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Superpixel Embedding Network

Utkarsh Gaur [Member, IEEE], B. S. Manjunath [Fellow, IEEE]
UCSB

Abstract

Superpixel segmentation is a fundamental computer vision technique that finds application in a 

multitude of high level computer vision tasks. Most state-of-the-art superpixel segmentation 

methods are unsupervised in nature and thus cannot fully utilize frequently occurring texture 

patterns or incorporate multi-scale context. In this paper, we show that superpixel segmentation 

can be improved by leveraging the superior modeling power of deep convolutional autoencoders in 

a fully unsupervised manner. We pose the superpixel segmentation problem as one of manifold 

learning where pixels that belong to similar texture patterns are assigned near identical embedding 

vectors. The proposed deep network is able to learn image-wide and dataset-wide feature patterns 

and the relationships between them. This knowledge is used to segment and group pixels in a way 

that is consistent with a more global definition of pattern coherence. Experiments demonstrate that 

the superpixels obtained from the embeddings learned by the proposed method outperform the 

state-of-the-art superpixel segmentation methods for boundary precision and recall values. 

Additionally, we find that semantic edges obtained from the superpixel embeddings to be 

significantly better than the contemporary unsupervised approaches.
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I. INTRODUCTION

SUPERPIXEL segmentation is an important unsupervised pre-processing technique that 

reduces an input image from millions of pixels to a few thousand clusters of photometrically 

similar pixels. Superpixels improve the efficiency of higher level computer vision tasks and 

have found usage in numerous applications including object localization [1], multi-class 

segmentation [2], [3], classification and visual search [4], optical flow [5], body model 

estimation [6], object tracking [7], and depth estimation [8].

Superpixel algorithms ordinarily group pixels by optimizing the trade-off between the 

photometric similarities and the spatial distances between the pixels. Since for natural scenes 

the local regions of an object demonstrate photometric correlation, this optimization often 

results in semantically and perceptually meaningful clusters without having to explicitly 

specify a threshold value.
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Traditional superpixel algorithms rely solely on local image context, which works out if the 

foreground and the background are separated by simple texture patterns. However, complex 

texture patterns pose challenges to such methods. In particular, these methods often fail to 

recognize frequently co-occurring similar/dissimilar texture patterns across the image or the 

dataset. Semantically and perceptually important nonlocal cues are often critical to correctly 

segment complex texture patterns. Directly accounting for global pixel or texture 

relationships for all the images is NP-hard due to the exponential growth of connectivity 

parameters with a linear increase in features. Nevertheless, learning and accounting for 

global context is critical for a better superpixel segmentation and considerably improves 

performance, as evidenced by our experiments.

Deep learning methods such as convolutional neural networks (CNNs) have achieved very 

high performance for a number of supervised computer vision tasks. Their success is 

attributed in-part to the availability of vast quantities of data, fast GPUs with large memories 

and discovery of regularizing techniques and activation functions that counter vanishing 

gradient issues. CNNs possess powerful representational ability due to their high capacity 

and high V C dimension, O(ρ2) for ρ weights [9]. Deep CNNs have found use in 

unsupervised domains as autoencoders, where research has noted that deep features from the 

bottleneck layer automatically separate instances of different classes on the hyperplane [10]. 

Even so, it is not straightforward how superpixel segmentation algorithms can benefit from 

the powerful representational ability of CNNs.

As the research towards understanding the effectiveness of CNNs has progressed, research 

works [11], [12] have noted that CNN classifiers tend to implicitly learn object and object 

part models at various abstraction levels in their convolutional layers. Recent research works 

[13], [14], [15] have leveraged this information to compute dense object similarities and 

cosegmentation with only image-level label availability.

This paper describes a method to leverage this implicit modeling ability of CNNs to aid in 

computing semantically and perceptually coherent superpixels that can learn complex, 

object-specific texture patterns from across the dataset. These superpixels adhere to object 

boundaries better and result in more precise object segmentation. In addition to photometric 

similarity and spatial distances, we utilize deep feature space cues learned by the network to 

ultimately improve superpixel segmentation performance in a completely unsupervised 

manner 1. Visual examples of superpixels obtained based on the proposed method are shown 

in figure 2.

We pose the superpixel segmentation problem as one of learning dense embeddings for each 

image such that the embedding vector ei ∈ ℝD for a pixel pi ∈ ℝ3 should be closer to 

another pixel on the manifold if they belong to a semantically similar region, and farther 

otherwise. We postulate that across a dataset, semantically similar patterns frequently co-

occur in the same neighborhood and thus can be learned. Similarly, we can learn the concept 

of dissimilarity between image patterns, even if some of these patterns are similar in the 

photometric space.

1Code is planned for release after publication
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Since this work aims to learn image patterns in a general setting without the assumption of 

class labels, we utilize geometric proximity of texture patterns as a proxy to similarity. 

Texture patterns in natural scenes can be comprised of pixel neighborhoods constituted by 

very different color values. However across multiple instances of a given texture pattern, the 

same pixel neighborhoods show up very often. The notion of utilizing geometric proximity 

for texture similarity is not new and has been used in recent works to compute dense object 

correspondences, albeit in a weakly supervised setting [16], [14].

In order to learn these patterns, we first compute superpixel segmentations for all the images 

of the dataset at multiple scale and compactness values with a standard algorithm [17] in a 

black-box fashion. Superpixel segmentation (clustering) of an image provides us with a label 

map where pixels belonging to the same superpixel are assigned the same integer label. Note 

that the numeric values of the labels in the label maps are arbitrary for each image and do 

not play any role in our learning process. The state-of-the-art superpixel algorithms cluster 

pixels based on a combination of pixel location and color based features to produce 

superpixels that nicely preserve object boundaries [17], [18], [19], [20]. For these methods, 

the clustering is performed in local image neighborhoods and no additional learning step is 

performed. Pixels belonging to the same texture patterns get clustered into the same 

superpixel consistently across the images of the dataset. We propose to use these superpixel 

label maps as a pseudo ground-truth label to learn texture similarity/dissimilarity cues. 

Specifically, we learn a deep convolutional autoencoder to learn pixel embeddings such that 

pixels that consistently fall into the same superpixel across the dataset are embedded closer 

on the manifold, whereas pixels that consistently fall into different superpixels are embedded 

far from each other on the manifold.

Learning pixel embeddings based on comparing local neighborhood texture patterns often 

leads to locally smooth embeddings. For robust texture similarity determination, it is 

important to induce contextual information from a large area in the image. To achieve this, 

we propose to cluster embeddings from across the same image that are very similar to each 

other. This is accomplished by introducing a recurrent mean-shift clustering layer which is 

fully differentiable and thus can used in the end-to-end training of the network. Once the 

network is trained end-to-end, the distances between the embedded pixels on the manifold 

are used to formally compute the refined superpixel segmentation via a standard superpixel 

algorithm. These refined superpixels reflect the effectiveness of the learned CNN manifold 

in the form of improved boundary F1-score and achievable segmentation accuracy.

A. Contributions

This paper describes a novel technique to improve superpixel segmentation performance by 

learning texture pattern similarity/dissimilarity cues in a completely unsupervised fashion. 

We propose to embed pixels in a manifold where pixels belonging to the same texture 

pattern fall close and vice-versa. These embeddings are learned via a novel variable-margin 

loss function which adjusts the penalty of being dissimilar on the manifold based on the 

average dissimilarity in the photometric space. We propose a recurrent clustering layer to 

additionally induce image-wide feature context. The only hyperparameter of the clustering 
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layer, kernel bandwidth, is learned automatically end-to-end. The superpixels obtained via 

our method are shown to significantly improve boundary precision and recall.

B. Paper Organization

The organization of this paper is as follows: Section II describes the research literature that 

deals with computing superpixels, previous works that model global context, and works that 

have used CNNs in conjunction with superpixel segmentation. In section III, the process of 

modeling semantic pixel similarities via manifold learning is described and the variable-

margin penalty term that embeds a pixel pair relative to their superpixel feature attribute 

similarities is detailed. Section IV explains the need to cluster pixel embeddings to induce 

image-wide feature context and describes a differentiable, in-network mean shift module to 

achieve it in an end-to-end fashion. Section V describes the architecture of the encoder-

decoder fully convolutional CNN that combines all the aforementioned components. Finally, 

the quantitative and qualitative experiments are detailed in section VI and the paper is 

summarized in section VII.

II. RELATED WORK

A. Graph-theoretic and Energy Minimization Approaches

Over the years, many approaches have been proposed to partition an image into perceptually 

meaningful atomic regions termed superpixels. Many traditional superpixel algorithms take 

a graph theoretic approach to the segmentation problem. Here, the pixels of a given image 

constitute the nodes of a graph whereas the edges denote the affinity between neighboring 

pixels. A superpixel segmentation is then obtained by partitioning this graph to minimize 

some error objective. A normalized cuts based technique presented in [21] computes 

superpixels by recursively computing normalized cut on the image at various scales. A 

bottom-up minimum spanning tree based approach is presented in [22] where pixels are 

progressively merged based on total variation of affinity between neighboring pixels. A 

recent graph-based approach, entropy rate superpixels (ERS) [20], computes superpixels via 

graph partition. Here the optimization objective is to maximize the entropy rate of a random 

walk on the image graph while imposing superpixels to have similar sizes via a 

regularization (balancing) term.

The work in [23] formulates the superpixel segmentation problem as one of energy 

minimization, and optimizes it via graph cuts to encourage superpixel regularity. Another 

energy maximization based method termed SEEDS [24] uses fast hill-climbing optimization 

to obtain superpixel segmentation. The optimization directly manipulates boundaries of an 

initial regular grid of superpixels to encourage smoother regions with homogeneous color 

histograms. A revised implementation of this algorithm called reSEEDS [25] improves on 

the performance by introducing a compactness term to the optimization criterion. The 

compactness term leads to higher connectivity among superpixels and achieves lower run 

time.
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B. Clustering based Superpixels

Clustering local photometric features is perhaps the most popular technique to computer 

superpixel segmentation. One of the most prominent superpixel algorithms called SLIC [18] 

performs K-means clustering on CIELAB color and pixel locations jointly on a regular grid 

to obtain simple yet effective superpixels. Similar to SLIC, the work in LSC [19] method 

applies a kernel mapping to the the CIELAB color and pixel locations to project them into a 

new 10-dimensional manifold. They further show that applying a K-means clustering to the 

projected features in this new manifold is equivalent to a normalized cut in the original 

space, without the added computational cost. In the same vein, the work in Manifold SLIC 

[26] projects the features to a 2-dimensional feature space, which is sensitive to the content-

richness of an image location. Clustering this feature space leads to smaller superpixels in 

content-dense regions and larger superpixels in content-sparse regions. The success of these 

methods suggests that improving the feature representation of the pixels to include richer 

context leads to improved superpixels.

The work in [27] is an improvement over SLIC where the superpixels are constrained to 

adhere to prominent contours determined by local gradient information. However this 

constraint increases the computational cost of the algorithm significantly compared to SLIC. 

Another recent approach that constraints superpixels boundaries by object contours via 

contour pattern matching is proposed in [28]. The idea is additionally extended to videos 

using optical flow to yield temporally consistent supervoxels. The work in [29] proposes a 

hybrid approach that combines local and global analysis to simplify image over-

segmentations. It is shown that image regions can be merged using spectral mean only to 

produce meaningful and robust segmentations. A recent notable work for superpixel 

segmentation is SNIC [17], which is a non-iterative improvement on the SLIC algorithm. 

Unlike SLIC, SNIC explicitly enforces pixel connectivity from the beginning and achieves 

state-of-the-art results while accessing pixels only once.

C. Superpixels with CNNs

A number of research works have proposed using superpixel cues to improve segmentation 

[30], [31], [32]. Despite several works using superpixels, no other work has used CNNs to 

compute superpixels in an unsupervised manner to the best of authors’ knowledge. Recently 

the work in [31] proposed an excellent approach to compute pixel affinity maps such that a 

superpixel segmentation should be consistent with some ground-truth segmentation. The 

pixel affinity maps could then be fine-tuned for a variety of tasks including superpixel 

segmentation, semantic segmentation and edge detection. Our approach is similar to this 

approach, however, unlike [31] we compute dense embeddings in an end-to-end fashion via 

a CNN and more importantly, our method does not require dense semantic segmentation 

masks for training. A recent work in [32] proposed computing feature embeddings which are 

grouped using hierarchical feature selection (HFS) algorithm [33] to produce effective image 

segmentations. The system proposed in this work outputs superpixels which can be directly 

plugged to any vision related task, in addition to image segmentation. We also introduce a 

differentiable recurrent mean-shift clustering layer into the superpixel network model which 

improves the performance of the system via its ability to associate embeddings from across 

the image.
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III. VARIABLE-MARGIN SUPERPIXEL EMBEDDING LOSS

Superpixels can be formally defined as a local set of p pixels, li = {p1, …, pk} that are 

disjoint li ∩ lj = ∅, ∀i, j and decompose the image, ∪i li = ℐ. Superpixel algorithms aim to 

compute clusters of pixels that closely adhere to the boundaries of the objects present in the 

scene. Operating on superpixels in lieu of raw pixels can provide significant performance 

improvement albeit at the cost of pixel resolution.

Traditional superpixel segmentation algorithms cluster pixel color and location values in 

small image neighborhoods without any additional context or learning involved. This may 

lead to frequently co-occurring patterns getting incorrectly clustered across different images. 

Research works in the past have brought attention to this lack of global context [19], 

however, directly accounting for global pixel or texture relationships for all the images is 

NP-hard due to the exponential growth of connectivity parameters with a linear increase in 

features. Accommodating global context through complex and computationally expensive 

methods is unjustified since it defeats the need for superpixels in the first place.

In this paper we introduce image and dataset wide context for the superpixel segmentation 

by training a CNN to learn which patterns are similar, and more importantly, which patterns 

aren’t. This problem is posed as one of CNN-based manifold learning where embeddings for 

pixels that should belong to the same pattern (superpixel) are projected closer to each other 

and farther away from unrelated pixels. Since for natural scenes semantically related patterns 

frequently appear in the same neighborhood, an initial set of superpixel segmentations, 

however imperfect, can furnish the CNN with a good sense of semantic similarities. We use 

these superpixel segmentation maps as a pseudo ground-truth label to learn a new manifold. 

Feature distances on this manifold act as a proxy for semantic similarity by combining 

pixels’ photometric similarities as well as texture pattern similarity, as learned from the 

dataset.

Formally, let ei, ej ∈ ℝD be the embedding vectors for any two pixels i, j randomly sampled 

from superpixels li, lj respectively. Now, if the two pixels were sampled from the same 

superpixel i.e. li = lj, we want their corresponding embeddings ei, ej to be close to each other 

on the manifold. Specifically, the distance between ei and ej should be at most α on the 

manifold. To prevent the optimization from learning the same embedding for all pixels, we 

can similarly define a non-matching pixel penalty term. Specifically, if the two pixels were 

sampled from different superpixels i.e. li ≠ lj, then their embeddings ei, ej should be at least 
β distance apart on the manifold. If the distances between the two embeddings is given by 

Ψ(ei, ej), then the optimal embedding for that pixel pair should minimize the loss given by:

li, j =
Ψ ei, ej − α + if li = lj
β − Ψ ei, ej + otherwise

(1)

This double margin embedding loss for matching and non-matching pixel pairs is visualized 

in figure 4. In practice, we L2 normalize the embeddings e ∈ ℝD to project them on a unit 
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hypersphere. The distance function Ψ(·, ·) between two pixels i and j can then defined as the 

cosine distance between their corresponding L2 normalized embedding vectors:

Ψ(ei, ej) = 1
2 − k 0

D ek iek j

2 k 0
D ek i

2
k 0
D ek j

2
(2)

Even though the Euclidean distance is a popular choice for embedding and metric learning 

research works [34], [35] have shown that cosine distance has some clear advantages when it 

comes to comparing deep feature maps. The works of [36], [37] recommend normalizing 

features to unit L2 norm in order to stabilize the gradients for training. As opposed to 

Euclidean distance, which is unbounded, the cosine distance Ψ can be scaled to lie in a fixed 

interval. This allows for the values of the margin parameters α and β to be interpretable and 

thus leads to an easier analysis. Additionally, since any distance metric based on cosine 

similarity is invariant to the magnitude of the embedding vector e, the loss is easily 

decoupled from network hyperparameters such as weight decay or regularization, that can 

limit the range of Euclidean distances [38].

Variable Margin:

Since superpixels have an upper bound on their size by design, the superpixel segmentation 

algorithms induce arbitrary boundaries which often cut across texture patterns belonging to 

the same category. This design limitation is also reflected in the superpixel labeling l where 

two or more neighboring superpixels can have exact same appearance statistics. This design 

choice of the superpixel segmentation can drive our network to incorrectly segregate very 

similar patterns, thus confusing the network and leading to imperfect embeddings. To 

counter this, we propose the use of a variable penalty margin β in the embedding loss that 

adjusts the penalty of being dissimilar on the manifold based on the average dissimilarity in 

the photometric space. More specifically, for any pixel pair obtained from superpixels li and 

lj, the penalty margin is proportional to the distance between the average L*a*b* color 

between li and lj. Let C be the average L*a*b* color of a superpixel l, then penalty margin 

for pixel indices i, j is:

βi, j ∝ Ci − Cj 2 (3)

The variable margin aspect of the penalty term is visually shown in figure 4. The reason that 

the variable margin is only introduced for the penalty term β is twofold. First, the superpixel 

size upper-limit constraint primarily leads to similar image regions getting split into multiple 

superpixels. Secondly, pixels that belong to the same superpixel share the same photometric 

statistics and thus cannot contribute to the variable margin.

For the final evaluation, the embedding loss is accumulated for pixel pairs across the image. 

Since the number of potential pairwise comparisons grow quadratically with a linear 

increase in the number of pixel, we limit the comparisons to pixel pairs in a neighborhood 

around each pixel, similar to [34]. The total loss function can then be defined as:
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ℒtotal =
i N j Ni

1li lj[Ψ(ei ej) α]
Nli lj

+
1li ≠ lj[βi, j − Ψ(ei, ej)]+

Nli ≠ lj
(4)

Here Ni is the spatial neighborhood of pixel i. For each pixel, we perform 9 pairwise 

comparisons based on three 3x3 neighborhoods of atrous factors 1, 2, and 3 [39].

IV. LEARNABLE RECURRENT CLUSTERING MODULE

The method described thus far aims to learn pixel embeddings that are cognate with 

superpixels via the cosine distances between them. However, the loss objective that is 

directly responsible for learning the embeddings only accounts for neighbors in the 

immediate vicinity of the pixel in question due to the complexity of the problem and the NP-

hard nature of accommodating global context. This local nature of the embedding loss also 

means that the image-wide ‘global’ context may get marginalized, thereby resulting in 

deficient embeddings.

To account for global context and avoid embeddings getting pigeonholed into optimizing 

local distances, we propose the use of a differentiable mean-shift clustering recurrent 

module as a part of the network. The aim of this module is to cluster features from across the 

feature map of a given image to produce cluster centers that represent better estimates of the 

global density. Subsequent iterations ensure local embeddings stick to the global clusters 

more closely. Kernel bandwidth, the hyperparameter of the module which influences the 

number of modes the algorithm will converge to, is learned automatically via back-

propagation.

A. Mean-Shift Kernel Density Estimation

The mean-shift algorithm is a non-parametric density estimation algorithm that operates by 

placing a kernel on each data sample and shifting this kernel to a higher density region until 

convergence. Convergence of the mean-shift algorithm implies that a shift in direction 

cannot accommodate more points inside the kernel. Mean-shift does not require the number 

of cluster centers (modes) to be known a priori. The number of modes that it converges to is 

directly influenced by the kernel bandwidth parameter. For instance, very small kernel 

bandwidth would result in each pixel embedding getting assigned as its own cluster. 

Conversely, large kernel bandwidth would lead to all the pixel embeddings converging 

towards a single, mean cluster. The kernel bandwidth parameter defines the spatial scope/

scale of a given kernel and certainly one fixed parameter is not suitable for the entire dataset.

Mean-shift in its matrix form was first introduced by [40] and the work in [38] demonstrated 

the benefit of collapsing similar embedding vectors for the instance segmentation task. In 

this work, we borrow the idea for learning superpixel embeddings from [38] and 

additionally, learn the bandwidth parameter in-network to automatically learn meaningful 

clusters.
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Formally, let X ∈ ℝD × N be N pixels embedded into a manifold of dimensionality D. Let 

Q ∈ ℝN × N be the degree matrix that captures the connectivity information of a pixel 

embedding by accumulating similarities of that pixel embedding to the rest of the 

embeddings. Based on the kernel matrix K, the degree matrix can be computed as Q = 

diag(KT 1). A mean shift vector M can be computed for the kernel-weighted embeddings X 
by first smoothing X with the local means X ← XKQ−1 and then subtracting the smoothed 

version with the original values M = XKQ−1 − X [38][40].

For each iteration of the mean shift recurrent module with a step-size η, the embeddings are 

shifted towards their kernel-weighted mean:

X X + ηM (5)

For η = 1, the above average rule is termed Gaussian Blurring Mean Shift (GBMS) [40] and 

can be simplified to:

X XKQ−1 (6)

Unlike the common practice of keeping the kernel matrix K constant across the iterations, in 

an GBMS update rule, the kernel matrix is recomputed after each iteration. The work in [40] 

showed this update rule to have cubic convergence, hence we use it in our network.

Traditionally for mean-shift kernel density estimation, a Gaussian kernel with bandwidth σ 
centered at each sample is assumed and the density can be approximated by computing the 

average distance of a point with all the other points via the Gaussian kernel. However, the 

embeddings learned in this work are L2 normalized and compared via cosine similarities, 

hence we use the von Mises-Fisher kernel, which is defined for the unit hypersphere as 

K = Cκexp κXTX ∈ ℝN × N with normalizing factor Cκ and kernel bandwidth κ, which 

represents the local context on the unit hypersphere to compare a data sample to.

To avoid a very deep computational graph that may result in gradient vanishing issues, we 

accumulate the superpixel embedding loss for the original (unclustered) superpixel 

embeddings, as well as the superpixel embeddings over all iterations of the mean-shift 

recurrent clustering module. In this manner, the gradients are backpropagated through each 

of the unrolled loops and further propagated to the deep autoencoder network. This 

combination of the U-net and clustering module is end-to-end trainable.

In figure 6, we demonstrate the effect of mean-shift clustering on the embeddings obtained 

from the network. The embeddings learned through the loss function in equation 4 encode 

local-neighborhood similarities. This tends to make the embeddings piecewise smooth, as 

seen in figure 6 (top). By collapsing very similar embeddings across the image into distinct 

modes, we can induce context knowledge from a much larger area. Figure 1 shows more 

examples of embeddings produced by the network reduced to 3 dimensions for visualization. 

Figure 6 (bottom) visualizes the L2 normalized, 3D embeddings on the sphere, before and 

after the discretization from the mean-shift module.
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V. NETWORK ARCHITECTURE

The success of CNNs for classification tasks has lead to a number of approaches to image 

segmentation by the means of dense pixel classification. The first CNN based segmentation 

approaches classified a pixel based on a square window around it. This patch-based CNN 

would operate on every pixel of an input image resulting in redundant feature computations 

and poor efficiency. Long et al proposed using Fully Convolutional Network (FCN) [13] 

which directly produces a segmentation mask as output with a single forward pass of an 

input image. At their core, FCN retain the feature extractor part of the standard CNNs 

(encoder) and replace the fully connected layers by convolutional layers that output feature 

maps. These feature maps are upsampled via learnable deconvolutional layers (decoder) or 

other similar mechanism to produce dense pixel-wise classification scores. The end-to-end 

processing achieved by FCNs not only significantly reduced the training and inference time 

for segmentation networks, but also set state-of-the-art results for multiple segmentation 

datasets and benchmarks.

Multiple improvements have since been proposed that extend the FCN architecture, the most 

significant being the U-Net [41] architecture. This architecture uses shortcut or ‘skip’ 

connections between the encoder and the decoder part of the CNN to combine low-level 

feature maps with higher-level ones, which allows it to be pixel-precise. A large number of 

feature channels in upsampling part allows propagating context information to higher 

resolution layers. CNNs with some form of ‘skip’ architecture have set the state-of-the-art 

results in image segmentation across multiple tasks and datasets [42], [39].

We find that convolutional network architectures which employ ‘skip’ connections that 

connect the encoder and the decoder components work especially well to learn superpixel 

embeddings. In addition to learning image patterns that are common across the dataset via 

the long route, the numerous shortcut ‘skip’ connections help the superpixel embeddings by 

memorizing and propagating very local pixel/texture patterns. These local patterns are of 

high importance in good superpixel computation since superpixels should be sensitive to 

local photometric patterns.

This work uses the encoder-decoder architecture similar to U-net [41] with skip connections 

for all the experiments. The block diagram of the architecture is shown in figure 5. The 

encoder part of our network follows the typical architecture of a deep CNN where each layer 

comprises of a convolutional operation, batch normalization, and non-linear activation 

function. As we progress through the layers, we downsample the feature maps by half via 

striding while doubling the number of channels via increase in the number of filters.

The decoder section of the network consists of convolution layers followed by upsampling 

layers. In a fashion opposite of the encoder, the spatial resolution of the feature maps is 

doubled at each step while the number of channels is reduced by half. We use ‘nearest’ 

upsampling layer to double the spatial resolution of the feature maps. These upsampled 

feature maps are concatenated with the low-level feature maps from the corresponding 

encoder feature maps of the network via the shortcut connections. The output of the network 

is a feature map with the same spatial resolution as the input image. The U-net architecture 
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with skip connections has proven to be very useful for problems where the amount of dense 

annotations is limited [43]. The feature maps are sampled for 5 times each in the encoder 

and decoder sections of our network so we ensure that input image dimensions are divisible 

by 32 (25).

VI. EXPERIMENTS

We use images from the Pascal VOC 2007 [44] and the Berkeley Segmentation Dataset 

(BSDS) 300 [45] to compute the pseudo ground-truth, no other data (ground-truth or 

otherwise) is utilized. For the convolution layers, reflection padding is used instead of zero 

padding. We also find that training the network with only 50% of pixels of the input image 

achieves the same results at double efficiency. We randomly sample the pixels to be 

processed per image per minibatch. The minibatch is perturbed with an additive normal 

noise which we found to output better embeddings. Data augmentation is performed by 

horizontally flipping the image and label at random.

We use the fast SNIC method described in [17] to compute superpixels from the embeddings 

output by the network. SNIC avoids the iterative clustering step typical in superpixel 

segmentation algorithms by starting from certain local centroids and growing the superpixel 

boundary outwards. Connectivity is explicitly enforced by sequentially processing a priority 

queue composed the neighbors of the centroids, and their neighbors and so on. SNIC 

outperforms SLIC on multiple quantitative benchmarks. We use the same superpixel 

distance metric as SNIC, albeit modified to replace pixel similarity term with normalized 

embedding similarity term. For a pair of embedding vectors ej and ek:

dj, k =
pj − pk 2

2

s + Ψ(ej, ek)
m′ , (7)

where pϕ = [xϕ, yϕ]T is the spatial location of some embedding vector eϕ in the image space. 

The normalizing parameters s and m′ are retained from SNIC and balance the trade off 

between the spatial distances and the embedding distances. The scale parameter s is set to be 

N /K where N is the total number of pixels in the image and K is the desired number of 

superpixels. The compactness parameter m′ is a user-provided constant and influences the 

superpixel compactness. We note that the clustering distance metric in [17] equally weights 

the color and the location vectors. We follow the same scheme to keep the relative weighting 

of the location and appearance-based embeddings equal and account for the increased 

dimensionality of the embedding vectors.

The quantitative results are reported on the BSDS500 dataset images [46] for number of 

superpixels ranging from 50 to 500. The quantitative comparisons can be viewed in figures 

7, 8 and 9. A visual comparison of our method with the other state-of-the-art methods is 

provided in Fig 12. We used the very useful benchmarking toolkit provided by [47] for all 

the experiments. We use the standard superpixel segmentation metrics undersegmentation 

error (CUSE), achievable segmentation accuracy (ASA), and boundary F1-score to evaluate 

the performance of our method. CUSE and ASA evaluate the superpixel overlap with 

ground-truth regions, whereas F1-score is a measure of superpixel contour adherence to 
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ground-truth contours and is correlated to the other two metrics. We briefly describe these 

metrics below.

A. Boundary F1-score

In the context of boundaries, precision is the ratio of correctly detected boundaries to the 

total number of boundaries detected whereas recall is the ratio of correctly detected 

boundaries to the total number of contours present in the ground-truth segments. Even 

though boundary recall is one of the most reported and compared metrics for segmentation 

performance evaluation, it is not well-suited on its own. Precision and recall represent a 

trade-off and should be reported together since it is possible to increase the value of one at 

the expense of other.

Similar to the state-of-the-art, we describe a boundary map BS outputted by the network to 

be a match to the ground-truth boundary map BG if the overlap is within a neighborhood of ϵ 
pixels. if The boundary recall can then be defined as:

BR(S, G) =
∑i1[minj BS

i − BG
j < ϵ]

BG
(8)

and the boundary precision can be defined as:

BP (S, G) =
∑i1[minj BS

i − BG
j < ϵ]

BS
(9)

For our experiments, we report the F1-score (aka F-measure), which combines both 

boundary recall and precision with equal weights:

F1 − score = 2 BP ⋅ BR
BP + BR (10)

In our evaluations, we set the value of ϵ to 2, similar to the benchmark method [17] and 

other state-of-the-art methods.

B. Corrected Undersegmentation Error (CUSE)

The undersegmentation error quantifies the overlap error between a superpixel segment and 

the ground-truth segment that it has the maximum overlap with. The authors of [24] noted 

that the traditional undersegmentation error fully penalized superpixels on both sides of the 

boundary of an object for even a single pixel error along the boundary. They proposed the 

corrected version of undersegmentation error which we use here:

CUSE(S, G) =
∑i Si − argmaxg ∈ G Si ∩ g

∑j Gj
(11)
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Here S is the set of superpixel segments outputted by the proposed algorithm, G is the set of 

ground-truth segments and |·| denotes the size of the segment. The CUSE penalty for the 

overlap error between superpixel and ground-truth segment is proportional to the magnitude 

of the mistake. Additionally, the error is only accumulated a single time for one side of the 

superpixel.

C. Achievable Segmentation Accuracy (ASA)

Achievable Segmentation Accuracy describes an upper bound on the segmentation 

performance of a superpixel labeling. It labels superpixels according to their underlying 

ground truth segments and counts the correctly labeled pixels [20]:

ASA(S, G) =
∑imaxk Si ∩ Gk

∑j Gj
(12)

By labeling each superpixel with the label of the ground truth segment that has the largest 

overlap, ASA can be computed as the fraction of correctly labeled pixels.

Our method outperforms all the other methods for boundary F1-score and performs as well 

as SNIC for ASA and CUSE. We note that the boundaries obtained from our method adhere 

better to the object and is more robust to object scale changes. We also note that our method 

significantly outperforms the other methods for smaller number of superpixels. The 

difference gets smaller with larger number of superpixels since the margin of error increases, 

however our lead still persists.

The time efficiency for the proposed method is compared to other state of the art methods 

with respect to boundary F1-score in table I. The results are averaged for BSDS500 images 

of 481x321 resolution and number of superpixels segmentations desired equal to 50. All the 

parameters for the algorithms were set to their default values.

SEN network inference was performed on an Nvidia Quadro P5000 GPU and the time 

reported here is an aggregate of network inference for 16 dimensional embedding 

computation, clustering, and SNIC superpixel computation. The method demonstrates 

improved performance over other state of the art methods albeit at a fraction of time cost 

penalty. We note that the clustering module makes use of matrix inversion operations and 

backpropagation through it is currently not optimized. These operations are responsible for a 

non-trivial chunk of time cost.

Clustering module ablation: To test the efficacy of the clustering layer, an ablation 

experiment was performed, where the clustering layer was removed and the variable margin 

loss was applied directly to the output of the convolutional layer. SNIC was used again to 

compute superpixels from the resulting embeddings. The boundary F1-score comparing the 

performance of the network with and without the clustering module for the BSDS500 

dataset is reported in figure 10.

We observe that the lack of embedding clustering leads to a drop in the boundary F1-score. 

Clustering layer allows merging similar embeddings to the same point on the manifold. This 
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allows the network to learn to associate patterns. We conjecture that the clustering layer 

helps the network to better differentiate the different ‘semantic regions’ of the object by well 

separating the patterns on the manifold and ultimately producing better superpixel 

segmentations.

Contour detection: In addition to superpixel segmentation, we experimentally evaluated 

the ability of our method to detect object contours. Contour detection is one of the most 

fundamental and widely studied problem in computer vision. Deep network-based 

approaches have managed to significantly improve the state-of-the-art for contour detection. 

A popular CNN-based approach called HED [48] can compute high quality edge maps for a 

given image by learning rich hierarchical representations guided by deep supervision. The 

work in [49] extends this idea by fusing hierarchical convolutional feature maps for crack 

detection. Most state-of-the-art contour detection approaches are supervised and require 

dense, pixel-level labeling. We utilized the proposed method to detect high quality object 

contours, without the need for ground-truth labels.

To obtain contours from superpixels, we extract superpixels for 13 different sizes ranging 

from 50 to 700 and average the superpixel boundaries. Edges that the network deems 

prominent consistently become superpixel boundaries across different superpixel sizes. Thus 

averaging the superpixel boundaries results in prominent edges maintaining strong signal 

whereas spurious edges get weaker signal due to being averaged out. The resulting average 

edge image is thresholded to remove low signal components before applying simple non-

maximum suppression obtained from Piotr’s structured edge detection toolbox [50]. The 

contours obtained via the proposed method significantly outperform other unsupervised 

contour detectors as shown in figure 11. We note that the PR curve for this work (SEN) is 

not monotonic due to the filtering of the average edge image to remove low signal 

components, without which the edge non-maximum suppression doesn’t perform well and 

the obtained contours are worse.

VII. SUMMARY

Superpixel segmentation is an important pre-processing step for numerous computer vision 

tasks. Most state-of-the-art superpixel segmentation methods are unsupervised in nature and 

hence do not learn complex, frequently occurring texture patterns or incorporate multi-scale 

context. This work proposed a deep convolutional neural network based unsupervised 
approach to not only account for global context but also learn to disambiguate between 

object/background patterns. This network learns dense pixel embeddings based on pixel 

similarities as inferred from superpixel segmentations at multiple scales and detail 

resolutions. The pixel embedding on the manifold are found to correspond to the different 

objects present in the scene. To learn these embeddings, a novel variable-margin contrastive 

loss is proposed that adapts the penalty to misclassify matching pixels in proportion to the 

photometric similarities of their parent superpixels. Finally, usage of an in-network recurrent 

clustering module is proposed to avoid embeddings getting pigeonholed into optimizing 

local distances and be more sensitive to image-wide context. Experiments demonstrate that 

the superpixels obtained from the embeddings learned by our method outperform the state-

of-the-art superpixel segmentation methods for boundary precision and recall values.
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Fig. 1: 
Visualizing the embeddings produced by the network reduced to three dimensions via PCA.
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Fig. 2: 
Visual examples from the BSDS500 dataset. Each image is overlaid by three segments 

corresponding to 1000/500/200 superpixels using the proposed superpixel embeddings.
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Fig. 3: 
Due to the superpixel size constraint, pixels belonging to the same semantic region may get 

split up into different superpixels. Variable-margin penalty term ensures that embeddings for 

pixels that have near similar superpixel feature attributes can still be mapped closer on the 

manifold. Neighboring embeddings from across the image may get coalesced later by the 

clustering module (blue arrows).
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Fig. 4: 
Left: Visualization of the double margin contrastive loss for a sample pixel embedding 

(black) with embeddings of matching pixels (green) and non-matching pixels (orange). A 

penalty is incurred if a matching pixel’s embedding is farther than α or a non-matching 

pixel’s embedding is closer than β. Right: Instead of a fixed penalty margin β, this work 

utilizes a variable margin βi,j (represented by the orange gradient) that is based on the 

photometric distance between the superpixels that cover pixel i and pixel j respectively.
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Fig. 5: 
Schematic diagram of the proposed network. The input image is processed by a fully 

convolutional autoencoder with shortcut connections to output initial pixel embeddings. 

These embeddings are refined to accommodate image-wide context via the recurrent 

clustering module to output the final dense embeddings. The variable-margin contrastive 

loss compares the embedding distances with a superpixel segmentation generated with a 

randomly selected scale and detail attribute.
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Fig. 6: 
Effect of mean-shift clustering module iterations. Top: embedding vectors are reduced to 

three dimensions for visualization purposes. Bottom: normalized embedding vectors are 

plotted on a sphere. Embedding vectors are locally smooth. To induce context knowledge 

from a larger area, embeddings that are similar are collapsed to a single point on the 

hypersphere.
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Fig. 7: 
Plot of boundary F1-score eq. 10 as a function of number of superpixels. The F-measure for 

SEN superpixels is considerably better than SNIC.
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Fig. 8: 
Plot of achievable segmentation accuracy eq. 12 as a function of number of superpixels. 

Using superpixel embedding increases the ASA score. The difference decreases with 

increase in number of superpixels.
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Fig. 9: 
Plot of corrected undersegmentation error eq. 11 as a function of number of superpixels. The 

average CUSE for SEN is better than the best CUSE for SNIC. The difference decreases 

with increase in number of superpixels.
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Fig. 10: 
Ablation results: SEN boundary F1-score performance comparison with and without the 

clustering module.
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Fig. 11: 
Contour detection results on BSDS500. Contours obtained by the proposed method (SEN) 

outperforms unsupervised edge detection methods.
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Fig. 12: 
Qualitative comparison of superpixels with state-of-the-art methods with BSDS500 images 

for three different superpixel sizes (50/200/1000) shown as three partitions of the same 

image. From left: a) Input image b) SEN c) SNIC d) SLIC
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TABLE I:

Comparison of time efficiency vs. boundary F1 score for BSDS500 dataset

Method Time (s) F1 Score

SEN 0.153 0.559

SNIC [17] 0.064 0.543

SLIC [18] 0.073 0.526

ERS [20] 0.504 0.534

LSC [19] 0.237 0.510

reSEEDS [25] 0.171 0.532
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