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Abstract	
	
We	are	modernizing	the	application	SW4	for	massively	parallel	time-domain	simulations	of	
earthquake	ground	motions	in	three-dimensional	earth	models	to	increase	resolution	and	
provide	ground	motion	estimates	for	critical	infrastructure	risk	evaluations.		This	development	
is	greatly	increasing	the	frequency	content	of	computed	ground	motions	including	frequencies	
up	to	10	Hz	that	are	relevant	to	analysis	of	engineered	structures	(buildings,	energy	systems,	
bridges,	dams,	etc.).		Simulations	of	ground	motions	from	large	(magnitude,	M	≥	7.0)	
earthquakes	require	domains	on	the	order	of	100-500	km	and	spatial	granularity	on	the	order	
of	1-5	m	resulting	in	100’s	of	billions	of	grid	points.		Scaling	proven	algorithms	from	10’s	of	
billions	of	grid	points	to	100’s	billions	presents	challenges	with	the	domain	decomposition	and	
communication	between	nodes	that	must	be	overcome	to	take	full	advantage	of	next	
generation	resources,	on	the	path	to	exascale	simulations.		Surface-focused	structured	mesh	
refinement	(SMR)	allows	for	more	constant	grid	point	per	wavelength	scaling	in	typical	earth	
models,	where	wavespeeds	increase	with	depth.		In	fact,	MR	allows	for	simulations	to	double	
the	frequency	content	relative	to	a	fixed	grid	calculation	on	a	given	resource.		We	report	
improvements	to	the	SW4	algorithm	developed	while	porting	the	code	to	the	Cori	Phase	2	
(Intel	Xeon	Phi)	systems	at	the	National	Energy	Research	Scientific	Computing	Center	(NERSC)	
at	Lawrence	Berkeley	National	Laboratory.		Investigations	of	the	performance	of	the	innermost	
loop	of	the	calculations	found	that	reorganizing	the	order	of	operations	can	improve	
performance	for	massive	problems.		We	demonstrate	this	capability	with	M	7	scenario	
earthquake	simulations	on	the	Hayward	Fault	and	building	response	calculations	in	the	eastern	
San	Francisco	Bay	Area.	
	
1.	Introduction	and	Science	Motivation	
	
Earthquake	ground	motions	pose	an	ever-present	risk	to	engineered	structures	and	the	
infrastructure	that	modern	life	depends	on.		Civilization	has	evolved	in	close	proximity	to	active	
earthquake	faults	and	sedimentary	basins	that	amplify	seismic	motions.		However,	many	cities	
of	high	ground	motion	risk	have	not	experienced	damaging	motions	due	to	long	time	intervals	
between	large	earthquake	events.		Ground	motions	are	especially	strong	in	the	near-source	
region	(<	10	km)	of	large	(magnitude,	M	≥	7.0)	events	where	peak	ground	accelerations	and	
velocities	greater	than	1	g	and	1	m/s	are	possible.		Examples	from	the	1992	M	7.3	Landers,	
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California,	1999	M	7.6	Izmit,	Turkey,	2003	M7.9	Denali	Alaska	and	2008	M	7.6	Chi	Chi	Taiwan	
earthquakes	show	such	large	near-fault	motions.		Figure	1a	shows	the	ground	acceleration,	
velocity	and	displacement	of	the	fault-normal	horizontal	component	of	the	1992	Landers,	
California	M	7.3	earthquake	(Chen,	1995).		In	this	near-fault	region	ground	motions	are	heavily	
dependent	on	the	specific	nature	of	faulting,	directivity,	the	location	of	asperities,	the	path	that	
the	seismic	waves	traverse	(such	as	low	seismic	wavespeed	sedimentary	basins)	and	the	
shallow	site	geotechnical	conditions	(particularly	vs30,	the	averaged	shear-wave	in	the	upper	
30	m).			
	
Furthermore,	the	response	of	buildings,	bridges	and	other	engineered	structures	in	this	near-
fault	region	depends	heavily	on	the	nature	of	ground	motions.		This	particular	example	of	near-
fault	motions	shows	a	strong	one-sided	velocity	pulse	and	step	in	displacement	that	produces	
strong	forcing	to	building	foundations	to	the	point	of	yielding	components	of	the	building.	
	
Traditional	empirically	based	earthquake	hazard	estimates	depend	on	Ground	Motion	
Predictions	Equations	(GMPE’s),	which	are	regression	models	derived	from	world-wide	
empirical	data	that	estimate	ground	motion	intensity	as	a	function	of	magnitude,	distance,	
faulting,	path	and	site	parameters.		While	GMPE’s	provide	homogenized,	smooth	predictions	of	
intensity	and	its	variation,	in	some	cases	they	do	not	capture	the	observed	variability	seen	in	
data	in	the	near-field.		In	Figure	1a	the	GMPE	peak	ground	acceleration	and	velocity	predictions	
for	this	record	from	two	models	are	indicated	(ASK14,	Abrahamson	et	al.,	2014;	BSSA14,	Boore	
et	al.,	2014).	There	are	very	few	measurements	of	large	earthquakes	at	close	distances,	
hindering	modeling	efforts	that	try	to	capture	the	true	nature	and	variability	of	near-fault	
motions.		Figure	1b	shows	the	magnitude	(6.5-8.0)	and	distance	(0-8	km)	combinations	of	
available	strong-motion	records	from	earthquakes	from	the	Pacific	Earthquake	Engineering	
Research	(Ancheta	et	al.,	2014).		As	a	result,	we	have	precious	few	observations	of	large	
earthquakes	within	the	critical	near-fault	region	and	this	limits	what	can	be	done	to	evaluate	
how	structures	will	respond	to	future	earthquakes.	
	
In	the	absence	of	empirical	data	for	large	earthquakes	in	the	near-fault	region,	seismologists	
are	using	high-performance	computing	to	simulate	ground	motions	(Olsen	et	al,	2008;	Aagaard	
et	al.,	2008,	2010;	Ciu	et	al.,	2013).		In	order	to	represent	path	and	site	effects	caused	by	
heterogeneity	related	to	geologic	structure	(e.g.	spatial	geology	variations,	basin	amplification,	
focusing,	reverberations),	methods	must	accurately	describe	three-dimensional	wave	
propagation.		To	obtain	ground	motions	at	frequencies	comparable	to	observations	(static	to	5-
10	Hz),	models	require	discretization	as	small	as	2-10	m	over	domains	that	include	the	entire	
rupture	length	of	M	7-8	earthquakes,	(100-500	km).		For	example,	a	3D	seismic	simulation	
spanning	the	rupture	of	an	M	7	earthquake	requires	10’s	to	100’s	of	billions	of	grid	points	(1010	
-	1012)	and	numerical	wave	propagation	simulations	on	this	scale	require	massively	parallel	
computations.		For	a	fixed	domain,	doubling	the	frequency	requires	halving	the	grid	spacing	in	
three	dimensions.		This	requires	23	=	8	more	grid	points	relative	to	the	reference	case	and	twice	
as	many	time	steps	to	simulate	the	motion.		Consequently,	the	computational	effort	increases	
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by	a	factor	of	16	to	compute	the	same	motion	while	doubling	the	frequency	content.		This	
represents	an	extremely	challenging	barrier	to	simulating	high-frequency	earthquake	ground	
motions.	
	
In	this	study	we	describe	“SW4”	(Seismic	Wave	4th-order),	a	summation-by-parts	finite	
difference	code	for	parallel	simulations	of	seismic	wave	propagation.		We	describe	how	SW4	is	
being	enhanced	to	run	simulations	on	the	next	generation	of	HPC	systems.		We	show	how	
SW4’s	implementation	of	mesh	refinement	provides	a	remarkable	reduction	in	the	
computational	effort	required	to	simulate	a	given	earthquake.		This	is	followed	by	a	description	
of	preliminary	efforts	to	optimize	SW4	for	the	Cori	Phase	2	architecture	at	the	National	Energy	
Research	Scientific	Computing	Center	(NERSC)	at	Lawrence	Berkeley	National	Laboratory.		We	
conclude	by	showing	an	example	of	how	these	improvements	can	be	applied	to	scenario	
earthquake	simulations	of	the	Hayward	Fault	and	building	response	in	the	eastern	San	
Francisco	Bay	Area.			
	
2.	Scientific	Features	of	SW4	
	
It	is	important	to	consider	the	performance	and	optimization	of	a	science	application	like	SW4	
in	the	context	of	its	science	simulation	goals.	For	our	Cori	Phase	2	target	platform,	there	were	
three	science	considerations	that	affected	our	choice:	mesh	refinement,	a	regional	scale	2	Hz	
simulation,	and	coupling	ground	motion	to	building	engineering	simulations.	These	are	
important,	as	they	provided	the	science	context	and	problem	sizing	for	the	node-level	
optimization	goals.	
	
2.1	Mesh	Refinement	
	
Cities	tend	to	be	built	in	sedimentary	basins	where	the	ground	is	flat	and	where	water	and	
transportation	corridors	(including	rivers	and	harbors)	are	accessible.		These	areas	are	generally	
characterized	by	low	seismic	shear	wavespeeds	(typically	200-500	m/s)	corresponding	to	poorly	
consolidated	soils.		Shear	wavespeeds	increase	with	depth	to	values	of	3000	m/s	at	5	km	depths	
and	to	3500	m/s	at	25	km	(the	deepest	extents	of	most	crustal	earthquakes).		Consequently,	
shear	wavespeeds	increase	by	a	factor	of	7	or	more	across	the	depth	extent	of	computational	
domains.		This	fact	confounds	seismic	modeling	because	numerical	methods	require	a	certain	
minimum	number	of	grid	points	per	wavelength	of	the	shortest	wave,	corresponding	to	the	
maximum	frequency	shear-waves,	while	the	time	step	depends	on	the	Courant–Friedrichs–
Lewy	(CFL)	condition	which	is	driven	by	the	fastest	wavespeed,	corresponding	to	compressional	
waves	in	the	uppermost	mantle	(typically	~8000	m/s).			
	
To	overcome	this	challenge,	SW4	has	a	mesh	refinement	capability	(Figure	2)	where	the	user	
specifies	depths	at	which	the	grid	spacing	doubles	relative	to	the	overlying	region.		This	allows	
the	simulation	to	maintain	a	roughly	stable	number	of	grid	points	per	shortest	wavelength	
throughout	the	computational	domain	and	increase	the	time-step	relative	to	the	finer	grid.		
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Both	these	factors	make	the	calculation	far	more	efficient	than	a	standard	uniform	mesh.	
	
Note	that	finite	and	spectral	element	methods	rely	on	a	similar	strategy	of	increasing	element	
size	as	seismic	wavespeeds	increase	with	depth,	however	in	these	methods	the	user	must	build	
and	verify	the	unstructured	mesh.		SW4	generates	the	mesh	automatically	based	on	the	input	
surface	topography	and	user-specified	mesh	refinement	depths.	(Petersson	and	Sjogreen,	
2016).		
	
2.2	Regional-Scale	Earthquake	Ground	Motion	Simulations	
	
To	assess	the	initial	scaling	of	the	SW4	code	to	a	science	goal	for	Cori	Phase	2,	we	performed	
regional-scale	simulations	of	an	M	7.0	earthquake	on	the	Hayward	Fault	in	the	San	Francisco	
Bay	Area.		The	Hayward	Fault	is	capable	of	earthquakes	of	this	size,	including	the	last	known	
rupture	(estimated	M	6.8)	on	October	21,	1868.		Strong	shaking	was	experienced	throughout	
the	East	Bay	(Boatwright	and	Bundock,	2008)	but	recording	instruments	were	not	yet	
developed.		The	current	seismic	hazard	assessment	for	Northern	California	identifies	the	
Hayward	Fault	as	the	most	likely	fault	to	rupture	with	a	M	6.7	or	greater	event	before	2044	at	
14%	(Field	et	al.,	2015).		We	performed	ground	motion	simulations	with	both	a	simplified	
plane-layered	(one-dimensional,	1D)	and	more	complex	three-dimensional	(3D)	model	
representing	geologic	structure	from	the	United	States	Geological	Survey	(USGS,	2017).		
Previous	studies	have	used	this	model	for	modeling	moderate	recorded	events	(Rodgers	et	al.,	
2008;	Kim	et	al.,	2010),	large	past	earthquakes	such	as	the	M	7.9	1906	San	Francisco	(Aagaard	
et	al.,	2008)	and	possible	Hayward	Fault	scenarios	(Aagaard	et	al.,	2010).		Previous	3D	
simulations	of	Hayward	Fault	scenarios	generally	modeled	frequencies	below	0.5-1.0	Hz.		In	this	
study	we	modeled	frequencies	from	static	to	2.5	Hz.	
	
Figure	3	shows	snapshots	of	the	magnitude	of	the	ground	velocity	at	10	seconds	and	the	peak	
ground	velocity	(both	in	ShakeMap	color	palette)	for	the	1DREF	(left)	and	3DUSGS	(right)	
models.		For	this	vertical	strike-slip	event	the	ground	motions	are	symmetric	across	the	fault	for	
the	1DREF	model	as	expected	(Figure	3ab).		However,	the	3DUSGS	model	shows	more	complex	
response	with	sedimentary	basins	delaying,	trapping	and	amplifying	ground	motions.		For	
example,	the	eastern	side	of	San	Pablo	Bay,	the	Dublin-Pleasanton-Livermore	Tri-Valley	and	
Delta	have	deep	sediments	that	amplify	motions.		Mount	Diablo	has	high	wavespeed	material	
and	lower	amplitudes.		Importantly,	we	see	dramatic	differences	across	the	Hayward	Fault	with	
larger	motions	on	the	eastern	side	(Figure	3cd).		The	East	Bay	Hills	(EBH)	east	of	the	Hayward	
Fault	shows	higher	peak	motions	than	areas	west	of	the	fault	at	the	same	distance	from	the	
fault.		These	differences	have	been	seen	in	previous	simulations,	including	those	in	Aagaard	et	
al.	(2010)	and	arise	from	lower	wavespeeds	in	the	upper	crust	east	of	the	Hayward	Fault.		
Further	investigations	are	needed	to	verify	and	evaluate	these	differences	and	improve	the	3D	
model	with	waveform-based	optimization.	
	
2.3	Coupling	Geophysics	(hazard)	to	Engineering	(risk)		
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A	principal	goal	of	our	application	development	efforts	is	to,	for	the	first	time,	develop	
computationally	based	ground	motion	estimates	with	sufficient	frequency	resolution	to	inform	
engineering	risk	evaluations	for	a	spectrum	of	critical	infrastructure.	The	approach	we	are	
following	is	a	direct	coupling	of	ground	motion	simulations	to	nonlinear	finite	element	model	
infrastructure	simulations	including	the	effects	of	structural	yielding	and	damage.	The	overall	
approach	is	illustrated	in	Figure	4	whereby	the	ground	motions	across	the	surface	of	the	SW4	
domain	are	used	as	point-wise	forcing	functions	for	the	evaluation	of	the	response	of	
infrastructure	systems.	For	each	infrastructure	evaluation,	a	representative	canonical	
infrastructure	model	is	analyzed	for	the	input	ground	motion,	and	peak	response	variables	are	
saved	to	provide	an	intensity	map	of	risk.		
	
As	an	example,	for	the	SW4	regional	scale	Hayward	Fault	simulations	described	above,	the	risk	
model	for	a	representative	40	story	steel	moment	frame	building,	analyzed	using	the	Nevada	
nonlinear	finite	element	program	(McCallen	and	Larsen,	2003)	is	shown	in	Figure	5.	The	
structural	risk	is	characterized	in	terms	of	peak	interstory	drift	in	the	building,	i.e.	the	peak	
relative	displacement	between	two	adjacent	floors.	Such	risk	maps	provide	new	insights	into	
the	regional	scale	variation	of	risk	for	major	earthquake	events,	and	can	be	used	to	investigate	
the	relationship	between	geophysical	parameters	(fault	rupture	parameters,	rupture	directivity,	
geologic	structure,	site	response,	etc.)	and	infrastructure	response.	
	
3.	Optimization	for	NERSC	Cori	Phase	2	
	
3.1	Algorithm	and	Computational	Kernels	
	
SW4	consists	of	several	double-precision	computational	kernels	(loops)	to	simulate	high-fidelity	
seismic	waves	in	realistic	geological	settings	(Petersson	and	Sjogreen,	2016):	

● A	forcing	function,	which	simulates	the	earthquake	source	in	space	and	time.	
● A	stress	calculation	(“RHS”),	which	applies	compact	finite	difference	stencils	to	

displacements	and	material	properties	to	calculate	the	divergence	of	the	stress	tensor.	
Variants	include	Cartesian	or	curvilinear	metrics	for	terrain,	with	and	without	stretching	
for	super-grid	far-field	treatment.	

● Applying	super-grid	damping	near	far-field	domain	boundaries.	
● Enforcing	the	boundary	conditions	on	the	free	surface	and	far-field	boundaries	
● A	predictor-corrector	procedure	for	updating	displacements	in	time.	
● Additional	kernels	for	mesh	refinement	boundary	matching	conditions,	attenuation	of	

the	seismic	waves,	and	I/O,	which	are	critical	for	the	science	simulations	and	workflow,	
were	not	examined	for	this	study.	

	
Domain	decomposition	is	horizontal	(see	Figure	2);	each	MPI	process	gets	a	full	vertical	column	
of	a	fixed	size,	from	surface	to	the	bottom	of	the	domain	(a	“pencil”).	Because	SW4	is	a	finite	
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difference	code,	it	requires	“ghost	points”	to	be	communicated	between	MPI	processes	before	
the	next	RHS	calculation	can	be	performed.	For	this	purpose,	each	MPI	task	exchanges	
information	with	its	neighbors	by	calling	MPI_SendRecv().	
	
3.2	NERSC	Cori	Phase	2	Architecture	
	
NERSC’s	new	Cori	system	has	9,688	Intel	Xeon	Phi	(code	name	Knights	Landing,	“KNL”)	nodes	in	
its	Phase	2	deployment,	with	a	theoretical	peak	of	29.1	PFlops.	Three	of	the	important	features	
of	the	Xeon	Phi	processor	are	(1)	its	16	GB	of	MCDRAM	high-bandwidth	memory	(“HBM”)	and	
shared	1MB	L2	cache	per	2	cores,	(2)	dual	512-bit	vector	processing	units	(VPU’s)	per	core,	and	
(3)	its	large	number	of	cores	and	hardware	threads	per	chip	(up	to	total	272	threads),	but	with	
lower	clock	speed	(1.4	GHz)	than	the	Cori	Phase	1	Intel	Xeon	processors	(2.3	GHz).	
	
For	the	SW4	application	developers,	the	Xeon	Phi	architecture	implications	were	studied	
through	a	roofline	model	(Jeffers	et	al.,	2016),	which	estimates	peak	FLOPS	based	on	the	
arithmetic	intensity	(FLOPS/byte)	of	an	application.	To	obtain	a	significant	fraction	of	
throughput	performance,	developers	must	(1)	make	effective	use	of	MCDRAM	(with	4x	DDR	
bandwidth)	and	L2	cache	as	a	“stream”	of	application	data	to	cores,	(2)	transform	loops	into	8-
double-wide	SIMD	AVX512	instructions,	and	(3)	tile	and	thread	loops	to	utilize	all	available	
cores	and	threads,	while	minimizing	cache	misses	and	conflicts	that	result	in	additional	data	
motion.	
	
3.3	Porting	Approach	
	
The	starting	point	for	SW4	optimization	was	the	full	science-ready	application,	with	MPI-only	
domain	decomposition	(no	threading),	and	most	loops	implemented	in	FORTRAN	with	a	unit-
stride	component	(c,i,j,k)	data	layout	for	the	3	spatial	components	c=1,2,3	of	the	vector	
displacement	variable,	which	previously	had	given	30	percent	of	peak	performance	on	Intel	
Xeon	architectures.	
	
Through	the	NERSC	Exascale	Science	Application	Program	(NESAP	2016),	the	SW4	team	joined	
the	community	of	people	preparing	science	application	codes	for	large-scale	runs	on	Cori	Phase	
2.	This	program	proved	critical	to	providing	access	to	DOE	and	Cray/Intel	experts,	performance	
tools,	early	access	to	Intel	Xeon	Phi	nodes,	and	a	venue	to	share	information	and	ask	for	help.	
The	steps	we	took	to	prepare	for	porting	included:	
	

Best	Practice	 SW4	Team	Approach	

1. Extract	performance-critical	kernels.	 Created	SW4Lite	test	driver	with	variants	
of	RHS	loops,	with	OpenMP	pragmas.	

2. Generate	test	inputs/outputs	that	are	 Identified	a	128^2	x	2000	(33M	grid	point)	
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representative	of	the	largest	target	
science	problem.	

problem	that	could	fit	on	a	single	Xeon	Phi	
node	16GB	MCDRAM.	

3. Create	correctness	tests	for	this	
problem	with	an	error	tolerance.	

Comparison	scripts	on	time	series	output	
to	detect	errors	greater	than	roundoff.	

4. Automate/accelerate,	as	much	as	
possible,	the	code-build-test-measure	
process	and	tool	chain.	

Git/CMake	tools;	command	line	options	
for	kernel	variants;	job	scripts	with	
MPI/OpenMP	and	affinity	settings;	timers	
around	most	expensive	code	sections.	

5. Prioritize	optimizations	based	on	effort	
vs.	potential	performance	gains.	

Prioritized	on-node	optimizations:	simple	
threading,	array	reordering,	loop	tiling.	
Deferred	complex	threading,	loop	fusion.	

6. Assess	performance	bottlenecks	against	
benchmarks	and	past	improvements.	

Used	roofline	model	and	Intel	toolchain	to	
profile	and	identify	sub-optimal	code.	

	

The	SW4	team	targeted	a	scaled-down	science	problem,	which	would	be	equivalent	of	a	5	Hz	
simulation	distributed	across	all	of	Cori’s	nodes,	but	run	as	a	single	node,	33M	grid	point	
problem,	with	no	internode	communication.	This	seemed	justified,	based	on	previous	weak	
scaling	studies	on	up	to	131,072	MPI-tasks	and	8192	nodes	of	the	IBM	BGQ	system	“vulcan”	at	
LLNL.	
	
3.4	Performance	Analysis	and	Modernization	Process	
	
We	decided	to	create	a	stand-alone	test	driver,	called	“SW4lite”	with	the	4	variants	of	the	RHS	
loops	that	existed	in	the	full	SW4	application.	This	allowed	us	to	try	intrusive	performance	
changes	without	rewriting	large	amounts	of	code,	and	to	evaluate	changes	quickly	for	benefit	
vs.	effort.	We	prioritized	on-node	optimizations,	which	included:	porting	FORTRAN	loops	to	C;	
implementing	simple	threading	using	OpenMP	pragmas;	reordering	data	structures	from	(c,i,k,j)	
to	(i,j,k,c),	to	improve	vectorization	data	alignment;	and	an	initial	pass	at	loop	tiling.	
	
We	introduced	changes	in	a	way	that	allowed	us	to	maintain	before/after	comparisons.	For	
example,	benchmark	input	files	and	scripts	with	run-time	configurations	were	version	
controlled	in	a	git	repository;	additional	build-specific	information	such	as	compiler	flags	and	
library	versions	were	also	documented	with	any	significant	performance	results.	This	allowed	us	
to	compare	performance	gains	to	previous	results,	and	regression-test	when	performance	
degradation	was	seen	with	new	versions	of	compilers	or	libraries.	This	was	particularly	
important	as	the	Cori	system	moved	from	the	initial	“white	box”	system	to	early	access,	and	
finally	pre-production,	during	which	system	software	and	libraries	changed	frequently.	
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A	few	simple,	specific	techniques	were	used	to	improve	the	rate	of	code	changes	in	SW4lite.	For	
example,	FORTRAN	loops	were	converted	to	C,	so	that	the	array	data	could	easily	be	reordered	
from	(c,i,k,j)	to	(i,j,k,c)	at	run-time,	as	was	the	data	type,	to	help	with	Intel-specific	types	and	
alignment	declarations.	Converting	to	C-based	loops	allowed	us	to	quickly	change	ordering,	
array	offsets,	and	data	types,	without	extensive	code	changes.	Reordering	was	key	for	changing	
the	SW4	“array	of	structures”	ordering	to	a	“structure	of	arrays”.	The	reordering	resulted	in	a	
factor	of	3	speedup	for	the	calculation	of	the	super-grid	damping	term	(“SG”	bars	in	Figure	6)	
because	component	‘c’	of	the	damping	term	can	be	calculated	from	the	same	component	of	
the	displacement,	thus	reducing	a	stride	length	of	3	to	unity.	The	reordering	also	turned	out	to	
be	beneficial	for	the	stress	calculations	(“Step”	bars	in	Figure	6),	even	though	each	component	
of	the	stress	involves	all	three	components	of	the	displacement,	which	Intel’s	compilers	can	
more	effectively	vectorize,	given	that	the	“component”	unit	stride	length	of	3	is	not	a	multiple	
of	vector	length	(8)	and	thus	requires	gather/scatter	operations.	Spreading	the	components	
across	(i,j,k)-indexed	memory	also	allows	for	more	efficient	streaming	from	MCDRAM	memory	
(NERSC	2016,	Jeffers	2016).	Command	line	arguments	exposed	which	variant	of	the	RHS	kernel	
to	run,	including	reverse-order	indexing,	with	curvilinear	or	Cartesian	mapping,	etc.;	this	
allowed	incremental,	faster	builds	to	be	used	for	small	code	changes,	and	reduce	compile	times	
(which	were	significant,	more	than	30	minutes	for	the	most	complex	kernels	–	see	below).	For	
things	like	loop	tiling	and	changing	OpenMP	pragmas	(such	as	“parallel	for”	and	“simd”	
clauses),	recompiling	was	unavoidable,	so	we	attempted	to	maintain	multiple	kernel	versions	
and	expose	them	as	command-line	options	whenever	possible.	
	
To	assess	opportunities	for	further	performance	improvements,	we	followed	the	steps	advised	
by	the	NERSC	Exascale	Science	Access	Program	(NESAP	2016),	which	were	designed	to	assess	
the	specific	performance-limiting	features	of	the	application	code	(see	NERSC	2016,	and	other	
KNL	optimization	techniques).	For	example,	using	“numactl”	we	were	able	to	see	if	
performance	improved	using	MCDRAM	vs.	main	DDR	memory.	Similarly,	running	AVX512,	
AVX2,	and	scalar-only	experiments	helped	understand	how	much	the	code	was	benefiting	from	
vectorization.	Experiments	varying	MPI	ranks	with	OpenMP	and	hardware	threads	explored	
how	much	idle	time	or	latency	was	affecting	the	code	(see	Figure	6).	
	
4.	Results	and	Lessons	Learned	
	
4.1	Optimization	Results	
	
Over	the	course	of	our	efforts,	we	were	able	to	speed-up	the	most	important	SW4lite	kernels	
on	Xeon	Phi	by	a	factor	of	~2x.	Although	this	would	have	been	achievable	in	FORTRAN,	the	code	
variations	and	performance	gains	were	easier	in	C++.	There	were	a	number	of	steps	that	
needed	to	be	taken	to	achieve	this;	the	easiest	by	far	was	adding	OpenMP	pragmas	to	thread	
the	k-index	loops,	which	allowed	for	more	cores	to	be	used	in	a	given	MPI	rank.	Next,	declaring	
AVX512	aligned	data	types	and	forcing	vectorization	of	loops	had	two	effects:	aligned	data	is	
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more	effectively	streamed	into	L1	cache,	and	vectorization	achieves	its	promised	8x	speed-up.	
This	also	required	the	(i,j,k,c)	data	ordering,	which	was	only	implemented	in	C++	through	SW4’s	
class	for	multi-dimensional	arrays	(see	NERSC	2016).	Finally,	loop	tiling	in	the	i-	and	j-index	
directions	improved	cache	locality	and	reuse.	Effort	was	spent	optimizing	both	Cartesian	and	
curvilinear	loop	kernels	with	super-grid	stretching	and	boundary	conditions,	with	similar	
benefits.	Code	example	1	shows	examples	of	the	kernels	in	FORTRAN	and	C++.	
	
In	addition	to	the	above	optimizations,	a	substantial	amount	of	performance	improvement	
could	still	be	gained	with	more	complex	transformations.	During	the	profiling	process,	we	
discovered	that	the	Intel	compiler	was	exiting	its	vectorization	pass	prematurely.	Run-time	
performance	improved	significantly	by	overriding	the	default	compiler	optimization	limits,	and	
waiting	45	minutes	while	compiling	the	most	FLOP-intensive	numerical	kernel.	This	was	a	
unique	compile-time	bug	in	the	Intel	2017	compiler,	which	is	slated	to	be	fixed	in	the	Intel	2018	
compiler.	After	waiting	for	the	completed	and	optimized	compilation,	we	discovered	that	the	
Xeon	Phi	vector	registers	were	over-subscribed,	and	the	loops	could	benefit	from	both	cache	
blocking	and	fissioning	(to	reduce	register	pressure).	In	addition,	the	Intel	Advisor	tools	showed	
that	the	separate	predictor-corrector	updates	had	relatively	low	arithmetic	intensity	(Williams	
et	al.,	2009),	and	could	benefit	from	fusing	with	the	RHS	loops	(which	could	benefit	from	loop	
fission,	due	to	excessive	register	pressure).	However,	this	would	be	an	invasive	operation	
involving	temporary	arrays	with	the	potential	for	thread	safety	complications.	As	a	result	we	
have	postponed	such	experiments	to	a	later	phase	of	the	project.	
	
4.2	Lessons	Learned	
	
Our	primary	learnings	center	around	the	architecture-specific	optimization	process,	where	a	
deeper	understanding	of	the	Xeon	Phi	many-core,	vectorized,	and	memory-limited	architecture	
is	required.	Our	process	and	tool	chain	were	very	effective	in	creating	an	environment	in	which	
performance	optimizations	could	be	explored,	while	remaining	relevant	to	the	actual	science	
application	goals	at	full	scale.	The	Intel	17	tool	chain	(Advisor	and	VTune,	specifically)	provided	
many	insights	and	relatively	easy	data	collection.	The	Intel	Advisor	Roofline	feature	was	very	
helpful	in	setting	expectations	and	priorities	for	code	improvements	in	critical	parts	of	the	code,	
as	well	as	sifting	out	parts	of	the	code	that	wouldn’t	matter	at	scale.	We	were	hampered	by	the	
difficulty	with	compilation	times;	fast	turn-around	between	code	changes	and	performance	
analysis	is	a	critical	step	in	the	application	optimization	process.		
	

Opportunities	for	improvements	in	the	code	optimization	process	are	numerous;	in	hindsight,	
we	could	have	taken	some	additional	steps	before	delving	in:	

● Identify	a	relevant	code	benchmark,	such	as	miniFD	or	HPGMG	(Williams	et	al.,	2016),	
and	establish	their	performance	for	a	similar-size	problem.	Often	fine-tuned	techniques	
have	already	been	established	in	benchmark	codes	for	OpenMP	threading,	
vectorization,	cache	blocking,	etc.	
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● Refactor	your	code	to	approximate	the	benchmark,	by	commenting	out	loop	or	other	
application-specific	constructs,	and	verifying	performance	results	like	what	the	
benchmark	obtains.	

● Refactor	back	to	the	correct	application	code,	taking	small	steps	to	evaluate	correctness	
with	each	addition,	noting	performance	changes	and	profiling	the	application	to	
understand	its	efficiency.	

Had	we	followed	this	process,	we	would	have	quickly	found	that	the	kernel	performance	didn’t	
meet	our	expectations	based	on	stencil	benchmark	codes,	and	we	could	have	more	quickly	
identified	problematic	issues	with	compilation	and	vectorization,	and	made	progress	sooner.	

	
5.	Discussion	and	Next	Steps	
	
In	this	study,	we	report	performance	improvements	of	SW4	that	enable	more	efficient	
simulations,	and	are	paving	the	way	towards	exascale	simulations	of	earthquake	ground	
motions	and	application	to	seismic	engineering	risk	assessment.	The	critical	lessons	learned	
include:	(1)	establishing	a	smaller	problem	that	is	representative	of	the	performance	of	a	large	
scale	science	goal,	but	easily	run	on	just	a	few	nodes;	(2)	creating	a	team	and	tool	chain	for	
evaluating	optimizations,	such	as	OpenMP,	data	layout,	and	loop	tiling,	across	the	large	
performance	parameter	space;	and	(3)	utilize	both	high-level	and	detailed	performance	
profiling	tools	that	are	specific	to	the	target	architecture.	On	this	last	point,	we	benefited	
extensively	from	the	resources	provided	the	NERSC	Exascale	Science	Access	Program,	which	
provided	both	expertise	and	Intel	Xeon	Phi	profiling	tools	and	training.	The	greatest	benefit	has	
come	from	the	SW4	team	working	in	conjunction	with	optimization	experts	and	a	development	
team	that	spans	expertise	in	performance	optimizations,	algorithms,	and	science	goals;	this	also	
represents	the	greatest	risk	as	limited	resources	are	pulled	in	different	directions	within	the	
project.	In	an	ideal	world,	code	exemplars	and	expertise	would	be	available	for	specific	
patterns,	such	as	finite	difference	stencil	applications,	and	code	templates	or	domain-specific	
tools	would	provide	a	solid	starting	point	for	architecture-optimal	code.	
	
Future	work	to	improve	application	performance	and	scaling	will	focus	on	porting	SW4lite	
kernels	back	into	SW4,	and	incorporating	OpenMP,	data	layout,	and	vectorization	
improvements.	Additional	performance	improvements	might	be	realized	through	loop	fission	
and	improved	threading,	but	additional	evaluations	are	needed.	Single	precision	performance	
will	surely	boost	performance,	since	AVX512	can	demonstrably	obtain	2x	the	performance,	but	
only	if	the	loss	of	accuracy	is	acceptable	for	the	seismic	risk	assessment	application.	Finally,	we	
want	to	explore	communication-hiding	approaches	to	better	overlap	MPI	with	OpenMP	
threading,	and	improve	the	performance	of	the	mesh	refinement	algorithm.	
	
As	computational	capabilities	advance,	the	ability	for	performing	simulation	based	hazard	and	
risk	estimates	that	accurately	reflect	the	underlying	physics	and	site	specificity	of	earthquake	
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phenomenon	will	provide	a	new	approach	to	ensuring	infrastructure	safety.	As	a	result	of	the	
high	computational	demands,	it	will	be	essential	to	fully	exploit	emerging	exascale	
computations	as	a	foundation	to	transformational	risk	assessments.		 	
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Appendices	
	
A.1	Data	and	Resources	
	
Earthquake	ground	motion	data	in	Figure	1	was	obtained	from	the	Pacific	Earthquake	
Engineering	Research	(PEER)	Center	(Ancheta	et	al.,	2014).	
	
SW4	is	an	open-source	seismic	simulation	code	developed	at	Lawrence	Livermore	National	
Laboratory	(Petersson	and	Sjogreen,	2016)	and	distributed	by	the	Computational	Infrastructure	
for	Geodynamics,	available	at:	https://geodynamics.org/cig/software/sw4/	
	
The	3D	seismic	model	of	the	San	Francisco	Bay	Area	was	obtained	from	the	United	States	
Geologic	Survey	(USGS,	2017).	
	
Figures	were	made	with	ObsPy	(Krischer	et	al.,	2015)	and	Generic	Mapping	Tools	(Wessel	et	al.,	
2013).	
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A.4	Figures	and	Captions	

	
Figure	1.	(a)	Acceleration	(top),	velocity	(middle)	and	displacement	(bottom)	for	the	1992	
Landers,	California	M	7.3	earthquake	at	station	Lucerne	2.2	km	from	the	fault.		Also	shown	are	
Ground	Motion	Prediction	Equation	predictions	for	this	near-fault	record:	solid	colored	lines	
shown	the	median	prediction	of	peak	ground	acceleration	(top)	and	velocity	(middle)	and	
dashed	lines	show	standard	deviation	of	the	ASK14	and	BSSA14	models	(see	text).		(b)	
Magnitude-distance	combinations	of	strong-motion	records	in	the	PEER	NGA	West-2	database	
for	magnitudes	6.5-8.0	and	distances	0-8	km.	
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Figure	2.	In	SW4,	each	MPI-task	is	assigned	a	pencil-shaped	computational	sub-domain	(red	
box).	Each	pencil	contains	a	part	of	the	total	domain,	starting	at	the	free	surface	boundary	on	
top,	and	extending	to	the	far-field	boundary	on	the	bottom.	The	top	grid	(red)	is	the	most	
computationally	expensive	due	to	both	the	large	number	of	grid	points,	and	the	metric	terms	in	
the	curvilinear	mapping.	Lower	layer	grids	(blue,	pink,	&	black)	have	increasingly	fewer	points	
and	are	Cartesian,	which	allows	for	a	less	complex	finite	difference	stencil.	
	 	



	

18	
	

	
	
Figure	3.	Simulated	ground	motions	for	an	M	7.0	Hayward	Fault	earthquake	showing:	a)	the	
magnitude	of	ground	velocity	at	10	s	and	b)	ShakeMap	based	on	peak	ground	velocity	for	the	
1D	model;	and	c)	and	d)	the	same	for	the	3D	model.		Geologic	features	are	identified	in	d):	
Delta,	Sacramento-San	Joaquin	Delta;	EBH,	East	Bay	Hills;	MD,	Mount	Diablo;	SPB,	San	Pablo	
Bay;	Tri-V,	Dublin-Pleasanton-Livermore	Tri-Valley.	
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Figure	4.		Transforming	hazard	into	risk:	utilizing	ground	motion	estimates	from	a	regional	scale	
geophysics	model	to	drive	infrastructure	assessments.		
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Figure	5.	Utilizing	ground	motions	to	evaluate	regional	infrastructure	risk;	Hayward	Fault	
rupture	scenario	resulting	demands/risk	on	representative	buildings	(in	terms	of	peak	interstory	
drift).	
	 	



	

21	
	

	
Figure	6.	Initial	performance	studies	(pre-optimization)	of	the	different	SW4lite	kernels,	looking	
at	trade-offs	between	array	data	layouts,	and	MPI/OpenMP/hardware	threads.	The	Fortran	
kernel	with	component-first	indexing	was	generally	slower;	the	C	version	with	(i,j,k,c)	ordering	
showed	better	results	with	two	hardware	threads,	but	performance	varied	more	erratically.		
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FORTRAN	 C++	
real*8 u(3,ilo:ihi,jlo:jhi,klo:khi) 
... 
do k=klo,khi 
  do j=jlo+2,jhi-2 
    do i=ilo+2,ihi-2 
... 
r1 = r1 + i144*( la(i-2,j,k) 
  *(u(2,i-2,j-2,k)- u(2,i-2,j+2,k) 
    + 8*(-u(2,i-2,j-1,k)+u(2,i-2,j+1,k)))  
  - 8*la(i-1,j,k) 
    *(u(2,i-1,j-2,k)-u(2,i-1,j+2,k) 
      - 8*(u(2,i-1,j-1,k)-u(2,i-1,j+1,k)))) 
...	

float_sw4* __restrict__ a_u; 
#define u(c,i,j,k) \ 
    a_u[base3+i+ni*(j)+nij*(k)+nijk*(c)]    
... 
#pragma omp for 
for(k=k1; k<=k2; k++) 
  ... // Create tiles over i,j chunks 
  for(j=jfirst+2; j<=jlast-2; j++) 
#pragma simd 
#pragma ivdep   
    for(i=ifirst+2;i <= ilast-2; i++) 
... 
r1 = r1 + i144*( la(i-2,j,k) 
  *(u(2,i-2,j-2,k)-u(2,i-2,j+2,k) 
    + 8*(-u(2,i-2,j-1,k)+u(2,i-2,j+1,k))) 
    - 8*(la(i-1,j,k) 
  *(u(2,i-1,j-2,k)-u(2,i-1,j+2,k) 
    - 8*(u(2,i-1,j-1,k)-u(2,i-1,j+1,k)))) 
... 

	
Code	example	1.	Example	of	FORTRAN	(left)	code	used	in	SW4Lite,	and	reimplementation	in	
C++	(right).	The	differences	include	reordering	array	indices	using	a	macro	and	adding	OpenMP	
parallel	and	vectorization	pragmas.	Intel’s	C++	compiler	is	able	to	achieve	similar	performance	
to	FORTRAN,	and	can	make	certain	loop	transformations	easier,	like	cache	blocking	with	tiling.	
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