attribute of any member of the dataset into the trained model.

The worst-case guarantees of differential privacy are not customizable, in other words, they

cannot be relaxed to protect only certain attributes. Therefore, DP is shown to incur huge

losses to model utility [126]. DP training of models is also slower, with cumbersome hyper-

parameter tuning and development [204]. Additionally, DP’s utility loss is much worse for

under-represented groups [5], which can have financial and societal ramifications [157].

Exciting recent works have shown that using large pre-trained models as initialization

for fine-tuning via DP-SGD yields models that are as good as non-private ones for a variety of

NLP and image applications [34,109,127,139,214], and improves the privacy/utility trade-off

significantly. However, there hasn’t been work focusing on privately compressing large models

into smaller ones, which is an important problem as compression is necessary for deploying

models on edge devices. As such, we set out to understand the impact of widely used model

compression algorithms such as Knowledge Distillation (KD) and pruning on the private

training process. We propose private frameworks for model compression, namely DP variants

of knowledge distillation and pruning, and observe that DP pruning provides a more desirable
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privacy/utility trade-off.

Although differential privacy provides a worst-case guarantee (as mentioned above), it

has been shown that DP mechanisms have a smoothing effect, which causes disparate utility

loss in minority groups [48]. It also doesn’t allow for the direct limitation of memorization

for certain features/aspects of the text (for instance features relating to the author’s style of

writing). To address this, we propose an alternative attribute-based notion of privacy, which

facilitates protecting only a given set of attributes, providing better overall model utility and

circumventing DP’s disparate impact on underrepresented subgroups. Unlike DP, however,

these protections do not come with formal worst-case guarantees and are only shown to be ef-

fective empirically. That said, we view alternative mitigations in the privacy space to be critical,

as the more options available, the more likely mitigation strategies are to be used in practice.

Based on this, we introduce a training framework for neural text generation [137]

which limits the memorization of sensitive strings by protecting the “authorship” attribute of

text using adversarial learning and we show how this method incurs the same level of utility

drop for minority and majority users.

3 Attribute Control For Fairness and Privacy

Finally, we want to take the focus away from the models, and to the text itself. As text is

used heterogeneously in a variety of high-stakes tasks such as hiring decisions, it is important

to make sure that the style or implicit attributes in text do not bias humans or ML models that

process this text. Since we cannot always be sure that corporations use bias removal methods,

it’s important to empower users to take control themselves, rather than relying solely on model-

based approaches for fairness. By doing so, users won’t have to depend on those who deploy

the models to enforce privacy and fairness measures and can be in charge of their own data.

More specifically, we study how the style of text itself can reveal sensitive attributes
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like author age and race, biasing both humans and downstream classifiers [132], and how

this could be mitigated through re-writing. Unlike prior work, the re-writing mechanism we

propose focuses on obfuscation/mixing of styles, rather than hiding style by mimicking other

styles. We found that ML algorithms, similar to humans, are heavily influenced by the part of

the sentence towards which they are most biased and ignore other biasing factors. Therefore, it

is best to remove all attribute-revealing features in text, rather than mixing multiple attributes

to create confusion.

Although style transfer as proposed above can help hide sensitive attributes, it needs the

training and design of new models and architectures for each attribute we want to hide (apply

control for). This training is costly, and as models get larger, end-users might not have access

to the appropriate tools to do it. So having inference-only tools to protect attributes is a way

of democratizing privacy and fairness. There are many existing open-source pre-trained/fine-

tuned classifiers and models that can be used and glued together to apply control for desired

attributes. As such, we propose a framework named “Mix and Match” [133], where, unlike

prior work, the main goal is to enforce attributes using existing arbitrary pre-trained models

and heuristics, whether they are discrete/continuous or differentiable/non-differentiable,

without the need to perform any training or fine-tuning. We demonstrate the application of

Mix and Match on many tasks, such as bias removal and style and formality transfer, without

the need to train any new models.

4 Outline

Each of the following chapters answers one of the three main questions raised above

and expands on each topic. Chapter 1 presents a membership inference attack, and applies it to

pre-trained and fine-tuned models to quantify memorization and equip us with better privacy

auditing tools. Chapter 2 attempts at addressing the issues of high memorization and informa-
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tion leakage raised in Chapter 1, and proposes two privacy risk mitigation methods, one relying

on differential privacy and focusing on model compression, and the other on adversarial learn-

ing, to limit memorization of training data during model training for sensitive pre-determined

attributes. Chapter 3 takes a step back and shifts the focus to text and presents attribute control

methods for revising text to enforce and control for sensitive features that might appear in

it. Finally, Chapter 4 concludes the dissertation and discusses possible future directions.
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Chapter 1

Privacy Auditing

As discussed in the introduction, large language models are used in various real-

world tasks such as classification [169, 201, 220] and generation [158, 160]. Many of the

domains in which large models are deployed are privacy/safety sensitive, such as disease

diagnosis, insurance analysis on financial data and sentiment analysis for improving user

experience [63,103,209]. These models are commonly trained using the pre-train and fine-tune

paradigm, where they are first trained (pre-trained) on a large, general domain dataset (on the

order of hundreds of Gigabytes), and then fine-tuned on smaller, task-specific datasets to adapt

the model to a specific domain [79,106,161].

Given the sensitivity of the data used to train these models, it is crucial to con-

ceive a framework to systematically evaluate the leakage of training data from these mod-

els [24,139,143,188], and limit this leakage. The conventional way to measure the leakage

of training data from machine learning models is by performing membership inference at-

tacks [148,189], in which the attacker tries to determine whether a given sample was part of the

training data of the target model or not. These attacks expose the extent of memorization by

the model at the level of individual samples. Several works have demonstrated that such large

models have a high capacity for memorizing training samples during pre-training and are

therefore highly susceptible to membership inference and data extraction attacks [27,146,218].

However, prior attempts at performing membership inference and reconstruction
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attacks on pre-trained masked language models have either been inconclusive [104], or have

concluded that memorization of sensitive data in MLMs is very limited and these models are

more private than their generative counterparts (e.g., autoregressive language models) [84,145,

198]. Also, apart from pre-training, scant attention has been given to fine-tuning. As such, in

this chapter we will first visit memorization in pre-trained models, and propose a principled

framework for measuring information leakage of MLMs through likelihood ratio-based

membership inference attacks and perform an extensive analysis of memorization in such

models. Then we focus on different fine-tuning methods and their propensity for memorization

of training samples. Fine-tuning data is actually of higher concern than pre-training data, since

most pre-training datasets are large public corpora [40,160], while fine-tuning sets are small,

targeted, and potentially very private [11,108]. For this we modify the membership inference

attack from Section 1.1, and apply it to three popular fine-tuning methods (fine-tuning all

model parameters, fine-tuning adapter head and fine-tuning adapters) and analyze the results.

1.1 Quantifying Privacy Risks of Masked Language Models
Using Membership Inference Attacks

BERT-based encoders with Masked Language Modeling (MLM) Objectives [37,116]

have become models of choice for use as pre-trained models for various Natural Language

Processing (NLP) classification tasks [169,201,220] and have been applied to diverse domains

such as disease diagnosis, insurance analysis on financial data, sentiment analysis for improved

user experience, etc [63,103,209]. Given the sensitivity of the data used to train these models,

it is crucial to conceive a framework to systematically evaluate the leakage of training data

from these models [24,139,143,188], and limit the leakage. The conventional way to measure

the leakage of training data from machine learning models is by performing membership

inference attacks [148,189], in which the attacker tries to determine whether a given sample
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was part of the training data of the target model or not. These attacks expose the extent of

memorization by the model at the level of individual samples. Prior attempts at performing

membership inference and reconstruction attacks on masked language models have either

been inconclusive [104], or have (wrongly) concluded that memorization of sensitive data in

MLMs is very limited and these models are more private than their generative counterparts

(e.g., autoregressive language models) [84,145,198].

We hypothesize that prior MLM attacks have been inconclusive because they rely solely

on the target model’s (model under attack) loss on each individual sample as a proxy for

how well the model has memorized that sample. If the loss is lower than a threshold, the

sample is predicted to be a member of the training set. However, the target model’s loss

includes confounding factors of variation like the intrinsic complexity of the sample – and

thus provides a limited discriminative signal for membership prediction. This scheme has

either a high false-negative rate (with a conservative threshold) – classifying many hard-to-fit

samples from the training set as non-members, or a high false-positive rate (with a generous

threshold) – failing to identify easy-to-fit samples that are not in the training set.

Reference-based likelihood ratio attacks, on the other hand, when applied to certain

probabilistic graphical models and classifiers, have been shown to alleviate this problem and

more accurately distinguish members from non-members [144,211]. In such attacks, instead of

the loss of the model under attack, we look at the ratio of the likelihood of the sample under

the target model and a reference model trained on samples from the underlying population

distribution that generates the training data for the target model. This ratio recalibrates the

test statistic to explain away spurious variation in model’s loss for different samples due to

the intrinsic complexity of the samples. Unlike most other models (e.g., generative models),

however, computing the likelihood of MLMs is not straightforward. Here, we propose a prin-

cipled framework for measuring information leakage of MLMs through likelihood ratio-based

membership inference attacks and perform an extensive analysis of memorization in such
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models. To compute the likelihood ratio of the samples under the target and the reference

MLMs, we view the MLMs as energy-based probabilistic models [61] over the sequences. This

enables us to perform powerful inference attacks on conventionally non-probabilistic models

like masked language models.

We evaluate our proposed attack on a suite of masked clinical language models, fol-

lowing [104]. We compare our attack with the baseline from the prior work that relies solely

on the loss of the target model [84, 190, 213]. We empirically show that our attack improves

the AUC from 0.66 to 0.90 on the ClinicalBERT-Base model, and achieves a true positive rate

(recall) of 79.2% (for a false positive rate of 10%), which is a substantial improvement over

the baseline with 15.6% recall. This shows that, contrary to prior results, masked language

models are significantly susceptible to attacks exploiting the leakage of their training data. In

low error regions (at 1% false positive rate) our attack is 51× more powerful than the prior work.

We also present analyses of the effect of the size of the model, the length of the samples,

and the choice of the reference model on the success of the attack. Finally, we attempt to

identify features of samples that are more exposed (attack is more successful on), and observe

that samples with multiple non-alphanumeric symbols (like punctuation) are more prone to

being memorized.

1.1.1 Membership Inference Attacks

In this subsection, we first formally describe the membership inference attack, how it

can be conducted using likelihood ratio tests and how we apply the test for masked language

models (MLMs) which do not explicitly offer an easy-to-compute probability distribution over

sequences. Finally, we describe all the steps in our attack, as summarized in Figure 1.1.
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1.1.1.1 Problem Formulation

Let Mθ denote a model with parameters θ that have been trained on data set D,

sampled from the general population distribution p. Our goal is to quantify the privacy risks

of releasing Mθ for the members of training set D.

We consider an adversary who has access to the target model Mθ. We assume this

adversary can train a (reference) model MθR with parameters θR on independently sampled

data from the general population p. In a Membership Inference Attack (MIA), the objective

of the adversary is to create a decision rule that determines whether a given sample s was

used for training Mθ. To test the adversary, we perform the following experiment. We sample

a datapoint s from either the general population or the training data with a 0.5 probability,

and challenge the adversary to tell if s is selected from the training set (it is a member) or not

(it is a non-member) [144]. The precision of the membership inference attack indicates the

degree of information leakage from the target model about the members of its training set.

We measure the adversary’s success using two metrics: (1) the adversary’s power (the true

positive rate), and (2) the adversary’s error (the false positive rate).

1.1.1.2 Likelihood Ratio Test

Before discussing our proposed attack for MLMs in the next subsection, we summarize

the likelihood ratio test here which forms the core of our approach. A likelihood ratio test

distinguishes between a null hypothesis and an alternative hypothesis via a test statistic based

on the ratio of likelihoods under the two hypotheses. Prior work demonstrated an MIA

attack based on the likelihood ratio to be optimal for probabilistic graphical models (Bayesian

networks) [144]. Given a sample s from the training data of the target model, the adversary

aims at distinguishing between two hypotheses:

1. Null hypothesis (Hout): The target sample s is drawn from the general population p,
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Figure 1.1. Overview of our attack: to determine whether a target sample s is a member of the
training data (D∼ p) of the target model (Mθ), we feed it to the energy function formulation of Mθ

so that we can compute Pr(s;Mθ), the probability of s under Mθ. We do the same with a reference
model MθR which is trained on a disjoint data set from the same distribution as the training data.
Then, we compute likelihood ratio L(s), and based on this ratio and a given test threshold t, we
decide if s is a member of D (Hin) or not (Hout).

independently from the training set D.

2. Alternative hypothesis (Hin): The target sample s is drawn from the target model’s

training set D.

The goal of hypothesis testing is to find whether there is enough evidence to reject

Hout in favor of Hin. We use a likelihood ratio for this purpose which involves comparison

of the likelihood of the target sample under the settings for Hout and Hin respectively. For

Hin, we already have access to the target model, which is parameterized by θ and trained on

D. For Hout, we require access to a model trained on the general population. As mentioned

earlier, the adversary has access to a reference model parameterized by θR. Therefore, the

likelihood ratio test is characterized by the following statistic:

L(s)= log
(

p(s; θR)

p(s; θ)

)
(1.1)

The Likelihood Ratio (LR) test is a comparison of the log-likelihood ratio statistic L(s) with

a threshold t. If L(s)≤ t, then the adversary rejects Hout (decides in favor of membership

of s∈D); otherwise the adversary fails to reject Hout. We discuss the details of selecting the

threshold and quantifying the attack’s success in subsection 1.1.1.4.
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1.1.1.3 Likelihood Ratio Test for MLMs

Performing a likelihood ratio test with masked language models is difficult because

these models do not explicitly define an easy-to-compute probability distribution over natural

language sequences. Following prior work [61], we alternatively view pre-trained MLMs as

energy-based probability distributions on sequences, allowing us to directly apply the like-

lihood ratio formalism. An energy-based sequence model defines the probability distribution

over the space of possible sequences S as:

p(s;θ)=
e−E(s;θ)

Zθ
,

where E(s;θ) refers to the scalar energy of a sequence s that is parametrized by θ, and

Zθ=∑s′∈Se−E(s′;θ) denotes the intractable noramlization constant. Under this framework, the

likelihood ratio test statistic (Eq. 1.1) is:

L(s)= log
(

p(s; θR)

p(s; θ)

)
= log

(
e−E(s; θR)

ZθR

)
−
(

log
e−E(s; θ)

Zθ

)

=−E(s; θR)−log(ZθR)+E(s; θ)+log(Zθ)

=E(s; θ)−E(s; θR)+constant

Above, we make use of the fact that for two fixed models (i.e., target model θ, and reference

model θR), the intractable term log(Zθ)−log(ZθR) is a global constant and can be ignored in

the test. Therefore, computation of the test statistic only relies on the difference between the

energy values assigned to sample s by the target model Mθ, and the reference model MθR.

In practice, we cast a traditional MLM as an energy-based language model using a

slightly different parameterization than explored by [61]. Since the training of most MLMs

14



(including the ones we attack in experiments) involves masking 15% of the tokens in a training

sequence, we define our energy parameterization on these 15% chunks. Specifically, for a

sequence of length T, and the subset size l=⌈0.15×T⌉, we consider computing the energy

with the set C consisting of all (T
l ) combinations of masking patterns.

E(s; θ)=− 1
|C|∑I∈C

∑
i∈I

log
(

pmlm(si|s\I; θ)
)

(1.2)

where s\I is the sequence s with the l positions in I masked. Computing this energy,

which involves running |C|=(T
l ) forward passes of the MLM, is expensive. Hence, we further

approximate this parametrization by summing up over K random masking patterns where

K≪|C|.

1.1.1.4 Quantifying the Privacy Risk

Given the form of the likelihood ratio test statistic (Eq. 1.2) and energy function formu-

lation for MLM likelihood (Eq. 1.2), we conduct the attack as follows (shown in Figure 1.1):

1. Given a sample s whose membership we want to determine, we calculate its energy

E(s; θ) under the model under attack (Mθ) using Eq. 1.2. We calculate the energy

E(s; θR) under the reference model. Using Eq. 1.1, we compute the test statistic L(s) by

subtracting the two energies.

2. We compare L(s) to a threshold t, and if L(s)≤ t, we reject the null hypothesis (Hout)

and mark the sample as a member. Otherwise, we mark it as a non-member.

Choosing the threshold. The threshold determines the (false positive) error the adversary is

willing to tolerate in the membership inference attack. Thus, for determining the threshold t,

we select a false positive rate α, and empirically compute t as the corresponding percentile of

the likelihood ratio statistic over random samples from the underlying distribution. This pro-

cess is visualized in Figure 1.2a. We empirically estimate the distribution of the test statistic L(x)
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(b) Plotting the ROC curve

Figure 1.2. (a) Selecting a threshold for the attack using population data and (b) plotting the ROC
curve to show the true-positive vs. false-positive rate trade-off, given different thresholds.

using all the sequences x drawn from the general population distribution. This yields the distri-

bution of L under the null hypothesis. We then select the threshold such that the tolerance of at-

tack’s error i.e. the rate at which attack falsely classifies the population data as “members” is α%.

Quantifying the Privacy Risk. The attacker’s success (i.e. the privacy loss of the model) can

be quantified using the relation between the attack’s power (the true positive rate) versus its

error (the false positive rate). Higher power for lower errors indicates larger privacy loss. To

compare two attack algorithms (e.g., our method versus the target model loss based methods),

we can compute their power for all different error values, which can be illustrated in an ROC

curve (as in Figure 1.2b and Figure 1.4). This enables a complete comparison between two

attack algorithms. The Area Under the Curve (AUC) metric for each attack provides an overall

threshold independent evaluation of the privacy loss under each attack.

1.1.2 Experimental Setup

We conduct our experiments using the pre-processed data, and pre-trained models

provided by [104]. We use this medical-based setup as medical notes are sensitive and leakage

of models trained on notes can cause privacy breaches. In this subsection, we briefly explain

the details of our experimental setup. Table 1.1 provides a summary.

1.1.2.1 Datasets

We run our attack on two sets of target samples, in both of which the “members”

portion is sampled from the training set (D) of our target models, which is the MIMIC-III
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Table 1.1. Summary of model and baseline notations used in the results.
Notation Explanation

M
od

el
s Base ClinicalBERT-base target model, trained for 300k iterations w/ sequence length 128 and 100k iterations w/ sequence length 512.

Base++ ClinicalBERT++ target model, same as the Base model but trained for longer: trained for 1M iterations w/ a sequence length of 128.
Large ClinicalBERT-large target model, trained for 300k iterations w/ sequence length 128 and 100k iterations w/ sequence length 512.
Large++ ClinicalBERT-large++ target model, same as the Large model but trained for longer: trained for 1M iterations w/ a sequence length of 128.

M
et

ho
ds (A) w/ µ thresh. Baseline with threshold set to be the mean of training sample losses (µ) (for reporting threshold-dependant metrics)

(A) w/ Pop. thresh. Baseline with threshold set so that there is 10% false positive rate (for reporting threshold-dependant metrics)
(B) w/ Pop. thresh. Our method with threshold set so that there is 10% false positive rate ( for reporting threshold-dependant metrics)

dataset. The non-members, however, are different. For the results shown under “MIMIC”,

the non-members are a held-out subset of the MIMIC data that was not used in training. For

i2b2, the non-members are from a different (but similar) dataset, i2b2. Below we elaborate

on each of these datasets. Both the datasets require a license for access, so we cannot show

examples of the training data.

MIMIC-III. The target models we attack are trained on the pseudo re-identified MIMIC-III

notes which consist of 1,247,291 electronic health records (EHR) of 46,520 patients.

i2b2. This dataset was curated for the i2b2 de-identification of protected health information

(PHI) challenge in 2014 [194]. We use this dataset as a secondary non-member dataset since

it is similar in domain to MIMIC-III (both are medical notes), is larger in terms of size than

the held-out MIMIC-III set, and has not been used as training data for our models.

1.1.2.2 Models

Target Models. We perform our attack on 4 different pre-trained ClinicalBERT models, that

are all trained on MIMIC-III, but with different training procedures, summarized in Table 1.1

under Models.

Reference Models. We use Pubmed-BERT 1 trained on pre-processed PubMed texts containing

around 4000M words extracted from PubMed ASCII code version [153] as our main domain-

specific reference model, since its training data is similar to MIMIC-III in terms of domain,

however, it does not include MIMIC-III training data. We also use the standard pre-trained

bert-base-uncased as a general-domain reference model for ablating our attack.

1bionlp/bluebert pubmed uncased L-12 H-768 A-12
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1.1.2.3 Baselines

We compare our results with a popular prior method, which uses the loss of the target

model as a signal to predict membership [86,211,213]. We show this baseline as Model loss in

our tables. This baseline could have two variations, based on the way its threshold is chosen:

(1) µ threshold [84], which assumes access to the mean of the training data loss, µ and uses

it as the threshold for the attack, and (2) population threshold (pop. thresh.) which calculates

the loss on a population set of samples (samples that were not used in training but are similar

to training data), and then selects the threshold that would result in a 10% false positive rate

on that population.

1.1.2.4 Metrics

Area Under the ROC Curve (AUC). The ROC curve is a plot of power (true positive rate)

versus error (false positive rate), measured across different thresholds t, which captures the

trade-off between power and error. Thus, the area under the ROC curve (AUC) is a single,

threshold-independent metric for measuring the strength of the attack. Figure 1.2b shows

how we obtain the ROC curve. AUC =1 implies that the attacker can correctly classify all

target samples as members or non-members.

Precision and Recall. We set α = 10% as the false positive rate and choose the threshold

accordingly, as shown in Fig. 1.2a. For precision, we measure the percentage of samples

correctly inferred as members of the training set out of the total number of target samples

inferred as members by the attack. For recall, we measure the percentage of samples correctly

inferred as members of the training set out of the total number of target samples that are

actually members of the training set.
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(a) Likelihood Ratio L(s) Histogram (b) Target Model Loss Histogram

Figure 1.3. (a) likelihood ratio histogram for training data members and non-members. (b) loss
histogram for training data members and non-members. The blue lines in the two figures corre-
spond to the same target sample (which is a random member of training-set). The red line is is the
threshold at α=10% false positive rate. The threshold from our attack (a) is correctly able to label
the test sample as a training-set member but the thresholds from the baseline attack (b) fails to do so.

Table 1.2. Overview of our attack on the ClinicalBERT-Base model, using PubMed-BERT as the
reference. Sample-level attack attempts to determine membership of a single sample, whereas
patient-level determines membership of a patient based on all their notes. The MIMIC and i2b2
columns determine which dataset was used as non-members in the target sample pool.

Sample-level Patient-level

Non-members MIMIC i2b2 MIMIC i2b2

A
U

C
. (A) Model loss 0.662 0.812 0.915 1.000

(B) Ours 0.900 0.881 0.992 1.000

Pr
ec

. (A) w/ µ thresh. 61.5 77.6 87.5 100.0
(A) w/ Pop. thresh. 61.2 79.6 87.5 92.5
(B) w/ Pop. thresh. 88.9 87.5 93.4 92.5

R
ec

. (A) w/ µ thresh 55.7 55.8 49.5 49.5
(A) w/ Pop. thresh. 15.6 39.0 49.5 100.0
(B) w/ Pop. thresh. 79.2 69.9 100.0 100.0

1.1.3 Results

In this subsection, we discuss our experimental results and main observations. First,

we explore the overall performance improvement of our approach over baselines. Later, we

analyze the effectiveness of our approach across several factors of variation that have an effect

on the leakage of the model. (e.g. length of samples, model size, including names etc.) Finally,

we explore correlations between samples that are deemed to be exposed by our approach.
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Figure 1.4. The ROC curve of sample-level attack on Clinical-BERT with MIMIC used as
non-member. Green line shows our attack and the red line shows the baseline loss-based attack.
The blue dashed line shows AUC=0.5 (random guess). This figure corresponds to the results
presented in the first column of Table 1.2.

1.1.3.1 Comparison with Baseline

Table 1.2 shows the metrics for our attack and the baseline’s on both sample and

patient level, with held-out MIMIC-III and i2b2 medical notes used as non-member samples

(Figure 1.4 shows the ROC curve). The table shows that our method significantly outperforms

the target model loss-based baselines [84,213], which threshold the loss of the target model

based on either the mean of the training samples’ loss (µ), or the population samples’ loss.

Our attack’s improvement over the baselines is more apparent in the case where both the

members and non-members are from MIMIC-III. This case is harder for the baselines since

members and non-members are much more similar and harder to distinguish if we only

look at the loss of the target model. Our attack, however, is successful due to the use of a

reference, which helps magnify the gap in the behavior of the target model towards members

and non-members, thereby teasing apart similar samples.

We can also see that in terms of precision/recall trade-off, our attack has a consistently

higher recall, with an average higher precision. Population loss based thresholding ((A) w/
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Table 1.3. Effect of target sample length: Sample-level attack on the ClinicalBERT-Base model,
using PubMed-BERT as the reference. The MIMIC and i2b2 columns determine which dataset
was used as non-members in the target sample pool. Short and long show a break down of the
length of target samples.

Short Long

Non-members MIMIC i2b2 MIMIC i2b2

A
U

C
. (A) Model loss 0.516 0.756 0.662 0.812

(B) Ours 0.830 0.845 0.900 0.881

Pr
ec

. (A) w/ µ thresh. 50.9 70.0 61.5 77.6
(A) w/ Pop. thresh. 42.0 72.5 61.2 79.6
(B) w/ Pop. thresh. 87.3 86.3 88.9 87.5

R
ec

. (A) w/ µ thresh. 55.3 55.3 55.7 55.8
(A) w/ Pop. thresh. 7.2 26.3 15.6 39.0
(B) w/ Pop. thresh. 68.2 62.9 79.2 69.9

Pop. thresh.) has the lowest recall of 15.6%, which is due to members and non-members

achieving similar losses from the target model due to their similarity. This is also shown in

Figure 1.3b. In Figure 1.3a, however, we see a distinct separation between the member and

non-member histogram distributions when we use the ratio statistic L(s) as the test criterion

for our attack. This results in the estimation of a useful threshold that correctly classifies the

blue line sample as a member, as opposed to using only the target model loss (Figure 1.3b).

Finally, we observe that all the metrics have higher values on the patient-level attack, compared

to sample-level, for both our attack and the baselines. This is due to the higher granularity

of the patient level attack, as it makes the decision based on an aggregate of multiple samples.

1.1.3.2 Effect of Sample Length and Model Size

Tables 1.3 and 1.9 show the metrics for our attack and the baseline broken down based

on the length of the target sample, and the size and training epochs of the target model,

respectively. In Table 1.3, the target model is same as that of Table 1.2, ClinicalBERT-base.

Short samples are those that have between 10 to 20 tokens, and long samples have 20 to

60 tokens. We can see that both the baseline and our attacks show more leakage for long
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Table 1.4. Effect of model size and training: Sample-level attack on the four different ClinicalBERT
models, using PubMed-BERT as the reference and the MIMIC data as non-members. Base++
(Large++) is same as Base (Large), but trained for more epochs.

Target Model Base Base++ Large Large++

A
U

C
. (A) Model loss 0.662 0.656 0.679 0.700

(B) Ours 0.900 0.894 0.904 0.905
Pr

ec
. (A) w/ µ thresh. 61.5 61.0 62.4 64.9

(A) w/ Pop. thresh. 61.2 61.2 63.9 69.1
(B) w/ Pop. thresh. 88.9 88.8 88.9 88.9

R
ec

. (A) w/ µ thresh. 55.7 55.8 56.4 56.1
(A) w/ Pop. thresh. 15.6 15.6 17.6 22.2
(B) w/ Pop. thresh. 79.2 78.5 79.2 79.3

sentences than they do for short sequences, which could be due to the longer sentences being

more unique and thus being more likely to provide a discriminative signal for a sequence-level

decision. Table 1.9 shows the attacks mounted on the four models from Table 1.1. We see that

leakage on all the models is very similar, however, the AUC on Large++ is consistently higher

than on Base, which hints at the observation made by [26] that larger models tend to have

a higher capacity for memorization.

1.1.3.3 Effect of Changing the Reference Model

Table 1.5 studies how changing the reference model would affect the success of the

attack. Here, Pubmed is the reference model that is used in the previous experiments, and

BERT-base is Huggingface’s pre-trained BERT. We observe that the attack using BERT-base

performs well, but is worse than using Pubmed, especially in terms of recall (true positive rate).

The main reason behind this is the domain overlap between the Pubmed reference model and

the model under attack. An ideal reference model for this attack would be trained on data from

a domain that is similar to that of the target model’s training set so as to better characterize

the intrinsic complexity of the samples. On the other hand, a reference model trained on a

different data distribution (in this case Wikipedia) would give the same score to easy and
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Table 1.5. Effect of reference model: Sample-level attacks on ClinicalBERT-Base model, using
PubMed-BERT and standard bert-base-uncased as the reference and MIMIC data as non-member.

Base Large++

Reference Model pubmed bert pubmed bert

A
U

C
. (A) Model loss 0.662 0.662 0.700 0.700

(B) Ours 0.900 0.883 0.905 0.889

Pr
ec

. (A) w/ µ thresh. 61.5 61.5 64.9 64.9
(A) w/ Pop. thresh. 61.2 61.2 69.1 69.1
(B) w/ Pop. thresh. 88.9 87.8 88.9 88.0

R
ec

. (A) w/ µ thresh. 55.7 55.7 56.1 56.1
(A) w/ Pop. thresh. 15.6 15.6 22.2 22.2
(B) w/ Pop. thresh. 79.2 71.5 79.3 72.6

difficult samples, thereby decreasing the true positive rate (recall), as shown in the table.

1.1.3.4 Effect of Inserting Names

Table 1.6 shows results for attacking the name insertion model [104], shown as Base-b,

where the patient’s first and last name are prepended to each training sample. We see that

our attack’s performance is better on the name-insertion model, compared to the base model,

whereas the baseline attack performs worse (in the sample-level scenario). We hypothesize

that this is due to the “difficulty” of the samples. Adding names to the beginning of each

sample actually increases the entropy of the dataset overall, since in most cases they don’t

have a direct relation with the rest of the sentence (except for very few sentences that directly

state a person’s disease), therefore they might as well be random. This makes these sentences

more difficult and harder to learn, as there is no easy pattern. Hence, on average, these

sentences have higher loss values (2.14 for name inserted samples, vs. 1.61 for regular samples).

However, for the non-members, since they don’t have names attached to them, the average

loss is the same (the 10% FPR threshold is 1.32), and that is why the attack performs poorly

on these samples, as most of the members get classified as non-members. For our attack, since

we use the reference, we are able to tease apart such hard samples as they are extremely less

likely given the reference than they are given the target model.
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Table 1.6. Effect of inserting names: Sample and Patient-level attacks on ClinicalBERT-Base and Base-
b (name insertion) model, using PubMed-BERT as the reference and MIMIC data as non-member.
We study the effect that inserting names into all training samples has on the leakage of the model.

Sample-level Patient-level

Target model Base Base-b Base Base-b

A
U

C
. (A) Model loss 0.662 0.561 0.915 0.953

(B) Ours 0.900 0.960 0.992 1.000
Pr

ec
. (A) w/ µ thresh. 61.5 53.0 87.5 100.0

(A) w/ Pop. thresh. 61.2 44.1 87.5 91.1
(B) w/ Pop. thresh. 88.9 90.2 93.4 92.5

R
ec

. (A) w/ µ thresh. 55.7 54.0 49.5 48.5
(A) w/ Pop. thresh. 15.6 7.8 49.5 82.8
(B) w/ Pop. thresh. 79.2 91.3 100.0 100.0

1.1.3.5 Correlations between Memorized Samples

To evaluate whether there are correlations between samples that have high leakage

based on our attack (i.e. training samples that are successfully detected as members), we

conduct an experiment. In this experiment, we create a new train and test dataset, by sub-

sampling the main dataset and selecting 5505 and 7461 samples, respectively. We label the

training and test samples based on whether they are exposed or not, i.e. whether the attack

successfully detects them as training samples or not, and get 2519 and 3283 samples labeled

as “memorized”, for the train and test set. Since our goal is to see if we can find correlations

between the memorized samples of the training set and use those to predict memorization

on our test set, we create features for each sample, and then use those features with the labels

to create a simple logistic regression classifier that predicts memorization.

Table 1.7 shows these results in terms of precision and recall for predicting if a sample is

“memorized” or not, with different sets of features. The first 4 rows correspond to individual

handcrafted feature sets: (A) the number of digits in the sample, (B) length of a sample (in

tokens), (C) the number of non-alphanumeric characters (this would be characters like ’*’, ’-’,

etc.). (D) corresponds to feature sets that are obtained by encoding the tokenized sample by
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Table 1.7. Analysis of correlations between samples that are leaked through our attack. We want to
see what features are shared among all leaked samples by extracting a list of possible features and
training a simple logistic regression model on a subset of the original training data (D), and then
testing it on another subset. The logistic regression model tries to predict whether a sample would
be leaked or not (based on whether our model has classified it as a member or not). The precision
and recall here are those of the logistic regression model, for predicting leaked training samples.

Features Train Test

Prec. Rec. Prec. Rec.

(A) #Digits 0.0 0.0 0.0 0.0
(B) Seq. Len 0.0 0.0 0.0 0.0
(C) #Non-alphanumeric 71.2 46.6 69.2 47.5
(D) 3 Least Frequent 68.9 40.5 63.8 39.2
(C) & (D) 73.9 58.8 71.1 57.8
(B) & (C) & (D) 74.3 61.3 72.1 61.3
(A) & (B) & (C) & (D) 74.3 61.3 72.1 61.3

the frequency of each of its tokens, and then taking the 3 least frequent tokens’ frequencies

as features (the frequency comes from a frequency dictionary built on the training set). We

can see that among the hand-crafted features, (C) is most indicative, as it counts the characters

that are more out-of-distribution and are possibly not determined by grammatical rules or

consistent patterns. (C) and (D) concatenated together perform slightly better than (C) alone,

which could hint at the effect frequency of tokens and how common they are could have on

memorization. We also get a small improvement over these by concatenating (B), (C), and

(D), which shows the length has a slight correlation too.

1.1.4 Related Work

Prior work on measuring memorization and leakage in machine learning models can

be classified into two main categories: (1) membership inference attacks and (2) training data

extraction attacks.
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1.1.4.0.1 Membership inference.

Membership Inference Attacks (MIA) try to determine whether or not a target sample

was used in training a target model [189,213]. These attacks can be seen as privacy risk analysis

tools [87,143,148], which help reveal how much the model has memorized the individual

samples in its training set, and what the risk of individual users is [22,117,147,174,211]. A group

of these attacks rely on behavior of shadow models to determine the membership of given

samples [86,189]. [191] mounts such an attack on LSTM-based text-generation models, [123]

mounts one on word embedding, [75] applies it to machine translation and more recently, [181]

mounts it on transformer-based NLP classification models. Mounting such attacks is usually

costly, as their success relies upon training multiple shadow models on different partitionings

of shadow data, and access to adequate shadow data for training such models.

Another group of MIAs relies solely on the loss value of the target sample, under the

target model, and thresholds this loss to determine membership [84,213]. [190] mount such

an attack on word embedding, where they try to infer if given samples were used in training

different embedding models. [84], which is the work closest to ours, uses a thresholding loss-

based attack to infer membership on MLMs. Our approach instead incorporates a reference

model by using an energy-based formulation to mount a likelihood ratio based attack and

achieves higher AUC as shown in the results.

1.1.4.0.2 Training data extraction.

Training data extraction quantifies the risk of extracting training data by probing a

trained language model [23,24,26,145,173,219]. One such prominent attacks on NLP models

is that of [26], where they take more than half a million samples from different GPT-2 models,

sift through the samples using a membership inference method to find samples that are most

likely to have been memorized. [104] mount the same data extraction attack on MLMs, but

their results are inconclusive as to how much MLMs memorize samples. They also mount
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other types of attacks, where they try to extract a person’s name given their disease, or

disease given name, but in all their attacks, they only use signals from the target model and

consistently find that a frequency-based baseline (i.e. one that would always guess the most

frequent name/disease) is more successful.

1.1.5 Conclusion and Limitations

In Section 1.1 we introduced a principled membership inference attack based on likeli-

hood ratio testing to measure the training data leakage of Masked Language Models (MLMs).

In contrast to prior work on MLMs, we rely on signals from both the model under attack and

a reference model to decide the membership of a sample. This enables performing successful

membership inference attacks on data points that are hard to fit, and therefore cannot be

detected using the prior work. We also perform an analysis of why these models leak, and

which data points are more susceptible to memorization. Our attack shows that MLMs are

significantly prone to memorization. This work calls for designing robust privacy mitigation

algorithms for such language models.

Membership inference attacks form the foundation of privacy auditing and memo-

rization analysis in machine learning. As we show here and as it is shown in the recent

work [22,211], these attacks are very efficient in identifying privacy vulnerabilities of models

with respect to individual data records. However, for a thorough analysis of data privacy, it

is not enough to rely only on membership inference attacks. We thus would need to extend

our analysis to reconstruction attacks and property inference attacks.

Ethics Statement

We use two datasets here, MIMIC-III and i2b2, both of which contain sensitive data

and can only be accessed by request2 and after agreeing to the data usage and confidentiality

2Access can be requested through https://mimic.mit.edu/docs/gettingstarted/ and https:
//portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
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terms3 and passing proper training for ethical and privacy-preserving use of the data.

To protect models against membership inference attacks, like the one proposed in this

work, differentially private training algorithms [1,28] can be used, as they are theoretically

designed to protect the membership of each data record individually. Other methods such

as adversarial training [135] and personally identifiable information scrubbing [36] can also be

used, however, they do not provide the worst-case guarantees that differential privacy does [17].
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Figure 1.5. Each point in the graph shows the given metric values at the end of each training epoch.
The rightmost lower points show the beginning, and as we move to left and upwards training
progresses. We identify three separate phases within the learning process, distinguished by their
memorization and generalization trends.

1.2 Memorization in NLP Fine-tuning Methods

Given the size of large language models, fine-tuning all the model parameters can

be compute and memory-intensive [18, 50, 105]. As a result, recent works have proposed

new parameter efficient fine-tuning methods that update only a subset of the model’s pa-

rameters [72,79,106]. In this section we focus on studying memorization of three popular

fine-tuning methods: (1) fine-tuning all model parameters (2) fine-tuning the head, which is

commonly used by practitioners and involves updating only the last layer of the model which

produces the logits, and (3) fine-tuning adapters [79], which are small bottleneck modules

inserted within transformer blocks. For measuring memorization, we use two proxy metrics:

(a) recall of a reference-based membership inference attack (MIA) [134] and (b) exposure [24],

which measures how susceptible the model is to a sample extraction attack which tries to

reconstruct samples from training data. We run our experiments on the Wikipedia [129],

Penn Treebank [125] and Enron Emails [97] datasets, for the task of autoregressive language
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modeling. We selected Wikipedia and Penn Treebank as they are most commonly used for

fine-tuning, and Enron since it is a dataset of emails representing private tuning data.

Figure 1.5 shows how we conceptually identify three distinct phases in the fine-tuning

process, based on validation perplexity (generalization) and membership inference attack

recall (memorization). Each point shows these metrics at the end of a training epoch. For

all fine-tuning methods, we observe that in a memorization only phase, the model memorizes

more and more, without overfitting or generalizing better (Figure 1.6). In terms of different

fine-tuning methods, we find that the common practice of fine-tuning only the head of a

model has the highest memorization (by a large margin) for the same level of perplexity,

among different fine-tuning methods – even full fine-tuning, which updates more parameters.

This result is surprising and potentially indicates that only tuning parameters higher in the

model architecture (closer to the output) exacerbates the memorization and increases the

leakage based on our metrics. We also show that fine-tuning the full model and small adapters

are on the Pareto-frontier in terms of the attack recall vs. validation perplexity graph.

1.2.1 Model Fine-tuning

We focus on two main fine-tuning methods, for fine-tuning GPT-2 with next word

prediction objective: (1) fine-tuning the model head, i.e., the prediction layer, as it is the most

common method used in practice, and (2) fine-tuning adapters [79]. Adapters are small

rank-restricted modules that are inserted inside transformer blocks, as added parameters and

are fine-tuned for different tasks or datasets. The shape and size of the adapter module is

controlled by the reduction factor, which determines the ratio of the size of the bottleneck to its

input. During adapter tuning, the rest of the model remains frozen, therefore the number of

trainable parameters is low (around 1% of the full model parameters). In our experiments, we

choose reduction factors of 16 and 2, for adapters, as the former is the default used by [79,154],

and the latter is the largest factor.

30



1.2.2 Measuring Memorization

To measure memorization, we use two metrics: membership inference attack recall

and exposure.

Membership Inference (MIA Recall). We use the percentage of training samples that are

correctly classified as training members (out of a pool of training and validation samples)

by the reference-based attack proposed in [134] and [22] as a proxy metric of memorization.

For each sample x whose membership in the training set we want to determine, we feed

it to the fine-tuned model, M, and get its likelihood, PrM(x). We also feed it to a reference

model, R, a pre-trained model that is not fine-tuned, and get the probability PrR(x). We then

use LR(x) = PrR(x)
PrM(x)

, the likelihood ratio, to determine if x is a training sample. If LR(x) is

smaller than threshold t, we classify it as a training set member. Otherwise, we classify it as

a non-member. We determine the threshold t by calculating LR(s) for all s in the validation

set, and then choose the threshold to be the highest threshold such that the false positive rate

(over training and validation members) would not exceed 10%. The higher the recall of this

attack is, the higher the leakage of the model.

Exposure. As a second measure of memorization, we use the exposure metric from [24]

which inserts a secret (canary) of a certain format into the training data and calculates its

vulnerability to extraction. Exposure is defined as the negative log-rank of the inserted secret

in terms of model probability, among all other possible sequences of the same length. This

quantity is then added to a constant to ensure the exposure is always positive. The lower the

exposure is, the harder it is to extract the secret. In our experiments, we insert 50 copies of

the phrase “the secret number is 940955” into the training data to accentuate the differences

between the fine-tuning methods. For a six-digit secret, an exposure of around log2(106)≈20

means the canary can be reliably extracted from the model.

31



20 22 24 26 28 30 32
Validation PPL

0.2

0.4

0.6

0.8

1.0
M

IA
 R

ec
al

l

Pareto Frontier

Fine-tuning Method
hue
Head FT
Full FT
Adapter(16) FT
Adapter(2) FT
lr
2e-05
0.0001
0.001

(a) Wikipedia Dataset

20 25 30 35 40 45
Validation PPL

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

Pareto Frontier

Fine-tuning Method
hue
Head FT
Full FT
Adapter(16) FT
lr
2e-05
0.0001
0.001

(b) Penn Treebank Dataset
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(c) Enron Dataset

Figure 1.6. Pareto frontier for utility (validation PPL) Vs. privacy (MIA recall). Each dot shows
different checkpoints, and the colors show different fine-tuning methods. We desire models that
have low PPL and low attack recall.

1.2.3 Experimental Setup

Datasets. (1) Huggingface’s Wikipedia wikitext-2-raw-v1 dataset, consisting of 36718 training

samples (2) Huggingface’s Penn Treebank ptb text only, consisting of 42068 training samples

and (3) a sub-sampled version of Enron email dataset consisting of 7180 emails. We use a

sequence length of 1024, training batch size of 8, and fine-tune for 20 epochs.

Models. We study memorization in fine-tuning Huggingface’s pre-trained GPT-2 on the

datasets mentioned above. We use a pre-trained but not fine-tuned GPT-2 as the reference

model for our membership inference attack. We use the adapter hub’s implementation of the

Pfeiffer architecture, with reduction factors 2 and 16 [154].

Metrics. We use Validation Perplexity as a metric for the performance of the model, where
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Figure 1.7. Ablating how the location and number of trainable parameters effects memorization
on the Penn Treebank dataset. Each dot shows different checkpoints, and the colors show different
fine-tuning methods. We desire models that have low PPL and low attack recall.

lower perplexity is better. We evaluate memorization at each epoch using the MIA recall and

exposure metrics described in subsection 1.2.2. The experiments here are all repeated 3 times

and we report the average values for each metric.

Hyperparameters and result presentation. We run optimization for each fine-tuning method

for 20 epochs, and perform evaluation of the mentioned metrics at the end of each epoch. We

experiment with the three learning rates 2×10−5,10−4,10−3, and present the results for all

of them. Therefore, each graph would have an overall of 20×3 points, for each fine-tuning

method, unless the point is outside the plot range. For the reported exposure numbers, we

selected points close to the pareto frontier to present in Table 1.8, to summarize results.

1.2.4 Results

In this subsection, we discuss our experimental results comparing the privacy-utility

trends for different fine-tuning methods. We refer to the naming convention shown in

Figure 1.5.
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Table 1.8. Exposure metric. Higher exposure indicates more leakage, and exposure above 20 means
the secrets (canaries) are reliably extractable. The perplexity numbers here are different from the
ones in other experiments since the training data is diluted with the artificially inserted secrets.

Full FT Head FT Adapters (2) Adapters (16)

Parameters (Millions) 124.440 38.590 7.092 0.895
W

ik
i Val PPL 24.82 28.76 24.41 25.26

Exposure 1.42 10.78 14.54 0.83

PT
B Val PPL 29.55 31.24 29.79 29.41

Exposure 7.03 12.0 12.40 4.54

En
ro

n Val PPL 12.52 13.51 13.03 12.81

Exposure 1.32 10.77 2.02 0.440

Table 1.9. Comparison of fine-tuning different transformer blocks on the Wikipedia dataset.

Block 1 Block 5 Block 8 Block 12 Full FT Head FT Adapters (2) Adapters (16)

Validation PPL 24.39 23.35 23.36 24.05 23.05 23.93 23.62 21.75
MIA Recall 22.2 22.6 20.8 21.3 19.2 81.6 16.8 15.2
#Params (in Millions) 7.088 7.088 7.088 7.088 124.440 38.590 7.092 0.895

1.2.4.1 Memorization of Fine-tuning Methods

Figures 1.6a, 1.6b, 1.6c compare the fine-tuning methods in terms of privacy leakage,

measured by MIA recall and Table 1.8 shows the exposure results for the three datasets, along

with their parameter counts. The blue lines show the Pareto frontier, marking the desirable

trade-off points, with low recall and PPL.

1.2.4.2 Shared Trends

The “memorization only” phase in training, where validation perplexity (general-

ization) is stable and the model has not yet overfit, is also observed by [195] in pre-trained

BERT-based classifiers. However, it is named the “settling phase” there, and it is suggested that

as validation perplexity is rather stable, early stopping is not important and training can stop at

any point before overfitting. We, however, show that memorization is actually increasing during

that phase. Therefore, if we are optimizing for privacy as well, it is best to stop training earlier.

For all the methods, across all datasets, in the “fitting+memorization” and the “memorization

34



only” phases, we see an increase in memorization, without any overfitting. This shows that we

can have high memorization/learning, and still not overfit. This is also observed for training

large language models from scratch in [197], which focuses on analyzing the effect that text

type (e.g., part of speech, numbers), data size and model size have on memorization when

training from scratch.

1.2.4.3 Comparison of Fine-tuning Methods

Results for both the MIA recall and exposure metrics (Figure 1.6 and Table 1.8) are

consistent, showing higher leakage for head fine-tuning and lower for full model fine-tuning

and adapters. The first observation here is that head fine-tuning is an outlier, with extremely

high leakage, on all three datasets. We can also see that the validation perplexity achieved

by this method is consistently lower than the other methods. We hypothesize that the high

leakage of fine-tuning the head is due to both the high number of parameters (38 million)

and the location of the parameters, right at the last layer of the model where the next word

prediction happens. While full fine-tuning actually touches more parameters than head

fine-tuning, it leads to less leakage under the attacks we investigate. This result is somewhat

surprising and potentially indicates that tuning parameters lower in the model architecture

mitigates some of the explicit memorization performed by the head. We further study this

phenomenon and ablate it in subsection 1.2.4.4.

We also observe that for a low-perplexity regime (without considering the cost), full

fine-tuning is the best choice as it offers utility superior to adapters. However, if we have

tolerance for higher perplexity, to get lower leakage, opting for adapters with a reduction

factor of 16 appears better as it has lower MIA recall and a lower propensity for overfitting,

compared to the other methods. One final observation is that full-finetuning has the shortest

“fitting+memorization” phase, whereas head fine-tuning has the longest.
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Figure 1.8. Ablating how the untying of the trainable parameters effects memorization on the Penn
Treebank dataset. Each dot shows different checkpoints, and the colors show different fine-tuning
methods. We desire models that have low PPL and low attack recall.

1.2.4.4 Parameter Count, Location and Tying

To further test our hypothesis that the privacy-utility trade-off has to do with both

trainable parameter count and location/distribution within the model architecture (subsubsec-

tion 1.2.4.3), we run experiments with the following set of trainable parameters: (1) first half:

blocks 1–6 of the 12 transformer blocks of the GPT2 model (42M trainable params), (2) second

half: blocks 7–12 (42M), (3) every other block (42M) and (4) entire body: all the 12 blocks (84M).

In all these scenarios we freeze the head and fine-tune only the blocks. As shown in Figure 1.7,

we find that Full FT > Adapters > all 12 blocks=every other block > blocks 7 to 12 > blocks

1 to 6 > Head FT, in terms of privacy-utility trade-off desirability. Based on this, we argue that

how the trainable parameters are scattered in the network affects how well the model makes

progress in the first phase (the training and fitting phase), which affects the validation per-

plexity when it enters the second phase (memorization-only phase). As Figure 1.6 also shows,

full fine-tuning and adapter tuning make faster progress and end up in a lower perplexity.

Figure 1.8 shows an ablation study of how untying model parameters affects the

privacy-utility trade-off. By untying parameters, we mean creating a separate set of parameters
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for the head of the model and the input embeddings, as by default these two parameter sets

are tied in GPT2, meaning the same set of 38.59 Million parameters are used for both these

components. However, in the untied scenario, we first duplicate them, and then create separate

trainable parameters, adding an extra set of 38.59 Million trainable parameters to the model.

As the figure shows, tying the parameters improves the progress in training and puts the model

at an advantage, compared to untying them, creating a better overall privacy-utility trade-off.

1.2.4.5 Fine-tuning Single Transformer Blocks

To have a full analysis of fine-tuning leakage, we also look at fine-tuning individual

adapter blocks and freezing the rest of the model. The GPT-2 model has 12 blocks, and we

experiment with fine-tuning the first, 5th, 8th, and 12th block, to cover different positions

within the model. Table 1.9 shows the results for this experiment. We have selected the

numbers such that the validation PPLs are as similar as possible. There does not seem to be

any significant difference between fine-tuning different blocks, as they all manifest similar

attack recalls. Block 8’s recall, however, is lower than other blocks, with lower PPL, which

would make it the most desirable block for fine-tuning in terms of the PPL-leakage trade-off.

With respect to privacy-utility tradeoffs, fine-tuning full blocks seems less desirable than using

adapters or fine-tuning the entire model.

1.2.5 Conclusion

When fine-tuning is done using sensitive training data, it is important to not just

consider the cost and utility of fine-tuning methods but to also be aware that they may have

different risks in terms of privacy. Our experiments show that the common practice of fine-

tuning only the head of a model has the highest memorization (by a large margin). Full model

fine-tuning and adapter tuning, however, are both on the Pareto-frontier in terms of attack recall

vs. validation perplexity, suggesting that they are more suitable when privacy is a concern.
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Limitations and Ethics Statement

In our study we focus on autoregressive language models – specifically GPT-2, as it

has been shown to be more prone to memorizing samples than pre-trained masked language

models (MLM) [26,104] Also, here we loosely refer to the recall of the membership inference

attack on the training set as memoirzation. However, we need to keep in mind that a low attack

recall does not necessarily mean low memorization, and there might be stronger attacks (of

other types, such as reconstruction) that can better uncover memorization in language models.

In this work we have used publicly available datasets and have not collected any sen-

sitive/private data. The ultimate goal of our study is to contribute to analyzing memorization

under different fine-tuning paradigms, thereby advancing our intuition of how we can better

deploy private, fair and safe language models.

38



Chapter 2

Privacy Protection and Risk Mitigations

As mentioned before, LLMs are first pre-trained on extremely large and diverse publicly

available datasets, and are then fine-tuned for a specific task of interest using a much smaller

private dataset, which may consist of sensitive information about the users. As such, protective

measures need to be taken to limit the leakage of such sensitive data through the trained

model parameters, as shown in the previous chapter. Over the past few years, training deep

learning models guaranteeing differential privacy (DP) [43], a strong notion of data privacy,

has emerged as the defacto method to mitigate such information leakage. This is achieved

using the DP-SGD [1] algorithm, which is a differentially private variant of the SGD optimizer.

Each optimization step in DP-SGD consists of computing per-example gradients, clipping them

and then adding noise to them before updating the model parameters. Per-example gradients

are needed for DP-SGD (as opposed to per mini-batch gradients for conventional SGD), as

DP guarantees are on a “record” level, meaning the membership of every single data sample

is protected, hence we need to clip gradients from each sample separately, to limit leakage.

The strong guarantees of DP come at the price of huge loss of model utility [126], specially

in larger models, due to the high dimension of the added noise [107]. Recent works, however,

have shown that DP-SGD fine-tuning of pre-trained models, as opposed to training randomly

initialized models from scratch, yields private models that are as good as non-private ones for

a variety of NLP and image applications [34,109,127,139,214]. Although these large models

39



provide desirable privacy/utility trade-offs, they are too large to be widely deployed, specially

on edge devices.

As such, in some cases, before deploying the large models are compressed (also re-

ferred to as sparsified or distilled) to reduce the parameter count [64]. There is a large body

of work on model compression, however, no prior work explores private compression of

large models. In this chapter we first aim to understand how private training impacts the

modern deep learning pipeline of pre-train, fine-tune, and compress. The main observation

is that most widely used model compression algorithms such as Knowledge Distillation (KD)

and Pruning, use private datasets to produce compressed models, hence if our goal is to

deploy a differentially private compressed model, we should consider their impact on the

training process. We propose frameworks for private model compression in the context of

NLP applications, and observe that private model pruning provides a better privacy-utility

trade-off compared to private knowledge distillation.

Although DP provides stringent worst-case guarantees, it has been shown to have a

smoothing effect, which causes disparate utility loss in minority groups [48]. It also doesn’t

allow for direct limitation of memorization for certain features or attributes of the text (for

instance features relating to the author’s style of writing that we might want to protect). To

address this, we can adhere to an attribute-based notion of privacy, which aims at protecting

only certain attributes and does not offer worst-case guarantees. It does however, have uniform

impact on model utility. Based on this, we introduce a training framework for neural text

generation which limits the memorization of sensitive strings by protecting the “authorship”

attribute of text using adversarial learning, and show how this method incurs the same level

of utility drop for minority and majority users.
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Figure 2.1. The 3-pronged modern deep learning pipeline: Pre-train on public data, fine-tune on
private data, and compress the model to meet the memory and latency requirements of specific
applications.

2.1 Differentially Private Model Compression

The main purpose of this section is to understand how private training impacts the

modern deep learning pipeline of pre-train, fine-tune, and compress (see Figure 2.1). The

main observation is that most widely used model compression algorithms such as Knowledge

Distillation (KD) and Pruning, use private datasets to produce compressed models, hence

if our goal is to deploy a differentially private compressed model, we should consider their

impact on the training process. This leads to the question:

What algorithms should one use to produce compressed private models and how do they
impact private fine-tuning via DPSGD?

The goal of this section is to investigate this question and propose frameworks for

private model compression in the context of NLP applications. Although we investigate

model compression techniques at the fine-tuning stage using pre-trained models, we would

like to emphasize that our frameworks for private model compression are not tied to this

setting. They are equally applicable to training deep learning models from scratch and to

other application domains such as image classification tasks.
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2.1.1 Our Contributions

• We give a framework for doing model compression using Knowledge Distillation algorithm

guaranteeing differential privacy, which we call DPKD. We show that DPKD alone is not

enough to transfer the knowledge from large models to compressed models. This loss in

the accuracy of compressed models can be mitigated by better initialization of compressed

models from the weights of the large models, which itself is a form of knowledge transfer.

We propose several zero-shot, fully private methods for initialization compressed models using

weights of the large models. Our empirical evaluation of these ideas on standard GLUE

benchmarks using BERT models show that DPKD approach to the model compression

loses an accuracy of 5% compared to the larger models if the compressed model has half

the size of the full BERT model.

• To overcome the limitations of DPKD algorithm for model compression, we consider a

framework for evolving the larger models to compressed models via private adaptation

of Iterative Magnitude Pruning (DPIMP). We show that on standard GLUE benchmarks

using BERT models, DPIMP framework produces compressed models whose performance

is comparable to larger models at 50% unstructured sparsity levels.

• As a byproduct of DPIMP approach for model compression, our work also shows that

pre-trained BERT models have sparse subnetworks that can be found via DPSGD that

have almost matching performances of the private full model, similar to the Lottery Ticket

Hypothesis for BERT models in non-private settings [30,53].

To the best of our knowledge, no prior work have studied model compression tech-

niques of LLMs in private settings. A problem broadly related to model compression is

ensemble learning, where the goal is to transfer knowledge from an ensemble of teacher

models to a single student model [39]. This problem was studied in the private setting
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by [150,151], who proposed the Private Aggregation of Teacher Ensembles (PATE) framework.

In PATE an ensemble of teacher models is trained on disjoint private data and the student

model is trained by noisy aggregation of teachers’ answers. Two recent works combine PATE

framework with KD algorithm for doing noisy aggregation of teachers’ answers for mobile

analytics and text generation problems [119,196]. The PATE framework and ensemble learning

techniques can be applied for fine-tuning (or training) deep learning models. Unfortunately,

however, as previous works have shown, the performance of deep learning models trained

via PATE are inferior to that of DPSGD for complex datasets [215]. As the performance of

a fine-tuned large model on a sensitive dataset is an upper bound on the performance of a

compressed model, and we do not know how to fine-tune large models using PATE to match

the performance of DPSGD, we do not consider PATE framework for model compression.

2.1.2 Preliminaries

Recall the formal definition of differential privacy.

Definition 2.1.1 (Differential Privacy (DP) [42,43]). A randomized algorithm A is (ϵ,δ)-differentially

private if for any two neighboring datasets D and D′, which differ in exactly the data pertaining to a

single user, and for all sets S of possible outputs:

Pr[A(D)∈S]≤eϵPr[A(D′)∈S]+δ

We train all our models via DPSGD as the optimizer. We briefly describe the algorithm.

2.1.2.1 Training via DPSGD

To train a deep learning model with privacy, the most widely used algorithm is the

DP stochastic gradient descent (DPSGD) [2,10,175,193]. DPSGD augments the standard SGD

algorithm with per-example gradient clipping and Gaussian noise addition steps. These two

steps serve to limit and mask the contribution of a single example. At a high level, the privacy
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analysis of DPSGD proceeds by first showing that each iteration of DPSGD is differentially pri-

vate for some (ϵ,δ), then applying amplification by subsampling and composition across all the

iterations. To get the tightest privacy parameters, however, one needs more sophisticated argu-

ments such as the Moments Accountant method [2] or numerical composition algorithms [58].

2.1.3 Problem Statement

Input to our problem are privacy parameters ϵ>0, δ>0, a large model MA with the

initial model parameters θA(0), a private dataset D corresponding to a downstream task we

want to solve, and a compression factor γ. Let |MA| denote the parameter count of MA. Our

goal is to produce a compressed model MB satisfying two constraints: (i) |MB|≤γ·|MA| and

(ii) the final weights of model MB (denoted by θB(t)) should be (ϵ, δ)-differentially private with

respect to dataset D. A compression algorithm can make use of MA in an arbitrary way as

long the final weights of model MB (θB(t)) are differentially private with respect to dataset D.

We measure the quality of compression algorithms by comparing the accuracy obtained

by MB satisfying (ϵ, δ)-DP on downstream task D to the accuracy obtained by MA satisfying

(ϵ, δ)-DP on downstream task D. This allows us to quantify how much performance one loses

in private training due to model compression. Note that we are not comparing against the

performance of non-private models. We would like to find compression algorithms where

differentially private MB has nearly the same performance as differentially private MA.

2.1.4 Compressed Models via Knowledge Distillation

One of the most widely used algorithms for compressing models is knowledge dis-

tillation (KD) [21, 74, 170]. In this subsection, we propose a framework for implementing

knowledge distillation with DP constraints and evaluate its effectiveness on standard GLUE

benchmarks. We begin by briefly describing how the KD algorithm is applied for compressing

models; we refer the readers to [59,128] for more details. Adopting the naming convention
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from the literature, for the rest of the section, we call large pre-trained models as teacher models

and compressed smaller models as student models.

2.1.4.1 Non-Private Knowledge Distillation

Let T be a teacher network with the class probabilities PT =softmax(aT ) (a.k.a. soft

labels) where aT is the output of last layer before the softmax operation. Similarly, let S be a stu-

dent network with parameters WS and class probabilities PS=softmax(aS). The main idea be-

hind KD algorithm is to train S to mimic the output distribution of the teacher PT and the true

labels. The intuition is that PT captures the knowledge learnt by the teacher, in particular prob-

abilities assigned by the teacher to labels that are different from the true label. Hinton et al. [74]

suggested to use softmax-temperature where probability for class i of the teacher is given by

pi=
exp(zi/T)

∑jexp(zj/T)

with logits zi where T controls the smoothness of the output distribution. Setting a higher

value for the temperature parameter T produces a softer probability distribution over classes.

The same relaxation is applied to the output of the student network. The student is trained

to minimize the weighted combination of the distillation loss and the supervised training loss:

LKD(WS) :=H(ytrue,PS)+λ·H(PT ,PS) (2.1)

where H refers to the cross-entropy and λ is a hyperparameter.

2.1.4.2 Differentially Private Knowledge Distillation (DPKD)

A natural way to generalize KD algorithm for private distillation of student model

is to train the student with DPSGD to minimize the loss function given by Equation 2.1.

However, such an algorithm fails to produce student models satisfying DP because of the
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term H(PT ,PS) in Equation 2.1. Note that PT is a function of the entire dataset, hence clipping

and adding noise alone is not enough to argue that DPSGD produces a private student. A

natural solution to overcome this hurdle is to first train the teacher models with DPSGD

and then apply KD. We propose our DPKD framework in Algorithm 1. In this Algorithm,

if the initialization of student model weights does not incur any privacy cost (e.g. random

initialization or initialization using parameters from a publicly trained model), ϵ2 would be

0. Having said that, there could be student initialization strategies that are functions of the

dataset D, in which case, we need to account for the privacy loss using non-zero ϵ2.

Algorithm 1. Differentially Private Knowledge Distillation (DPKD)
Input: Teacher model T , student model S, private data D, privacy budget (ϵ,δ)

Output: Student model S satisfying (ϵ,δ)-DP

1: Find an allocation of (ϵ1,δ1), (ϵ2,δ2) and (ϵ3,δ3) from the privacy budget (ϵ,δ)

2: Train T on D with DPSGD using privacy budget of (ϵ1,δ1)

3: Initialize S (possibly privately with privacy budget (ϵ2,δ2))

4: Train S on D to minimize Eq. (2.1) with DPSGD using privacy budget of (ϵ3,δ3)

5: return S

As the model parameters produced by DPSGD satisfy privacy guarantees, using the

post-processing property of DP [44], one can show the following theorem. We omit the proof.

Theorem 2.1.2. The output of DPKD algorithm is differentially private with privacy parameters

obtained by the adaptive composition of privacy parameters in steps 2, 3, and 4 of Algorithm 1.

In this work we use numerical composition of privacy mechanisms as given in [58].

Our framework for DPKD raises several interesting algorithmic and hyperparameter tuning

questions. The most interesting one is whether one can have DPKD algorithm where the

privacy budget is not wasted on training the teacher. While this is a nice theoretical question,
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Table 2.1. Comparison between the performance of 6-layer 1
2-BERT student models with random

initialization against full 12-layer BERT teacher models. The first row indicates the performance
of fine-tuning the full teacher model. All our models have the same privacy budget ϵ=4.

Model Initialization Teacher Training MNLI QQP QNLI SST-2 Avg

BERT Pretrained - Finetune 77.8 84.7 87.8 90.5 85.2

1
2-BERT Random - Finetune 55.1 74.0 59.4 69.7 64.5
1
2-BERT Random BERT DPKD 53.9 73.1 59.2 65.4 62.9

we show in our experiments that DPKD framework is competitive with respect to teachers

that are not trained with DP.

2.1.4.3 Empirical Evaluation of DPKD Algorithm

In this subsection, we perform experiments to evaluate the effectiveness of DPKD

algorithm for compressing models.

Teacher and Student Architectures. Our teacher models are pre-trained BERT 1 models,

which consists of 12 transformer blocks. The architecture of compressed models consist of

6 transformer blocks, which we refer to as 1
2-BERT.

Tasks and datasets. Following prior work [109,214,216], we experiment with the fol-

lowing set of 4 tasks from the GLUE benchmark [201]: MNLI (Multi-Genre Natural Language

Inference Corpus), QQP (Quora Question Pairs), QNLI (Stanford Question Answering Dataset)

and SST-2 (Stanford Sentiment Treebank).

Training and privacy parameters. We perform experiments with two sets of privacy

budgets: (i) ϵ=4 with δ= 1
N and (ii) ϵ=1 with δ= 1

10N , where N is the number of samples

in the given dataset.

We start with random initialization of the student models to see if DPKD algorithm can

be effective in transferring the knowledge from the teacher. We compare the performance of

1We use Huggingface’s bert-base-uncased.
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Table 2.2. Comparison between the performance of 6-layer 1
2-BERT student models with random

initialization against full 12-layer BERT teacher models. The first row indicates the performance
of fine-tuning the full teacher model. All our models have the same privacy budget ϵ=1.

Model Initialization Teacher Training MNLI QQP QNLI SST-2 Avg

BERT Pretrained - Finetune 74.8 82.1 85.6 86.8 82.3

1
2-BERT Random - Finetune 49.6 72.6 57.8 51 57.7
1
2-BERT Random BERT DPKD 46.4 70.4 52.9 52 55.4

our student model trained with DPKD algorithm with the performance of directly fine-tuned

student via DPSGD and the performance of full teacher model fine-tuned with DPSGD. Our

results are summarized in Tables 2.1 and 2.2. The main takeaway from this experiment is:

• There is a large gap in the performance of students trained using DPKD algorithm com-

pared to the teacher when students are randomly initialized. In fact, directly fine-tuning the

student model using DPSGD achieves better performance compared to DPKD algorithm.

We conclude that DPKD alone is not enough to transfer the knowledge from teacher

models to compressed student models.

2.1.4.4 Better Student Models via Zero-shot Initializations

In our desire to train better-performing student models, we explore different initial-

ization strategies. We note that initialization is also a form of knowledge transfer. Here we

consider two natural zero-shot initialization strategies:

• Zero-shot (PT): Here we initialize the student model using the weights of the pre-trained

teacher. In particular, we simply initialize the layers of the student model with 6 layers of

BERT teacher model. We follow [175] for the choice of layers.

• Zero-shot (FT): Here we initialize the student model using weights of the privately fine-

tuned teacher model. As our DPKD requires the teacher to be private as well, one can
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Table 2.3. Comparison between the performance of 6-layer 1
2-BERT student models against full

12-layer BERT teacher models and pre-trained DistilBERT, under various initialization strategies.
For every student initialization method, we compare fine-tuning using DPKD algorithm vs full
fine-tuning via DPSGD. All our models have the same privacy budget ϵ=4.

Model Initialization Teacher Training MNLI QQP QNLI SST-2 Avg

BERT Pretrained - Finetune 77.8 84.7 87.8 90.5 85.2

1
2-BERT Zero-shot (PT) - Finetune 71.7 82.4 83.2 82.7 80.0
1
2-BERT Zero-shot (PT) BERT DPKD 72.8 82.6 83.0 82.7 80.3
1
2-BERT Zero-shot (FT) - Finetune 71.3 81.8 83.4 82.2 79.7
1
2-BERT Zero-shot (FT) BERT DPKD 72.3 82.1 82.9 82.6 80.0

DistilBERT Pretrained - Finetune 73.0 84.3 82.8 87.7 81.9
DistilBERT Pretrained BERT DPKD 72.9 83.7 83.0 86.6 81.5

Table 2.4. Comparison between the performance of 6-layer 1
2-BERT student models against full

12-layer BERT teacher models and pre-trained DistilBERT, under various initialization strategies.
For every student initialization method, we compare fine-tuning using DPKD algorithm vs full
fine-tuning via DPSGD. All our models have the same privacy budget ϵ=1.

Model Initialization Teacher Training MNLI QQP QNLI SST-2 Avg

BERT Pretrained - Finetune 74.8 82.1 85.6 86.8 82.3

1
2-BERT Zero-shot (PT) - Finetune 66.9 78.3 81.0 79.6 76.4
1
2-BERT Zero-shot (PT) BERT DPKD 67.5 78.4 80.1 78.5 76.1
1
2-BERT Zero-shot (FT) - Finetune 66.9 77.6 80.1 79.2 75.9
1
2-BERT Zero-shot (FT) BERT DPKD 68.3 77.0 80.3 80.0 76.4

DistilBERT Pretrained - Finetune 68.4 82.0 81.0 86.0 79.3
DistilBERT Pretrained BERT DPKD 68.1 80.5 80.2 85.1 78.5

initialize the student model using the weights of the private teacher without incurring any

additional privacy cost.

We compare zero-shot initialization strategies against a fully pre-trained student model

given by Huggingface’s compressed BERT model DistilBERT [175]. DistilBERT is trained

using KD algorithm with the full BERT model on public data at the pre-training stage. We note
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that DistilBERT has 6 transformer blocks and hence has the same architecture as 1
2-BERT. We

emphasize that pre-training student model is computationally expensive, and the main aim

of this section is to develop algorithms where one can transfer knowledge from the teacher

to students models without resorting to pre-training the student from scratch. However,

DistilBERT serves as the gold standard to compare our zero-shot initialization strategies and

also sets the benchmark for comparing ideas in subsection 5.

2.1.4.4.1 Results

Our results are summarized in Tables 2.3 and 2.4. For every student initialization

method, we also compare fine-tuning using DPKD algorithm vs simply fine-tuning the student

via DPSGD. The main takeaways from these experiments are:

• Zero-shot initialization strategies give large performance improvements to student models

and come to 2-3% of the performance achieved by pre-trained DistilBERT. Somewhat

surprisingly, there is not much difference between our two zero-shot initialization strategies.

• Both pre-trained DistilBERT and student models with zero-shot initialization strategies fall

short of matching the performance of teacher models.

• Finally, broadly speaking, DPKD algorithm does not give a significant performance boost

to the student models compared to directly fine-tuning them.

2.1.4.5 Better Models are Better Teachers?

Given the results in the previous subsection, one may wonder if better teachers can

help in improving the performance of the students. In this regard, we consider two notions

of better teacher: (1) A larger teacher model in Step 2 of Algorithm 1 (2) A teacher model that

is not DP-trained. We note that the final student model in the second case is not DP; however,

these experiments allow us to quantify how much performance gains one could have if one
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Table 2.5. Comparison between the performance of 6-layer 1
2-BERT student models under different

teacher models in distillation against full 12-layer BERT teacher models and pre-trained DistillBERT.
All our models have the same privacy budget ϵ=4.

Model Initialization Teacher Training MNLI QQP QNLI SST-2 Avg

BERT Pretrained - Finetune 77.8 84.7 87.8 90.5 85.2

Student Pretrained - Finetune 73.0 84.3 82.8 87.7 81.9
1
2-BERT Zero-shot (PT) BERT DPKD 72.8 82.6 83.0 82.7 80.3
1
2-BERT Zero-shot (PT) BERTLARGE DPKD 72.4 81.1 83.1 81.5 79.5
1
2-BERT Zero-shot (PT) BERT w/out DP DPKD 74.2 82.9 84.5 83.0 81.1

Table 2.6. Comparison between the performance of 6-layer 1
2-BERT student models under different

teacher models in distillation against full 12-layer BERT teacher models and pre-trained DistillBERT.
All our models have the same privacy budget ϵ=1.

Model Initialization Teacher Training MNLI QQP QNLI SST-2 Avg

BERT Pretrained - Finetune 74.8 82.1 85.6 86.8 82.3

Student Pretrained - Finetune 68.4 82.0 81.0 86.0 79.3
1
2-BERT Zero-shot (PT) BERT DPKD 67.5 78.4 80.1 78.5 76.1
1
2-BERT Zero-shot (PT) BERTLARGE DPKD 67.6 78.0 80.1 78.0 75.9
1
2-BERT Zero-shot (PT) BERT w/out DP DPKD 70.6 79.0 81.5 79.8 77.7

were to come up with a new framework for implementing KD in DP setting without requiring

the teacher to be trained with DP.

Our results are summarized in Tables 2.5 and 2.6. These experiments show that DPKD

does not benefit significantly from having better teacher models. Furthermore, our proposed

framework of implementing KD in DP framework by training both the teacher and student

models via DP is only within 0.8% of the doing KD with fine-tuned teacher without DP.

2.1.5 Evolving Teacher to Student Models via Pruning

As the previous subsection presents, the Knowledge Distillation approach to model

compression has two main drawbacks in the private world:

• Drop in accuracy: There is a considerable drop in the accuracy between the teacher and
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the student models.

• Good initialization of students is crucial: The best performance is obtained by students

who already have a good initialization; in our experiments, pre-trained DistilBERT mostly

achieved the best student performance.

Finding a good initialization can be challenging in practice. Often, the student architec-

tures are chosen to suit the hardware and latency requirements of the application for which the

model is being deployed, using neural architecture search [46]. Hence, finding a good initializa-

tion for every student architecture via pre-training can be expensive and in most cases impos-

sible. Our zero-shot initialization strategies alleviate this problem to a certain degree, yet fall

short of closing the gap between the teacher and the student performances. Moreover, DPKD

requires that (i) the teacher is trained with DPSGD and (ii) the student is distilled via DPSGD.

This two-step approach creates additional overheads in terms of training. Given these limita-

tions, it is natural to ask: Can we evolve the teacher to a student model while fine-tuning with

DPSGD? In this subsection, we explore an answer to this via structured and unstructured pruning

with privacy, which allows us to obtain student models that are as good as the teacher models.

2.1.5.1 Model Compression via Pruning

Pruning algorithms are a broad class of model compression techniques where one drops

the parameters from a model during or after the training process. Many works have shown that

eliminating unnecessary parameters of neural networks via pruning can lead to sparser and

compressed models that have shorter inference times without loss in performance [66,68,102].

For example, in magnitude pruning, one of the most widely used pruning techniques, we

prune a fraction of parameters with the lowest magnitude. However, there are several pruning

strategies, and we refer the readers to [113] for more details and references.

Pruning can be implemented in both structured and unstructured ways. In structured
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pruning, all the pruned weights belong to a single building block of the model. For example, a

6-layer 1
2-BERT can be obtained by pruning 6 layers from the full BERT model, which consists

of 12 transformer blocks. On the other hand, in unstructured pruning, pruned weights may

be spread across all the layers of the network. In unstructured pruning, it is possible to obtain

a 50% sparse student model while still having all the 12 layers of BERT. Depending on the

hardware architectures, inference latency between models with structured and unstructured

sparsity could be quite different. However, in this subsection, we use sparsity as the main measure

of model compression, which is also well accepted in the community [76,113].

2.1.5.2 Iterative Magnitude Pruning (IMP)

Private pruning techniques we study in this subsection are based on the Iterative

Magnitude Pruning (IMP) method, which is a specific pruning technique proposed in a recent

work on Lottery Ticket Hypothesis [53]. The idea behind IMP is rather simple: As we train

a deep learning model, after every N iterations we prune an α% of the weights with the lowest

magnitude. We repeat this process until we achieve the desired sparsity. Here, both N and α

are hyperparameters that need to be tuned. For example, to achieve 50% sparsity, one can

perform 5N iterations where after every N iterations additional 10% of the weights with the

least magnitudes are dropped. As specified IMP produces unstructured sparsity. However, we

consider a simple modification of the IMP algorithm to produce structured sparsity as well.

2.1.5.3 Structured DPIMP

We first attempt to obtain a student model from the teacher model via a structured

IMP technique, using the following modification: During fine-tuning the teacher model with

DPSGD, we progressively drop an appropriately chosen transformer block from the teacher model

at the end of every N iterations. We repeat this process until we obtain the student model with

the required sparsity. The layer to drop is chosen using the following heuristic: Let α>0 be a
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Algorithm 2. Structured DPIMP
Input: Teacher model T , number of layers to prune L, hyperparams α, N and M
Output: Private student model S with L layers pruned from T

1: Set S :=T
2: for j=1 to L do
3: Fine-tune S for N iterations with DPSGD
4: Set Wmin consisting of α% of the remaining model weights with the least magnitude
5: Set Wi as the weights of layer i
6: Drop the layer i∗ from S satisfying i∗ :=argmaxi{Wi∩Wmin}
7: Fine-tune S for M more iterations with DPSGD
8: return S

hyperparameter. At the end of N iterations, fix bottom (by magnitude) α% of all model weights,

and denote it by Wmin. For the ith transformer block, let Wi denote the set of model weights

belonging to that block. Among all the transformers blocks we find the block i∗ that has the

highest number of weights from the set Wmin; Formally, i∗ :=argmaxi{Wi∩Wmin}, and we

prune the transformer layer i∗. We present this in Algorithm 2. We note that the algorithm satis-

fies (ϵ,δ)-DP after the pruning steps due to the post-processing property of differential privacy.

2.1.5.3.1 Empirical Evaluation

We evaluate our structured pruning algorithm with the same setup described in sub-

section 2.1.4.3 We split the privacy budget equally among all the iterations of the algorithm.

Our goal is to produce a student model which has 1
2 as many layers as the full BERT model.

Table 2.7 shows the results for this setting where we compare structured DPIMP to private

fine-tuning of the pre-trained DistilBERT and the full BERT model. The main takeaway from

this experiment is:

• DP structured pruning algorithm produces a student model that has performance compara-

ble to that of DistilBERT. Further, it avoids the pre-training cost associated with DistilBERT.
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Table 2.7. Comparing performance of 6-layer 1
2-BERT student model produced by structured DPIMP

with 12-layer BERT teacher model and pre-trained DistillBERT. The results are shown with two
privacy budgets ϵ=1 and ϵ=4.

Model MNLI QQP QNLI SST-2 Avg

ϵ=1 ϵ=4 ϵ=1 ϵ=4 ϵ=1 ϵ=4 ϵ=1 ϵ=4 ϵ=1 ϵ=4

BERT 74.8 77.8 82.1 84.7 85.6 87.8 86.8 90.5 82.3 85.2

DistilBERT 68.4 73.0 82.0 84.3 81.0 82.8 86.0 87.7 79.3 81.9
1
2-BERT 68.7 72.9 80.7 83.1 80.9 82.5 83.3 85.7 78.4 81.0

2.1.5.4 Unstructured DPIMP

The structured pruning produces student models that are as good as DistilBERT; our

next target is to produce student models that are as good as the full teacher BERT model.

Towards that, we explore unstructured pruning techniques, in particular differentially private

version of the IMP algorithm. As we fine-tune the deep learning models using DPSGD, after

every N iterations we prune increments of α% of the weights with lowest magnitude. The

remaining weights are then reset to the original pre-trained initialization. (We do this step

to establish connections to Lottery Ticket Hypothesis, see below.) We repeat this process until

we achieve the desired sparsity. We note that the initialization of the final student model’s

non-zero parameters at the end of the pruning step are still non-private, even though weights

correspond to pre-trained model weights. This is due to the fact that pruned parameters are

found during the fine-tuning process, which makes use of the private dataset. Therefore, the

whole process must be performed with DPSGD to produce a private student model. Finally,

we perform additional fine-tuning of the pruned student model by using DPSGD for M more

iterations. We call the private variation of this procedure Unstructured DPIMP. We formally

present this process in Algorithm 3.
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Algorithm 3. Unstructured DPIMP
Input: Model T and the sparsity level S%, hyperparams α, N and M
Output: Private Student model S satisfying the sparsity requirements

1: Set T ′ :=T
2: for i=1 to ⌈(S/α)⌉ do
3: Fine-tune T ′ for N iterations with DPSGD
4: Prune (α×i)% of weights with the lowest magnitude from T ′

5: Reset the non-zero weights of T ′ to the original T
6: Fine-tune T ′ for M iterations with DPSGD
7: return S :=T ′

2.1.5.4.1 Empirical Evaluation

We refer to the student model produced by Algorithm 3 as SparseBERT and indicate

the sparsity level in brackets. We allocate the privacy budget equally among all iterations of

Algorithm 3. Table 2.8 summarizes our experiments on unstructured pruning via DPIMP. We

compare the performance of our student model to pre-trained DistilBERT (whose parameter

count is the same as our final student model) and the full-sized BERT teacher model. The

main takeaways are:

• DPIMP produces a student model that has better performance compared to DistilBERT.

• The average performance of DPIMP is within 2% of the full BERT model. We conclude

that unstructured pruning techniques are more effective in closing the gap between the

teacher and the student models in the private world. Moreover, pruning methods are

computationally cheaper as student models do not require pre-training on public data.

• DPIMP algorithm as described in Algorithm 3 at the end of line 6 finds sparse subnetworks

in the pre-trained BERT model that can be fine-tuned to obtain nearly matching teacher

performance. This is similar to Lottery Ticket Hypothesis work for BERT networks [30],

although in the private world performance of the student network is not matching that of

the teacher.
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Table 2.8. Comparing performance of SparseBERT student model produced by unstructured
DPIMP with 12-layer BERT teacher and pre-trained DistillBERT. The results are shown with two
privacy budgets ϵ=1 and ϵ=4.

Model MNLI QQP QNLI SST-2 Avg

ϵ=1 ϵ=4 ϵ=1 ϵ=4 ϵ=1 ϵ=4 ϵ=1 ϵ=4 ϵ=1 ϵ=4

BERT 74.8 77.8 82.1 84.7 85.6 87.8 86.8 90.5 82.3 85.2

DistilBERT 68.4 73.0 82.0 84.3 81.0 82.8 86.0 87.7 79.3 81.9

SparseBERT (50%) 72.9 76.8 81.1 84.0 82.2 85.7 83.7 87.6 80.0 83.5

2.1.6 Conclusions and Future Directions

In Section 2.1 we initiated the study of differentially private model compression via

Knowledge Distillation and Pruning, and gave frameworks for implementing both. Our work

shows that one can obtain student models whose performance comes within 2% of the full

teacher models while having 50% fewer parameters, which can lead to significant reduction

in memory and improve inference time. We believe that our work takes the first step in the

intersubsection of private training and model compression techniques, and opens a whole in

direction with plenty of interesting and important problems. We highlight some of them here.

• Better Algorithms For Model Compression: While we gave natural DP adaptations of KD and

pruning algorithms, we believe that there are plenty of new techniques to explore.

• Better Accounting: In all our results, we chose very simple strategies for allocating privacy

budget across various steps of training and pruning. Theoretical innovations in the form of

better accounting can further improve the performance of student models.

• Lottery Tickets for DP-training? Both in our experiments on KD and in pruning, we see that

models that have ”good initialization” lead to dramatic improvements in performance.

Moreover our DPIMP algorithm finds sparse subnetworks in pretrained BERT models at

50% sparsity that can be fine-tuned to obtain nearly matching teacher performances. This

raises an intriguing question akin to Lottery Ticket Hypothesis: Are there good initialization
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of models where dynamics of DPSGD is similar to SGD? We believe that this is an exciting

research direction both from a theoretical point of view and also its implications to practical

private training.
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Figure 2.2. Workflow of our adversarial training regularization. The last hidden state (hx) of the LM
is fed to the discriminator to generate a distribution over the authors (pd). pd is used to compute
LLM-P, the privacy loss.

2.2 Privacy Regularization: Joint Privacy-Utility Optimiza-
tion in Language Models

As mentioned before, differentially private SGD [1] requires clipping of the gradients

and addition of noise in each update, to provide worst-case guarantees that reflect the like-

lihood of leaking any attribute of any member of the dataset into the trained model. The

worst-case guarantees of differential privacy are not customizable, in other words, they cannot

be relaxed to protect only certain attributes. Therefore, DP incurs huge losses to model utility

[126]. DP training of models is also much slower, with cumbersome hyper-parameter tuning

and development [204]. It has also been shown that DP’s utility loss is much worse for

under-represented groups [5], which can have financial and societal ramifications [157].

To address these issues, we propose two privacy regularization methods, based on

adversarial training and a novel privacy loss term, to jointly optimize for privacy and utility

(perplexity) of recurrent language models. The main idea of our regularizers is to prevent

the last hidden state representation of the language model for an input sequence x from being

linked back to the sensitive attribute we are trying to protect, in our case, the identity of the

author. We use the last hidden state as it corresponds to the embedding of the sequence x.

We consider the linkability of the input representation to the sensitive attribute (author) as

a proxy, since it is commensurate with the linked and linkable information definitions in the

General Data Protection Regulation [56]. By framing privacy as an optimization problem, we
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can apply the well-developed machinery of large-scale gradient-based optimization, enabling

us to train models at scale while jointly tuning for an optimal privacy-utility trade-off.

To validate our approach, we develop an evaluation framework for assessing a model’s

privacy loss. We employ the exposure metric introduced in [25] and introduce a reconstruction

(tab) attack as a realistic scenario to evaluate and compare LSTM language models trained

using our regularization with those trained with differential privacy, on Avocado [149] and

Reddit [199] datasets. We also empirically demonstrate that unlike DP, our technique does

not have disparate impacts on under-represented groups.

Our work is closely related to [32] and [110]. [32] consider an attacker who eavesdrops

on the hidden representations of a pre-trained model during inference and tries to recover

information about the input text. Adversarial training is used as a mitigation to reduce the at-

tacker’s performance. [110] use adversarial training to protect private author attributes such as

age or gender, in learned text representations for part-of-speech tagging and sentiment analysis

to gain better performance on out-of-domain corpora. We, on the other hand, use adversarial

training and a triplet-based regularization to train private language models that do not memo-

rize sensitive user information, which has not been explored before. We evaluate our models ac-

cordingly, by trying to extract training samples. Prior work has studied membership inference

attacks against models [187,192,212], however, our regularizations do not target these attacks.

2.2.1 Approach

In this subsection we explain our proposed regularizers and training techniques in

more detail.

2.2.1.1 Adversarial Training

Figure 2.2 shows our first proposed regularizer which is adversarial in nature. We feed

an input text sequence x to the language model and extract the last hidden state representation

of the model for x; denoted by hx. hx is then fed to a discriminator parameterized by θd, which
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Figure 2.3. Exposure metric results for different training schemes at similar perplexities.
Unmitigated denotes conventional training. Adversarial and Triplet are our regularizers. Higher
exposure indicates lower privacy.

plays the role of an attacker who attempts to predict what the sensitive label (in our case, the

author, y) for x is. The output probability distribution of the discriminator for the input hx,

pd=Pr(·|hx;θd) is then used to compute both the privacy loss LLM-P of the language model

and the discriminator loss LD-CE. During training, the discriminator optimizes for better

linking of the last hidden state representations to the authors. Thus, the discriminator loss

is LD-CE(hx,y;θd)=−logPr(y|hx;θd). Conversely, the language model optimizes θlm such that

it (1) improves the utility of the language model and (2) flattens the probability distribution

over authors. Thus, we devise the following loss function:

LLM(x;θd,θlm)=LLM-CE+λLLM-P (2.2)

LLM-CE is the utility loss, for which we use conventional cross entropy loss over the next-word

predictions. LLM-P is the privacy loss:

LLM-P(hx;θd)=− 1
M

M

∑
c=1

logPr(c|hx;θd) (2.3)

i.e. the KL divergence between the distribution over authors and the uniform distribution

where M is the number of classes (authors). The goal of this term is to drive the discriminator

to predict randomly uniform outputs [164]. The reason we devised this loss as opposed to

using −LD-CE is that we do not just want the discriminator to assign zero probability to the
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correct author, we want pd to be uniform so that it has no information about the correct author.

Hyperparameter λ allows for trading off privacy and utility.

2.2.1.2 Triplet-based Loss Function

One potential downside of the proposed adversarial regularizer is that the capacity

of the discrimitor must scale with the number of authors, and thus the size of the training

data. To better accommodate the larger number of authors in large datasets, we investigate

another regularizer that does not require a discriminator. We build on the intuition that to

obfuscate an attribute, we can increase the distance between representations of samples that

have the same label for that attribute, while decreasing the distance between samples with

different labels. To this end, we use the language model loss (LLM) of the previous subsection

(Eq 2.2), and we set the privacy loss to be the triplet loss:

LLM-P=∥hx−hp∥2−∥hx−hn∥2 (2.4)

The triplet loss is commonly used in vision tasks for training embeddings that map

images from same category to neighboring points in the embedding space [29]. We, however,

invert this loss and use it for an opposite purpose: privacy regularization. During training

of the language model, we select a “baseline sample”, x, a positive sample p (with different

sensitive label) and a negative sample n (with the same sensitive label) and feed them through

the language model and extract the last hidden states hx, hp and hn, respectively. We find

the l2 distance between hx, hp, and hn and based on their labels, add them to or subtract

them from the loss. To implement this, in practice, we sample a baseline batch and a second

“auxiliary” batch during training. We feed both the baseline batch (x) and the auxiliary batch

(a) through the language model, and extract the last hidden states. We then calculate the

distance between last hidden states of the corresponding samples in the two batches. If the

samples have different labels for the sensitive attribute (author), we add their distance to the
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Figure 2.4. (a, b) Tab attack results for reconstructing canary sequences for two utility levels.
Higher attack accuracy indicates lower privacy. (c) Effect of different mitigations on utility of well
represented (Top-5) and under-represented (Low-5) users for Avocado dataset.

loss, otherwise, we subtract it. The privacy loss becomes:

LLM-P=∑
i:yxi=yai

∥hxi−hai∥
2−∑

j:yxj ̸=yaj

∥hxj−haj∥
2

(2.5)

2.2.2 Evaluation

In our experiments, we use a subset of the Avocado corporate email dataset [149] with

100 users and 60,000 samples and a subset of Reddit dataset [199] with 10,000 users and 3

million samples. We create a 80/20% training/test set split. We use a two-layer LSTM model

as the language model for the next-word prediction task. We compare models trained with our

proposed regularizer to differentially private (DP) ones [1]. For the privacy accounting, we use

Gaussian differential privacy [19]. We use language model perplexity as a measure of utility.

Privacy measurements w/ exposure metric. To empirically compare the privacy of

our methods to that of DP, we adopt the exposure metric introduced by [25]. The higher the

exposure of a sequence, the more the model’s memorization and the easier it is to extract the

sequence from the language model.To measure exposure we insert sequences of five random

words (canaries) to the training data. We insert unique canaries with different repetitions for

each user, and measure the exposure of these canaries.

Figure 2.3 shows the exposure results per canary repetition. These results are averaged

over all the users. In each sub-figure, the perplexities of the models are similar, hence we
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can compare the privacy levels at similar utilities. Fig. 2.3a compares trained models using

different techniques on the Avocado dataset, where they all have relatively high perplexities

compared to a fully trained conventional model. Fig. 2.3b has the same setup, however the

models have lower perplexities. Naturally, for having better utility we are trading off privacy,

which can be seen by comparing the exposure values in these two figures and observing

that the second one has higher exposure values (lower privacy). Finally, Fig. 2.3c shows the

exposure results for Reddit.

In all cases we see that the unmitigated model has the highest exposure, as expected.

We also observe that for canaries (patterns) that are repeated more than 9 times (for each user),

our mitigation offers lower exposure compared to DP, especially in the high perplexity case.

This is because clipping and noise addition in DP is attribute and data agnostic, meaning that

noise is added to all samples regardless of whether or not they contain sensitive information.

Therefore, repeated patterns are less protected. If we want to protect a pattern with n repeti-

tions, we would need to apply noise that is n× larger, which would degrade the utility gravely

and would not yield the same perplexity. For lower repetition canaries, our mitigations have

comparable performance to DP. For all these experiments the Gaussian differential privacy

criterion µ is extremely large (1020), which practically yields ϵ∼∞. We also experimented

with lower ϵ values (e.g. ϵ∼7), however, it yields a model with perplexity of 650, having an

extremely low utility.

Privacy measurements w/ tab attack accuracy. In this experiment, we input the first

token, and see if the entire sequence is reconstructed using the language model. We report

the rate of correct reconstruction of canaries as the accuracy of the attack. We use the synthetic

canaries from the previous experiment, and also select “real canaries” from the training corpus

to create a real-world scenario. Fig. 2.4a shows that for a high perplexity model, the accuracy

of the tab attack on synthesized canaries is very small, even for the unmitigated model. The

unmitigated model reaches the designated perplexity in less than an epoch, and hence it
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does not memorize the canaries. For the real canaries however, the memorization is higher,

since they follow grammatical rules. In the lower perplexity case of Fig. 2.4b, we see that

the synthesized canaries are mostly memorized by the unmitigated model. Our mitigations

outperform DP, especially for the synthesized canaries. DP is not context-sensitive and applies

the same amount of noise to all samples, thereby leaving correlated and higher repeated

samples less-protected. Our mitigations, however, learn what sequences are link-able to their

authors, and obfuscate them such that they no longer leak the “identifying” secret.

Effect on under-represented users. Differential privacy has disparate impact on the

accuracy of different subgroups of the dataset [5]. Here, we want to measure the effect of

our mitigations on the utility of the model among users with various data samples. For

each user, we measure the average perplexity of the model for their samples in the test set,

and then subtract this from the same value for an unmitigated model. This would yield the

average drop in utility, per user. We compare the utility drop of well-represented users to

under-represented ones by taking the top 5 users with most samples and the bottom 5 users

with the fewest samples from Avocado dataset. We then measure the average utility drop over

each group of 5 users on the test set. Figure 2.4c shows these results. We see that differential

privacy has disparate impact, 29 points, on the two sub-groups of users (authors), whereas

this gap is only 7 points for models trained with our mitigations.

2.2.3 Conclusion

This work introduces two privacy mitigation methods to jointly optimize for privacy

and utility. Extensive experiments show that our approach provides comparable and in

certain cases a higher level of privacy compared to differentially private model training.

We further empirically demonstrate, that our methods do not exhibit disparate impacts on

under-represented groups and have significantly less overhead on training performance.
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Ethical Considerations

While handling sensitive email data (Avocado) we made sure to abide by the terms of

its end-user license agreement (EULA) which has provisions to protect the privacy of members

of the corpus. Furthermore, we took measures such as scrubbing named entities before using

the data for model training. The over-arching goal of our work is to contribute to language

model development that protects the privacy rights of users who contribute their data. While

we rigorously evaluated our models by applying state-of-the-art attacks, deploying these

models in real-world setups requires further scrutiny and regulations.
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Chapter 3

Attribute Control For Fairness and Privacy

Ideally high-stakes decisions made by either humans or ML algorithms should not be

influenced by irrelevant, protected attributes like ethnicity or age. In many instances, the input

data used for making high-stakes decisions is text that is authored by a human candidate – for

example, hiring decisions are often based on bios and personal statements. Recent work [35]

shows that automatic hiring-decision models trained on bios are less likely to select female

candidates for certain roles (e.g. architect, software engineer, and surgeon) even when the

gender of the author is not explicitly provided to the system. Bias is, of course, not limited to

algorithmic decisions, humans make biased decisions based on text, even when the protected

attributes of the author are not explicitly revealed [152]. Together, these results indicate that

both algorithms and humans can (1) decipher protected attributes of authors based on stylistic

features of text, and (2) whether consciously or not, be biased by this information.

A large body of prior work has attempted to address algorithmic bias by modifying

different stages of the natural language processing (NLP) pipeline. For example, [165] attempt

to de-bias word embeddings used by NLP systems, while [45] address the bias in learned

model representations and encodings. All such methods need to be applied by the deployer

of such models (could be different service providers or hiring companies), taking the control

away from the users/authors of text. They also only address the bias in the NLP models, and

not implict or explicit bias of the humans who make decisions. As such, we first propose a
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revision method that makes edits to text to try and obfuscate sensitive stylistic information.

Unlike prior work, the re-writing mechanism we propose focuses on obfuscation/mixing

of styles, rather than hiding style by mimicking other styles. For example, for protecting

the sensitive attribute “age” of the author, the approach that prior work would take is to

transfer the style of text from teenage-style to adult-style, by re-writing it such that it mimics

text written by adults. We, however, propose to remove any age revealing stylistic feature

entirely, as opposed to hiding age by mimicing different age-groups. Using our method, the

teenage-written sentence “grr ... now i get cold quicker” would become “hmmm ... now i get

cold . ”, hiding age-revealing features entirely. We do this by transferring style to an unseen

style, which is an intersection of the styles that the model has seen before.

Although text revision using style transfer as proposed above can help improve fairness

of the decisions made by the text through obfuscating attributes, it necessitates training new

models and architectures for each attribute we want to obfuscate (apply control for), making

it non-trivial to customize and modify protected attributes. This raises the question can we use

existing trained models as building blocks for controlling attributes? This would alleviate the need for

training models from scratch, as there are many existing open-source pre-trained/fine-tuned

classifiers and models that can be used and glued together to apply control for desired

attributes. As such, in the second part of this chapter we propose a framework named

“Mix and Match”, where, unlike prior work, the main goal is to enforce attributes using

existing arbitrary pre-trained models and heuristics, whether they are discrete/continuous

or differentiable/non-differentiable, using an energy-based model. We demonstrate the appli-

cation of Mix and Match on many tasks, such as bias removal and style and formality transfer,

without the need to train any new models.
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3.1 Style Pooling: Automatic Text Style Obfuscation for
Improved Classification Fairness

We introduce a novel framework that enables ‘style pooling’: the automatic transduc-

tion of user-generated text to a central, obfuscated style. Notions of ‘centrality’ can themselves

introduce bias – for example, a system might learn to obfuscate by mapping all text to the

dominant style seen in its training corpus. This might ‘white-wash’ text, ignoring stylistic

features of underrepresented groups in the learned notion of central style. Our framework

operationalizes the notion of centrality in a more flexible way: our probabilistic approach

allows us to choose between two distinct notions of centrality. First, we define a variant of our

model which is incentivized to learn a minimal notion of central style that effectively intersects

the various styles seen in training. This is achieved through the design of this variant’s prob-

abilistic prior. We further equip this variant with a novel “de-boosting” mechanism, which

amplifies the use of words that are less likely to leak sensitive attributes, and de-incentivizes

the use of words whose presence might hint at a particular sensitive attribute. Second, we

propose an alternative prior that instead incentivizes a maximal notion of style that seeks to

obfuscate by adding stylistic features of all protected attributes to text – in effect, computing a

union of styles. Table 3.1 shows our intersubsection and union obfuscation applied to sentences

from the Blogs dataset, and highlights the differences between them.

While we propose both these obfuscations in our framework and leave it to the users

to choose, it is worth noting that the cognitive process literature shows that when humans

are confronted with conflicting biasing information, they tend to form an opinion about the

conflicting text, based on their own implicit biases [168]. Therefore, removing sensitive stylistic

features may be more effective than combining them. This is also commensurate with our

findings, where we observed that intersubsection more successfully improves the fairness

metric (subsection 3.1.3.2).

69



Table 3.1. Example Blog sentences transformed with A4NT [185] and our proposed Intersubsection
and Union obfuscations. Our Intersubsection obfuscation aims at changing the style such that
it does not reflect either teen or adult style. However, the union, tries to reflect both by making
changes like adding “...” to the beginning of the sentence (adult style) while keeping the “grr”
(teen style). Or by adding exclamation marks at the end of the sentence.

Age Input Sentence (Original Data) A4NT (Baseline) Intersection Union

Teen grr ... now i get cold quicker . grr now i get cold lol . hmmm ... now i get cold . ... grr ... now i get cold quicker .
Teen it was so fricken hilarious . it was so boring hilarious . it was so utterly hilarious . it was so totally hilarious
Adult well i ’ve just been too busy . well i ’ve just been kinda fun . well i ’ve just been too busy . well i ’ve just been too busy .
Adult these were common phrases . these were common teacher . these were common . these were common ! !

We extensively evaluate our proposed framework on a wide range of tasks. First, we

compare and contrast our “intersubsection” and “union” obfuscations on a modified version

of the Yelp dataset [182] where we have created three stylistic domains by deliberately mis-

spelling three disjoint sets of words. We show that our intersubsection obfuscation successfully

removes these misspellings and replaces them by the dominant spelling of the word 99.20%

of the time, while our union obfuscation spreads the misspellings into the other two domains

46.40% of the time. Then, we evaluate our framework on the Blogs data [180], where the

sensitive attribute is age, and we measure the impact our obfuscations have on the fairness

of a job classifier, using the the TPR-gap measure from [35]. We also evaluate the removal of

sensitive attributes, fluency of the generated text, and the uncertainty of a sensitive attribute

classifier for our framework, in both two and three domain setups.

3.1.1 Proposed Method

In this subsection, we first introduce our model structure, then describe our style-

pooling priors and the unsupervised learning and inference techniques we leverage for this

model class. Finally, we introduce our style de-boosting mechanism.

3.1.1.1 Model Structure

Consider a training corpus consisting of utterances produced by authors with various

protected attributes. In Figure 3.1, we depict a grouping of authors by age into three domains.

We let xi represent an individual observed text utterance in the corpus, and assume M
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Figure 3.1. Proposed unsupervised framework for style pooling: inducing a centralized obfuscated
style. xi represent observed text which are clustered by their sensitive attribute (age). yi are
corresponding latent variables representing the induced obfuscated text. Training leverages an
amortized inference setup similar to a VAE-style training, but, critically the prior is produced by
pooling language models from each domain using two different strategies targeting (1) intersected
style and (2) the union of all styles in the corpus.

domains (sensitive attribute classes) in the dataset. yi is a latent variable that represents the

obfuscated version of xi. Hence, yi is a text valued latent, while xi is a text valued observation.

We let d(i) denote the domain of the ith sample in the dataset. With this definition, our

generative process assumes each sentence xi, with corresponding domain d(i), is generated as

follows: First, a latent sentence yi is sampled from a central prior, pprior(yi), which is domain

agnostic. Then, xi is sampled conditioned on yi from a transduction model, p(xi|yi;θ
d(i)
y→x)

. We let θ
Dj
y→x represent the parameters of the transduction model for the jth domain. We

extensively discuss pprior in the next subsection. For now, we assume the prior distributions

are pretrained on the observed data and therefore omit their parameters for simplicity of

notation. Together, this gives the following joint likelihood:
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p(XD1,...,XDM ,Y;θD1
y→x,...,θDM

y→x)

=
N

∏
i=1

p
(
xi|yi;θ

d(i)
y→x)pprior

(
yi
) (3.1)

The log marginal likelihood of the observed data, which we approximate during training, can

be written as:

log p(XD1,...,XDM ;θD1
y→x,...,θDM

y→x)

=log∑Y p(XD1,...,XDM ;θD1
y→x,...,θDM

y→x)

(3.2)

Neural Architectures. We select a parameterization for our transduction distributions that

makes no independence assumptions. We use an encoder-decoder architecture based on the

standard attentional Seq2Seq model which has been shown to be successful across various

tasks [6, 171]. Our prior distributions for each domain are built using recurrent language

models which also make no independence assumptions.

3.1.1.2 Prior Distributions

The critical component of our framework that incentivizes obfuscation are our special-

ized priors, as depicted in Figure 3.1. We introduce two prior variants, pInter(y) and pUnion(y),

which incentivize induction of intersected styles and the union of all styles, respectively. Each

prior is assembled out of M (here M=3) separate language models – pD1, pD2, ..., pDM – each

trained on the corresponding domain of observed utterances in the training data. The intersub-

section prior, pInter(y), is computed by taking the sum of the likelihoods of an entire utterance

across the language models from all M domains (and then re-normalizing to ensure that re-

sulting prior is a valid distribution). This utterance-level average pooling approach incentivizes

a “majority-voting” effect, in which the model is pressured to remove any words and stylistic

features that are characteristic of one domain, but not the others, and converge to features that

are shared by the majority of the domains. Therefore the prior for intersubsection becomes:
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pInter(yi)=
1
M∑M

j pDj(yi) (3.3)

In contrast, the union prior, pUnion(y), computes the likelihood of an utterance according

to the minimum likelihood across each domain’s language model at each token position, t.1

Through experimentation (Sec. 3.1.3.1) we empirically observed that this prior rewards the

model for inserting as many stylistic features as possible that are unique to each domain.

pUnion(yi)∝∏T
t min(pD1(yi,t|yi,<t),...,pDM (yi,t|yi,<t))

(3.4)

3.1.1.3 Learning and Inference

Training is accomplished using an approach from [70]: We employ seq2seq inference

networks and use an amortized inference scheme similar to that used in a conventional VAE,

but for sequential discrete latents.

Ideally, learning should directly optimize the log data likelihood, which is the marginal

shown in Eq. 3.2. However, due to our model’s neural parameterization, the marginal is

intractable. To overcome the intractability of computing the true data likelihood, we adopt

amortized variational inference [96] to derive a surrogate objective for learning the evidence

lower bound (ELBO) on log marginal likelihood:

1The token-wise min of the language models is not, itself, a normalized distribution. However, we can treat
it as implicitly normalized in our training objective (discussed in the next subsection) because the absence of
normalization only contributes an additive constant to our objective.
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log p(XD1,...,XDM ;θD1
y→x,...,θDM

y→x)

≥LELBO (XD1,...,XDM ;θD1
y→x,...,θDM

y→x,ϕx→y)

=∑N
i

[
Eq(yi|xi;ϕx→y)[log p(xi|yi;θ

d(i)
y→x)]︸ ︷︷ ︸

Reconstruction likelihood

−DKL
(
q(yi|xi;ϕy→x))||pprior(yi)

)]
︸ ︷︷ ︸

KL regularizer

(3.5)

This new objective introduces q(y|x;ϕx→y), which represents the inference network

distribution that approximates the model’s true posterior, p(y|x;θx→y). Learning operates by

optimizing the lower bound over both variational and model parameters. Once training is

over, the posterior distribution can be used for style obfuscation.

The reconstruction and KL terms in Eq. 3.5 involve intractable expectations, which

means we need to approximate their gradients. To address this, we use the Gumbel-

softmax [85] straight-through estimator to backpropagate gradients from both the KL and

reconstruction loss terms.

Length Control. During the training of the model, we observed that it tends to repeat the

same word when it is trying to generate obfuscated text, yi. To mitigate this, we append two

floating point length tokens to the input of the inference networks decoder at each step t, one

of these tokens tells the model which step it is on, and the other tells it how many steps are

left [80,95]. We also experimented with positional embeddings instead of floating point tokens,

but we observed that they yield worse convergence. Another measure we take to encourage

shorter sentences was to hard stop the decoding during training once the re-written sentence

had the same length as the original sentence. To further stabilize training we share parameters

between the inference network and the transduction models, appending an embedding to

the input to indicate the output domain.
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3.1.1.4 Style De-boosting

To better encourage the removal of identifying stylistic features, we introduce a de-

boosting mechanism, which incentivizes the use of words that are less likely to leak sensitive

attributes, and de-incentivizes the use of words whose presence might hint at a particular

sensitive attribute. We build on the intuition that for a given word w in the vocabulary, if the

probability that it belongs to domain m is similar to the probability that it belongs to domain

k, for any given m,k within the possible domains, M, then we can assume that this word does

not reveal style. However, if there is a huge gap in the two probabilities, that word might hint

at a certain domain if it is present in the re-written text. Therefore, we devise a normalized

“style score”, s, for each word w in the vocabulary 2:

sw=
max( f D1

w , f D2
w ,..., f DM

w )−min( f D1
w , f D2

w ,..., f DM
w )

max( f D1
w , f D2

w ,..., f DM
w )

(3.6)

Where f D1
w is frequency of word w in the training corpus for domain D1, divided by the

overall number of tokens (words) in the domain corpus. Using these scores, we modify the

output logits of the decoder so that the output probability distribution over the vocabulary for

sample i at step t is given by:

p(yi,t|yi,<t,xi)∝softmax(Li,t−γ∗S) (3.7)

Here, Li,t represents the logits at step t, while S is the score vector for all the words in the

vocabulary. γ is a multiplier that helps tune the amount of de-boosting. Due to the nature of

this de-boosting mechanism, it makes sense only to use it with the intersubsection obfuscation

and not the union.
2While this style score may also highlight content that is characteristic of a domain in addition to stylistic

word choices, we find in experiments that our use of de-boosting does not substantially harm the utility of
downstream classifiers – indicating that content is largely preserved, even with de-boosting.
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3.1.2 Experimental Setup

Here, we provide a brief description of our experimental setup.

3.1.2.1 Model Configurations

We used a single layer attentional LSTM-based Seq2Seq encoder-decoder for all the

experiments, with hidden layer size of 512 for both encoder and decoder, and word embedding

size of 128. For the attribute classifiers and language models, we also use LSTM models with

the same architecture, with a final projection layer of the size of sensitive classes/vocabulary.

3.1.2.2 Datasets

Synthetic Yelp dataset [182]. We shuffle all the sentences in the Yelp reviews dataset and divide

them into three groups (domains). We then randomly choose 15 words from the top 20 highest

frequency words in the dataset, and allocate the set of top 5 words (W1) to D1 (domain 1), next

5 to D2 and the least frequent 5 words to D3. We misspell all occurrences of W1 in D1, by chang-

ing “word” to “11word11”. We then add “11word11” to the vocabulary, and do this for all the 5

words in all 3 domains (15 words total). After this transformation, we have 3 domains with dis-

joint stylistic markers, which can help us more concretely analyze our obfuscation mechanism.

Blogs dataset [180]. The blogs dataset is a collection of micro blogs containing over 3.3 million

sentences along with annotation of author’s age and occupation. We use this data in both two

and three domain style pooling, where we treat age as the sensitive attribute and balance the

data so each domain has the same number of sentences. In the two domain setup, we divide

the data in two groups of teenagers and adults. In the three style setup, we have three groups

of teenagers, young adults (20s) and adults (people in their 30s and 40s). We use this dataset

for multiple evaluations including fairness. We compare our obfuscation to that of [185] in

all evaluations with this data.

Twitter dataset [162]. We use data from the PAN16 dataset, which contains manually anno-
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tated (from LinkedIn) age and gender of 436 Twitter users, along with up to 1000 tweets from

each user. We use this data for the purpose of sensitive attribute (age) removal comparison

with [45] in subsection 3.1.3.5, and have therefore used the exact same preprocessing and

handling of the data as done by them.

DIAL dataset [14]. This is a Twitter dataset which has binary dialect annotations of African

American English (AAE) and Standard American English (SAE)3, setting “author’s race” as

the sensitive attribute. We use this dataset for comparison with the work [207].

3.1.2.3 Baselines

One language model prior (One-LM). This model is an instance of our framework which

uses the output distribution of a single language model as the prior. For the Yelp Synthetic

data this single LM is trained on the original data which does not have our modifications

and would provide the ideal “intersubsection”, since the original data itself does not have

misspellings from any of our synthetic domains and can be considered as central. In the

case of the Blogs data where we don’t have any ideal central data which is void of style, we

train an age classifier and then choose the sentences from the training set that the classifier

missclassifies. We create a new training set with these samples and train a single LM on them,

and use it for the prior. The intuition is that if the classifier could not guess the domain, these

samples are probably close to the notion of centrality we are looking for.

A4NT [185]. “A4NT: Author Attribute Anonymity by Adversarial Training of Neural Machine

Translation” is the most closely related past work that also attempts to obfuscate text style

through automatic re-writing. However, their adversarial approach uses a discriminator

network to hide protected attributes simply by mapping the style of one protected category

to that of another.

PATR [207]. Privacy Aware Text Rewriting (PATR) is another work close to ours, which

3Using standard for non-AAE might not be the most suitable naming, but we use it hereon given the lack
of a better substitute.
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removes sensitive attributes through text re-writing using translation and adversarial learning.

Unlike style pooling, PATR, targets privacy and is therefore not concerned with the union vs.

intersubsection of sensitive attributes.

Original. We include an “original” baseline in our measurements, which shows the value of

a given metric if the original un-obfuscated data was used.

3.1.2.4 Evaluation Metrics

Below we discuss our evaluation metrics, all of which are measured on the test data.

Fairness TPR-gap. We first define a classifier whose main task is to determine if the

occupation of an author is student or not, given text from their blog. We set the age of the

author as a sensitive attribute, and want to measure the bias in the classifier, given age. We

follow [35] and use the “True Positive Rate gap in age” metric. This measure quantifies

the bias in a classifier by finding the gap between the true positive rate for each sensitive

attribute group (teen vs. adult). For a binary sensitive attribute a (age) and a true class (for

the classifier’s main task) y, we define:

TPRa,y=P(Ŷ=y|A=a,Y=y) (3.8)

GAPTPR
a,y =TPRa,y−TPRa′,y (3.9)

where A is the random variable denoting binary sensitive attribute with values a and a′. Y,

Ŷ are random variables denoting the correct class and the predicted class, respectively. The

lower the gap is, the more fair the classifier. We report GAPTeen,Student, which reflects how

biased the classifier is towards classifying teens as students. Linguistic Back-Translation (BT)

accuracy. We translate the obfuscated samples back to their original domain using the model,

and then for each token see if it has been correctly back-translated to its origin or not. We
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use this metric to see whether the obfuscated version contains sufficient information about

content to reconstruct the original.

GPT-2 PPL. We feed our obfuscated test sentences to a huggingface [158] pre-trained GPT-2

medium model, and report its perplexity (PPL), as an automatic measure of fluency. Lower

PPL hints at more fluent text.

BLEU Score. In the Yelp Synthetic data experiments, since we have the original (not misspelled)

text, we can calculate and report the BLEU score.

GLEU Score. We use GLEU [205] score as another metric for evaluating the fluency of the

generated sentences.

Lexical Diversity (Lex. Div.) To better quantify the differences between different obfuscations,

we calculate the lexical diversity as a ratio where the size of the vocabulary of the model’s

output text is the numerator, and the denominator is the overall size of the model’s output

text (number of all the tokens in the output).

Sensitive-Attribute Classification

Sensitive-attribute Classifier (Clsf.) accuracy. To evaluate the removal of sensitive

attributes, we train a sensitive-attribute classifier, and use its accuracy as a metric. The closer

the accuracy is to chance level (random guess), the more successful is the removal. However,

there is a caveat to this metric: it is not always clear how the classifier is making its decision,

if it is based on content, or style. Therefore, this metric alone is not conclusive.

Entropy. To better measure how uncertain the classifier becomes, we also compute its average

Entropy across all test samples. Entropy is always between [0.0,1.0] for two domain classifi-

cation and [0.0,1.59] for three domain classification. The higher it is, the more uncertain the

classifier is (more desirable for our purpose).

Confident Response (CR) percentage. We calculate the percentage of the responses from the

classifier for which it was more than 75% sure.
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3.1.3 Experimental Results

3.1.3.1 Synthetic Yelp Data

Table 3.2 shows the experimental results for the Synthetic Yelp dataset experiment,

where we trained our proposed framework using the three synthetic domains with mis-

spellings, as explained in subsection 3.1.2.2. The Corrected, Remaining and Removed percentages

refer to the average ratio of the misspellings corrected, remaining and removed for each domain.

These should all sum up to 100%. The Spread is the average ratio of the number of words from

one domain that have been changed to misspellings from another domain. For instance, if there

are 100 occurrences of “word” outside D1 before obfuscation, if 40 of them are converted to

“11word11” after obfuscation, then the spread would be 40%. The One-LM can be considered

as an “oracle baseline” in this case, since it was trained on original (no misspellings) data.

The main goal of this controlled experiment is to compare and contrast our intersub-

section and union obfuscations. From the Table we can see that both our obfuscations lead

to high fidelity (back-translation accuracy) and semantic consistency (BLEU score). They also

both render the domain classifier very close to chance level (33.33%). The main differences

between these two methods becomes more clear when we look at the corrected, remaining,

and spread numbers. The intersubsection obfuscation with its average pooling, demonstrates

a majority voting behavior which incentivizes correcting the misspellings since 2 out of the

3 language models advocate for the correct spelling. Therefore 99.20% of the misspellings are

corrected using intersubsection, very close to the oracle baseline. The Union prior, on the other

hand, corrects only 45.17% of the misspellings, and lets 54.37% of them to remain as they are.

It also converts 46.40% of the correctly spelled words in other domains to misspellings. This

shows that the union is in fact mixing the styles, creating sentences that might have more than

one misspelling in them.
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Table 3.2. Results for the Synthetic Yelp dataset with 3 domains. Corrected shows what % of
modified words in a domain were corrected back to their original format. Spread shows the reverse.

Intersection Union One-LM

BT Accuracy (%) 92.47 94.52 95.58
Corrected (%) 99.20 45.17 99.87
Remaining (%) 0.61 54.37 0.00
Removed (%) 0.18 0.46 0.12
Spread (%) 0.18 46.40 0.00
Cls Accuracy (%) 33.48 34.99 33.35
BLEU 81.74 70.86 93.01

3.1.3.2 Blogs Data

Tables 3.3, 3.5 and 3.6 summarize the experimental results for the Blogs dataset. Below,

we will explain each experiment in more detail.

Fairness Results Table 3.3 shows the results for the fairness metric measurements on

text generated using different obfuscations, for “Occupation” classifiers. We have selected

a subset of the Blogs data for this experiment, where author occupation is either student or

arts, and the age is either teen or adult (two domain obfuscation). we have taken an approach

similar to that of [165], where we create 4 different levels of imbalance. In all cases, the dataset

is balanced with respect to both occupation and age. We change only the proportion of

each age within each occupation class (e.g., in the 0.8 ratio, the student occupation class is

composed of 80% teens and 20% adults, while the arts class is composed of 20% teens and

80% adults). For each imbalance ratio we train the classifier on the original imbalanced data,

and then test it with original and autmotically generated data from different baselines.

Based on Table 3.3, we can see that our Intersubsection obfuscation can improve fairness

(TPR-gap) with little harm to the classifier accuracy (Occupation), in comparison to the original

data and A4NT. We can trade-off classifier accuracy and fairness, by increasing the de-boosting

(DB) multiplier. In the Table, Intersubsection shows Intersubsection obfuscation with different

DB levels. In the case of DB=40, we lose slightly more utility, but observe much better fairness.

A4NT’s performance in terms of the fairness metric (TPR-Gap) is comparable to our
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Table 3.3. Fairness results for the Blogs data. The main task is classifying if the author occupation
is student or not. Higher occupation accuracy and lower TPR-gap are better. DB denotes our style
de-boosting technique, and the number next to it shows its multiplier. Larger multiplier means
stronger style obfuscation.

Ratio

Occupation Accuracy (Utility) TPR-gap (Fairness)

Original A4NT Intersection Union Original A4NT Intersection Union
No DB DB= 25 DB= 40 No DB DB= 25 DB= 40

0.95 74.56 59.35 74.77 71.12 69.73 73.22 0.54 0.29 0.23 0.23 0.21 0.51
0.80 65.55 54.74 65.31 65.12 59.60 65.43 0.35 0.21 0.35 0.18 0.18 0.36
0.65 59.01 52.73 58.41 56.68 54.45 57.19 0.12 0.05 0.11 0.11 0.11 0.15
0.50 58.09 53.47 56.21 53.6 53.18 55.49 0.04 0.08 0.05 0.05 0.03 0.05

Intersubsection obfuscation (even without de-boosting), however, in maintaining occupation

accuracy (utility), A4NT performs much more poorly. We presume this is because A4NT

removes sensitive attributes solely based on hints from a discriminator, and the low occupation

accuracy suggests the discriminator captures the content more than it captures style, therefore

it changes the meaning and structure of the sentences as well. Our human judgments for

semantic consistency and fluency in subsection 3.1.3.4 support this hypothesis. Our Union

obfuscation, however, does not improve the fairness. We hypothesize this could be caused

by keeping/adding biasing words, which can perpetuate the existing impartialities in the

classifier, similar to how human cognition works [168].

Linguistic and Sensitive-attribute Classification Results The top subsection of Ta-

bles 3.5 and 3.6 show the linguistic and sensitive-attribute classification metrics for the two and

three domain obfuscations, respectively. Since A4NT cannot be applied to non-binary style

obfuscations as is, there are no results for it in three domains. We can see that for both two and

three domains the de-boosting (denoted as DB) offers a trade-off between the linguistic quality

of the generated text and the obfuscation of sensitive attributes. Compared to the One-LM

baseline, for corresponding levels of de-boosting, our Intersubsection obfuscation is almost

always superior, in both text quality and obfuscation. The Intersubsection obfuscation with

de-boosting multiplier of 25 outperforms A4NT, with lower classifier accuracy, higher entropy

and much lower Confident Response (CR) rate from the classifier. In general, the Intersubsection
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Table 3.4. Comparison with PATR [207], on the Twitter DIAL dataset, where the author’s race is
the sensitive attribute.

Metric PATR Intersection Union
α=1 α=5 No DB DB = 20

GLEU 24.77 9.67 26.32 17.21 26.25
Clsf. Acc (%) 74.85 65.75 74.05 62.12 73.27

Table 3.5. Linguistic and sensitive-attribute classifier results for Blogs data, considering two
sensitive age domains of teens and adults. For BT accuracy and entropy higher is better, for PPL
and Confident Response (CR) lower is better.

Metric Original A4NT One-LM Intersection Union
No DB DB = 25 DB = 40 No DB DB = 25 DB = 40

Li
ng

. BT Accuracy (%) 100.00 66.49 94.47 92.88 90.60 95.41 87.39 88.63 96.88
GPT-2 PPL 41.71 44.85 39.51 53.65 66.21 41.6 42.80 58.15 42.07
Lex. Div. (%) 3.22 2.28 2.52 1.82 1.09 2.50 1.47 0.97 2.71

C
ls

f. Clsf. Accuracy (%) 64.73 61.31 62.07 61.69 59.52 64.23 60.90 59.81 64.02
Entropy 0.87 0.86 0.87 0.91 0.95 0.87 0.93 0.95 0.87
CR (%) 14.21 15.72 13.44 6.49 2.80 13.95 4.78 2.47 14.22

obfuscation, even without de-boosting does well on Entropy and CR, which shows that our

method is doing well at creating doubt in terms of what the age of the author is. One caveat

however, across both two and three domain obfuscations is the classifier accuracy, which does

not decrease much. We hypothesize that one reason for this could be the dependency between

style and content, and that the sensitive-attribute classifier could be basing its decisions on

content, therefore changing the style would not hide the sensitive attribute.

Our Union obfuscation is behaving differently from the Intersubsection, and is inferior

in terms of obfuscating the text, with higher classifier accuracy and lower entropy. However,

it has higher lexical diversity, which could hint at it trying to keep sentences diverse and

“adding styles”, whereas the Intersubsection is only keeping the common words and is therefore

decreasing the lexical diversity.
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Table 3.6. Linguistic and sensitive-attribute classifier results for Blogs data, considering three
sensitive age domains of teens and adults. For BT accuracy and entropy higher is better, for PPL
and Confident Response (CR) lower is better.

Metric Original A4NT One-LM Intersection Union
No DB DB = 25 DB = 40 No DB DB = 25 DB = 40

Li
ng

. BT Accuracy (%) 100.00 – 93.84 93.64 87.83 89.09 89.25 82.47 93.30
GPT-2 PPL 41.70 – 43.49 48.99 84.61 48.15 49.70 69.08 42.66
Lex. Div. (%) 3.41 – 2.46 1.81 0.94 1.97 1.02 0.77 2.86

C
ls

f. Clsf. Accuracy (%) 49.78 – 49.16 47.64 45.41 48.12 47.13 45.81 48.81
Entropy 1.38 – 1.38 1.43 1.47 1.44 1.44 1.49 1.38
CR (%) 43.00 – 43.33 38.89 30.75 38.76 35.37 28.02 45.88

3.1.3.3 Comparison with PATR

Table 3.4 provides a comparison between our style pooling method, and PATR [207]. α

is knob used by PATR to tune the intensity of attribute removal, and the classifier accuracy on

non-modified text is 86.3%. We can see that without de-boosting, our intersubsection method

drops the classifier accuracy to 74.05% with a GLEU score of 26.32. PATR drops the classifier

accuracy to 74.85%, but with a worse level of GLEU. With de-boosting, however, we can

achieve a classifier accuracy of 62.12% with GLEU of 17.2, whereas PATR reports accuracy of

65.75% for a much lower GLEU of 9.67 when α is increased. This shows that our de-boosting

mechanism can provide an advantage by giving a lower probability to attribute revealing

components, while maintaining the sentence structure. Our union method also achieves

73.27% accuracy with 26.25 GLEU, making it most suitable for cases where the semantic

consistency of the sentences is most important.

3.1.3.4 Evaluation with Human Judgments

We design two crowd-sourcing tasks on Amazon Mechanical Turk. (1) Fluency: We

provide workers with a pair of obfuscated sentences, and ask them which sentence is more

fluent. (2) Semantic Consistency: We provide the original (un-obfuscated) sentences, and ask

workers which of the obfuscated sentences is closer in meaning to the original sentence. The

model checkpoints used for human evaluations here are those whose fairness and linguistic
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metrics are reported in Tables 3.3, 3.5. We use our intersubsection obfuscation, with no

de-boosting. We randomly select 188 sentences from the test set, and used the model outputs

for human judgment. For consistency, each pair of sentences is rated by three workers and we

take the majority vote. In terms of fluency, the workers preferred our obfuscations over those

of A4NT for 60.38% of the sentences. In terms of semantic consistency, for 72.13% sentences

they found our obfuscations to be closer in meaning to the original ones.

3.1.3.5 Comparison with [45]

[45] aims at creating representations for text that could be used for a specific classi-

fication task, while hiding sensitive attributes. Although our approach deals with the text as

opposed to representations and and can be applied for a wider range of downstream tasks,

we offer a brief comparison to this method. [45] use the Twitter dataset [162], set the sensitive

attribute to be age, and try to produce representations that would perform well on the main

task of “conversation detection” (mention detection) on Tweets. On the original data, they re-

port an accuracy of 77.5% and 64.8% for a classifier that tries to classify conversations and age,

respectively, which drop to 72.5% and 57.3%, after applying their adversarial learning scheme.

We cloned their repository and used their code to process the dataset.We then created

and trained the conversation and age classifiers, and reached an accuracy of 75.8% and

64.63% for them, respectively. These dropped to 73.28% and 54.2%, after applying applying

our intersection method. This shows that for this particular task, our re-written text can

out-perform prior work.

3.1.4 Related Work

A large body of prior work has attempted to address algorithmic bias by modify-

ing different stages of the natural language processing (NLP) pipeline. [15], [8], [49], [136]

and [184] propose and analyze benchmarks for evaluating fairness in different applica-

tions. [165], [89], [186] and [90] attempt to de-bias word embeddings used by NLP systems,
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while [9,45,202] attempt to de-bias model representations and encodings.

There is also a large body of work on modifying learning algorithms and inference

procedures to produce more fair outcomes [4,67,122,138,217]. While effective in many cases,

such approaches do nothing to mitigate human bias in decisions based on text. Fundamen-

tally, our framework is concerned with stylistic features of human-generated text. Thus, a

large body of prior work on methods for unsupervised style transfer are related to our ap-

proach [70,118,176,210]. There is also a vast body of work on style obfuscation [13,47,166,185].

Our work is most closely related to [185] and [207]. A4NT [185] attempts to obfuscate

text style through automatic re-writing. However, their approach attempts to hide protected

attributes simply by mapping the style of one protected category to that of another. In

contrast, we seek not to map the author’s text to another author’s style, but to a central

obfuscated style. [207] propose Privacy Aware Text Re-writing (PATR), which takes a similar

adversarial learning translation based approach to address this problem and re-write text. One

fundamental difference between our style-pooling method and PATR is that we provide the

choice of union vs. intersubsection of styles, which is concerned with the societal aspects of

removing sensitive attributes, since we are targeting removal of bias. PATR, however, targets

privacy and is therefore not concerned with the union vs. intersubsection of sensitive attributes.

Finally, there is a body of work on re-writing text to mitigate the potential biases

within the content of the text itself. [120] propose PowerTransformer, which rewrites text to

correct the implicit and potentially undesirable bias in character portrayals. [156] propose a

framework that addresses subjective bias in text and [52] and [222] introduce approaches to

identifying gender bias against women at a comment level and dialect bias in text, respectively.

These works focus on the text content, and not on the stylistic features of the author.

3.1.5 Conclusion

We proposed a probabilistic VAE framework for automatically re-writing text in order

to obfuscate stylistic features that might reveal sensitive attributes of the author. We demon-
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strated in experiments that our proposed framework can indeed reduce bias in downstream

text classification. Finally, our model poses two ways of defining a central style. Future work

might consider further explorations of alternative notions of stylistic centrality.
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Ethical Considerations

Our proposed model is intended to be used to address a real-world fairness issue.

However, this is an extremely complicated topic, and it should be treated with caution, es-

pecially upon deploying possible mitigations such as ours. One potential issue we see is the

chance that systems like this might obfuscate text by converging towards the majority and

erasing styles of marginalized communities. We have tried to address this concern, and raise

discussion around it in our introduction and model design, by allowing for multiple oper-

ationalizations of a “central” style, and introducing the union and intersection obfuscations.

Defining a true notion of centrality that would effectively protect sensitive attributes without

erasing any specific styles of writing requires further study.

87



3.2 Mix and Match: Learning-free Controllable Text Gener-
ation using Energy Language Models
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Figure 3.2. Overview of Mix and Match LM. The Lego pieces show different experts that can be
used to form the energy LM and help control different features in the generated text. The right
side shows the ith step in the the Gibbs sampling chain, where a proposal is made by the MLM,
and then it is accepted/rejected based on the energy score.

While large transformer-based autoregressive language models trained on massive

amounts of data found on the internet exhibit exceptional capabilities to generate natural

language text, effective methods for generating text that satisfy global constraints and pos-

sess holistic desired attributes remains an active area of research. These mechanisms for

controlling the generation of language have the potential to mitigate undesirable biases en-

coded by the large language models and prevent the generation of hate speech and toxic

language [7,57,131,179,206]. Much of the prior work has approached controlled generation via

either training domain-conditioned neural language models [51,71,93,99,101,155,167,182] or

finetuning/modifying an underlying large pre-trained base model for generation on domain-

specific data for attribute sensitive generation [31,65,92,124,223]. Not only do these approaches

involve computational overhead and estimation errors associated with the training of language

models, but they are also dependent on access to a large amount of attribute-specific language

data which can be impractical in many scenarios and exacerbate privacy concerns [17,88,136].
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Our approach eschews training and focuses on generation-time control from pre-

trained modules. Recent work in this space has used attribute discriminators [33,78,98,208] to

steer the generation from a large autoregressive language model. These discriminators need

to be separately trained on partial generations in order to be operationalized with step-wise

autoregressive models. As a result, this approach also requires availability of data to train

step-wise discriminators for attributes that are essentially global (at the sequence-level) in

nature. Therefore, we focus on drawing samples from a test-time combination of pretrained

blackbox experts that each score a desired property of output text – for example, fluency,

attribute sensitivity, or faithfulness to the context. Specifically, we view the product of these

black-box experts as a probabilistic energy model [73] – i.e., a non-autoregressive, globally

normalized language model – and then sample (without further training or fine-tuning) using

a specialized Gibbs sampler with a Metropolis-Hastings correction step [60].

Our full framework, which we entitle Mix and Match LM (depicted in Figure 3.2),

enables the generation of high-quality attribute-controlled samples by mixing and match-

ing black-box models like off-the-shelf pre-trained attribute-sensitive discriminators (e.g.,

sentiment classifiers), large bidirectional pre-trained language models like BERT [38], and

other modules specializing in capturing desirable features pertaining to faithfulness to any

additional context, like hamming distance, or BertScore distance [221] between the sample and

the conditioning context. We generate samples from the energy language model assembled

from these component experts by using the recently proposed Gibbs-Metropolis-Hastings

scheme [60] for sampling from energy models using a masked language model as a proposal

distribution. In this scheme, an expressive bidirectional language model like BERT is used

to make a proposal at each transition step in the Gibbs chain to jump to a sequence x̄ from

the current sequence x. This proposal’s fitness is judged by the change in the energy language

model’s score, with the sampler accepting proposals with larger energy reductions at a higher

rate. While the MCMC nature of our sampler negatively impacts the runtime during decoding
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compared to autoregressive approaches with ancestral sampling, we find our approach to still

be practical and yield high-quality diverse samples that respect the distribution induced by

the product of expert black-box models.

We demonstrate the flexibility of our approach by performing a variety of controlled

generation tasks, such as aspect-based text revision, style transfer, and attribute grounded

generation and compare it to recently proposed controlled generation approaches that are

more resource/data intensive. We observe that our approach, which does not require any

gradient optimization and is able to combine arbitrary heterogeneous black-box models,

outperforms other approaches according to various automated metrics of fluency, quality, and

control, as well as human evaluations.

3.2.1 Related Work

The approaches closest in spirit to our work involve steering generation from a base

language model with external attribute-sensitive control mechanisms. Plug-and-Play LM [33]

uses discriminators learned from an autoregressive LM’s top-level hidden layer to modify the

LM’s states toward increasing the probability of the desired attribute via gradient ascent at

each step. GeDi [98] and FUDGE [208] take a similar approach but train custom step-wise

attribute-sensitive discriminators that decide whether the desired attribute is likely to be sat-

isfied by the current generation path. GeDi trains class-conditional language models for these

discriminators and hence additionally relies on access to attribute sensitive language data. [100]

formulate the task of controlled generation as optimizing the base LM’s likelihood subject to

global differentiable attribute-based constraints by gradient descent over the position-wise sim-

plexes over the vocabulary. DExperts [115] is another decoding-time controllable generation

approach that modifies the step-wise softmax logits of an autoregressive pre-trained LM with

softmax logits of separately trained domain-specific expert autoregressive language models.

These approaches require training of custom modules and do not readily enjoy the benefits
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of incorporating global attribute-based features into the generation mechanism in a simple

probabilistic manner. In contrast, following the findings related to implicit energy-based

models trained via non-probabilistic objectives [60,62], our energy-based formulation is not

only optimization-free but also fully modular and able to easily incorporate global features,

allowing for heterogeneous black-box experts to be combined with each other.

3.2.2 Mix-and-match Language Models

In this subsection, we describe our approach and motivation behind our method.

Specifically, we frame the problem of performing controlled generation as a problem of

sampling from a specialized energy-based (or globally normalized) sequence model that

defines a probability distribution that satisfies the desired constraints we wish to impose in

the controlled generation setting. As described below, this energy-based model is composed

of pre-trained components and does not require any further optimization. An energy-based

sequence model defines the probability distribution over the space of possible sequences X

as:4 p(X;θ) = e−E(X;θ)

∑X′∈X e−E(X′;θ) , where E(X;θ) refers to the scalar energy of a sequence X that

is parametrized by θ. Lower energy corresponds to the higher likelihood of X. In contrast

to the common autoregressive sequence models, exact likelihood computation and efficient

sampling from these models is challenging. Despite these challenges, we focus on this

paradigm of sequence modeling because energy-based models offer increased flexibility via

sequence-level features and constraints. As we discuss next, this capability lets us easily define

expressive functions for controlled generation of sequences which is not readily offered by

the autoregressive modeling paradigm.

4For simplicity, we are concerned with a finite set of sequences limited by some maximum length.
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3.2.2.1 Product of Experts Energy-based Models and Controlled Generation

Our approach is motivated by the perspective that the task of controlled generation

requires concentrating probability mass over a small subspace of sequences in X that satisfies

various constraints pertaining to fluency, target attributes, and other control variables. Consider

the task of generating positive sentiment sentences. This requires satisfaction of two major con-

straints: (1) The sequence X should be well-formed, (2) The sequence X should express positive

sentiment. If we have access to two separate probability distributions over X , one for modeling

well-formedness (p1(X)) and another for modeling positivity (p2(X)), then a natural solution

for controlled generation in this setting would be to draw samples from a probability distribu-

tion that is a product of these two distributions i.e. pdesire(X)∝ p1(X)·p2(X). In our approach,

we further relax this requirement by assuming access to expert blackboxes that yield scalar non-

probabilistic energy scores E1 and E2 indicating fitness of a sequence w.r.t. well-formedness

and positivity respectively. Under the product of experts framework above the desired

probability distribution would take the form: log pdesire(X) =−(E1(X)+E2(X)) − logZ.

This expression shows that when working with scalar scores for the expert black-boxes, the

product of expert models yields an energy model whose energy is simply the sum of the scalar

energy values obtained from the expert models. Inspired by this, we propose a framework for

controlled generation that involves linear combinations of various black-box experts in order to

obtain a distribution whose samples satisfy the requirements of a desired controlled generation

task: EM&M(X) = ∑k
i=1αiEi(X), where our proposed mix-and-match energy is composed of k

expert energy components, which are weighted by scalar hyperparameters α.

3.2.2.2 Expert Factors in Mix-and-Match LM

As shown in Fig. 3.2, we use the following black-box experts in our experiments as

modules that we can add or remove to produce desired behavior:

Emlm(X) : Recent work has shown that large masked language models (MLM) like BERT
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can discriminate between well-formed and ill-formed sentences [221] and induce an implicit

energy function over the sequences [60]. Hence, we use BERT-base as a black-box to model

the form and fluency of sentences. Specifically, we use an energy parametrization introduced

in [60] which is negative of the sum of unnormalized logits iteratively computed at each

position obtained via the forward pass of the MLM after masking the corresponding position.

Edisc(X) : This particular expert module refers to the energy obtained via the discriminator

for the attributes of interest. What this module returns is the raw logits of the discriminator,

for the target attribute. For instance, if we have a sentiment classifier, and want to produce

positive sentiment, then Edisc(X)=−log p(+|X).

Ehamm(X;X′) : For a given sequence X′, this quantity refers to the hamming distance between

the sequence X and X′. This penalizes token level deviation from X′ which is useful if we

are interested in only making minor edits to X′ as described later.

Efuzzy(X;X′) : Similar to the hamming distance, this quantity refers to the BertScore [221]

computed between X and X′ which can be viewed as a fuzzy hamming distance that takes

semantic similarity into account.

3.2.2.3 Sampling scheme

To sample from the energy parametrizations described in the previous subsection, we

follow the Metropolis-Hastings [69] MCMC scheme for sampling from the masked language

models introduced by [60]. While the proposal distribution we use is the same as [60] i.e.

masked language model’s (BERT’s) conditionals, the energy parametrizations we use are more

suitably designed for controlled generation.

We briefly explain the sampling procedure, which involves forming long Markov

chains of sequences starting with a random sequence, and following the MH scheme which

uses a proposal distribution to propose a new sequence at each step in a chain which is either

accepted or rejected based on its fitness to the energy function. The sequences at the end
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of these chains correspond to samples from the desired energy-based model. Operationally,

at each MCMC step, we mask out a token at a random position in the current sequence X

in the chain and propose a new sequence X̄ to transition to by sampling a token from the

MLM conditional softmax at the masked position. This proposed sequence is evaluated by its

ability to reduce the energy from the current sequence in the chain and is accepted with the

probability p(X̄;X)=min
(

1,
e−EM&M(X̄) pmlm(Xi|X\i)

e−EM&M(X) pmlm(X̄i|X\i)

)
. EM&M(X) refers to the product of experts

energy, i refers to the position chosen for masking, pmlm refers to the MLM’s conditional

distribution at the [MASK] position. Intuitively, this acceptance probability indicates that the

proposed sequence X̄ is more acceptable if it has lower energy than the current sequence X

in the chain and is rare or less likely to be proposed by the proposal distribution again.

3.2.2.4 Controlled generation Tasks

We use the expert black-box factors and the sampling scheme described above in our

framework to perform two kinds of controlled generation tasks.

Prompted generation: This task focuses on generating well-formed sentences that start with a

specified prompt and also satisfy a target attribute for which we have access to a discriminator.

An example task would be to generate positive sentiment sequences starting with This movie.

The energy function takes the form:

Egen(X)=Emlm(X) + α Edisc(X) (3.10)

α is a hyperparameter that controls the tradeoff between the MLM score and the dis-

criminator’s influence. For MH-based sampling for this task, we initialize the sequence with the

starting prompt and the rest of the tokens masked out, which creates a seed text of shape the

movie [MASK] [MASK] ... [MASK], for the prompt example of the movie. The number

of mask tokens depends on the target generation length, and we constrain the sampler to only
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produce proposals and revise non-prompt tokens, and mark the prompt tokens as “frozen”.

Controlled text revision: This task involves editing a source sequence X′ in order to satisfy

the desired target attributes exhibited by the generated sequence X. The energy function for

this task is:

Erev(X)=Egen(X)+β Ehamm(X,X′)+γ Efuzzy(X,X′) (3.11)

This energy function in addition to valuing well-formedness and satisfying target attribute

requirements also focuses on maintaining faithfulness to the source sequence X′. For sampling

with this energy, we initialize the sequence with the sequence X′ to be edited. This sets the

length of the target sequence to be the same as the source. In this setup, the sampler can

revise all tokens and is not constrained.

For both these tasks, we run a separate MCMC chain for each generated sentence for

8 to 15 epochs, depending on the task. An epoch refers to one masking cycle over all the

non-frozen positions (selected randomly) of the sequence.

3.2.3 Experimental Setup

Here we provide a brief overview of the tasks, datasets, baselines, and metrics used

in the experiments.

3.2.3.1 Tasks and Datasets

Controllable debiasing (ROC story corpus): We use the subset of the ROC story corpus [142]

test-set that is used by PowerTransformer [121] for their evaluations. We use this data for

controllable debiasing, a text revision task which aims to correct the implicit and potentially

undesirable agency biases in character portrayals, by replacing verbs such as “wish” and

“dream”, with “pursue” and “achieve”.

Sentiment transfer (Yelp): We use Yelp [182] dataset’s test-set for the task of sentiment transfer.
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The test set comprises 1000 sentences, half with positive and half with negative sentiment. We

also have a reference set of handwritten sentiment transferred sentences, provided by [71] that

we use for reporting evaluation metrics.

Formality transfer (GYAFC): We use 1051 sentences from the entertainment and music do-

main subset of the GYAFC [163] dataset, which contains formal and informal sentences for

the task of formality transfer (both directions of formal to informal and informal to formal).

Prompted generation: We evaluate our approach on two forms of prompted generation: 1)

sentiment controlled generation and 2) topic controlled generation. For sentiment controlled

generation, we set Mix and Match LM to generate text with positive or negative sentiment

given prompts, by using a Yelp sentiment classifier as discriminator and compare against

PPLM [33] which is a popular sentiment controlled generation method. For topic controlled

generation, we compare against FUDGE [208], and follow their experimental setup consisting

of 7 distinct topics and 20 prompts.

3.2.3.2 Expert Component Configurations

We use a Huggingface pre-trained bert-base-uncased model as our MLM for yield-

ing Emlm and also providing the proposal distribution in our MH MCMC sampler. For

obtaining Edisc, we train BERT-based classifiers on the training-set of our datasets to use as

our attribute discriminators. We could have used any pre-trained attribute classifier from

Huggingface for Edisc, but we keep those aside to use as external attribute classifiers for fair

evaluation against baselines. For experiments in which we add the BertScore [221] component

to the energy, we use the pre-trained roberta-large L17 model. Finally, for agency score, we

use the lexicon provided by [178] and check each generated sequence and count the number

of target agency verbs that exist there. The count becomes the agency score.
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3.2.3.3 Baselines

PowerTransformer. For the task of controllable debiasing (agency revision), we compare our

work with PowerTransformer [121], an approach that uses paraphrasing and self-supervision

based on a reconstruction loss, building on pre-trained language models, to re-write text and

control agency level of sentences.

[71] For style transfer on sentiment an formality, we compare with [71], a generative style

transfer framework which uses a variational autoencoder (VAE) built using a sequence-to-

sequence LSTM-based model to do unsupervised style transfer. This framework needs to be

trained from scratch for each style transfer task.

UNMT. As a second baseline for style transfer, we use UNMT [101], an unsupervised machine

translation framework that demonstrates high performance for sentiment transfer.

PPLM. For the task of sentiment controlled generation, we compare to Plug-and-Play LM

(PPLM) [33], which does attribute controlled generation using the flow of gradients from

discriminators trained on the last hidden layer representations of the generator, to guide

generation.

FUDGE. This approach [208] trains step-wise discriminators on partial generations from

GPT-2 to determine whether the constraints related to desired attributes will be satisfied by

the future completion of the sequence or not. We compare against this on topic controlled

generation as this approach was shown to be superior to PPLM on this task.

3.2.3.4 Evaluation Metrics

We use a variety of evaluation metrics to compare our approach’s performance on two

major facets: (1) Quality of generated text, and (2) success on matching the target attribute

used for control.
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3.2.3.4.1 Text Quality and Semantic Similarity

GPT-2 PPL. We feed our generated test sentences to a Huggingface [159] pre-trained GPT-2

xl model, and report its perplexity (PPL), as an automatic measure of fluency. Although this

measure is not a perfect indicator of fluency, we find it to be a useful metric alongside human

judgements. 5

BLEU. For sentiment (Yelp) and formality (GYAFC) transfer where we have reference text,

we report the BLEU score. For controlled debiasing, we report BLEU between generated text

and source and show it as BLEU (src).

BertScore. As a measure of meaning preservation, we use the F1 BertScore metric [221] to

compare the semantic similarity of the provided reference sentence with the generated output.

Hamming Distance. We also report the hamming distance between the source text and

generated text, to measure the extent of the change.

3.2.3.4.2 Attribute Quality

Internal Classifier Accuracy. We report the accuracy of the internal classifier (the discriminator

used for generation) on the generated text, assuming the target attribute is the correct label.

The higher this accuracy is, the better.

External Classifier Accuracy. It is natural to get high accuracy on the internal classifier, since

we are sampling from it. To have a fair comparison, we report accuracy using external classi-

fiers from Huggingface (textattack/bert-base-uncased-yelp-polarity [141] for sentiment

and cointegrated/roberta-base-formality for formality).

Agency Lexicon Accuracy. For controlled debiasing, we measure the accuracy of the change

in agency by comparing the target agency level with that of the generated text, extracted using

the connotation frames lexicon, and following the setup from [121].

5Due to the high variance in the PPL scores generated across sentences by GPT-2, we report the median
score for each system under comparison.
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Table 3.7. Original and style transferred sample sentences, using Mix & Match LM. Sentiment
shows the task of sentiment transfer, from negative to positive and positive to negative, on Yelp.
Agency shows the controllable agency de-biaisng task [121]. In the examples, we are transferring
negative agency to positive.

Original Transferred

Se
nt

im
en

t the food ’s ok , the service is among the worst i have
encountered .

the food ’s wonderful , the service is among the finest i have
encountered .

we will not be using this location again . we will definitely be seeking this location again .
good selection of parts and accessories and reasonable
prices .

poor selection of parts and accessories and high prices .

it is a cool place , with lots to see and try . it is a stupid place , with nothing to see and try .

A
ge

nc
y mary needed new shoes . mary got new shoes .

she followed the instructions as best as she could . she executed the instructions as best as she could .
pam wanted to have a special cake for her son ’s
birthday .

pam decides to have a special cake for her son ’s birthday .

whitney is going to fail her test . whitney is set to get her test .

Table 3.8. Controllable debiasing/ sentence agency revision on ROC-story corpus. The (src) next
to the metrics denotes measurement with respect to the source text. Int. Clsf. is the accuracy of the
discriminator used in the energy. Hamm. shows the Hamming distance. Agency Acc. is the accuracy
of agency revision based on the agency lexicon (Sec 3.2.3.4.1).

Method BLEU(src) GPT-2 BertScore(src) Hamm.(src) Int. Clsf. Agency Acc.

Source Text 100.00 153.9 1.00 0.00 7.47 9.81

Ba
se

l. PowerTransformer (No Boost) 60.30 210.8 0.94 1.11 64.84 69.17
PowerTransformer (+Boost) 57.46 247.2 0.95 1.28 77.23 85.03

O
ur

s

M&M LM Verb Replace (Disc) 60.53 238.7 0.95 1.04 81.05 70.80

M&M LM Verb Replace (Agency Score ) 63.34 193.3 0.96 0.89 32.42 64.75

M&M LM Verb Replace (Disc+Agency Score) 54.52 248.8 0.95 1.05 77.23 77.27

M&M LM (Hamming +Disc) 56.26 211.2 0.95 1.37 96.52 69.00
M&M LM (Hamming+Agency Score ) 35.26 231.6 0.95 1.56 23.13 86.01

M&M LM ( Hamming+Disc+Agency score) 39.82 261.6 0.93 2.45 90.16 89.42

3.2.4 Results

3.2.4.1 Controllable Debiasing

Tables 3.7 and 3.8 show our results for the task of text revision for controlling agency

bias which is introduced by PowerTransformer [121], our Baseline for this task. PowerTrans-

former has a vanilla (no boost) variant and a variant with vocab boosting, which up-weights

the logits of verbs that belong to the target agency lexicon so as to increase their probability

and incentivize generation in that direction. We also measure our metrics on the original
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test-set, without revision, to provide a better sense of the changes made.

We offer different variants of our framework, to provide a fair comparison and to better

ablate our proposed method. “Disc” denotes our framework where we add the discriminator

expert (Edisc) which is trained to predict the agency level of a sentence, to the energy along

with Emlm, and Ehamm (Eq. 3.2.2.4). Hamming distance is computed between the generated

proposals and the source sentence. The “Agency Score” variant adds an alternative term to

EM&M instead of Edisc, which is the number of target agency verbs according to the connotation

frames lexicon [178] in the sentence. The “Disc+Agency” variant has both energy components.

We also apply our method in two ways: “Verb Replace” which allows the sampler to propose

revisions for only one pre-determined verb (provided in the dataset). In this setup, all tokens

remain frozen, except for the given verb. The conventional mode (M&M LM), however,

proposes revisions for all tokens in the sentence and is not constrained.

Table 3.8 shows that in the conventional setup, Mix and Match LM (Disc only) has

performance similar to that of PowerTransformer, without boosting. With the Agency Score

component, our method outperforms PowerTransformer in terms of accuracy of revision

as per the agency lexicon accuracy metric, with negligible loss in meaning (BertScore). The

reason behind this better performance in terms of applying target agency accuracy is that our

method’s sampling is guided by the energy that is directly built on the metrics we care about,

as opposed to trying to apply them through paraphrasing and proxies such as vocab boosting,

which are employed in the PowerTransformer method.

Another important observation here is the difference between “Verb Replace” and

conventional modes. This ablation shows that although our method makes few changes (the

average Hamming distance between source and output sentences are between 1.37 and 2.45),

it still outperforms a “static” method that has extra knowledge of the offending verb and

focuses on changing only that verb, by a significant margin.
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Table 3.9. Sentiment transfer on Yelp. (ref)/(src) means the metric measured is measured with respect
to reference/source text. Int./Ext. Clsf. show internal/external attribute classifier accuracy. Hamm.
shows Hamming distance.

Method BLEU(ref) GPT-2 BertScore(src) Hamm.(src) Int. Clsf. Ext. Clsf.

Reference Text 100.00 169.5 1.00 5.80 83.70 85.60

Ba
se

l. [71] 18.67 200.6 0.93 4.23 84.87 79.82

UNMT 17.00 171.8 0.94 3.67 84.87 80.22

O
ur

s M&M LM (Discriminator ↑) 15.75 163.5 0.93 2.84 97.53 90.00

M&M LM (Hamming↑) 19.71 191.5 0.95 1.83 94.72 82.85

Table 3.10. Formality transfer on GYAFC dataset. The (ref)/(src) next to the metrics denotes that
they are measured with respect to the reference/source text. Int. Clsf. shows the accuracy of the
discriminator used in the energy, and →Informal/Form. shows the breakdown of the external
classifier accuracy. Hamm. shows the Hamming distance.

Method BLEU(ref) GPT-2 BertScore(src) Hamm.(src) Int. Clsf. →Informal →Form.

Reference Text 100.00 118.1 0.92 7.72 82.97 100.00 9.41

Ba
se

l. [71] 15.83 122.8 0.90 10.03 64.79 100.00 3.33
UNMT 14.17 143.8 0.90 11.92 56.04 99.81 7.64

O
ur

s M&M LM (Discriminator
↑) 17.78 206.3 0.89 5.22 91.15 96.67 23.13

M&M LM (BertScore↑) 27.71 194.4 0.93 2.50 72.12 94.26 19.01

3.2.4.2 Style Transfer

In this subsection, we experiment with sentiment and formality transfer, where Sen-

timent transfer needs fewer changes and formality transfer needs more structural change to

the original sentence. We show sample sentences and transfers in Table 3.7 (we cannot show

samples for formality as the dataset is not public).

3.2.4.2.1 Sentiment Transfer

For this task, we include two components in our energy model, the attribute discrim-

inator (Edisc), to induce the target style, and the hamming distance (Ehamm), to maintain the

meaning of the sentence. We don’t include the more complex semantic similarity-related

component like Efuzzy, since sentiment transfer can normally be done by making only a

few changes to the sentence. We report results with two different variants, one where the
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discriminator component has a higher coefficient in the energy (Discriminator↑) and one

where the hamming distance has a higher coefficient (Hamming↑). In effect, these two show

the trade-off between transfer quality and faithfulness to the source sentence.

We see in Table 3.9 that our method, with the hamming component up-weighted, out-

performs both the generative baselines in terms of transfer accuracy (Ext. Clsf.) and semantic

similarity (BertScore). We can also see Mix and Match LM has higher BLEU score, with respect

to the provided hand-written reference sentences. We hypothesize that this superiority is due to

the tendency of our model to make minimal revisions that satisfy the product of experts energy

model. Therefore, our model can successfully change the style without changing the meaning

of the sentence. The generative baselines, however, regenerate the sentence which imposes

more change, as can be observed from the hamming distance column (Hamm.(src)) in Table 3.9.

3.2.4.2.2 Formality Transfer

For this task, we include the formality classifier (Edisc), Hamming distance (Ehamm), and

BertScore (Efuzzy) components in the energy formulation, to permit the transfer of style and

also maintain the meaning of the sentence. Efuzzy helps with imposing semantic similarity

between the source and generated sentences, since Hamming alone isn’t sufficient for judging

comparable formal and informal sentences. We show results for two setups of our framework,

one where the discriminator coefficient is higher (Discriminator↑) and another where the

BertScore coefficient is higher (BertScore↑).

In Table 3.10 we have broken down the external classifier accuracy for the different

transfer directions of formal to informal (→ Inf.) and vice versa. We do this because the →

Form. task is generally harder and therefore has lower accuracy. We observe that our method

outperforms the baselines in terms of BertScore and BLEU, for similar levels of external

classifier accuracy. However, we can see that the GPT-2 PPL of our method is higher than

the baselines. The reason behind this is the format and noise in the data. The samples for
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Table 3.11. Samples of prompted sentiment controlled generations, using our Mix and Match LM
and PPLM.

Ours (Mix and Match LM) PPLM

Po
s

Se
nt

. the country is noted for attracting a quarter-million tourists. the country’s top cycling event is right behind the olympics, and the
the lake we come across can be said to be beautiful. the lake is a great spot for swimming, diving and snorke
the chicken and all the other ingredients produced a delicious meal. the chicken wing is one of the best foods you can eat and it
the movie was family-friendly and a success in japan. the movie, which is currently only the third the the the the the

N
eg

Se
nt

. the country was unstable and was not ready to modernize. the country’s top animal welfare agency, the ministry of agriculture and food
the lake was not supposed to be navigable under any circumstances. the lake, a large, and the most massive and most terrible of
the chicken was growling and beginning to feel a little sick. the chicken noodles are the most horrible food i have ever had.
the movie received only two nominations and earned no grand prix. the movie is not in the , a, a, a

Table 3.12. Prompted sentiment controlled generation results and human evaluations.BERT denotes
the BERT MLM energy score (equivalent of GPT-2 perplexity), and lower score is better. Int./Ext. Clsf.
show the accuracy of the discriminator used in the energy/external discriminator from Huggingface.

Length GPT-2 (↓) BERT (↓) Int. Clsf. (↑) Ext. Clsf. (↑) Human Preference (%)

Ours PPLM Ours PPLM Ours PPLM Ours PPLM Ours PPLM

12 264.1 113.1 −160.4 −137.1 94.3 71.7 65.1 58.0 71.1 29.9
20 167.2 61.1 −271.0 −237.1 96.3 74.5 65.9 57.6 62.9 37.1
50 122.3 29.0 −692.3 −606.1 93.8 73.6 68.6 60.7 46.7 53.3

this dataset are taken from the music and entertainment industry domain and contain some

symbols and characters similar to emojis (e.g. “:)” and “***”). This is where the tendency of

our approach toward minimal revisions is hurtful–our revisions of text, often do not get rid

of all of these symbols, while the baselines’ generative methods successfully remove all the

superfluous characters because they rewrite sentences from scratch.

3.2.4.3 Prompted Controlled Generation

3.2.4.3.1 Sentiment Controlled Generation

We generate 560 sequences of different lengths (12, 20 and 50 tokens), given 14 prompts,

2 sentiments, and 20 sequences per sentiment, taken from [33]’s experimental setup.

Table 3.12 shows our results for this experiment. Here, we have an additional metric,

the MLM energy (lower is better), which, like GPT-2, indicates the quality of generated

sentences [172] according to BERT. We report this extra metric here since PPLM uses a GPT

model for generation, and it is natural that it would measure better on this metric. The table

shows that for all lengths of generated sentences, our method is much better at inducing
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the target sentiment. However, we observe that PPLM performs better in terms of GPT-2

while our method performs better on the MLM energy metric. This suggests the tendency of

model-based fluency metrics to be biased toward the corresponding models as the PPLM uses

GPT-2 for generation and M&M LM uses BERT. To enable a more conclusive comparison of

the text quality, we report results with human evaluations. For these evaluations, we randomly

select 10 generated outputs for each prompt, per sentiment (240 overall), and asked three

Amazon Turkers per sample pair, which sample they find more fluent. We report the majority

vote of the Turkers in the table. The results show that for sequences with lengths 12 and 20,

they found our generations more fluent. However, for length 50, the preference rate for M&M

drops to 46.7%, which shows that our method is superior to PPLM for short/medium length

generation, however, PPLM does better at generating longer sequences.

3.2.4.3.2 Topic Controlled Generation

We follow FUDGE’s [208] experimental setup which covers 7 topics, given 20 prompts

and generate 7×20 sequences of length 20. To enforce topicality on our generations, we add

a topic-based energy, Etopic. This energy is essentially the negative count of the number of

topic-related words (using the list provided by FUDGE).

Table 3.13 shows the results of this experiment. Topic-score (↑) is the usage rate of

topic-related words that were used for training and evaluation of topic controlled generation

by [208] in their paper. Grammaticality (↑) is the score of grammaticality given by a Roberta-

based CoLA grammaticality model averaged over all outputs [203]. The “Div” (↑) metrics

show the diversity of generated text, over unigrams, bigrams and trigrams. Finally, the human

evaluations show human preference, in terms of fluency of the sentences. As shown by the

table, the fluency of our method is comparable to that of FUDGE, even better in terms of

human preference and grammaticality judgment. FUDGE has a slightly higher topic score,

which is expected since it trains a custom step-wise discriminator for each topic that is op-
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Table 3.13. Prompted topic controlled generation results and human evaluations.

Metrics FUDGE M&M LM

Topic-score (↑) 1.45 1.21

Grammaticality (↑) 0.61 0.74

GPT-2 PPL (↓) 104.8 110.2
Diversity over Unigrams (↑) 0.54 0.57

Diversity over Bigrams (↑) 0.86 0.89

Diversity over Trigrams (↑) 0.87 0.88

Human Preference(%) (↑) 36.5 63.5

timized for the task. But our approach shows competitive faithfulness to the topics especially

considering the fact that prompted GPT-2 generations without the FUDGE discriminators

only achieve a topic-score of 0.23.

3.2.4.4 Inference Speed

Given that our model’s inference procedure involves MCMC sampling, it’s reasonable

to expect its run-time to be slower than more traditional baselines. For sequences of length 20,

we find that our un-optimized implementation requires 8 seconds per generation and 3 sec-

onds per revision – while, in contrast, baseline system PPLM requires 16 seconds and FUDGE

requires 0.4 seconds per generation. This is a substantial slowdown compared to FUDGE,

but not one that renders the proposed approach impractical in offline settings. Further, faster

sampling schemes are beyond the scope of this dissertation but might be explored in future

work to speed up models like M&M LM.

3.2.5 Conclusion

We present Mix and Match Language Models (M&M LM), a training-free framework

for controlled text generation that can easily mix heterogeneous expert modules. We show that

our framework outperforms prior methods on a suite of text revision and attribute-controlled

generation tasks. Further, our results indicate that probabilistic energy language models,

typically considered intractable, can be used for practical text generation tasks when combined
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with an appropriate sampling scheme.
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Ethical Considerations

The proposed approach takes steps towards a novel paradigm that might partially

mitigate the need for energy-intensive GPU training – potentially leading to positive environ-

mental impact down the line. The approach may also have positive impacts on accessibility

as strong computational resources are not required when setting up a new controlled text

generation system. We do however acknowledge that strong controlled generation methods

that rely on discriminators have the potential to regurgitate sensitive training data and produce

harmful outputs and toxic language [57,200,206]. However, if used properly and for good,

we anticipate a positive impact on debiasing and safe generation.
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Chapter 4

Conclusion

This dissertation seeks to probe and analyze the privacy leakage and fairness of large

language models and offers practical, low-overhead, and accessible methods to improve

these aspects of large models. The over-arching goal of this thesis is to take a step towards

providing principled privacy analysis tools and mechanisms, which can be employed by users

and deployers to probe the leakage of models and quantify their risks. We only focused on

membership inference attacks against textual models here, however, probing privacy leakage

for deploying models in real-world cases needs to go beyond that, considering different data

modalities and more sophisticated extraction attacks. As multi-modal and vision-grounded

models are becoming more ubiquitous [111], it is imperative that the community pays as

much attention to analyzing the safety risks of these models, as they do to improving the

state-of-the-art performance on a limited suite of target tasks.

We also discussed and introduced privacy mitigation methods that limit the memoriza-

tion of language models and rely on differential privacy and adversarial learning. Differential

privacy provides worst-case guarantees and protects the membership of any given “record”

which is a well-defined interpretable guarantee for some data modalities, such as tabular

data. For language, however, what a record should be and what protecting it using DP really

means is not clear. Recent work (and work proposed in this dissertation) uses DP-SGD to limit

leakage of language models while choosing each sentence to be a single record. This definition
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of a record, however, is not very accurate as the amount of information in each sentence can

vary widely, and the correlations between different records is unaccounted for. Apart from

this issue, the research community still does not have a proper policy or protocol for how the

privacy parameters should be set, and what the provided protection achieves. As such, we

need to take a step back and re-think how we perceive privacy for language, and come up

with new frameworks and definitions which rely more on how humans reason about privacy.

Finally, we proposed two methods for attribute-controlled generation of text to enforce

certain attributes while hiding others and evaluate them on how well they can fool attribute

classifiers. We use existing pre-trained building blocks to do controlled text generation,

without the need to train or fine-tune any new models. This approach aims to increase the

accessibility of NLP methods by promoting model reuse, as the size of large language models

makes their training and fine-tuning increasingly challenging for researchers with limited

resources. Given that the community is shifting towards using larger models, it’s critical to

ensure that all researchers can access these models and utilize them for their own research.

By doing so, we can encourage diverse groups to conduct extensive evaluations that could

ultimately enhance the current state of NLP.
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