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Abstract

Dispersion-free ultra-high order FFT-based Maxwell solvers have recently proven to be paramount to a large range of applications,

including the high-fidelity modeling of high-intensity laser-matter interactions with Particle-In-Cell (PIC) codes. To enable a

massively parallel scaling of these solvers, a novel parallelization technique was recently proposed, which consists in splitting the

simulation domain into several processor sub-domains, with guard regions appended at each sub-domain boundaries. Maxwell’s

equations are advanced independently on each sub-domain using local shared-memory FFTs (instead of a single distributed global

FFT). This implies small truncation errors at sub-domain boundaries, the amplitude of which depends on guard regions sizes and

order of the Maxwell solver. For moderate guard region sizes, this ’local’ technique proved to be highly scalable on up to a

million cores and notably enabled the 3D modelling of so-called plasma mirrors, for which 8 guard cells only were enough to

prevent truncation error growth. Yet, for other applications, the required number of guard cells might be much higher, which would

severely limit the parallel efficiency of this technique due to the large volume of guard cells to be exchanged between sub-domains.

In this context, we propose a novel parallelization technique that ensures very good scaling of FFT-based solvers with an arbitrarily

high number of guard cells. Our ’hybrid’ technique consists in performing distributed FFTs on local groups of processors with

guard regions now appended to boundaries of each group of processors. It uses a dual domain decomposition method for the

Maxwell solver and other parts of the PIC cycle to keep the simulation load-balanced. This ’hybrid’ technique was implemented in

the open source exascale library PICSAR. Benchmarks show that for a large number of guard cells (> 16), the ’hybrid’ technique

offers a ×3 speed-up and ×8 memory savings compared to the ’local’ one.

1. Introduction

1.1. Context

The ElectroMagnetic (EM) Particle-In-Cell (PIC) method

[1, 2] has been the method of choice to model kinetic effects

at play in the physics of high intensity laser plasma interactions

also known as ’Ultra-High Intensity’ (UHI) physics. To de-

scribe the plasma and electromagnetic field dynamics, the EM-

PIC algorithm self-consistently advances Maxwell’s equations

on a grid (Maxwell solver) and equations of motion of plasma

pseudo-particles. As there is no diagnostic of the plasma and

fields evolution at the extremely small time and length scales

involved in UHI physics, the EM-PIC method has been crucial

to interpret experiments, develop theoretical models as well as

propose and guide novel experiments.

In the last decades, the Maxwell solver used in most EM-PIC

codes has been the so-called Finite Difference Time Domain

(FDTD) Yee solver [3] that operates a second order finite differ-

ence in time and space to discretize Maxwell’s equations. This

method has been very popular since the advent of distributed-

memory parallel computers because it can be efficiently paral-

lelized using a standard Cartesian domain decomposition. This
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parallelization method splits the simulation domain into sub-

domains, with guard cells appended at the edges of each sub-

domain that stores electromagnetic fields values from imme-

diate neighboring sub-domains. At each time step, Maxwell’s

equations are then advanced on each processor sub-domain in-

dependently and guard cells exchanged between sub-domains.

FDTD solvers are very local and demonstrated scaling on up

to a million cores [4, 5] as required by the most demanding 3D

EM-PIC simulations. Nevertheless, they induce spurious nu-

merical dispersion of electromagnetic waves that reveals highly

detrimental in the accurate modeling of laser-plasma-based ap-

plications. Mitigation of numerical dispersion errors usually re-

quires very high spatio-temporal resolution that has prevented

doing realistic 3D modeling on a large class of problems (in-

cluding laser-plasma mirror interactions [6, 7]) for a long time.

In contrast, ultra-high order p (stencil of width p/2), and

in the infinite order p → ∞ limit, FFT-based pseudo-spectral

solvers, which advance electromagnetic fields in Fourier space

(rather than configuration space), can bring much more accu-

racy than FDTD solvers for a given resolution. In particular,

Haber et al showed [8] that under weak assumptions, Fourier

transforming Maxwell’s equations in space yields an analytical

solution for electromagnetic fields in time, called the Pseudo-

Spectral Analytical Time Domain (PSATD) solver, which is

accurate to machine precision for the electromagnetic modes

resolved by the mesh. As a consequence this solver enables
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Figure 1: Parallelization strategies for pseudo-spectral Maxwell solvers. (a) is a sketch of the ’Local’ approach where the simulation domain is split into multiple sub-

domains with guard cells appended at each sub-domain boundary. Guard cells hold copies of electromagnetic fields from adjacent sub-domains. Each sub-domain is

handled independently by an MPI process. At each time step: (i) Maxwell’s equations are advanced independently on each MPI sub-domain using shared-memory

’local’ FFTs and (ii) guard cells are exchanged between adjacent MPI sub-domains. Panel (b) shows a sketch of the new ’hybrid’ approach presented in this paper.

It consists in grouping several MPI sub-domains into a larger MPI group and perform a distributed FFT on the MPI ranks of this group. Guard cells are solely

appended at the boundary of the MPI group leading to less memory redundancy and thus significant memory savings. At each time step: (i) Maxwell’s equations

are advanced independently on a MPI group using a distributed FFT. (ii) Guard cells are exchanged between MPI groups.

infinite order, imposes no Courant time step limit in vacuum

and has no numerical dispersion. By lowering the resolution

needed to reach a required accuracy compared to FDTD solvers

[6, 7, 9], PSATD-type solvers have the potential to strongly re-

duce the time-to-solution of a large class of problems.

1.2. Scalability limits of global FFT-solvers

Nevertheless, pseudo-spectral solvers employing distributed

FFTs (later called ’global’ FTT solvers in the remainder of this

article) have not been popular so far due to the difficulty to scale

the distributed FFTs beyond 10, 000 cores [10], which is not

enough to take advantage of the largest supercomputers (with

up to millions of cores) required for 3D modeling.

The main barrier to scale FFT computations emerges from

the overhead induced by the global communications (’All’

to ’All’-type communication) required to transpose the data

among all computing units. As a consequence, developing mas-

sively parallel distributed FFTs algorithms is extremely chal-

lenging and is still an active research area for computer scien-

tists.

1.3. Recent advances in the scaling of FFT-based Maxwell

solvers

To break this scalability barrier, a pioneering grid decom-

position technique was recently proposed for pseudo-spectral

FFT-based electromagnetic solvers [11]. This technique con-

sists in using a standard Cartesian domain decomposition strat-

egy to parallelize pseudo-spectral solvers (cf. Fig. 1- (a)).

Maxwell’s equations are solved independently on each MPI

processor sub-domain using local FFTs (instead of a single

global distributed FFT). Guard cells are exchanged between ad-

jacent sub-domains at each time step. This technique is much

more local and can be efficiently scaled providing that the num-

ber of guard cells is not too high. It comes however with small

stencil truncation errors at sub-domain boundaries when the

stencil width p/2 is higher than the number of guard cells ng.

An important theoretical study [12] recently derived the analyt-

ical expression for the amplitude and phase of these truncation

errors. It showed that choosing a very high but finite order p

stencil can already strongly reduce truncation errors compared

to infinite order while still ensuring extreme accuracy. The

model also pointed out that very high order solvers p > 100

can be used with a moderate number of guard cells (ng ≪ p/2)

while still guaranteeing low levels of truncation errors (poten-

tially below machine precision). By providing the number of

guard cells required to obtain a given level of truncation error

as a function of solver order, time step and mesh size, this model

is crucial to enable the parallelization technique in production

simulations.

This new type of FFT-based solvers (later called ’local’ FFT-

based solvers) has been implemented and optimized in the high

performance library PICSAR [5, 7]. They led to very good scal-

ing on up to a million cores even for a moderate (ng < 10)

number of guard cells and high solver orders p = 100. They

notably enabled the very first accurate 3D simulations of laser-

plasma mirror interactions [7, 13, 14] that were used to interpret

the latest experimental results at CEA Saclay obtained with the

100TW UHI100 laser.
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Figure 2: Evolution of strong scaling and memory consumption (grid quantities) of the pseudo-spectral PIC algorithm with the number of guard cells ng used (8

guard cells: red, 16 guard cells: blue, 32 guard cells: green) on Cray XC40 THETA cluster at ALCF (using 32768-262144 KNL cores) with one OpenMP thread per

MPI. The FFTs are computed using the Intel MKL library. The simulation box consists in a homogeneous plasma with one particle per cell for both electrons and

ions. Grid size: 240 x 6144 x 12288 grid cells. Panel (a) represents the scaling of the full PIC loop. Panel (b) represents the scaling of the pseudo-spectral solver

only, including MPI-exchanges for grid quantities. Panel (c) represents the total memory consumption of grid quantities (ie field quantities).

1.4. Need for a more general massively parallel FFT-based

Maxwell solver

Yet, local FFT-based solvers may not be adapted to the mod-

eling of certain classes of problems where the level of trunca-

tion errors need to be lower than machine precision for instance.

In that case, the number of guard cells required ng might be

higher and can strongly affect the strong or weak scaling of the

local solver.

This is illustrated on Fig. 2 where we compared the strong

scaling of the local solver for different numbers of guard cells.

As we can see on panels (a) and (b), although cases with a mod-

erate number of guard cells succeed in keeping a good strong

scaling, cases with a high number of guard cells quickly loose

efficiency as the number of processors is increased. We can

also note on panel (c) that due to an increased data redundancy,

the total volume of memory required grows considerably as the

number of guard cells/processors is increased.

Both limitations in terms of memory consumption and strong

scaling of the local solver call for new parallelization strategies

allowing for the use of an arbitrarily high number of guard cells.

In this article, we present a novel massively parallel pseudo-

spectral solver that ensures excellent strong/weak scaling at

large scale (up to 800k cores) while allowing for the use of high

number of guard cells to significantly reduce truncation errors.

The remainder of the paper is divided into three additional sec-

tions:

1. In section 2, we present the principle of the new paral-

lelization method and its implementation in the high per-

formance PIC library PICSAR,

2. In section 3, we present the benchmarks of the novel

method on two large clusters (MIRA and THETA)

available at the Argonne Leadership Computing Facility

(ALCF),

3. In section 4, we conclude by presenting the perspectives

brought by this novel method for the field of laser-plasma

interaction.

2. Generalized massively parallel FFT-based Maxwell

solver

In this section, we propose a new parallelization technique

for the FFT-based Maxwell solver. This new type of FFT-based

solver (later called ’hybrid’ FFT-based solver) is a more general

approach than the local solver as it permits the use of an arbi-

trary high number of guard cells while still ensuring extremely

good scalability.

2.1. Principle of the new solver

The principle of the hybrid solver is illustrated on Fig. 1- (b).

Adjacent MPI sub-domains are grouped into MPI groups (two

groups on Fig. 1- (b)). Guard cells are now solely appended to

the MPI group boundaries (and not to each MPI sub-domain

boundaries). At each time step: (i) Maxwell’s equations are

advanced independently on a MPI group using a distributed

FFT and (ii) guard cells are exchanged between adjacent MPI

groups.
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As we now detail, this solver allows for significant memory

savings as well as a reduction of the total volume of data

exchanged.

2.2. Advantages in terms of memory

Let us assume a cubic mesh of size nx × ny × nz = n3 splitted

into np MPI sub-domains along each direction x, y and z. If ng

guard cells are used for each MPI sub-domain, the total memory

occupied by electromagnetic field arrays varies as:

Mloc
tot = O















n3
p ×

[

n

np

+ 2ng

]3














(1)

As expected, one can notice that this memory strongly in-

creases with the number of guard cells ng. In addition, the max-

imum number of processors that can be used along each axis for

this problem is given by n
np
= ng, for which the total memory

used culminates to:

Mloc
tot = 27Mn (2)

where Mn would be the total memory occupied by field

arrays without any extra memory coming from guard cells.

This maximum limit Mloc
tot does not depend on the number of

guard cells ng. However, this maximum limit is attained for a

much lower number of processors when ng ≫ 1, potentially

limiting the maximum number of processors that can be used

due to memory limitations.

Let us now assume that MPI domains are grouped and that

we use nmpi MPI processes per group along each axis. In this

case, the total memory occupied by electromagnetic field arrays

varies as:

M
hyb
tot = O















n3
p

n3
mpi

×

[

n

np

nmpi + 2ng

]3














(3)

For n
np
= ng, we now obtain:

M
hyb
tot =

(

2 + nmpi

nmpi

)3

Mn (4)

The memory gain of the hybrid solver compared to local

solver for the maximum limit of n
np
= ng is thus:

G3 =
Mloc

tot

M
hyb
tot

= 33

(

nmpi

2 + nmpi

)3

(5)

If we only make MPI groups along d axes (d 6 3), this for-

mula becomes:

Gd = 3d

(

nmpi

2 + nmpi

)d

(6)

The number of axis d along which MPI sub-domains can be

grouped directly depends on the number of axis along which

the distributed FFT can be parallelized. For the FFTW library

[15] (1D slab decomposition) we can parallelize the distributed

0 10 20 30 40 50 60
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G
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Figure 3: Gain Gd in terms of memory of the hybrid approach compared to

the local approach (corresponding to nmpi = 1). The curves represents Gd as

a function of the number of MPI sub-domains per group nmpi for d=1 (pur-

ple curve), d=2 (blue curve) and d=3 (red curve). Dashed lines represent the

asymptotic limit of Gd when nmpi >> 1.

FFT along z only (in Fortran) and thus group MPI sub-domains

solely along z (i.e d = 1). For the P3DFFT library [16] (2D

pencil decomposition), the distributed FFT can be parallelized

along y and z and MPI subdomains can therefore be grouped

along two directions (i.e. d = 2). The gain Gd as a function of

nmpi is plotted on Fig. 3 for different values of d = 1, 2, 3. One

can notice that for a few nmpi > 10 per groups, the total gain

can already approach its maximum asymptotic value (G = 27

for d = 3, G = 9 for d = 2 and G = 3 for d = 1).

2.3. Gains in terms of volumes of guard cells data exchanged

Similarly, one can estimate the gain in terms of volume of

guard cells data exchanged between the hybrid and local ap-

proaches in the limit n
np
= ng:

Gd
guard =

Mloc
tot − Mn

M
hyb
tot − Mn

=
3d − 1

(

1 + 2/nmpi

)d
− 1

(7)

For instance, the maximum gain on the total volume of guard

cell exchanged for d = 2 (with P3DFFT) and nmpi = 5 can be

as large as 8.

2.4. Advantages in terms of execution time of the FFT

Another important time gain expected from our hybrid par-

allelization technique emerges from the execution time of the

FFT. In the following, we first estimate the time complexity of

the distributed FFT algorithm. In the light of this estimate, we

then present the advantages of the hybrid solver compared to

the local and global solvers.
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2.4.1. Estimate of distributed FFTs computation time

Assessing the complexity of distributed memory FFT is

important to understand and take advantage of the scalabil-

ity of the hybrid solver. Distributed-memory FFTs perfor-

mance strongly depends on both communication network and

computer architecture. For multi-dimensional FFTs, most

distributed-memory FFT libraries follow the same computation

scheme detailed below. For each axis A of a 3D array:

1. If processors have all data in their local memory along A,

directly compute FFT along A.

2. If data along A is distributed on different processors, first

transpose the 3D array so that each processor have all data

along A and then compute FFT along A.

Following this computation scheme, we define the total time

to perform a 3D FFT as the sum of the time required to trans-

pose data Ttr and the time to compute the FFTs Tc:

TFFT = Tc + Ttr (8)

The time complexity of a 3D FFT is known to be:

Tc = αn3 log n3 (9)

where n is the global array size along each axis and α a

machine-dependent parameter.

For a distributed-memory FFT with pencil decomposition,

the data is distributed over nproc = n2
p processors. In this case

assuming perfect scaling, the computation time Tc per proces-

sor is:

Tc = α

(

n3 log n3

nproc

)

(10)

On the other hand, the transpose time Ttr is very network

depend. Following the same reasoning as in [16] to estimate

the communication time of the transpose operation, we get:

Ttr = β

(

n3

σbi[nproc]

)

+ γ

(

n3

nproc.σmem

)

(11)

where σbi(nproc) is the bisection bandwidth of the network,

β and γ two machine and network dependent parameters and

σmem is the memory bandwidth per MPI task.

For a large number of MPI tasks, we can neglect the term

γ n3

nproc .σmem
compared to β n3

σbi[nproc]
in eq (11) as the inter-node

data transposition is more costly than the intra-node data-

transposition (which only requires memory copies).

The bisection bandwidth is a function of the number of pro-

cessors and depends on the nature of the supercomputer inter-

connection network. For a 5D torus network such as the one

equipping the IBM BG-Q MIRA cluster at the ALCF, σbi[nproc]

should scale as nproc
4/5. For the case of the THETA cluster

(equipped with a Dragon fly network), σbi[nproc] should scale

as nproc. In practice, we estimated the bisection bandwidth by

fitting the global transposition time as a power of nproc. For

both MIRA and THETA, the best fit found for σbi[nproc] scales

as nproc
4/5. For THETA, this is lower than the expected the-

oretical value of nproc. As opposed to MIRA where compute

nodes are allocated contiguously, compute nodes on THETA

can be allocated at remote locations on the network, depending

on the cluster occupancy at a given time. This might explain the

lower-than-expected bisection bandwidth on THETA. Based on

the bisection bandwidth estimates, we therefore used the fol-

lowing expression of TFFT for both machines:

TFFT = α
n3 log n

nproc

+ β
n3

nproc
4/5

(12)
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Figure 4: FFT total execution time as a function of the total number of MPI

processes per group and the number of guard cells. The left panel represents

the data from Theta and the right pane represents the data from Mira. Dots

represent measured FFT execution time while dashed lines represent the fitting

curve following eq 12

From formula (12), one can understand why distributed-

memory FFTs do not scale well at large scale on massively par-

allel computer architectures: for a large number of processors

and a relatively small array size, the transpose operation will

dominate the FFT computation α
log n

nproc
≪

β

n
4/5
proc

hence resulting in

a poor scaling proportional to 1/n
4/5
proc. On the other hand, for

large scale data set and relatively small number of processors,

the computation term of the FFT will dominate the total time

and α
log n

nproc
≫

β

n
4/5
proc

thus resulting in a good scaling proportional

to 1/nproc.

2.4.2. Advantages of the hybrid solver over local and global

solvers

In the light of eq (12), one can note that our hybrid solver

makes it possible to reduce the relative weight of the transpose

operation time Ttr in the total FFT time TFFT by properly tun-

ing the number of MPI processes per group nmpi on which the

distributed FFT is performed. This should lead to a better per-

formance than purely global solvers in most cases.

In addition, the hybrid solver should also outperform the lo-

cal solver at large scale. Indeed, one can show that the execu-

tion time for the FFT (neglecting guard cell exchanges) for the

local solver scales as:

5



T loc
FFT ∝ n

[

n

np

+ 2ng

]2

log n

[

n

np

+ 2ng

]2

(13)

where we assumed a 2D domain decomposition. For a large

number of processors np such as n/np → ng, the execution time

T loc
FFT

becomes constant and the parallel efficiency of the local

solver drops considerably. In contrast, for the Hybrid solver this

execution time should write:

T
hyb

FFT
∝

n

n2
mpi

[

n

np

nmpi + 2ng

]2

log
n

n2
mpi

[

n

np

nmpi + 2ng

]2

(14)

where we assumed a 2D pencil decomposition and a negligible

transpose time compared to the FFT computation time. Choos-

ing large enough MPI groups such that n/npnmpi ≫ ng therefore

leads to:

T
hyb

FFT
∝

n2

n2
p

log
n2

n2
p

(15)

which would ensure very good scaling of the hybrid solver at

large scale.

2.4.3. Benchmarks of the hybrid solver vs local and global

solvers

To demonstrate the superiority of the hybrid solver over lo-

cal and global solvers, many 3D simulations were run on both

THETA and MIRA where the number of guard cells ng and MPI

processes per groups nmpi were varied (cf. Fig. 4). In all these

simulations, we used the P3DFFT library (pencil decomposi-

tion) to perform the distributed FFTs allowing to group nmpi,y

and nmpi,z MPI processes along the y and z directions. Below

are given details of the 3D cases run on MIRA and THETA:

• On MIRA: the array size per direction was chosen to

n = 2048 and the number of guard cells ng = 8, 16 and

64. 8192 BG/Q nodes were used with 8 MPI processes per

node (total of 216 MPI tasks). For each case, the total num-

ber of MPI processes per group nmpi,y×nmpi,z was varied as

follows: 24, 27, 210, 213 and 216, with nmpi,y × nmpi,z = 216

corresponding to the global solver and nmpi,y × nmpi,z = 1

to the local solver.

• On THETA: the array size was chosen to 512 × 4096 ×

4096 cells and the number of guard cells ng = 8, ng = 16,

ng = 32. 512 KNL nodes were used with 64 MPI per

node for a total of 32768 MPI tasks. Two MPI tasks were

used along the x direction. The rest of the 16384 MPI

tasks were split equally along y and z. The number of MPI

processes per group along y and z direction was varied

from nmpi,y×nmpi,z = 214 (global solver), to nmpi,y×nmpi,z =

1 (local solver).

For each simulation, we collected the averaged execution

time of FFTs among all MPI ranks. We chose to use the av-

eraged time between these ranks since the problem was very

well load-balanced between MPI processes (standard deviation

of execution time did not exceed 10% among all MPI ranks).

These execution times are displayed using colored markers on

Fig. 4. From these execution times, we could estimate the val-

ues of the parameters α and β in the theoretical expression of

TFFT (cf. eq (12)) using a least square algorithm. On MIRA,

we obtained α = 1. and β = 1.5414. On THETA, we obtained

α = 1. and β = 67.1 We checked that using different box sizes

and other simulation parameters led to similar results on both

Theta and MIRA. One can see on Fig. 4 (cf. dashed lines) that

the least square fit obtained leads to an acceptable matching be-

tween expected and measured timings.

Fig. 4 shows the optimal number of MPI processes per group

that minimizes the total execution time increases with the num-

ber of guard cells. For a low number of guard cells ng = 8,

a few MPI processes per group (around 8) seems the best ap-

proach whereas for a higher number of guard cells ng = 16,

20 MPI processes per group are required. As a consequence,

having a good guess about the values of α and β on a given net-

work/computer architecture can help tune the hybrid solver to

take advantage of the performance boost of our hybrid solver.

The procedure to find the optimal number of groups for given

domain decomposition/cluster architecture will be automated

and added to the PICSAR library.

Although the model of eq. (12) is quite simple and omits var-

ious operations involved in the FFT computation (data transfer

among one compute node / data transposition among one MPI

task ...), the error between the fit and the measured timing does

not exceed 22%. This can also be explained by the the fluctu-

ation coming from the 1D FFT computation since the n log n

scaling is not perfect.

Further tuning can be done on different machines to predict

the optimal number of MPI processes per group. This optimum

lies between 1 (global solver) and nproc (local solver), depend-

ing on the machine and the problem size. We have noted that

MIRA can support rather large MPI groups while keeping a

good scaling, whereas on THETA, our method gives better re-

sults with smaller groups. For critical cases where n
np
= ng

where ng is the number of guard cells, we have noticed that it is

always better to use the hybrid solver since it gives a substantial

gain in terms of performance and memory saving.

2.5. Coupling of the hybrid Maxwell solver with the PIC algo-

rithm

2.5.1. Brief reminder of the PIC algorithm

particle push

current/charge

deposition

Maxwell solver

field gathering

time

PIC

cycle

Figure 5: Sketch of the PIC cycle.
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The PIC algorithm self-consistently resolves Maxwell’s

equations on a grid and motion equations of plasma pseudo-

particles . The successive steps of the PIC cycle are sketched

on Fig. 5. At each time step:

• particles are advanced using equations of motion (particle

push) knowing the values of the electromagnetic fields at

their position,

• once particles are advanced, current/charge contribution of

each particle on the grid is deposited using linear or higher

order interpolation,

• once electromagnetic sources are known on the grid,

Maxwell’s equations are solved to advance electromag-

netic fields in time and space (Maxwell solver),

• once electromagnetic fields are known at next time step,

field values are gathered from the mesh to particle’s posi-

tion using interpolation, usually at the same order as the

deposition.

2.5.2. Dual grid decomposition for efficient load balancing

All the difficulty in coupling the hybrid solver with the PIC

algorithm lies in the efficient load balancing of (i) the particle

and particle-mesh operations (particle push, field gathering,

current/charge deposition) on the one hand and (ii) the Maxwell

solver on the other hand. This has been illustrated on panels

(a) and (b) of Fig. 6.

Panel (a) shows the domain decomposition D1 used to ef-

ficiently load balance particle and particle/mesh operations

(plasma is assumed to be homogeneous). Limits of MPI sub-

domains are highlighted using black solid lines. Guard cells re-

quired for particle-mesh operations (deposition/gathering) and

of width equal to the order of deposition/gathering have not

been represented for more clarity.

Panel (b) shows the domain decomposition D2 that would be

required to efficiently load balance the FFTs in the Maxwell

solver step. One can see that in that case, the limits of MPI

sub-domains in D1 do not coincide with the limits of MPI sub-

domains in D2 due to the presence of guard cells appended at

the MPI group boundaries and needed in the computation of

FFTs.

Load balancing all steps of the PIC loop thus requires keep-

ing two different grids: (i) one grid G1 for the particle and

particle-mesh operations (ii) one grid G2 for the FFTs. Note

that the additional grid G1 is also usually employed for smooth-

ing [17] or mesh refinement [18] in the PIC algorithm. This

comes with a slight additional memory cost (≈ 30%) that yet

still allows for large total memory gain thanks to the decrease

of guard cells data redundancy with the hybrid solver.

We now detail how the coupling between the two grids is

managed in the PIC cycle. At each time step:

1. Fields from G1 are copied to G2 (including copies of data

to the guard cells of MPI groups in G2). Overlapping grid

regions pertaining to same MPI domains on G1 and G2 are

P1 P2 P3

guard region

   MPI

group 1

P4 P5 P6

guard region

   MPI

group 2

P1 P2 P3

P4 P5 P6

(a)

(b)

Figure 6: Dual domain decompositions used to load balance (a) particle-

mesh/particle operations of the PIC loop (b) FFT computations of the Maxwell

solver step.

simply copied from G1 to G2. Other regions of G2 are

updated using MPI exchanges of grid data from G1 to G2,

2. Maxwell’s equations are solved using the hybrid solver on

G2,

3. After the Maxwell solve step, field data (without guard

cells) are copied from G2 to G1. Overlapping grid regions

pertaining to same MPI domains on G2 and G1 are simply

copied from G2 to G1. Other regions of G1 are updated

using MPI exchanges of grid data from G2 to G1.

Note that this implementation does not actually require direct

exchanges of guard cell data between MPI groups as mentioned

in the previous section. Guard cells of G2 are instead directly

filled from G1 during the first step of the coupling.

2.6. Implementation in the PICSAR library

The Particle-In-Cell Scalable Application Resource (PIC-

SAR) [19, 5] is an open-source high performance library in-

tended to help scientists porting their code to the next genera-

tion of exascale computers. PICSAR contains highly optimized

PIC routines exploiting the three levels of parallelism that mod-

ern architectures offer (Internode parallelism, Intranode paral-

lelism, Vectorization) as well as optimized parallel I/O routines.

The hybrid Maxwell solver has been fully implemented in

PICSAR and can currently be used by the WARP [20, 21] and
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WARPX [18] codes. Note that the WARPX code also imple-

ments a slightly different version of the dual domain decompo-

sition presented in this paper, which won’t be presented here.

PICSAR is written in Fortran 90 and can be compiled in three

different modes:

• As a Python module that can be directly coupled with other

codes also using python as the outermost software layer.

Right now, PICSAR is coupled to the WARP PIC code

through this layer,

• As a static/dynamic library to be used by other For-

tran/C/C++ codes. For instance, the WARPX and SMILEI

[22] PIC codes are presently coupled to PICSAR by this

means,

• As a self-consistent Fortran 90 PIC code. All tests per-

formed in this paper have been done through this mode.

To perform the distributed FFTs, PICSAR can use either the

FFTW or P3DFFT libraries:

• FFTW is a well-established GPL FFT library that can per-

form shared-memory/distributed FFTs . The distributed

FFT only supports parallelization along one axis (slab de-

composition), which is the last axis or z-axis in Fortran.

• P3DFFT is an open source library that can perform dis-

tributed FFTs using a pencil domain decomposition. By

offering parallelization over two axis, P3DFFT there-

fore offers more flexibility than the distributed version of

FFTW. To compute the FFTs locally, P3DFFT makes use

of existing shared-memory versions of other FFT libraries

(currently it only supports FFTW, ESSL).

Note that on Intel architectures, such as THETA, the MKL

library can be used instead of FFTW through the FFTW-MKL

wrapper, which allows performing DFT computations with the

MKL library without modifying FFTW directions. All per-

formance tests performed on THETA whether using FFTW or

P3DFFT have been done with MKL-FFTW support for shared-

memory FFTs, as this proved to bring better performance for

both local and hybrid solver. On MIRA, P3DFFT (with FFTW

support for shared-memory FFTs) and FFTW were used. To

use the hybrid solver, the user needs to specify some additional

simulation parameters related to the hybrid solver. These pa-

rameters are :

• the FFT library used for distributed FFTs (FFTW or

P3DFFT),

• the number of groups along y and z direction (in the z-

direction only when using FFTW),

• the number of group guard cells along y and z direction (in

the -direction only when using FFTW),

• an additional flag to enable/disable the use of ”optimized

communication strategy” to compute FFTs (Only available

in 3D). The ”optimized communication strategy” skips the

last data transposition after each FFT in order to save com-

putational time. Indeed the last transposition is only re-

quired to have the same data layout for the output array

and the input array. This saves computational time but

results in a different layout of field arrays in the Fourier

space that needs to be taken into account when solving

Maxwell’s equations. This has been included in PICSAR

that benefits from this optimization for both P3DFFT and

FFTW modes in 3D simulations.
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Besides, note that when using the hybrid solver, PICSAR cal-

culates the MPI groups topology and creates ngroup MPI sub-

communicators, each sub-communicator being appended to a

unique group. The data sizes on each MPI task is set by the

FFT library, which results in a new domain decomposition re-

lated to the Maxwell’s equations solve as illustrated on Fig. 6

(b). Finally, FFT plans are initialized by the FFT library on

each group.

The intersection between the two domain decompositions

is computed before the PIC loop starts, and a data exchange

protocol is determined according to the grid overlaps. If dy-

namic load-balancing is enabled for the simulation, then this

pre-processing step needs to be recomputed accordingly. In

practice, the data exchange step is rather computationally cheap

and does not add an important overhead to the PIC loop since

the majority of data exchanges are simple data copies within the

same MPI process. In PICSAR, the data exchange protocol is

done in a way that allows both blocking and non-blocking MPI

exchanges.

Finally, note that the PICSAR FFT-based Maxwell solver

now also supports absorbing boundary conditions implemented

using the two-step Perfectly Matched Layers algorithm recently

developed in [23].

3. Benchmark of the new solver at very large scale

The new solver has been benchmarked on both THETA and

MIRA at very large scale. All benchmarks considered the sim-

ulation of a 3D homogeneous plasma with 1 pseudo-particle

per cell for both electrons and ions. These benchmarks are pre-

sented below.

3.1. Benchmark on THETA

The hybrid solver on THETA has been benchmarked us-

ing both P3DFFT and FFTW MPI libraries. On THETA,

the FFTW-MKL wrapper has been used with FFTW MPI and

P3DFFT.

3.1.1. Benchmark with the slab decomposition

The box size is nx × ny × nz = 160 × 160 × 393216

cells, where larger array sizes were used along z to investi-

gate strong scaling for a large number of processors. Mul-

tiple simulations were run with different numbers of guard

cells ng = 8, 16, 32. The number of KNL nodes used was

Nnodes = 512, 1024, 2048, 3072, 4096 with 64 MPI tasks per

node and one OpenMP thread per MPI task. For each simu-

lation we used nmpi = 32 MPI processes per group.

As shown on Fig. 7, the slab decomposition allows a mem-

ory and performance gain of order ×2.5 against the local solver,

for a high number of guard cells. The strong scaling efficiency

of the hybrid solver for 32 guard cells is 87% between 512 and

3072 KNL nodes, while the local solver efficiency is only about

47%. Besides, note that the hybrid solver allows to run simu-

lations on more nodes than the local solver which is limited by
n
np
= ng (note that the last point of the 32 guard cells simulations

with the local solver is missing.

3.1.2. Benchmark with the pencil decomposition

In this benchmark the grid size was nx×ny×nz = 240×6144×

12288, where a larger size was chosen along y compared to the

slab decomposition. We kept the same number of guard cells

as for the slab benchmark (ng = 8, 16, 32). The number of MPI

processes per group was fixed to 64. We used 64 MPI processes

per node and one OpenMP thread/MPI task for all the tests.
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Results of this benchmark are displayed on Fig. 8. Here

again, the hybrid solver performs much more efficiently than

the local solver at large scale (especially for a large number of

guard cells) both in terms of time-to-solution (up to ×4 speed-

up) and memory used (up to ×8 less memory).

3.2. Benchmark on MIRA

On MIRA,the hybrid solver was benchmarked using the pen-

cil decomposition only. The grid size was nx × ny × nz =

256 × 2048 × 2048 cells. All the simulations were ran with 4

OpenMP threads per MPI process. Each MPI group was com-

posed of 256 MPI tasks. The number of nodes was varied be-

tween 512 to 16384.

This benchmark (cf. Fig 9) shows again a very good strong

scaling of the hybrid solver and a very good parallel efficiency

at large scale. Moreover, we show that MPI exchanges involved

in the PIC loop (apart from the global exchanges involved in

the FFT transpose) are less costly when using the hybrid solver

(due to a decrease of the total volume of MPI exchanges).

4. Conclusion

We presented a novel massively parallel technique for ultra-

high order FFT-based Maxwell solvers. As opposed to the

previously developed ’local’ technique, this ’hybrid’ technique

(which performs distributed FFTs on groups of neighbouring

MPI processes) is very general and allows a very good strong

scaling for an arbitrarily high number of guard cells. For large

numbers of guard cells, it notably increases the maximum num-

ber of MPI processes that can be used to parallelize computa-

tions. Besides, by reducing data redundancy, it also has huge

benefits in terms of memory savings compared to the ’local’

technique for a given problem size. Both the improvements in

strong scaling and memory savings will enable larger 3D PIC

simulations than previously accessible with the ’local’ tech-

nique.
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