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ABSTRACT OF THE DISSERTATION

Towards Causally-Aware Dynamical System Prediction

by

Song Jiang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Yizhou Sun, Chair

Understanding and predicting the dynamics is one fundamental problem that supports

various real-world applications. Deep learning dynamical models such as recurrent neural

networks (RNNs) and Transformer show powerful expressiveness in modeling sequential

data. However, pure deep learning models lack appropriate inductive bias for dynamics,

which limits their potential for more accurate dynamic predictions.

This dissertation aims to enhance deep neural networks’ capability of modeling

dynamics. My research starts by injecting physical law as prior knowledge into deep nets,

with the finding that such prior knowledge shapes the predicted trajectory desirably and

therefore achieves more accurate forecasting. However, such physical law is not available

for more general and complicated dynamics, such as retail time series, and energy

consumption sequence. To this end, we propose to use the Fourier series instead of task-

specific rules as a more general inductive bias to capture the periodicity. Unfortunately,

either specific physical law or general periodic series still just learns the association

between historical observations and the future series. However, answering counterfactual

questions like “Would the community protection be better had a different group of people

gotten vaccinated first?” is one key problem for decision-making in dynamical systems. A

dynamical is naturally represented by a graph, where units are nodes and the interactions

among them are edges. The second part of my research focuses on how to answer causal

questions on graphs and then extend to general dynamical systems.
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CHAPTER 1

Introduction

1.1 Overview

The world is a dynamical system and it never stops evolving. Dynamical data is ubiquitous

and essential in many practical applications. For example, predicting early citation

patterns of scientific papers provides a guide for researchers to find the hidden gems from

numerous publications, and predicting the disease diffusion process helps policymakers

better allocate medical resources.

Deep learning based dynamical models, such as recurrent neural networks (Hochreiter

and Schmidhuber, 1997; Chung et al., 2014a) and transformer (Vaswani et al., 2017), have

been the mainstream solutions because of their powerful expressiveness on sequential-

like data. However, deep neural networks are “black-box”, limiting the interpretability

of how and why the forecasting is made. Before the “deep learning era”, transitional

statistical methods, such as time series decomposition (Robert et al., 1990), model the

dynamics with specific mechanistic factors. These mechanistic factors naturally capture

and explain the causes of evolution. However, learning these factors usually requires

strong assumptions and prior knowledge. The simple abstraction of such knowledge used

in traditional methods can not fully capture the complicated dynamical pattern, and

therefore leads to a low accuracy of prediction. The first part of my research aims to

inject mechanistic factors into deep models as inductive bias to boost the dynamical

modeling. Specifically, for dynamical processes that can be described by physical laws,

we directly inject such physical laws as prior, and for more general dynamics that are

difficult to explicitly be modeled by physical laws, we use the Fourier series to capture the
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periodicity in dynamics. Although such prior knowledge can improve the performance,

models still learn the association between historical observations and forecasting, and

therefore can not answer causal questions like “Would the community protection be better

had a different group of people gotten vaccinated first?” However, such causal questions

are crucial to measure the impacts of certain interventions in dynamical systems. The

second part of my research, therefore, focuses on causal reasoning in dynamical systems,

i.e., estimating the causal effects. Since the units in a dynamical system mutually affect

each other and evolve collectively, it is natural to represent a dynamical system by a

graph, in which nodes are the units and edges capture their interactions. To answer causal

questions in dynamical systems, we first study causal effects estimation on graphs, and

then extend it into the dynamical context.

1.2 Dissertation Contributions

The primary goal of this dissertation is to study more powerful dynamical prediction, which

is accurate, interpretable, and able to answer causal questions. The major contributions

are listed as follows:

• Physical law as mechanistic factors. Using citation count prediction for newly

published papers as a running example, this dissertation demonstrates that injecting

physical laws as inductive bias enhances the accuracy of dynamics modeling.

• General periodic function as mechanistic factors. Physical law is not always

available. However, we observe that many dynamics has some repeatable patterns

over time, i.e., periodicity. This dissertation shows that the Fourier series can be a

general alternative for dynamics that exhibit periodic patterns.

• Counterfactual inference on static graphs. The units of a dynamical system

are mutually affected and therefore graph is naturally used to model a dynamical

system. As a prerequisite of counterfactual estimation in dynamical systems, this

dissertation first studies causal effects estimation on static graphs.

2



• Causal effects estimation in dynamical systems. Finally, this dissertation

extends causal effects estimation from static graphs into general dynamical systems.

1.3 Dissertation Outline

The remaining of this dissertation is organized as: 1) Chapter 2 introduces injecting

physical law as mechanistic factors for more accurate dynamics prediction (Jiang et al.,

2021); 2) Chapter 3 studies using the Fourier series as general prior for dynamical

prediction (Jiang et al., 2022); 3) Chapter 4 discusses counterfactual inference on static

graphs via representation learning (Jiang and Sun, 2022); 4) Chapter 5 finally presents

causal effects estimation in dynamical systems (Jiang et al., 2023); 5) Chapter 6 summarizes

this dissertation and discusses thoughts on future directions.
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CHAPTER 2

HINTS: Citation Time Series Prediction for New

Publications via Dynamic Heterogeneous Information

Network Embedding

2.1 Introduction

Predicting the “impact" of scientific research is crucial for authors to decide what to

study and where to submit their research, for readers or recommender systems to identify

important/relevant contributions in a vast scientific literature, and for funding agencies to

identify promising young scientists and fields for future support. Because impact is hard

to quantify, citation counts of scientific papers are often used as an approximation (Yan

et al., 2011; Sinatra et al., 2016; Evans and Reimer, 2009).

To predict future citations, previous works (Wang et al., 2013; Shen et al., 2014; Xiao

et al., 2016; Liu et al., 2017) have often relied on observed citations (i.e., leading citations

values) in the first few years after publication. These leading value-based solutions

have taken both parametric and machine learning approaches. (Wang et al., 2013; Shen

et al., 2014; Xiao et al., 2016) propose formal models to encode assumptions and prior

knowledge about how papers are cited (e.g., that citation trajectories follows a log-normal

distribution). They then use leading citations for the first several years after a paper is

published to infer paper-specific parameters to predict long-term citation counts. Machine

learning approaches have used representation learning via recurrent neural networks

(RNN) to automatically capture complex citation patterns from leading values, followed

by another RNN as decoder to make predictions (Abrishami and Aliakbary, 2019; Yuan
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et al., 2018).

Figure 2.1: Year from publication when an academic paper has accumulated more than
50% of cumulative citations. Citations only counted up until 12 years after publication.
Density of distribution shown in blue. Median shown in red. Zero citation papers removed.
Left: 351,926 Computer Science papers (AMiner) published from 2000 to 2005; Right:
71,142 Physics papers (APS) published from 1995 to 2000.

A significant problem for these approaches is that many scientific papers have peak

impact in the first few years after publication, when leading values are not yet available.

For example in both Computer Science and Physics, we find that half of all cited papers

accumulate the majority of their citations within five years of publication (Fig. 2.1). In

fields with very fast publication rates (e.g., machine learning) it is not practical to wait

three to five years before predicting impact. In this paper, we therefore tackle a new

challenge: generating citation time series for newly-published papers without any leading

values. To the best of our knowledge, we are the first to focus on predicting citation time

series from the time of publication event. While we focus on scientific impact prediction,

this “cold start" issue is common to many time series prediction tasks where earlier

outcomes are more critical than later ones (e.g., in-links flow of new webpages, revenue

streams for start-ups).

One way to avoid relying on leading values for impact prediction is to leverage clues

visible to domain experts before they even read the paper. By reading the title, abstract,

and bibliography, researchers can identify whether the paper is about a hot topic in

their field. Within the author list, they can identify productive labs and reputable

researchers. Papers in prestigious venues are also likely to be higher quality. To leverage
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these “metadata” for long-term citation prediction, previous studies (Yan et al., 2011, 2012;

Dong et al., 2016; Yu et al., 2014) have manually designed complex features. However,

feature engineering is time-consuming, non-transferable and rarely complete. Moreover,

these approaches rarely use the additional information encoded in the relationships

between metadata, or their historical temporal trends. Using historical and relational

context, domain experts can identify not just popular topics and reputable authors, but

also trending topics and “rising star” researchers.

To leverage all of the predictive “hints" available to domain experts before reading

the paper, we encode papers, authors, topics, and venues in a dynamic heterogeneous

information network (DHIN). A DHIN captures not just a paper’s metadata, but also

the relationships between those metadata and their historical trends. This additional

information allows us to predict citation counts without leading values, using our proposed

end-to-end framework called HINTS (Heterogeneous Information Network to Time

Series).

Composed of three modules, HINTS translates temporal and relational information

from a DHIN before publication into a citation time series after publication. In the first

module, we use a temporally-aligned GNN which concurrently learns effective embed-

dings for all nodes in each year’s heterogeneous bibliographic network. Because static

GNNs (Kipf and Welling, 2017a; Schlichtkrull et al., 2018; Hamilton et al., 2017a) do

not preserve the underlying evolution of nodes in a bibliographical network, we apply a

smooth regularizer to align the positions of nodes in the embedding space across time

stamps. This approach allows us to capture the temporal trends of nodes (e.g., the rising

star phenomenon). We show that this alignment regularization can be easily integrated

into GNN models and improves predictive performance. The second module is a weighted

imputation mechanism to estimate a sequence of embeddings for a new paper in the years

prior to its publication. By aggregating the dynamics of the metadata, this imputation

approximates the temporal trajectory of the new paper in the years before it is published.

This learned temporal trajectory serves as “pseudo”-leading values for time series pre-

diction after publication. The third module is a parametric generator based on (Wang
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et al., 2013) that encodes prior assumptions about citation processes to predict long-term

citation time series. Using an RNN followed by fully-connected layers, we transform the

imputed paper embedding trajectory into the parameters of this generator. In conclusion,

HINTS combines novel approaches for encoding DHINs (Module 1), synthesizing leading

values prior to publication (Module 2), and formal modeling assumptions (Module 3)

into an end-to-end framework that can predict citation times series from the time of

publication. We note that this framework can be generically adapted to other “cold start”

time series problems where pre-event temporal and relational data are available.

Empirically, we apply HINTS to two real-world academic datasets in Computer Science

and Physics with extensive experiments. The results show that HINTS achieves significant

and consistent improvements compared with baseline cold-start prediction approaches.

Ablation studies on variants of HINTS also demonstrate the importance of each component

of our proposed model.

Our contributions can be summarized as follows:

• We tackle a new, challenging “cold start" time series problem: predicting a new

paper’s citation time series without leading citation values.

• We propose a novel framework called HINTS that converts signals from a DHIN

into signals for citation time series generation.

• We conduct extensive experiments on two real-world large-scale bibliographic

datasets from different fields to demonstrate HINTS’ effectiveness at impact predic-

tion.

2.2 Problem Statement

In this section, we first introduce necessary definitions used throughout this paper. Then

we present a formal definition of the new paper citation time series prediction problem.
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2.2.1 Preliminaries

Definition 1. Heterogeneous information network. A heterogeneous information

network (HIN) (Sun et al., 2011b) is defined as a graph G = (V , E) with a node type

mapping function φ: V → T and an edge type mapping function ϕ : E → R. T and R

denote all the predefined types of node and edges, where |T | + |R| > 2.

A bibliographic network (Sun et al., 2011a; Chen and Sun, 2017) is a type of heteroge-

neous information network. Scientific papers are the central nodes, with their metadata as

neighbors. In our case, a paper’s metadata includes referenced papers, authors, keywords,

and a venue. Given these typed components, a network schema (Sun and Han, 2013)

G̃ = (T ,R) can be utilized to abstract the node types and edge types at the meta level.

The schema of our bibliographic network is shown in Fig. 2.2.

VenuePaper

Keyword

Author

Contains

Writes Publishes in

Cites

Figure 2.2: The schema of a bibliographic network. The nodes include paper, author,
keyword, and venue, while their four relationships are: paper-cites-paper, author-writes-
paper, paper-contains-keywords and paper-publishes in-venue.

In reality, bibliographic networks are constantly evolving. For instance, new papers

will be published, new researchers will join the community, and new keywords will be

created. These new entities will be added into the network, bringing new edges as well.

Formally, given T timestamps, we define a dynamic heterogeneous information network

as follows.

Definition 2. Dynamic heterogeneous information network. A dynamic het-

erogeneous information network (DHIN) is a sequence of HIN snapshots, denoted by
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⟨Gt⟩Tt=1 = {G1,G2, . . . ,GT}, where Gt = (V t, E t) (1 ≤ t ≤ T ) represents the heterogeneous

graph snapshot and its corresponding node set and edge set at time t.

In our case, a dynamic bibliographic network is a DHIN that consists of T sequential

snapshots of the evolving bibliographic network in every calendar year. Thus Gt is a

bibliographic graph snapshot at year t whose node and edge types are described in Fig. 2.2.

GRU

GRU

GRU

Dynamic Heteogeneous Information  
                 Network Embedding

  Temporally
aligned GNN

Weighted Embedding Imputation                 Time Series Genetator

Generator
T−3

T−2

T−1
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+

+
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up2,T−1

up1,T−2

up1,T−3

uv,T−3

uv,T−2

uv,T−1
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MLP

MLP

Dynamic Heterogeneous
 Bibliographical Network

Temporal Embeddings
    for Scholar Entities  

   A New Paper 
with its Metadata

Imputed Embedding Trajectory
            for the New Paper

A New paper published at  year T

Keyword

Venue

Author

Reference

Year: T-3

Year: T-2

Year: T-1

Figure 2.3: The overall architecture of HINTS. For a new paper published in year T ,
HINTS first learns temporally-aligned embeddings for each metadata neighbor in the
dynamic heterogeneous bibliographical network that exists in the years preceding T
(three in this example). An imputed embedding trajectory is built for the new paper
(purple node) by computing a weighted average of the neighbors’ embeddings. Note
that some metadata nodes may not exist across all previous timesteps. (e.g., a new
keyword proposed only one year ago). After temporal encoding by an RNN, the imputed
embedding trajectory is transformed into three interpretable parameters, based on which
HINTS generates the new paper’s future citation time series.

2.2.2 Problem Definition

We now formalize the new paper citation time series prediction problem using a dynamic

bibliographic network with network schema shown in Fig. 2.2. For each new paper

p, we represent its citation counts over next L years after publication as a sequence

cp = {c1p, . . . , clp, . . . , cLp }, where clp denotes the citation count paper p will receive in the

l-th year after publication.
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The New Paper Citation Time Series Prediction Problem. Given a dynamic

bibliographic network ⟨Gt⟩T−1
t=1 and a newly published paper p, our goal is to learn a

function f(·) that maps paper p, given its context described by ⟨Gt⟩T−1
t=1 , to its citation

time series in future L years’ after the publication year T , which is denoted as follows:

(
⟨Gt⟩T−1

t=1 , p
) f(·)−−→

{
c1p, . . . , c

l
p, . . . , c

L
p

}
. (2.1)

Note p is not in ⟨Gt⟩T−1
t=1 , and no citations are received before T .

2.3 Proposed Framework: HINTS

In this section, we introduce our proposed framework, HINTS. We first describe the

intuition behind why a DHIN provides key information for paper citation prediction.

Then we breakdown the three modules used by HINTS to turn signals from DHIN into

citation time series in detail. The overall framework of HINTS is shown in Fig. 2.3.

2.3.1 Motivation for HINTS

Although the reasons that some scientific papers achieve high impact are complicated,

there are several cues identifiable by domain experts and network scientists that can

predict impact. Ideally, representation learning of a DHIN should capture the following

factors predictive of citation:

Topic. A paper is more likely to be cited by readers from a similar research area.

Papers on hot or trending topics generally attract more attention and thus receive more

citations (e.g., artificial intelligence in recent years). Keywords can serve as proxies for

topic, because they are carefully selected by the authors to describe the new paper.

Author Status. Readers are more likely to search for papers by reputable authors,

the advisees of reputable authors, or rising stars because of the high quality of their work.

Venue Status. Because of peer review, readers are more likely to assume that papers

published in prestigious venues in their field are higher quality.
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Bibliography. Highly influential papers do not start from scratch, instead, they

stand on the shoulder of giants. (Dong et al., 2015) Citing high-impact papers is a baseline

signal for relevance and potential impact (Uzzi et al., 2013).

Temporal Cues. Domain experts rely not only on the content of metadata when

scanning papers, but also on knowledge of the temporal trends of these metadata. For

example, a “rising star" might not only have a well-known advisor (relational context),

but their network centrality will increase over time as they publish more influential papers

(temporal context).

“Fitness". While domain experts can quickly identify the above cues, there are other

intangible factors predictive of citation that are not encoded in metadata, such as the

rigor of the work or the value of its contributions. For example, the graph convolution

network (GCN) paper (Kipf and Welling, 2017a) was a milestone that allowed for new

applications of deep learning to graphs. Network scientists have used the term “fitness” to

generically capture these latent intangibles. (Wang et al., 2013; Ke et al., 2015)

The three modules of HINTS are designed to automatically detect these six types of

information and leverage them for citation prediction. Note that the first five factors

can be implicitly encoded in a DHIN connecting keywords, authors, venues and papers

(i.e., metadata) as Fig. 2.2 over time. In the first module, we learn low-dimensional

representation vectors of metadata across all time slices concurrently. The learned

embeddings naturally capture topic, author status, venue status bibliography, and their

trends. Because leading citation values do not exist for new papers, the second module

in HINTS uses these node embeddings to impute embeddings in the years before a

paper’s publication by averaging the embeddings of it’s metadata nodes in those years.

Because some factors (e.g., author status) are more predictive of citation than others

(e.g., bibliography), our framework learns weights to perform this averaging. The imputed

embedding trajectory encodes all above factors and serves as the pseudo-leading values

before publication. In the third module, we translate our imputed embeddings into the

parameters of a parametric citation generator. This model, adapted from (Wang et al.,

2013), encodes prior knowledge about citation processes and captures intangible factors
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(i.e., “fitness”) to predict citation counts in the years immediately following publication.

We introduce the details of these three modules in following subsections.

2.3.2 Dynamic Heterogeneous Network Embedding via Temporally-aligned

GNN

Given a static heterogeneous bibliographic network, several embedding methods (Chen

and Sun, 2017; Dong et al., 2017; Gui et al., 2018; Schlichtkrull et al., 2018) have been

proposed. Without loss of generality, we employ a relational graph convolution network

(R-GCN) (Schlichtkrull et al., 2018) to encode nodes into low-dimensional vectors. R-

GCN learns a relation-aware function that updates a node’s representation by weighted

aggregation of its neighbors according to the corresponding relation types. Formally,

given a dynamic bibliographic network ⟨Gt⟩Tt=1, each Gt can be seen as a static network at

time t. Let h
(k)
i,t ∈ Rd(k) be the embedding vector of node i in the k-th layer at time t,

where d(k) denotes the dimension for k-th layer, it will be updated via R-GCN as:

h
(k+1)
i,t = σ

(∑
r∈R

∑
j∈Nr

i,t

1

|N r
i,t|

W (k)
r h

(k)
j,t +W

(k)
0 h

(k)
i,t

)
, (2.2)

where R denotes the set of predefined types of edges/relations in the bibliographic network,

while N r
i,t represents the set of neighbors of node i under relation r ∈ R at time t. W

(k)
r

and W
(k)
0 are the weight matrices of k-th layer, and σ is a non-linear activity function.

Temporally-aligned Graph Neural Network. R-GCN shows superior performance

across many graph-related tasks, but extending it to dynamic settings is still challenging.

An important contribution of HINTS is a method for aligning graph neural networks

temporally. Because each individual bibliographical network describes a snapshot of the

research community in the corresponding year, we first apply R-GCN annually to encode

each bibliographical network separately. To ensure that each year’s embeddings are in

the same space (i.e., they are comparable), we make transformation weight matrices W (k)
r

and W
(k)
0 shared across different timestamps. Second, unlike general dynamic networks

where the characteristics of nodes may change rapidly (e.g., online social networks, or
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protein-protein interaction networks), most entities in dynamic bibliographic information

networks do not change too much within a short time frame. For example, a researcher’s

interests or venue’s theme are likely to be similar in adjacent years. Motivated by this

observation, we force the embeddings for the same entity in nearby years to be close to

each other by introducing a temporal smoothing regularizer L
⟨time⟩
t,t+1 :

L
⟨time⟩
t,t+1 =

1

|Vt ∩ Vt+1|
∑

i∈Vt∩Vt+1

∥ui,t − ui,t+1∥22, (2.3)

where ui,t denotes entity i’s embedding at year t, and Vt is the node set of Gt. After

multiple layers of R-GCN operations (we use 2 layers in practice), the final embedding

matrix for Gt is denoted as Ut ∈ RNt×D, where Nt is the number of nodes in Gt, and D is

the dimension of the embeddings. Note that although we use R-GCN here, our HINTS

framework can accommodate many graph neural networks, e.g., GCN (Kipf and Welling,

2017a), GAT (Veličković et al., 2018), HAN (Wang et al., 2019).

2.3.3 Weighted Embedding Imputation

To predict a newly published paper’s long-term impact at time of publication, we need a

distinct representation for it in the years before publication (i.e., pseudo-leading values).

Although a paper is new, the metadata it is linked to may already exist in previous years’

bibliographic networks. For example, a paper is usually published in a venue with a long

track record, by co-authors with several previous publications, and with keywords that

exist for quite a long time.

Using temporally-aligned GNN, we have already learned a vectorized representation

for each metadata node which encodes both its historical trend and relationships with

other nodes. Suppose one metadata node i appears in t-th year, and we have learned

all its embeddings after t, which is a sequence denoted as {ui,t, ui,t+1, . . . , ui,T}. This

sequence can be considered as an evolutionary trajectory for metadata i across time in

the embedding space.
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Given the above two preconditions, we can utilize the embedding sequences of a new

paper’s metadata neighbors to create an imputed embedding sequence that approximates

its trajectory in the years prior to publication. One option to impute such embeddings is

to directly use the same R-GCN operator defined in Eq. 2.2. However, this operator will

result in an embedding in a different space due to additional transformation. Alternatively,

inspired by the method in (Chen and Sun, 2017), we impute a new paper’s embedding

sequence by aggregating its metadata’s embeddings with type-aware trainable weights to

preserve the unequal contribution of different kinds of metadata.

Formally, for a new paper p, given its metadata set Np,t at time t and the metadata

type set M , its imputed representation vp,t at time t would be derived from:

vp,t =
∑
m∈M

∑
i∈Nm

p,t

wm ∗ ui,t/|Nm
p,t|. (2.4)

By applying Eq. 2.4 in every timestamp, we can construct an imputed embedding sequence

Vp = {vp,t, vp,t+1, ..., vp,T−1} for the new paper p, where t is the first year that p’s metadata

is observed. wm is the weight for metadata type m, which will be learned in training stage.

By integrating the temporal trends of its metadata, this imputed embedding sequence

could be a good proxy for the hypothetical trend of the paper before publication.

2.3.4 Time Series Generator

Base on the imputed embedding sequence for paper Vp, we predict future impact by

learning a function g(·) : Vp → clp that transforms network signals encoded in the

imputation Vp to the new paper’s long-term citation time series. One straightforward

solution is directly “translating” the imputation sequence to a citation sequence with

an encoder-decoder schema (e.g., seq2seq (Sutskever et al., 2014)). This approach has

two major limitations. First it cannot generate flexible long-term citation predictions.

Once learned, the decoder can only produce discrete sequences of predefined length.

Furthermore, citation time series of scientific publications have been successfully modeled

with some minimal assumptions (Wang et al., 2013; Sinatra et al., 2016). This solution,
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however, fails to leverage this important prior knowledge in prediction.

Intuitively, a paper’s impact fades gradually since new ideas and new research topics

always appear and attract researchers’ attention. Therefore, following (Wang et al., 2013),

we model a new paper’s citation trajectory as a log-normal survival function along time l,

which is formalized as:

Pp(l) =
1

l
√
2πσp

exp

[
− (ln l − µp)

2

2σ2
p

]
, (2.5)

where µp describes the timestamp when paper p will reach its citation peak, and σp

indicates the rate of decay of paper p’s citations. Moreover, as discussed in 2.3.1, the

“fitness" makes significant contributions to a paper’s citations, so another parameter ηp is

used to model it. The citation counts are thus positively related to ηp. Integrated across

ηp, the predicted cumulative citation counts Ĉ l
p of paper p at l-th year after publication

can be generated by

Ĉ l
p = α

[
exp (ηp ∗ Φ(

ln l − µp

σp

))− 1] (2.6)

where Φ(x) is

Φ(x) = (2π)−1/2

ˆ x

−∞
e−y2/2 dy. (2.7)

Following (Wang et al., 2013), a parameter α is added for the average number of

references each new paper contains. Note that α is a global parameter that will be fixed

during the model training process.

In Eq. 2.6, the three parameters ηp, µp and σp will be estimated for each new paper to

generate its citation time series. In contrast with (Wang et al., 2013) who use the first

several years’ (e.g., 10 years) of leading citation values to infer parameters, we learn these

three parameters by transforming the signals encoded in the DHIN prior to publication.

Specifically, the imputed embedding sequence Vp is first temporally encoded into a single

vector Ip through a recurrent neural network (RNN) with GRU (Chung et al., 2014b) to

model the new paper’s temporal trajectory, and then three fully connected layers decode
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Ip into the three parameters respectively. (See Fig. 2.3)

It is worth noting that compared to the straightforward encoder-decoder method,

our time series generator has three major advantages: (1) It can generate citation time

series predictions in a flexible manner, i.e., assigning l a time length, (2) It leverages

prior knowledge about citation patterns to achieve better performance, and (3) the three

parameters are reasonably interpretable. We show this in detail in Sec. 2.4.

After accumulating L years citation counts for new paper p with Eq. 2.6, we transform

the cumulative citation counts
{
Ĉ1

p , ..., Ĉ
l
p, ..., Ĉ

L
p

}
into citation counts in each individual

year and build the predicted citation time series as
{
ĉ1p, ..., ĉ

l
p, ..., ĉ

L
p

}
. This predicted

sequence is then compared to the ground-truth with a Mean Square Error loss function.

The loss function is defined as follows:

L⟨pred⟩ =
1

P

P∑
p=1

1

L

L∑
l=1

(log(ĉlp)− log(clp))
2, (2.8)

where clp is the ground-truth citation count of paper p at the l-th year after publication,

and P is the total number of papers. Following (Cao et al., 2017; Li et al., 2017), we use

log-scale for citation counts to smooth the contribution of each paper to the total loss

regardless of its citation level. Note that many paper actually won’t receive any citations,

so we add 1 count as pseudo citation value before taking the log transformation.

2.3.5 Objective

By putting the citation time series generator objective and the temporal alignment

regularizer aforementioned together, the overall objective function of HINTS J is defined

as :

J = L⟨pred⟩ + β

T−1∑
t=1

L
⟨time⟩
t,t+1 . (2.9)

For the alignment regularizer, in contrast to the method described in (Du et al.,

2018) that updates embedding in chronological order, we align embeddings simultaneously

across all timestamps such that the final aligned embedding Ut preserves every previous
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embeddings instead of only Ut−1. A hyperparameter β (β > 0) is used to control the

degree of alignment. All parameters in HINTS are updated by optimizing this objective.

2.4 Experiments

In this section, we evaluate HINTS’ efficacy in predicting citation time series for new

papers. We describe our experimental setting and then present the results compared

with baselines. We also breakdown the framework in ablation studies and interpretation

analyses to understand how HINTS works.

2.4.1 Experimental Setup

Datasets. We use two publicly-available bibliographic datasets in different fields for our

analyses: the AMiner (Tang et al., 2008) Computer Science dataset1 and the American

Physical Society (APS) Physics dataset2. AMiner covers papers in major computer science

venues. We use data from 2000-2009 to build the model and data from 2010-2015 for

evaluation. The APS dataset covers publications in APS physics journals. Similarly, we

use years 1995-2004 for training and years 2005-2010 for testing. The distribution of

cumulative citation counts (the number of papers vs. citation counts) for papers in the

test set is shown in Fig. 2.4. We note that a large number of papers are rarely cited after

publication, so we take a down-sampling to balance the highly and lowly cited papers in

model training.

We construct annual snapshots of the heterogeneous bibliographic network for both

datasets in each year with the network schema shown in Fig. 2.2. Because the keywords

are not explicitly provided in the original APS dataset, we generate them by combining

unigrams and key phrases extracted from the title of each paper using the method proposed

in (Shang et al., 2018).

1https://aminer.org/citation

2https://journals.aps.org/datasets
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Figure 2.4: Distribution of cumulative citation counts within five years after publication
for papers published in 2010 (AMiner), and 2005 (APS).

Baselines. Because the “cold start” citation time series prediction is a novel problem,

there are no exact baselines for comparison, to our knowledge. Many state-of-the-art time

series models (e.g., (Qin et al., 2017; Wang et al., 2018; Zhao et al., 2019; Manjunatha

et al., 2003)) are not applicable for prediction immediately after publication because they

require leading values. Instead, we compare HINTS to plausible alternatives. We consider

three types of baselines: 1) Models that use manually constructed features 2) Models

designed to predict information cascades (citation can be construed as an information

cascade), and 3) two variants of HINTS. The specific approaches we consider are:

• Gradient Boosting Machine (GBM): We extract scientific features designed

by (Yan et al., 2011; Castillo et al., 2007) except those that are not available in our

problem setting or data, e.g., “first-year citation,” h-index. We then use them to

predict time series with XGBoost (Chen and Guestrin, 2016).

• DeepCas (Li et al., 2017): A state-of-the-art deep learning model for popularity

prediction based on random walks across an information cascade graph. Because

of the “cold start” setting, we directly use the ego network of a new paper in the

snapshot of the DHIN in the publication year as the initial cascade graph.

• HINTS-GCN: A variant of HINTS using a homogeneous GCN (Kipf and Welling,

2017a) instead of R-GCN.

• HINTS-Seq: A variant of HINTS that replaces the citation generator module
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with seq2seq (Sutskever et al., 2014), directly transforming imputed embedding

sequences into discrete citation sequences.

• HINTS: Our proposed framework whose three modules are described in Sec. 2.3.

Evaluation Metrics. Following (Li et al., 2017; Cao et al., 2017), we use two

log-scaled metrics to compare different models:

Mean Absolute Log-scaled Error (MALE)

MALE(cl, ĉl) =
1

P

P∑
i=1

| log(ĉlp)− log(clp)|. (2.10)

Root Mean Square Log-scaled Error(RMSLE),

RMSLE(cl, ĉl) =

√√√√ 1

P

P∑
i=1

(log(ĉlp)− log(clp))
2. (2.11)

where clp and ĉLp are the ground truth and predicted citation counts of paper p at the l-th

year after publication respectively, and P is the total number of papers. As discussed in

Sec. 2.3.4, we use log transformations because citation counts vary widely.

Implementation Details. We implement HINTS using Tensorflow 1.14. For the

DHIN embedding module, we use two layers of GNN with 64 and 128 node (for both

R-GCN and the variant with GCN). In the GNN layers, node features are randomly

initialized in four different ranges according to the node type. The hidden dimension of

HINT’s RNN temporal encoder is set as 50. Finally, the hidden dimensions of three fully-

connected layers are 20, 8, and 1, respectively. For HINTS-Seq, we also use GRU (Chung

et al., 2014b) as the RNN decoder. The coefficient of alignment β is set as 0.5.

For training hyperparameters, we set the learning rate to 0.01 for both datasets. We

train for 700 epochs with a batch size of 3000 papers for AMiner, and 500 epochs with a

batch size of 1200 papers for APS. We randomly initialize all the parameters and optimize

them with Adam (Kingma and Ba, 2015a). We run every experiment three times and

report the average. All the experiments are conducted on a desktop machine with a 4-core
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i7-5860k CPU, 40G memory, and two Nvidia Titan X GPUs. The total running time (not

including data prepossessing) is around 24 minutes for AMiner and around 10 minutes on

APS with the above settings.

Table 2.1: Results of effectiveness experiments on AMiner and APS datasets.

Dataset Model MALE RMSLE

1st year 2nd year 3rd year 4 year 5 year overall 1st year 2nd year 3rd year 4 year 5 year overall

AMiner

GBM 0.673 0.971 1.069 1.383 1.332 1.085 0.753 1.108 1.283 1.624 1.685 1.291
DeepCas 1.003 1.103 1.068 0.987 1.025 1.037 1.119 1.325 1.366 1.330 1.346 1.321

HINTS-GCN 0.824 0.904 0.919 0.958 1.019 0.925 0.936 1.119 1.152 1.176 1.196 1.116
HINTS-Seq 1.139 0.953 0.969 0.980 0.992 1.011 1.375 1.164 1.206 1.216 1.223 1.237

HINTS 0.783 0.866 0.879 0.877 0.865 0.854 0.976 1.110 1.146 1.155 1.154 1.111

APS

GBM 0.952 0.968 0.972 0.982 1.103 0.995 1.151 1.168 1.189 1.214 1.355 1.215
DeepCas 0.993 0.998 0.966 0.931 0.886 0.955 1.198 1.221 1.195 1.160 1.114 1.178

HINTS-GCN 0.949 0.950 0.939 0.917 0.906 0.932 1.153 1.166 1.160 1.133 1.124 1.147
HINTS-Seq 1.263 0.951 0.959 0.969 0.975 1.023 1.397 1.219 1.199 1.193 1.119 1.225

HINTS 0.934 0.936 0.923 0.903 0.875 0.914 1.135 1.151 1.142 1.127 1.102 1.132

2.4.2 Numerical Comparison Results

In this part, we examine the performance of HINTS comprehensively. We compare

HINTS with baselines, conduct ablation studies on components and objective of HINTS,

and analyze differences in HINTS ability to predict trajectories for low-citation and

high-citation papers.

Comparison with Baselines. Table. 2.1 shows the first five years of predictions

errors for all models. In general, HINTS outperforms our proposed baselines in almost

every time step. On AMiner, HINTS outperforms the best baseline, DeepCas, by 17.6%

in terms of MALE and 15.8% in terms of RMSLE. And these numbers are 4.3% and

3.9% on APS. We speculate that DeepCas may suffer in “cold start” settings where

the initial bibliographic cascade graph is quite small. The strong performance of GBM

(particularly on AMiner) in early years is due to overfitting the majority papers that

do not receive citations. However, GBM performance degrades sharply over time. In

contrast, HINTS actually achieves better scores over time, indicating the importance of

leveraging parametric assumptions for long-term citation prediction.

Ablation Study on HINTS Components. We further compare HINTS with two

variants in order to evaluate the effectiveness of each module. First, we find that HINTS
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consistently outperforms the HINTS-Seq variant (Table. 2.1), again indicating the value

of supplementing contextualized embeddings with domain knowledge encoded in formal

models. Second, while HINTS-GCN outperforms HINTS-Seq, there is still a non-trivial

gap in performance between HINTS-GCN and HINTS. This result underscores the utility

of modeling heterogeneous relationships between metadata for citation prediction.
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Figure 2.5: The average RMSLE across five years on AMiner and APS datasets with 10
different alignment coefficients.

Ablation Study on Alignment. The learning objective of HINTS balances citation

prediction and the temporal alignment of embeddings. To measure the impact of the

alignment regularizer (
∑T−1

t=1 L
⟨time⟩
t,t+1 ), we conduct another ablation experiments with 10

different alignment coefficient β ranging from 0 to 0.9.

We compare the average RMSLE across five years on testing set of both AMiner and

APS datasets. We also run HINTS three times for every β and report the mean results

in Fig. 2.5. The optimal βs for AMiner and APS datasets are 0.6 and 0.2, respectively.

Although the two datasets rely on the alignment regularization to varying degrees, these

results show regularization improves performance for both datasets (especially APS) by

learning more accurate embeddings for the DHIN. We also note that performance begins

to degrade when β>0.7. This is because a larger β forces embeddings across years to

be too similar. Actually, an extreme case is when β is large enough, the embeddings

over time would be restricted almost the same, which makes the embeddings no longer

reasonable.

Sensitivity to Paper Impact. The number of citations received by scientific papers

varies widely. To evaluate HINTS’ ability to accurately predict citations for papers
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Figure 2.6: Predicted versus ground truth citations for AMiner papers published in 2010,
stratified by log-scale cumulative citation count. Solid shapes indicate mean, ribbons
cover 95% of data. From left: papers in 1-10th percentile, papers in 45-55th percentile,
papers in the top 90th-99th percentile.

of varying impact, we stratify AMiner papers into three groups based on their ground

truth log-scale cumulative citation count five years after publications: lowly cited papers

(bottom decile), moderately cited papers (45-55th percentiles), and highly-cited papers

(90-99th percentiles). Fig. 2.6 shows the average predicted time series for all papers within

each of these groups compared with their corresponding average ground truth trajectory.

HINTS seems to over-predict low-citation papers over time. This is likely because our

parametric generator is designed to model the trajectories of cited papers, while many

of these papers receive no citations. In future work, this could be addressed with a

zero-inflation parameter. However, HINTS performs remarkably well for highly-cited

papers and shows tolerable error for medium-cited papers. The strong performance on

very high impact papers suggests HINTS could be useful for both scientists and funders

to spot “hidden gems” in the scientific literature.

2.4.3 How HINTS Works

In this part, we perform a series of detailed analyses to better understand the performance

of HINTS. We first compare how the algorithm uses metadata differently across fields.

Next, we explore the imputed embeddings and learned citation time series parameters

through visualization.
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Importance of Metadata Types in Imputation. Not all metadata contain equal

information for citation prediction. To understand how HINTS uses different types

of metadata, we normalize the learned imputation weights using a softmax function

(Table. 2.2). Unsurprisingly, we find that each reference contributes comparatively little

information, while author, venue and keywords are more important predictors of citation

time series in both Computer Science and Physics. However, these three factors play

different roles between CS than Physics. The distinction possibly reflects differences in

how these two communities operate (e.g., perhaps Physics communities converge more

strongly on papers in top journals).

Table 2.2: Learned weights of metadata for imputation.

Field Reference Author Venue Keywords

AMiner (CS) 0.181 0.243 0.281 0.295
APS (Physics) 0.191 0.260 0.312 0.237

Visualization of Imputed Embeddings. To confirm that our imputed, temporally-

encoded embeddings contribute to prediction, we randomly sampled 1000 papers from

each strata described in 2.4.2 from AMiner, i.e., 1-10th percentile, 45th-55th percentile

and 90-99th percentile (3000 papers in total). We use t-SNE (Maaten and Hinton, 2008)

to project embeddings into a two-dimensional space (Fig. 2.7). Each point represents a

paper, which is colored by its log-scale 5-year cumulative citation count after publication.

The embeddings clearly capture information about cumulative citation counts, as

evidenced by the gradient from blue points (left-top) to red points (right-bottom). However,

the gradient is not perfect; consistent with Fig. 2.6, the bottom 10% of papers is widely

scattered, and some are mixed with the top 10%. This overlap shows that two papers

with the same metadata can still have vastly different outcomes due to differences in

quality or chance preferential attachment. Although metadata are strongly predictive of

citation, they can’t capture everything that contributes to citation for new papers.

Interpretation of Parameters in Time Series Generator. Modeled after the

parameters in (Wang et al., 2013), we expect our three citation parameters “fitness” η,
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Figure 2.7: 2D t-SNE projections of imputed embeddings from AMiner sample. Embed-
dings color is coded by log-scale five-year cumulative citation count: blue means lower
citations while red means higher.

“peak time” µ and “rate of decay” σ described in Sec. 2.3.4 to capture different aspects

of the citation process. Notably Fig. 2.8 shows a strong correlation between “fitness” η

and the cumulative citation counts. Furthermore, highly-cited papers have a larger σ,

indicating their longer survival time due to preferential attachment. The interpretability

of these parameters reinforces our conclusion from the ablation analysis with HINTS-Seq:

leveraging domain-specific knowledge is crucial for accurate time series prediction.

η

μ

σ
Figure 2.8: AMiner papers with respect to citation function parameters η, µ, σ. Papers
are colored by log-scale five-year cumulative citation count: blue means lower citations
while red means higher.
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2.5 Conclusion

In this paper, we tackle a new problem: citation time series prediction from the time

of publication, without leading citation values. We propose a novel framework, HINTS,

which transforms the historical and relational signals encoded in pre-publication dynamic

bibliographical networks into predicted citation trajectories for new papers. More generally,

HINTS demonstrates how relational and temporal information in DHINs can be combined

with interpretable, domain-specific statistical models for effective citation prediction.

The novelty of HINTS comes from the framework, and future work could substitute

each of the three modules with other algorithms (e.g., GAT (Veličković et al., 2018) for

node embedding, point processes for parametric modeling) as needed to tackle other

cold-start prediction problems. In extensive experiments, we demonstrate that HINTS is

effective for citation prediction. We believe HINTS could be useful for scientists, granting

organizations, and academic recommender systems seeking to identify “hidden gems" with

high potential for future impact.
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CHAPTER 3

Bridging Self-Attention and Time Series Decomposition

for Periodic Forecasting

3.1 Introduction

Time series is a fundamental data abstract that has diverse real-world use cases, such

as product sales (Bandara et al., 2019) and healthcare analytics (Caballero Barajas

and Akella, 2015). With powerful expressiveness for sequential data, neural forecasting

models have been introduced into time series with various attempts. For example,

DeepAR (Salinas et al., 2020), based on recurrent neural networks (RNNs), outperforms

the traditional statistical models by significant margins. Inspired by the success in natural

language, transformer architecture (Vaswani et al., 2017) has been introduced in modeling

time series data recently. (Li et al., 2019; Zhou et al., 2021) refine the vanilla canonical

self-attention (Vaswani et al., 2017) by exploiting the sparsity of the attention scores.

Their customized attention mechanisms lower the high computational cost in modeling

long-term time series. (Wu et al., 2021) expands the embeddings aggregation from

point-wise in above works to series-wise. The attention scores are computed over the

similar subsequences induced by shifting the original sequence along time. Although

remarkable progress has been made in applying these sequential neural networks on

time series, we argue that standard deep learning models are not capable of learning

the periodicity of time series sufficiently. Fig. 3.1 shows such a failure example. Recent

study (Ziyin et al., 2020) reveals that the reason is standard neural nets do not have any

modules to capture the periodicity explicitly in their architectures. However, real-world

time series typically exhibit stronger periodicity than general sequential data such as
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audio or text. The inability to learn periodic functions limits the potential of existing

neural models for more accurate time series forecasting.

Figure 3.1: Forecasting v.s. ground-truth on the Electricity Transformer Temperature
hourly (ETTh1) dataset (Zhou et al., 2021). Values are scaled. The standard neural
model fails to fully learn the periodicity, aligned with the conclusion in (Ziyin et al., 2020).
We propose DeepFS to capture the periodic fluctuations for more accurate real-world
time series forecasting.

Unlike deep learning, classical time series analysis methods are commonly built on

periodicity and other physical-mechanistic factors. A widely used mechanistic approach

is time series decomposition (Hyndman and Athanasopoulos, 2018; Robert et al., 1990).

It destructs a time series into seasonality, trend (or trend-cycle), and irregularity, which

reflect periodicity, long-term movements and random variation, respectively. However,

extrapolating based on these factors alone suffers from poor forecasting accuracy (e.g.,

ARMIA (Hyndman and Athanasopoulos, 2018)). This is because the simple decomposition

is not fully capable of modeling practical time series where the long-term sequential

patterns are complicated.

Contributions: In this paper, inspired by their complementary strengths and

weaknesses, we bridge the deep sequential networks and time series decomposition through

a simple yet effective encoder-decoder paradigm. The proposed model DeepFS preserves

temporal patterns through a self-attention mechanism, from which a periodic inductive

bias is employed to capture periodicity for more accurate time series forecasting.

DeepFS is an end-to-end encoder-decoder framework. Composed of the self-attention

layers, the encoder converts the historical leading series into latent representations by
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preserving the inter-dependencies of each timestamp. To capture the periodicity and trend

of a sequence, we integrate the time series decomposition in the decoder. Because only an

observed sequence can be decomposed, we reformulate the infeasible decomposition of the

forecast output as a learning reconstruction problem, namely predicting the periodic and

non-periodic components. Specifically, DeepFS uses the Fourier series to represent the

periodic component and transforms the leading series embeddings into the parameters

of Fourier bases. The learned Fourier series is a periodic inductive bias that explicitly

discloses the periodicity of the sequence for better forecasting. Moreover, we use another

projection network to generate the prediction of the non-periodic components (i.e., trend)

from the leading series embeddings. The final forecasting is an additive combination of

these periodic and non-periodic series.

A second benefit of DeepFS is interpretability. In contrast to the lag analysis (Wu et al.,

2021) or score based interpretation (e.g., salience maps (Ismail et al., 2020), attention

weights (Alaa and van der Schaar, 2019) and feature importance (Lim et al., 2021)),

DeepFS learns the mechanistic factors explicitly, including periodicity and trend. For

example, we show that DeepFS extracts 24-hour and 12-hour as the periodicity of the

wet bulb temperature in Sec. 3.4. Such factors explicitly explain how the predictions are

generated from historical observations and offer fruitful insights into practices such as

business planning and decision making.

Empirically, we first justify the periodicity learning module on synthetic datasets. We

then present experimental results on four real-world datasets, where DeepFS achieves

accuracy gains compared to the state-of-the-art transformer models. We also provide

analyses of the insightful periods learned from real-world datasets, and study why and

when DeepFS can work. We summarize the main contributions of this work as follows:

• We propose DeepFS, a novel model that bridges self-attention and time series decompo-

sition for accurate forecasting.

• We propose to inject Fourier series as a learnable periodic inductive bias in DeepFS to

capture periodicity.
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• DeepFS is also an explainable model that provides insightful interpretations for real-

world tasks.

• We conduct comprehensive experiments and analyses on both synthetic and real-world

data, demonstrating the effectiveness of DeepFS on time series forecasting.

3.2 Problem Setup

In this section, we introduce the univariate time series forecasting problem. Given a

L-length observed series Y ′ = [Y t0−L+1, ..., Y t0 ] ∈ RL, where t0 is the last timestamp with

observation, we aim to predict the future H-length sequence Y = [Y t0+1, ..., Y t0+H ] ∈ RH .

Following the mechanistic decomposition, we hypothesize that the future time series Y is

composed of periodic series (seasonality) P = [P t0+1, ..., P t0+H ] ∈ RH , and non-periodic

series (trend) C = [Ct0+1, ..., Ct0+H ] ∈ RH . Note that both the periodic and non-periodic

series are at every timestamp in the future, and are therefore aligned with the forecasting

horizon (with same length H). Our goal is to learn a function f(·) that maps the past

observations Y ′ to the periodic series P and non-periodic series C separately, to further

reconstruct the future sequences Y . f(·) is formalized as:

[Y t0−L+1, ... , Y t0 ]
f(·)−−→[P t0+1, ..., P t0+H ], [Ct0+1, ..., Ct0+H ]. (3.1)

Then the final forecasting is an additive combination of P and C, i.e., [Y t0+1, ... , Y t0+H ] =

[P t0+1, ..., P t0+H ]+ [Ct0+1, ..., Ct0+H ]. We consider capturing the periodicity of future time

series Y explicitly for better forecasting. A real-world time series is commonly affected by

various causes, e.g., daytime-night, workday-weekend or seasons, and thus its periodicity

may consist of multiple sub-components. For example, the product sales typically exhibit

weekly and seasonal repeating patterns. We further denote T = [T 1, ..., T S] ∈ RS the

periodicity of time series Y where S is the number of periodic components. Note that the

periodic series P can be reconstructed based on the periods T .
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3.3 Methodology

In this section, we introduce our framework, DeepFS. We argue that a decent design of

f(·) in Eq. 3.1 should follow three principles: (1) simple, with no verbose modules, yet

effective; (2) the architecture should be expressive to model the complicated temporal

pattern of time series; (3) the periods T should be extracted as much as possible; (4) the

prediction should be interpretable for practitioners.

3.3.1 Overview of DeepFS

Following the above four principles, we depict our proposed model DeepFS in Fig. 3.2.

DeepFS follows the encoder-decoder paradigm, where the encoder coverts the leading

values into latent representations at each timestamp with self-attention mechanism,

followed by a decoder that transforms these embeddings to the predicted periodic series

and the non-periodic series, which reflect periodicity and trend, respectively. The final

forecast series is reconstructed by combining the periodic and non-periodic series, following

the additive decomposition model (Hyndman and Athanasopoulos, 2018). We breakdown

these two modules in detail in the following sub-sections.

3.3.2 Time Series Self-Attention

The RNNs and their variants (Schuster and Paliwal, 1997; Salinas et al., 2020; Qin et al.,

2017; Gasthaus et al., 2019) process the time series data iteratively under the Markov

property assumption, i.e., the hidden state encoded at a timestamp is only retained

for the next timestamp. Therefore, the impact of a timestamp becomes trivial if the

sequence is long, namely RNNs fail to capture long-distance dependency. Hence, we use

the self-attention network (Vaswani et al., 2017) to model the observed leading time

series as it breaks the Markov assumption and is capable of capturing the dependencies

between two timestamps even if they are far apart. In this work, we follow the time series

self-attention proposed in (Zhou et al., 2021) for time series data, which encodes the
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MLP MLP

aN. . .a1 φN. . .φ1
MLP

Fourier Series

Y′ = [Yt0−L+1, . . . , Yt0]Observed series

et0−L+1

et0

...

+

Observed horizon Forecasting horizon

Weights Phases

Final forecast
Y = [Yt0+1, . . . , Yt0+H]

Non-periodic forecast
C = [Ct0+1, . . . , Ct0+H]

Periodic forecast
P = [Pt0+1, . . . , Pt0+H]

Decoder

Encoder

Leading embeddings E

Figure 3.2: Overview of DeepFS. DeepFS first encodes an observed leading sequence to
the leading embeddings E via self-attention. E is then transformed to the parameters of
Fourier series (the weights and phases of sinusoidal bases) to predict the periodic series
P . Separately, E is also converted to a non-periodic series C that represents the trend
prediction. The final time series forecast is an additive combination of the periodic P
and non-periodic C.

value at a time step into latent embeddings via computing its attention strengths with all

timestamps in the sequence.

Leading Embeddings Initialization. For later purposes of the attention computa-

tion, we first project each numerical value of the leading sequence Y ′ to a du-dimensional

vectorized representation via a projection operator ϕ(·) : R → Rdu as in (Zhou et al.,

2021). The mutual attention mechanism in self-attention inherently discards the relative

position contexts, yet the temporal order has proven essential for time series (Li et al.,

2019; Zhou et al., 2021). Therefore, we also include the positional encoding τ(·) : R → Rdu

and temporal encoding υ(·) : D → Rdu used in (Zhou et al., 2021), which inject the local

relative orders and the global contexts of timestamps (e.g., hour, week, month) into the

sequence representations, respectively. We denote the global contexts of timestamp t
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by t̃ ∈ D, where D is the space of global time3. The final initialized leading embeddings

ut ∈ Rdu at timestamp t is then formalized as:

ut = ϕ(Y t) + τ(t) + υ(t̃). (3.2)

Leading Embeddings with Self-Attention. With the initialized leading embed-

dings sequence U = [ut0−L+1, ..., ut0 ], we then compute the de-dimensional embeddings

E = [et0−L+1, ..., et0 ] (et ∈ Rde) for the observed leading sequence Y ′ that capture its

temporal patterns and the inter-dependencies between timestamps via the self-attention

mechanism. The self-attention computation is conducted with three matrices: query

Q ∈ RL×dq , key K ∈ RL×dk and value V ∈ RL×dv , which are derived from the initialized em-

beddings U via three corresponding linear transformations lq : Rdu → Rdq , lk : Rdu → Rdk

and lv : Rdu → Rdv , respectively. dq, dk, dv are the dimensions of the vectors in Q, K and

V , where dq = dk for the following attention scores computation. The attention based

aggregated embeddings ot ∈ Rdv for the leading timestamp t is then formalized as:

ot =
∑
i

exp(qtk
⊤
i /
√
dq)∑

j exp(qtk
⊤
j /
√
dq)

vi, (3.3)

where the qt is the query vector at timestamp t from Q, and i, j are the timestamp

indicators of K and V . The final leading embeddings et is then transformed from ot with

a further linear projector le : Rdv → Rde . The above embeddings aggregation is under the

multi-head setting following (Vaswani et al., 2017).

With the time series self-attention module, the final leading embeddings E = [et0−L+1, ..., et0 ]

overcome the long distance challenge of the recursive based temporal aggregation. Note

that although we use the attention mechanism from (Zhou et al., 2021), DeepFS is flexible

to accommodate other time series transformer methods such as (Li et al., 2019; Wu et al.,

2021; Kitaev et al., 2020).

3We use “year-month-day-hour-minute-second” for D in practice.
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3.3.3 Decomposition Based Forecasting

With the leading embeddings E, a straightforward way to model sequential data is using

another neural module to convert E into prediction, either a recursive structure (Sutskever

et al., 2014) or self-attention (Zhou et al., 2021). Compared to general sequential data such

as natural language or audio, we hypothesis that real-world time series are typically more

periodic. For example, the traffic volumes exhibit daily and weekly repeating patterns.

Intuitively, capturing such periods explicitly has the potential to boost the forecast of

future series. However, standard neural nets can not learn the periodicity of time series

sufficiently. This is because they do not contain any modules that can represent the

periodic functions (Ziyin et al., 2020).

To model the periodicity of time series, we take inspiration from the time series

decomposition (Hyndman and Athanasopoulos, 2018). It deconstructs an observed time

series into periodicity, trend and irregularity. We refer to the latter two as non-periodic

components. We propose to integrate the time series decomposition in our model, with the

mind of capturing periodicity, to generate the forecast series from the leading embeddings

E. However, the prerequisite of decomposition is an observed time series, yet the forecast

sequences are not available until the model makes final prediction. Therefore, as Fig. 3.2

shows, we transform the decomposition into a learning based reconstruction problem, i.e.,

instead of decomposing an observed sequence, we predict the future periodic and non-

periodic series based on the leading embeddings E, and then combine them to reconstruct

the future series.

Periodic Series Prediction. A periodic sequence can be represented by the Fourier

series with appropriate sinusoidal bases, parameterized by weights, periods and phases.

Therefore, we inject the Fourier series as a periodic inductive bias in DeepFS to predict

the periodic series P = [P t0+1, ..., P t0+H ], which is formalized as:

P = a0 +
N∑

n=1

an sin(
2πnt

p0
+ φn), (3.4)
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where t ∈ [t0 + 1, ..., t0 + H] (the forecast horizon). N is the number of sinusoidal

bases, an and φn are the weights and phases for the n-th sinusoidal basis, while a0 is a

constant bias term. The periods of the sinusoidal basis set include the basic period p0

and all its n-th harmonics. Note that to represent an arbitrary periodic sequence, N

should be theoretically infinite, which is intractable in practice. Instead, we set N as a

tunable parameter and use finite sinusoidal bases to approximate the periodic sequence P .

Typically, the periods of the sinusoidal bases set are uniform divisions of forecast horizon

H by frequency (Oreshkin et al., 2020). Though this set of sinusoidal bases can mimic

the periodicity, we argue it can not explicitly represent some meaningful periods by which

H are not divisible, e.g., when predicting next month’s daily electricity load (H = 30),

which shows weekly period (7). Therefore, we set the periods of the N bases from 1 to N .

A natural choice of N is the forecast horizon H. Our practical experience suggests that

if using sliding window to collect training examples, the weights of the sinusoidal bases

can still be learned well even if N is larger than H. Therefore, in practices we just set

N according to the specific tasks. Another benefit of choosing N regardless of H is that

longer period may still be captured even if the forecast horizon H for one data sample is

not enough.

As mentioned, the periodic series P can not be derived from post-hoc decomposition,

so we turn Eq. 3.4 into a learnable module in which the sinusoidal bases weights an

and φn are learned from the leading embeddings E with non-linear mapping functions

ga : Rde → RN and gφ : Rde → RN separately, which are instantiated by the multilayer

perceptrons (MLP). This learnable Fourier series serve as the periodic inductive bias to

capture the periodicity. Ideally, the weights an will be learned to 0 if the sequence does

not contain the corresponding period, otherwise some non-trivial values. Therefore, we

can infer a sequence’s periodicity T = [T 1, ..., T S] by analyzing the learned weights an.

It is worth noting that one advantage of using a learnable Fourier series is the explicit

periodicity T can be induced, offering human-interpretable insights of the real-world time

series compared to just a periodic sequence P as in (Oreshkin et al., 2020). We validate

this design in Sec. 3.4.3.
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Non-periodic Series Prediction. The non-periodic series C = [Ct0+1, ..., Ct0+H ]

represents the overall trend of the future sequence. Similar to the periodic series, C is

also learnable in our model, which is converted from the leading embeddings E with a

non-linear projector gc : Rde → RH . A typical approach to the projection from the latent

embeddings is the recursive decoding as in seq2seq (Sutskever et al., 2014). Because

practical time series may have various trends, here we avoid assuming too many priors

and simply use a MLP as gc in our decoder to generate the forecast of non-periodic series

C.

Time series reconstruction. We follow the additive time series decomposition (Hyn-

dman and Athanasopoulos, 2018) to reconstruct the entire future time series. Namely,

the final forecast Y = [Y t0+1, ..., Y t0+H ] is a summation of the predicted periodic se-

ries P = [P t0+1, ..., P t0+H ] and non-periodic series C = [Ct0+1, ..., Ct0+H ]. We use the

Mean Square Error as the loss function L to compare the forecast and the ground-truth

sequences, which is formalized as:

L =
1

H

H∑
h=1

(Y t0+h − Y t0+h
g )2, (3.5)

where Y t
g is the ground-truth at timestamp t. The loss L is further averaged over the

entire training sequences.

Note that our framework also accommodates for the time series in which the periodicity

is insignificant. In this case, all the sinusoidal base weights are learned as some trivial

values closed to 0, and DeepFS becomes a standard neural network model for time series.

We justify this property empirically in Sec. 3.4.1.

Interpretaion. A second benefit of DeepFS is the learned periodic and trend series

are human-interpretable. Periodicity and trend are mechanistic factors that reveal how a

future time series is achieved. In particular, the learned periods T provide practitioners

with insights into real-world time series, such as daily repeating patterns of electrical

loads. We show the learned periods for various real-world datasets in Sec. 3.4.2 and

Sec. 3.4.3. Compared to the post-hoc spectral analysis that requires the forecasting series,
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our periodicity learning is performed up front, and then the learned periods are used to

boost prediction accuracy.

3.4 Experiments

In this part, we present the empirical evaluation of DeepFS on univariate time series

forecasting. We first justify periodicity learning on synthetic data, then compare DeepFS

with diverse baselines on four real-world datasets. We further breakdown DeepFS in

various ablation studies to understand why and when DeepFS works.

3.4.1 Justification on Synthetic Datasets

Since we do not know the ground-truth of either periodicity or the trend on real-world

datasets, we first justify periods and non-periodic series learned by DeepFS on synthetic

datasets.

Data Synthesis Protocol. We inject all the time series components, i.e., periodicity,

trend and randomness, described in (Hyndman and Athanasopoulos, 2018) in the simulated

data. The synthesis protocol is formalized as follows:

V∑
i=1

asi sin(
2πt

T s
i

+ φs
i ) +

W∑
j=0

wjt
j + ϵ. (3.6)

The first term represents the periodicity by a combination of V sinusoidal functions,

where asi , T s
i and φs

i are the simulated weight, period and phase φs
i for the i-th sine wave,

respectively. The second term is for the trend. We follow (Oreshkin et al., 2020) to use

a polynomial function with small degree W as the trend of a time series usually does

not change severely, and wj is the weight for j-th power function. The ϵ stands for the

randomness in time series synthesis.

In experiments, we select the sinusoidal function number V ∈ {0, 10, 20, 30} to

examine how DeepFS works under different periodicity complexity. The periods T s
i are
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non-repeatable sampled from the range [1, 30]. We set the polynomial function degree W

as 2. Other parameters asi , φs
i , wj and ϵ are all randomly generated for each experiment.

We simulate 20000 data instances and split them into train/val/test with ratio 0.7/0.1/0.2.

Figure 3.3: Results on synthetic datasets. Left: predicted time series v.s. ground-truth;
Right: predicted periods with their corresponding weights v.s. ground-truth. Rows
indicate different numbers of periodicity components V in simulation. The choices of V
from top: 0, 10, 20, 30.

Results and analysis. We first report the comparison of the predicted time series

and their periodicity with the simulated ground-truth in Fig. 3.3. Overall, the time series

predicted by DeepFS are able to fit the simulated curves closely, while the learned periods

weights are also consistent with ground-truth. We notice DeepFS still works even the

time series is completely non-periodic (first row in Fig. 3.3), suggesting the effectiveness

of DeepFS on learning true periods rather than just using the sine bases to approximate

the sequence. We further summarize the accuracy of predicted periods weights and the

non-periodic series in Table. 3.1, showing that DeepFS could learn both with very low

errors. These results demonstrate the correctness of the learned periods and trend, making

DeepFS trustworthy to capture periodicity on real-world datasets.
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Table 3.1: Mean absolute error (MAE) of the periods weights and non-periodic series at
four periodicity complexities.

#sinusoidals V Periods weights Non-periodic series

0 0.0127 0.0315
10 0.0121 0.0325
20 0.0127 0.0582
30 0.0199 0.0555

3.4.2 Experiments on Real-world Datasets

We then evaluate DeepFS on four real-world datasets to study the accuracy and inter-

pretability of our model in practical scenarios.

Datasets. We use four real-world datasets that are collected by (Zhou et al., 2021).

We describe the datasets as follows:

• ETTh1, ETTh2, ETTm1: The ETT (Electricity Transformer Temperature)

datasets are metrics that can reflect the electric power deployment. We use 3 ETT

datasets ETTh1, ETTh2, ETTm1 released by (Zhou et al., 2021) with granularity

1-hour, 1-hour and 15-mins, respectively. We use the exactly same data split as

in (Zhou et al., 2021) (train/val/test: 12/4/4 months).

• Weather: The datasets is 4 years of weather records in United States with hourly

granularity. We also use the same split as in (Zhou et al., 2021) (train/val/test:

28/10/10 months).

Baselines. We use three-category time series forecasting models as baselines, i.e.,

(1) statistical model ARIMA (Hyndman and Athanasopoulos, 2018), (2) RNN-based

models LSTMa (Bahdanau et al., 2014) and DeepAR (Salinas et al., 2020), and (3)

transformer based models Reformer (Kitaev et al., 2020) and state-of-the-art transformer

Informer (Zhou et al., 2021).

Metrics. Because the datasets contain many zeros, we avoid the relative metrics like

the mean absolute percentage error (MAPE). Instead, we use the mean square error (MSE)
1
D

1
H

∑D
i=1

∑H
h=1(Y

t0+h−Y t0+h
g )2 and mean absolute error (MAE) 1

D
1
H

∑D
i=1

∑H
h=1 |Y t0+h−

Y t0+h
g | to compare the DeepFS with baselines, where D is the number of data samples; H
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is the prediction length; t0 is the end of leading sequence; Y t and Y t
g are the ground-truth

and predicted values at timestamp t, respectively.

Table 3.2: Accuracy results on ETTh1, ETTh2, ETTm1 and Weather datasets. We use
same settings as in (Zhou et al., 2021). The average MSE and MAE of three runs are
reported. Results of all baselines are from (Zhou et al., 2021). The best model is in
boldface for each row. The percentage increases in DeepFS compared to the second-best
baseline are listed. “-” symbols refer to worse accuracy.

Dataset Prediction Length ARIMA DeepAR LSTMa Reformer Informer DeepFS Gain

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

1d (24) 0.108 0.284 0.107 0.280 0.114 0.272 0.222 0.389 0.092 0.246 0.090 0.234 2.17% 4.88%
2d (48) 0.175 0.424 0.162 0.327 0.193 0.358 0.284 0.445 0.158 0.319 0.121 0.274 23.42% 14.11%

1w (168) 0.396 0.504 0.239 0.422 0.236 0.392 1.522 1.191 0.183 0.346 0.130 0.284 28.96% 17.92%
2w (336) 0.468 0.593 0.445 0.552 0.590 0.698 1.860 1.124 0.215 0.369 0.098 0.246 54.42% 33.33%
1m (720) 0.659 0.766 0.658 0.707 0.683 0.768 2.112 1.436 0.257 0.421 0.167 0.329 35.02% 21.85%

ETTh2

1d (24) 3.554 0.445 0.098 0.263 0.155 0.307 0.263 0.437 0.093 0.240 0.120 0.270 - -
2d (48) 3.190 0.474 0.163 0.341 0.190 0.348 0.458 0.545 0.155 0.314 0.146 0.300 5.81% 4.46%

1w (168) 2.800 0.595 0.255 0.414 0.385 0.514 1.029 0.879 0.232 0.389 0.191 0.347 17.67% 10.69%
2w (336) 2.753 0.738 0.604 0.607 0.558 0.606 1.668 1.228 0.263 0.417 0.241 0.391 8.37% 6.24%
1m (720) 2.878 1.044 0.429 0.580 0.640 0.681 2.030 1.721 0.277 0.431 0.281 0.425 - 1.39%

ETTm1

6h (24) 0.090 0.206 0.091 0.243 0.121 0.233 0.095 0.228 0.030 0.137 0.021 0.112 30.00% 18.25%
12h (48) 0.179 0.306 0.219 0.362 0.305 0.411 0.249 0.390 0.066 0.194 0.035 0.146 46.97% 24.74%
1d (96) 0.272 0.399 0.364 0.496 0.287 0.420 0.920 0.767 0.187 0.384 0.187 0.345 0.00% 10.16%
3d (288) 0.462 0.558 0.948 0.795 0.524 0.584 1.108 1.245 0.401 0.554 0.219 0.386 45.39% 30.32%
1w (672) 0.639 0.697 2.437 1.352 1.064 0.873 1.793 1.528 0.512 0.644 0.248 0.416 51.56% 35.40%

Weather

1d (24) 0.219 0.355 0.128 0.274 0.131 0.254 0.231 0.401 0.117 0.251 0.102 0.231 12.82% 8.09%
2d (48) 0.273 0.409 0.203 0.353 0.190 0.334 0.328 0.423 0.178 0.318 0.139 0.272 21.91% 14.47%

1w (168) 0.503 0.599 0.293 0.451 0.341 0.448 0.654 0.634 0.266 0.398 0.216 0.350 18.80% 12.06%
2w (336) 0.728 0.730 0.585 0.644 0.456 0.554 1.792 1.093 0.297 0.416 0.280 0.413 5.72% 0.75%
1m (720) 1.062 0.943 0.499 0.596 0.866 0.809 2.087 1.534 0.359 0.466 0.394 0.488 - -

Implementation Details. We use Pytorch 1.8.1 to conduct our experiments.

The initial input embeddings dimension is set to 100. For the encoder, we use 2 self-

attention layers with multi-head as 4 and embeddings dimension as 100. We also use

layer-normalization and drop-out (0.05) for each self-attention layer. For the decoder,

both the MLP modules used for periodic and non-periodic series are 3 layers with hidden

embeddings size as 100. We set base number N of Fourier series as 100. We ignore the

bases with period 1 and 2 because they are easily learned to be constants, causing over-

fitting in practice. For the hyperparameters, we use 0.0001 for learning rate, 100 for batch

size across all datasets. We use early-stopping based on the error on validation sets to

avoid over training, but stopping too early may prevent DeepFS from learning meaningful

periods. Therefore, we apply early-stopping after several iterations of training (20 for

ETTh1, ETTh2 and Weather; 10 for ETTm1) with 5-step patience in our experiments.

We initialize all the model parameters randomly and use Adam (Kingma and Ba, 2015b)
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as optimizer. All experiments are done within an AWS g4dn.4xlarge instance.

Figure 3.4: Results on real-world datasets. Left: full predicted time series v.s. ground-
truth; Right: predicted trend. Data is scaled. Middle: predicted periods with weights.
Striking predicted periods are highlighted with red annotation. From top: ETTh1, ETTh2,
ETTm1, Weather.

Qualitative results and analysis. We show the forecast curves, the predicted

periods and non-periodic series of all datasets in Fig. 3.4. The learned periodicity for

ETTh1 (24-hour, 12-hour), ETTh2 (24-hour, 12-hour), ETTm1 (96-quarter hour), and

Weather (24-hour, 12-hour) are all in the daily-wise, which are aligned with human’s

practical experience of electricity usage and the nature of weather evolution. The learned

non-periodic series are also consistent with the overall movements of the ground-truths

in general (e.g., a clear increase for ETTm1). Both the prediction of periods and trend

contribute to and explain the observation that our predicted time series are able to capture

the complicated fluctuations of the ground-truths (left column in Fig. 3.4), indicating the

effectiveness of DeepFS on learning periodicity for better forecasting.

Quantitative results and analysis. We report the forecasting accuracy of DeepFS
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and baselines in Table. 3.2. DeepFS outperforms all baselines on 17 out of 20 experiments.

Specifically, compared to the state-of-the-art transformer based model Informer, DeepFS

improves average 18.4% on MSE and 12.6% on MAE, suggesting the effectiveness of

injecting periodic inductive bias into neural networks, as it captures the periodic-trend

nature of time series. We notice that Informer is still strong in three cases especially in

ETTh2 and Weather datasets. We speculate that the self-attention in Informer’s decoder

somehow captures the temporal patterns when the periodicity is dominant and clear, such

as the ETTh2 and Weather datasets as shown in Fig. 3.4. However, for more complicated

periodic patterns like ETTh1 and ETTm1, our model enjoys non-trivial accuracy gains,

especially for long prediction length. We see this as the benefit of explicitly modeling

periodicity.

Table 3.3: Accuracy comparison between DeepFS and variants. DeepFS (P) removes
the non-periodic MLP, and DeepFS (NP) removes the Fourier series. The means and
standard deviations of five runs are reported. (Numbers) under datasets are prediction
length. The best model is in boldface for each row.

Datasets Metrics DeepFS (P) DeepFS (NP) DeepFS

ETTh1 MSE 1.990±0.002 0.380±0.175 0.108±0.007
(336) MAE 1.363±0.001 0.529±0.135 0.262±0.008

ETTh2 MSE 1.554±0.002 0.264±0.037 0.225±0.014
(336) MAE 1.118±0.001 0.416±0.033 0.376±0.013

ETTm1 MSE 1.917±0.001 0.191±0.014 0.192±0.008
(288) MAE 1.341±0.000 0.367±0.017 0.360±0.011

Weather MSE 0.989±0.002 0.316±0.012 0.284±0.009
(336) MAE 0.803±0.001 0.439±0.011 0.420±0.008

3.4.3 Why Does DeepFS Work?

We further conduct detailed analyses of DeepFS from five aspects to study the reasons

why our model can achieve better accuracy.

Ablation study on model architecture. Our intuition is that both the Fourier

series and the non-periodic MLP layers contribute to prediction and are therefore indis-

pensable. To verify this, we compare DeepFS with two variants: only with Fourier series

(DeepFS (P)) and only with non-periodic MLP (DeepFS (NP)). We report the accuracy in
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Table. 3.3 and draw the predicted series in Fig. 3.5. We find removing either component

leads to a non-trivial accuracy drop, justifying their necessity. Fig. 3.5 shows the Fourier

series alone is able to capture the fluctuations, further demonstrating the effectiveness of

the learnable periodic inductive bias. We notice DeepFS (NP) just learns almost flat lines.

We infer it is merely an attempt to reduce the overall loss (e.g., the good numerical error

on ETTm1 in Table. 3.3) rather than preserving the inherent periodic patterns of time

series. The results are aligned with the observations in (Ziyin et al., 2020) that standard

neural networks can not fully learn periodicity.

Figure 3.5: Forecasting of DeepFS, DeepFS (NP), DeepFS (P) v.s. ground-truth on four
datasets. From top left: ETTh1, ETTh2, ETTm1, Weather. (Numbers) in titles are
prediction lengths. Values are scaled.

Ablation study on sinusoidal bases. The sinusoidal bases are the “silver bullet”

to learn periodicity of time series. To measure the impact of the number of sinusoidal

bases N , we perform experiments on ETTh2 dataset with 9 different sine bases numbers

N ∈ {20, 40, 60, 80, 100, 120, 140, 160, 180}. We set the prediction length as 2-week (336

timestamps) and report the accuracy (in MSE and MAE) and predicted periods in Fig. 3.6.

The optimal basis number N in this setting is 40. This is probably because 40 bases

(with periods until 40) include the principal periods of ETTh2, i.e., 24-hour and 12-hour.

We also observe a rapid drop in accuracy when the bases number is greater than 100,

especially 160 and 180. Combining the predicted periods weights, we think the reason is
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the model fails to learn correct weights for the low-frequency bases (large periods). We

infer that an optimal sinusoidal bases number choice should follow two rules: a) must

include all principal periodic components, b) when a) holds, use a small number to reduce

the difficulty in learning weighting for low-frequency bases. We further explore the failure

reason in Sec. 3.4.4.

Figure 3.6: Accuracy and predicted periods weights on ETTh2 dataset with different
sinusoidal basis numbers. Solid curves are average of MSE and MAE, ribbons indicate
standard derivation. Striking predicted periods are highlighted with red annotation.
Magenta rectangles circle the failures of learning sinusoidal bases weights.

Ablation study on leading series length. Our model learns the periodic and non-

periodic series from the embeddings of leading sequence. To understand how the length

of leading sequence L affect DeepFS, we conduct experiments with 6 different lengths

L ∈ {48, 96, 168, 336, 540, 720} on ETTh2 dataset, and report the accuracy and predicted

periods in Fig 3.7. The error first decreases quickly with longer leading sequences, reaches

the minimum at L of 96, and then gets worse. However, we note that the learned periods

are reasonable regardless of leading series lengths. Therefore, we speculate that the

non-periodic series patterns are not fully learned with a short leading sequence (pre-96),

but the encoder may suffer from the cumbrous attention computation to predict the

non-periodic series if the sequence is too long (e.g., post-540).

Periodicity generalization. Many real-world applications exhibit various periods,
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Figure 3.7: Accuracy and predicted periods on ETTh2 dataset with different leading
observed sequence lengths. Solid curves are average of MSE and MAE, ribbons indicate
standard derivation. Striking predicted periods are highlighted with red annotation.

Figure 3.8: Predicted periods with corresponding weights on daily-granularity datasets.
Striking predicted periods are highlighted with red annotation. From left: US COVID-19
death, freeway occupancy rates (traffic), electricity load.

e.g., weekly. We further use DeepFS to learn periods for three additional datasets:

JHU CSSE COVID-19 Data (Dong et al., 2020), freeway occupancy rates (traffic)4, and

electricity load 5. We preprocess all datasets to daily granularity and report the predicted

periods in Fig. 3.8. All three datasets show weekly periods, which are consistent with the

practical experience. (We believe the weekly period of COIVD-19 patients is primarily due

to the fact that the cases in many states are not fully updated over the weekend.) These

results confirm that DeepFS is able to capture various granularity periods, indicating the

4https://pems.dot.ca.gov/

5https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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potential use of DeepFS in real scenarios.

Day-Clock
     e.g., Su-9 
(Sunday-9am)

Figure 3.9: 2D t-SNE projections of leading embeddings E from ETTh2 dataset. Colors
are coded by days (Monday to Sunday). "Day-clock" refers to an hour of the day, e.g.,
“Su-9” is Sunday 9AM. Adjacent times of the same day are connected by lines.

Leading embeddings visualization. To study whether the leading embeddings E

are informative for the forecasting, we use t-sne (Van der Maaten and Hinton, 2008) to

project the learned leading embeddings E into two-dimensional space in Fig. 3.9. The

2-D embeddings points exhibit two interesting patterns: (1) continuous from beginning to

end of the week (left to right) while parts of weekends are dispersed, and (2) clustered at

night-times (bottom left) and during day times (center) separately, with a looping shape

for each day. These patterns reflect the periods (e.g., 24-hour) of the leading sequences,

reinforcing our conclusion that DeepFS well captures the periodicity.

3.4.4 When Will DeepFS Work?

To further understand when it is appropriate to employ DeepFS for real-world applications,

we explore why learning low-frequency sinusoidal bases fails in Sec. 3.4.3. We test the

failure sinusoidal base number N = 180 on synthetic data. We compare the predicted

periods with different numbers of synthetic data samples in Fig. 3.10. We find that enough

data samples are essential to learning correct weights for low-frequency sinusoidal bases,

and thus for low forecast errors. With a fixed length of the leading series, more data

samples expand the entire horizon of the observed sequence, which probably explains

the success of learning weight for a large period sinusoidal basis. We note that DeepFS

may not work for time series with large periods but the available data for training is not

45



sufficient. We leave this “few-shot” problem to future work.

Figure 3.10: The predicted v.s. ground-truth periods weights with different numbers of
synthetic data samples. The periodicity components number V = 30 and sinusoidal bases
number N = 180 for all experiments. The MSE of each experiment is reported. Magenta
rectangles circle the failures of learning sinusoidal bases weights.

3.5 Conclusion

In this paper, we study univariate time series forecasting by explicitly capturing the

periodicity. We propose DeepFS, a novel model that combines self-attention and time

series decomposition to enhance the periods preserving of neural networks. We achieve

this by injecting Fourier series as an periodic inductive bias in our model. Extensive

experiments demonstrate that DeepFS achieves better forecasting accuracy. However,

DeepFS fails when training data is rare. Future work could study the transferablity of

DeepFS for such few-shot scenario. How to learn periodicity for multi-variate time series

is also an interesting and useful direction.
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CHAPTER 4

Estimating Causal Effects on Networked Observational

Data via Representation Learning

4.1 Introduction

Causal inference (also formalized as counterfactual reasoning (Greenland et al., 1999;

Pearl, 2009)) has attracted increasing interests on networked scenarios, such as social

networks (Ogburn et al., 2017, 2020), online advertisements (Nabi et al., 2020), and

vaccine distribution (Barkley et al., 2020). Randomized controlled trials (RCTs) are still

the “gold standard” on networked data (Gui et al., 2015; Yuan et al., 2021). However,

RCTs are usually time-consuming, highly-costly and even not doable, which is especially

true in the context of networks. Therefore, estimating the causal effects from networked

observational data is an important yet challenging problem and the focus of this paper.

We use vaccine distribution as our motivating example throughout this paper. Given

the observed vaccine assignments (i.e., treatment) and the immunity level (Matrajt

et al., 2020) (i.e., outcome) of a social community (i.e., network), we aim to answer the

counterfactual questions like “would the community immunity level be stronger had a

different group of people been vaccinated”?

The difficulties of causal inference on networked data are due to the dependency

between units in a network and the need of inductive inference raised by real-world

applications. First, compared with traditional independent setting (Shalit et al., 2017;

Johansson et al., 2016; Yoon et al., 2018; Yao et al., 2018), the non-i.i.d. nature of

networks introduces two-fold challenges to causal inference, i.e., homophily (McPherson

et al., 2001) and interference (Hudgens and Halloran, 2008). Homophily describes the
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phenomenon that similar units in networks tend to form social ties, which brings in

new confounders (factors that affect both treatment and potential outcome) for causal

effects in addition to the units’ own features (a.k.a., characteristics). Interference refers

to the fact that the potential outcome of a unit is caused by not only their own but

the neighbors’ treatments on networks, e.g., getting vaccines protects both a person and

their social contacts. In other words, the traditional SUTVA (Rubin, 1980) assumption

that one’s potential outcome is stable regardless of the treatment assignments of others

is no longer valid. Second, from the empirical view, many real-world problems require

to predict the causal effects on a new network without any observed outcomes (known

as “out-of-sample” estimation (Shalit et al., 2017), or “inductive” prediction (Hamilton

et al., 2017b) in machine learning), e.g., finding out the best initial vaccine plan for a

community. However, transferring the estimation from the observed networks to a new

network is non-trivial because two network structures could be quite distinct.

To estimate causal effects on networked data, Forastiere et al. (Forastiere et al., 2021)

extend the “no unobserved confounders” assumption to networks with interference, and

propose a networked propensity score based method to infer the causal effects. Arbour et

al. (Arbour et al., 2016) find out the adjustment variables on networks and estimate the

treatment effects via back-door criterion (Pearl, 2009). Despite the success on networks

with observed outcomes (known as “within-sample” estimation (Shalit et al., 2017)), these

methods are not able to generalize the effects to a new network where we do not have

any outcomes observed. Recent works propose to use network embeddings to capture

unobserved confounders encoded in network structure (Veitch et al., 2019; Guo et al.,

2020a,c; Ma et al., 2021; Chu et al., 2021). However, these works still follow the STUVA

assumption and ignore the interference, which induces estimation bias of real-world

networks.

Given that networked observational data contains features, treatments, observed

outcomes and the network structure, a natural idea is to train a standard graph machine

learning model, e.g., graph neural networks (GNNs) (Kipf and Welling, 2017a; Velickovic

et al.; Xu et al., 2019; Wu et al., 2019), on the observed data and then to predict
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the counterfactual outcomes for causal effects estimation. However, we theoretically

demonstrate that such standard graph machine learning models fail in inferring the

causal effects on networks, because there are two distribution mismatches between their

objective functions (details in Sec. 4.3.1). In other words, standard graph machine learning

models are solving a different optimization goal from estimating the causal effects on

networks. To fill this gap, we further find that it is sufficient to enforce the two mismatched

distributions to be uniform. These insights motivate us to propose a novel framework

NetEst, which formulates the Networked causal effects Estimation into a data-driven

multi-task paradigm with two optimization goals: predicting the potential outcomes and

bridging the distribution gaps between standard graph machine learning and networked

causal inference. To facilitate this, NetEst first uses GNNs to encode the confounders that

are from both a unit’s own and neighbors’ features into latent representations. Together

with both a unit’s own and their neighbors’ treatments, these embeddings are then used to

estimate the potential outcomes via an estimator. Meanwhile, NetEst uses two adversarial

learning modules to force the mismatched distributions to follow uniform distributions

based on the embeddings. NetEst is applicable to both the “out-of-sample” (Shalit et al.,

2017) and the traditional “within-sample” (Johansson et al., 2016) estimation on networked

data.

Our main contributions are summarized as follows: First, we theoretically prove

that standard graph machine learning models can not estimate causal effects on networks

due to the distribution mismatches between their objective functions. Second, we formalize

the networked causal effects estimation to a multi-task learning problem and propose a

novel framework NetEst that solves the distribution gaps and alleviates the challenges

induced by the nature of neworked data. Third, we conduct extensive experiments on two

datasets, demonstrating the effectiveness of NetEst and present empirical analyses of why

and when NetEst works.
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4.2 Problem Setup

We follow Arbour et al. (Arbour et al., 2016) to set up the causal effects estimation

on networks. We first discuss the causal graph of networked data in the presence of

homophily and interference. Then we present the definition of causal effects on networks

and discuss its identification. We list all the notations used in this paper in Table 4.1.

Table 4.1: Notations used in this chapter.
Symbol Description

G, A,X graph, adjacency matrix and feature matrix
ti, xi, yi treatment, feature and potential outcome of unit i

{xj}j∈Ni
features of i’s neighbors in network

T , Y treatment vector, potential outcome vector of all users
{tj}j∈Ni

treatments of i’s neighbors in network
{xj}j∈−Ni

treatments of i’s non-neighbors in network
Z summary function of neighbors’ treatments
zi peer exposure of unit i

Y i
ti,zi

observed outcome of unit i under ti and zi
Yi|do(ti = t, zi = z) potential outcome of unit i under ti and zi
Ni, Ni i’s neighbors set, and size
τ , τ̂ treatment effects, estimate of treatment effects
ϕ, si representation function, representation of unit i

m outcome estimation function from representation
f outcome estimation function from feature
dt, dz discriminators
J loss function

4.2.1 Causal Graph on Networks

Causal graph is a directed acyclic graph (DAG) that describes the causal relations among

variables (Pearl, 2009). Without loss of generality, we still use vaccination as our motivating

example to depict a plausible causal graph on networks in Fig. 4.1. The social structure of

a three-unit community is described on the left, and right part shows the causal relations

of their features, treatments and potential outcomes. In practice, a unit’s features (e.g.,

health condition) cause both their (1) decisions to get vaccinated (treatment) and (2)

immunity to a virus (potential outcome), namely a unit’s features contain confounders

between treatment and potential outcome (indicated by red edges in Fig. 4.1). In addition,

a unit’s features may also affect the neighbors’ treatments and potential outcomes as they

may influence each other. For example, a person with a weakened immune system may

increase their risk of infection, prompting their family members to get vaccinated. In
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other words, networks introduce new confounders between the treatment and potential

outcome (blue edges in Fig. 4.1). Different from the independent setting, treatment of

a unit spills over to their neighbors. For example, getting vaccination protects not only

oneself, but others in the community (i.e., herd immunity (Anderson and May, 1985)).

This “peer effect” reflects the interference nature of the network (marked by green edges

in Fig. 4.1). Following (Arbour et al., 2016), we assume that network confounders and

the peer effect only exist among 1-hop neighbors. We further assume that all treatments

are carried out at the same time without any order. In other words treatments will not

affect each other. The readers can refer to (Ogburn and VanderWeele, 2014) for other

plausible causal graphs on networked data.

21

3

x1 x2 x3

t1 t2 t3

y2

Figure 4.1: Causal graph of a network with three nodes. Left: the network connection
topology. Right: causal graph. x, t, y are features, treatments and potential outcome
respectively. A red edge shows confounders from a unit’s own features, a blue edge means
confounders brought by network, an orange edge represents the causal effects between a
node’s own treatment and potential outcome, and a green edge shows the peer effects
of treatment. Only y2 is shown for simplicity. We assume that peer effects occur only
between 1-hop neighbors and that there are no unmeasured confounders.

4.2.2 Causal Inference on Networked Data

Formally, given a network G = ⟨A,X⟩, in which A ∈ RV×V is the adjacency matrix where

V is the number of units (nodes) in G; X ∈ RV×k is the units’ features matrix and k is

the feature dimension. We use xi ∈ Rk to represent the feature of i-th node. We denote

T = [t1, ..., tV ] as the treatment vector of all V units where ti ∈ {0, 1} is the treatment of

i-th unit. Following many existing works (Veitch et al., 2019; Guo et al., 2020b; Shalit

et al., 2017; Johansson et al., 2016), we assume that ti is binary (e.g., ti = 1 means
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getting vaccinated while 0 means not). We then denote the potential outcome vector

Y = [y1, ..., yV ] where yi ∈ R is the potential outcome of unit i. We further assume yi is

continuous (e.g., a higher value means a stronger immunity). Following (Arbour et al.,

2016), we can define the causal effects τ(X) on the whole network G as the difference in

the potential outcomes under two treatments vectors T ′ and T ′′, which is formalized as:

τ(X) := E
[
Y |do(T ′)− Y |do(T ′′)

∣∣X,A
]
, (4.1)

where the do-calculus (Pearl, 2009) represents an intervention on treatments. In our

motivating example, T ′ and T ′′ can be two vaccine distribution strategies. With Eq. (4.1),

we can answer causal questions on networks, such as comparing the impacts of two vaccine

plans.

To measure the overall effects τ(X) on the entire network, we need to estimate the

treatment effects τ(xi) for every unit, namely the individual treatment effects (ITE).

From the individual view, a unit’s potential outcome yi is caused by their own feature

xi, treatment ti, neighbors’ features {xj}j∈Ni
∈ RNi×k and treatments {tj}j∈Ni

∈ {0, 1}Ni

as in Fig. 4.1, where Ni is the number of 1-hop neighbors of unit i. To represent the

interference of neighbors’ treatments {tj}j∈Ni
, following (Forastiere et al., 2021), we define

a summary function Z : 2T → [0, 1] that reduces a set of treatments in 2T into a scalar.

We set zi = Z({tj}j∈Ni
), where zi is defined as the peer exposure of unit i to neighbors’

treatments {tj}j∈Ni
. In this paper, we define Z as a function to calculate the percentage

of treated neighbors, i.e., zi =
∑

j∈Ni
tj/|Ni|, and thus zi means the ratio of i’s neighbors

whose treatments are 1. Therefore, the range of zi is [0, 1]. To highlight these causes, we

reformulate unit i’s potential outcome yi as Yi|do(ti = t, zi = z), indicating the potential

outcome under the treatment t and the peer exposure z. Then individual treatment

effects (ITE) τ(xi) of unit i can be formalized as:

τ(xi) := E
[
Yi|do(ti = t′, zi = z′)− Yi|do(ti = t′′, zi = z′′)

∣∣xi, {xj}j∈Ni

]
. (4.2)
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Given the treatment vector T and the topology A of networks, we can compute the

peer exposure zi for every unit. Therefore, the network effects can be fully represented

by the peer exposure zi and neighbors’ features {xj}j∈Ni
from the individual view. The

presence of zi and {xj}j∈Ni
in Eq. (4.2) indicates the major difference of networked ITE

compared to the general independent scenarios where potential outcomes are not affected

by neighbors’ treatments.

To estimate ITE τ(xi) in Eq. (4.2), we need the two potential outcomes under different

treatments and peer exposures. However, we can only observe at most one of them from

observational data. For instance, we can only observe the outcomes of a community

w.r.t. one vaccine distribution plan. Therefore, the core of τ(xi) is to estimate the

counterfactual outcome, namely the treatment-peer exposure-potential outcome tuples

that are not observed.

Eq. (4.2) enables us to further study some interesting causal effects questions on

networks. As in (Arbour et al., 2016), we focus the following three:

• Individual effects: Yi|do(ti = 1, zi = 0)− Yi|do(ti = 0, zi = 0). It represents unit i’s

own treatment effects, e.g., how much protection would I get if it was just me and

none of my friends were vaccinated?

• Peer effects: Yi|do(ti = 0, zi = z′)− Yi|do(ti = 0, zi = z′′). It reflects the effects of

treatment inference, e.g., how much protection would I get if different groups of my

friends but not me were vaccinated?

• total effects: Yi|do(ti = 1, zi = 1)− Yi|do(ti = 0, zi = 0). It describes the combined

effects of individual treatment and the network interference, e.g., how much protect

would I get if everyone is vaccinated?

4.2.3 Causal Identification on Networks

Causal inference is the estimation of causal quantities (e.g., i’s potential outcome Yi|do(ti =

t, zi = z)). However, only the statistical quantities (e.g., i’s observed outcome Y i
ti,zi

) are
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available in observational data. To ensure that these statistical quantities can be used

to infer the potential outcome (a.k.a., the causal identification problem), we make the

following essential assumptions.

Assumptions. We make two lines of assumptions on networked data. First, we adapt

the standard assumptions on independent data to the network setting following (Forastiere

et al., 2021):

Assumption1: Positivity. The probability of a unit with their neighbors to receive

treatment or not is always positive, i.e., ∀x, 0 < p(ti = 1|xi, {xj}j∈Ni
) < 1.

Assumption2: Consistency. The potential outcome is same as the observed outcome

under the same treatment assignment and peer exposure to neighbors , i.e., Yi|do(ti =

t, zi = z) = Y i
t,z.

Assumption3: Strong Ignorability. Conditional to the features xi and neighbors’

features {xj}j∈Ni
, potential outcome Yi|do(ti = t, zi = z) is independent of treatment ti

and peer exposure zi , i.e., Yi|do(ti = t, zi = z) ⊥⊥ ti, zi|xi, {xj}j∈Ni
.

In networked data, the standard SUTVA does not hold because of the presence of

interference. Therefore, to identify the causal effects, we further assume the interference has

the Markov property (i.e., 1-hop) following (Arbour et al., 2016) (here we set TNi
= {tj}j∈Ni

and T−Ni
= {tj}j∈−Ni

for simplicity):

Assumption4: Markov. The potential outcome of a unit is only affected by their

own and the immediate neighbors’ treatments, i.e., ∀ TNi
, T ′

Ni
, T−Ni

, T ′
−Ni

such that

Z(TNi
) = Z(T ′

Ni
), we have Yi|do(ti = t, TNi

, T−Ni
) = Yi|do(ti = t, T ′

Ni
, T ′

−Ni
).

Identification. Given these assumptions, unit i’s causal effects τ(xi) (Eq. (4.2)) is

identifiable. To avoid mess, we omit the subscription and denote by x = (xi, {xj}j∈Ni
) in

the following proof:
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Proof.

τ(x) = E
[
Y |do(t = t′, z = z′)− Y |do(t = t′′, z = z′′)

∣∣x]
= E

[
Y |do(t = t′, z = z′))

∣∣x]− E
[
Y |do(t = t′′, z = z′′)

∣∣x]
= E

[
Y |do(t = t′, z = z′)

∣∣t = t′, z = z′, x
]

− E
[
Y |do(t = t′′, z = z′′)

∣∣t = t′′, z = z′′, x
]

(4.3)

= E
[
Yt′,z′

∣∣t = t′, z = z′, x
]
− E

[
Yt′′,z′′

∣∣t = t′′, z = z′′, x
]
. (4.4)

Eq. (4.3) holds because of the “Strong Ignorability” assumption that given x = (xi, {xj}j∈Ni
),

the potential outcome Yi|do(ti = t, zi = z) is independent from the treatment ti and peer

exposure zi. Eq. (4.4) is true because of the “Consistency” assumption.

4.3 Methodology

In this section, we introduce our proposed method. We first prove why standard graph

machine learning can not estimate causal effects. Then we breakdown the modules of

NetEst in details.

4.3.1 Why Standard Graph Machine Learning Fails in Causal Inference?

We show that the failure of standard graph machine learning in estimating causal effects

is due to two distribution mismatches between their objective functions.

We first introduce several functions with their corresponding notations. Follow-

ing (Shalit et al., 2017), we define a one-to-one projection function ϕ : X × 2X → S,

which maps a unit’s own features and the neighbors’ features into representation space

S. We denote si = ϕ(xi, {xj}j∈Ni
) as unit i’s representation induced by ϕ. We will

introduce the motivation of using this representation projection function in Sec. 4.3.2.

We further define an estimation function m : S × {0, 1} × [0, 1] → Y that estimates

the potential outcome from feature representation si, treatment ti and peer exposure
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zi. For simplicity, we also use a function f : X × 2X × {0, 1} × [0, 1] → Y such that

f(xi, ti, zi) = m(si, ti, zi) = m(ϕ(xi, {xj}j∈Ni
), ti, zi) to denote the whole estimation func-

tion starting from the original features. An estimation objective function needs a loss

function, and we use the square loss in this paper. Now we can compare the objective

functions of standard graph machine learning Jml and causal effects estimation on networks

Jce. For simplicity, we remove the subscriptions in the following.

Objective function of machine learning Jml. Standard graph machine learning

estimates the potential outcome by optimizing the estimation loss over the networked

observational data. Given network G, estimation function f , features x, treatment t,

peer exposure z and outcome y, as stated in Sec. 4.2.2, the peer exposure z sufficiently

represents the network effects induced by network G. Therefore, we can denote the

observational data by the joint probability p(x, t, z, y). Then the objective function of

standard graph machine learning Jml is:

Jml =

ˆ
X

ˆ
T

ˆ
Z

ˆ
Y
(f(x, t, z)− y)2p(x, t, z, y) dx dt dz dy (4.5)

=

ˆ
X

ˆ
T

ˆ
Z

ˆ
Y
(f(x, t, z)− y)2p(x)p(t|x)p(z|x, t)p(y|x, t, z)

dx dt dz dy. (4.6)

Note that the effects of network is encoded in the graph function f and peer exposure z,

so G is not explicitly shown in Eq. (4.5). Eq. (4.6) is a chain rule expansion of Eq. (4.5).

We can build a graph machine learning model f (e.g., GNNs) to predict the outcome by

optimizing Eq. (4.6) on observational data.

Objective function of causal effects estimation Jce. Causal inference is to

estimate the causal effects τ(x) defined in Eq. (4.2) on network G. Therefore, given

estimation model f , feature x, treatment t, peer exposure z and outcome y, the objective

function of causal effects estimation Jce is the estimation error of causal effects τ(x) over

all units:
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Jce =

ˆ
X
(τ̂(x)− τ(x))2p(x) dx (4.7)

≤ 8

ˆ
X

ˆ
T

ˆ
Z

ˆ
Y

(
f(x, t, z)− y

)2
p(x)p(y|t, x, z) dx dt dz dy, (4.8)

where τ̂(x) is the estimated causal effects. Eq. (4.8) is an upper bound for the objective

function Jce. Because directly optimizing the original objective function Jce (Eq. (4.7)) is

difficult, this upper bound can be used as an approximated objective function and the

estimation function f can be built by optimizing it on the networked observational data.

We use a general format of causal effect τ(x) = E
[
Y1,z′

∣∣t = 1, z = z′, x
]
− E

[
Y0,0

∣∣t =
0, z = 0, x

]
following (Forastiere et al., 2021), which can be further decomposed as:

τ(x) = E
[
Y1,z′

∣∣t = 1, z = z′, x
]
− E

[
Y0,0

∣∣t = 0, z = 0, x
]

(4.9)

= E
[
Y1,z′

∣∣t = 1, z = z′, x
]
− E

[
Y0,z′

∣∣t = 0, z = z′, x
]

(4.10)

+ E
[
Y0,z′

∣∣t = 0, z = z′, x
]
− E

[
Y0,0

∣∣t = 0, z = 0, x
]
. (4.11)

Eq. (4.10) captures the individual effects of treatment and Eq. (4.11) models the peer

effects from network interference. If we set z = 1, Eq. (4.9) becomes to the total effects.

Therefore, Eq. (4.9) is a general format that contains all causal effects of interest in

Sec. 4.2.2.

We then show the proof of upper bound in Eq. (4.8) as follows:

Proof. Given network G, model f , feature x, treatment t and outcome y, an empirical

estimate can be denoted as τ̂(x) = f(x, t = 1, z)− f(x, t = 0, 0), which can be similarly

decomposed as τ̂(x) = f(x, t = 1, z) − f(x, t = 0, z) + f(x, t = 0, z) − f(x, t = 0, 0).
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Finally the objective function of causal effects estimation Jce
6 is as follows:

Jce =

ˆ
X
(τ̂(x)− τ(x))2p(x) dx

=

ˆ
X

[
f(x, t = 1, z)− f(x, t = 0, z)

−
(

E(Y1,z

∣∣t = 1, z, x)− E(Y0,z

∣∣t = 0, z, x)
)

+ f(x, t = 0, z)− f(x, t = 0, 0)

−
(

E(Y1,z

∣∣t = 0, z, x)− E(Y0,z

∣∣t = 0, 0, x)
)]2

p(x) dx (4.12)

≤ 2

ˆ
X

[
f(x, t = 1, z)− f(x, t = 0, z)

−
(

E(Y1,z

∣∣t = 1, z, x)− E(Y0,z

∣∣t = 0, z, x)
)]2

p(x) dx (4.13)

+ 2

ˆ
X

[
f(x, t = 0, z)− f(x, t = 0, 0)

−
(

E(Y0,z

∣∣t = 0, z, x)− E(Y0,0

∣∣t = 0, 0, x)
)]2

p(x) dx, (4.14)

where Eq. (4.12) is immediate with the definition of τ(x) and τ̂(x). Eq. (4.13) and

Eq. (4.14) are the estimation error of individual effects and peer effects, respectively. The

inequality holds because (a + b)2 ≤ 2(a2 + b2). For clearness, we conduct the proof of

them separately.

We first focus on the individual effects Eq. (4.13):

6With a square loss, Jce is also know as Precision in Estimation of Heterogeneous Effects (PEHE) (Hill,
2011)
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Eq. (4.13) = 2

ˆ
X

[
f(x, t = 1, z)− E(Y1,z

∣∣t = 1, z, x)

+
(

E(Y0,z

∣∣t = 0, z, x)− f(x, t = 0, z)
)]2

p(x) dx

≤ 4

ˆ
X

[
f(x, t = 1, z)− E(Y1,z

∣∣t = 1, z, x)
]2
p(x) dx

+ 4

ˆ
X

[
f(x, t = 0, z)− E(Y0,z

∣∣t = 0, z, x)
]2
p(x) dx (4.15)

≤ 4

ˆ
X

E
[(
f(x, t = 1, z)− (Y1,z

∣∣t = 1, z, x)
)2]

p(x) dx

+ 4

ˆ
X

E
[(
f(x, t = 0, z)− (Y0,z

∣∣t = 0, z, x)
)2]

p(x) dx (4.16)

= 4

ˆ
X

ˆ
Y

(
f(x, t = 1, z)− y

)2
p(x)p(y|t = 1, x, z) dx dy

+ 4

ˆ
X

ˆ
Y

(
f(x, t = 0, z)− y

)2
p(x)p(y|t = 0, x, z) dx dy

= 4

ˆ
X

ˆ
Y

∑
t∈{0,1}

(
f(x, t, z)− y

)2
p(x)p(y|t, x, z) dx dy (4.17)

≤ 4

ˆ
X

ˆ
T

ˆ
Z

ˆ
Y

(
f(x, t, z)− y

)2
p(x)p(y|t, x, z) dx dt dz dy. (4.18)

Eq. (4.16) can be obtained by Jensen’s inequality. Given T is binary, we can unify

Eq. (4.17) to Eq. (4.18) with integral. With a similarly technique, we have peer effects

Eq. (4.14):

Eq. (4.14) = 2

ˆ
X

[
f(x, t = 0, z)− f(x, t = 0, 0)

−
(

E(Y0,z

∣∣t = 0, z, x)− E(Y0,0

∣∣t = 0, 0, x)
)]2

p(x) dx

= 2

ˆ
X

[
f(x, t = 0, z)− E(Y0,z

∣∣t = 0, z, x)

+
(

E(Y0,0

∣∣t = 0, 0, x)− f(x, t = 0, 0)
)]2

p(x) dx

≤ 4

ˆ
X

ˆ
T

ˆ
Z

ˆ
Y

(
f(x, t, z)− y

)2
p(x)p(y|t, x, z) dx dt dz dy. (4.19)
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Finally, add the upper bounds of individual effects Eq. (4.18) and peer effects Eq. (4.19),

we can obtain an upper bound of the causal effects estimation error Jce (Eq. (4.7)):

Jce ≤ 8

ˆ
X

ˆ
T

ˆ
Z

ˆ
Y

(
f(x, t, z)− y

)2
p(x)p(y|t, x, z) dx dt dz dy. (4.20)

Eq. (4.20) is Eq. (4.8), concluding the proof.

Distribution mismatch. Comparing Eq. (4.6) and Eq. (4.8), we find that stan-

dard graph machine learning actually models two more conditional probabilities p(t|x)

and p(z|x, t) than the objective function of causal effects estimation. However, p(t|x)

and p(z|x, t) are typically biased in observational data due to confounders (known as

confounding bias (Shalit et al., 2017; Forastiere et al., 2021)). Consequently, a graph

machine learning model trained on observational data will have biased estimations of the

counterfactual outcomes and causal effects, because p(t|x) and p(z|x, t) are different in

the counterfactual data. These distribution mismatches lead to the failure of applying

standard graph machine learning models to estimate causal effects on networks.

How to fix it. To apply graph machine learning models for causal effects estimation

on networks, the distribution gaps must be mitigated. By comparing Eq. (4.6) and

Eq. (4.8), we find a sufficient (not necessary) solution is to force p(t|x) and p(z|x, t) as

uniform distributions. In other words, causal effects estimation can be reduced into a

multi-task graph machine learning problem on networked data. Namely, we can use a

data-driven graph machine learning model, with some appropriate and sufficient losses

that can force p(t|x) and p(z|x, t) to be uniformly distributed, to estimate the potential

outcome. Although the original data generation can not be manipulated, we can achieve

this goal by learning representations si for every unit i. Our model NetEst is motivated

by these insights. For consistency, we still use p(t|x) and p(z|x, t) instead of si to denote

the distributions to be uniformed throughout this paper.

Note that if the treatments are randomly assigned to units in a data collection,

e.g., randomized controlled trials, these two conditional distribution p(t|x) and p(z|x, t)

actually follow uniform distributions. In this case, it is safe to use a standard machine
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Figure 4.2: The overall framework of NetEst. NetEst is trained adversarially. The unit
features and network structure are first encoded into embeddings via GNN. Then, the
two discriminators in p(t|x) regularizer and p(z|x, t) regularizer are trained to recover
treatment t and peer exposure z from embeddings by optimizing the p(t|x) recover loss
and p(z|x, t) recover loss, respectively. With fixed parameters, the two well-trained
discriminators optimize the encoder by the p(t|x) regularization loss and the p(z|x, t)
regularization loss, together with the potential outcome loss given by the estimator. Solid
lines are tensor forward propagation and dotted lines are loss back propagation. Note
that the p(t|x) regularization loss and p(z|x, t) regularization loss are not used for the
two discriminators although propagated through them.

learning model to estimate causal effects. p(t|x) is usually called propensity score in

existing literature (Rosenbaum and Rubin, 1983). Similarly, we refer to p(z|x, t) as the

peer exposure score in this paper.

4.3.2 NetEst

Our model NetEst follows multi-task paradigm that uses graph machine learning to

estimate causal effects on networks. NetEst is composed of four modules: Encoder, p(t|x)

Regularizer, p(z|x, t) Regularizer and Estimator. Fig. 4.2 shows the overview of NetEst.

Encoder. The bias of propensity score p(t|x) and peer exposure score p(z|x, t) in

observational data is caused by confounders. Traditional methods like matching (Rubin,

2006; Hirano and Imbens, 2004) can partially alleviate this by augmenting counterfactual
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data examples according to propensity score. However, we argue that a single scalar

propensity score is not enough to capture the high dimensional confounders, especially on

networked data. To capture both confounders from individual features xi and neighbors’

features {xj}j∈Ni
while be flexible to later distribution regularization, we propose to

learn representation for every unit on networks. In addition, because only immediate

neighbors are assumed to have influences on a unit (Fig. 4.1), we just need to capture

the features of i’s 1-hop neighbors as {xj}j∈Ni
. Given this, we use Graph Convolutional

Network (GCN) (Kipf and Welling, 2017a) as the representation function ϕ. A GCN layer

aggregates the features of immediate neighbors according to a weight w.r.t. both the a

unit’s and his/her neighbor’s degrees. The aggregated new features is then transformed

to low-dimensional embeddings. Formally, given a network G, let r
(l)
i ∈ Rd(l) be the

embedding of i in the l-th layer, where d(l) is the embedding dimension of the l layer, the

embeddings will be forwarded as:

r
(l+1)
i = σ

(∑
j∈Ni

1√
didj

r
(l)
j W (l)

)
, (4.21)

where σ(·) is a non-linear function, di and dj are the degrees of units i and j, respectively.

W (l) is a weight matrix of l-th layer, and Ni is the neighbors of node i. Note that because

we need to retain the features of i, Ni also includes node i. Another benefit of using GCN

is that it is applicable to both “inductive” and “transductive” settings, i.e., GCN could

make predictions for a new network, or nodes within the same network. This property

enables us to estimate both the out-of-sample and within-sample causal effects. The final

GCN layer produces the embeddings si = ϕ(xi, {xj}j∈Ni
), which encodes confounders

from both a unit’s own and neighbors’ features.

p(t|x) Regularizer. Based on the embeddings si, we can uniform the propensity score

p(ti|xi) for every unit i. We propose to use adversarial training paradigm (Goodfellow

et al., 2014) to achieve this goal. Specifically, we first train a model (i.e., discriminator)

that can recover the treatment ti for every unit i from the fixed embeddings si as much as

accurately. Formally, let dt : S → {0, 1} be the discriminator, it is trained by the p(t|x)
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recover loss Jrt as:

Jrt = − 1

V

V∑
i=1

(
ti log dt(si) + (1− ti) log(1− dt(si)

)
. (4.22)

Having the well-trained discriminator, we fix it as a “referee” to update the embeddings

such that p(ti|xi) is close to a uniform distribution. Given that treatment ti is binary,

the probability mass function of a uniformly distributed p(ti|xi) is p(ti = 0|xi) = p(ti =

1|xi) = 0.5. Therefore, the p(t|x) regularization loss Jut used to uniform p(ti|xi) is as:

Jut =
1

V

V∑
i=1

(dt(si)− 0.5)2. (4.23)

After many interactions of the “adversaries” between the encoder ϕ and discriminator dt,

the embedding si can finally be updated such that the discriminator dt can not identify

whether every unit receives treatment or not (both have 0.5 probability), i.e., p(t|x) is

forced into a uniform distribution.

p(z|x,t) Regularizer. Similar to the p(t|x) Regularizer, we use another adversarial

training paradigm to make the peer exposure score p(zi|xi, ti) uniformed for every unit i.

A new discriminator dz : S × {0, 1} → [0, 1] is first trained to recover the peer exposure

zi given embeddings si and treatment ti via the following p(z|x, t) recover loss Jrz:

Jrz =
1

V

V∑
i=1

(dz(si, ti)− zi)
2. (4.24)

Then, we fix the discriminator dz to update embeddings si to force the peer exposure

score p(zi|xi, ti) into uniform distribution. Recall that zi is defined as ratio of treated

neighbors of i, and therefore is a continuous variable between 0 and 1. To approximate

a continuous uniform distribution over range [0, 1], we propose to uniformly sample a

different value csi~[0, 1] for every unit i in every training iteration s, that is to say, every i

has a varying label in every iteration. In this case, the predicted ẑi = dz(si, ti) can be

compared with any value from [0, 1] with equal probability for multiple times. Hence, the
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randomly generated labels can mimic a continuous uniform distribution. Formally, the

p(z|x, t) regularization loss Juz at iteration s is:

Juz =
1

V

V∑
i=1

(dz(si, ti)− csi )
2. (4.25)

Note that as shown in Fig. 4.2, the p(t|x) regularization loss Jut and p(z|x, t) regularization

loss Juz are only used to optimize the encoder, though they propagate gradients to their

discriminators. We parameterize the two discriminators dt, dz with neural networks.

Estimator. Another objective is to minimize the observed outcomes estimation errors.

We simply use neural networks as the estimator, which takes embeddings si, treatment

ti and peer exposure zi as inputs to estimate the potential outcomes. Formally, for the

estimator m : S × {0, 1} × [0, 1] → Y , we have the potential outcome loss. Jm:

Jm =
1

V

V∑
i=1

(m(si, ti, zi)− Y i
ti,zi

)2. (4.26)

Optimization. Algorithm. 1 shows the overall optimization procedure. NetEst

optimizes the embedding si adversarially: (1) it first well trains the discriminators dt

and dz by minimizing the p(t|x) recover loss Jrt and p(z|x, t) recover loss Jrz, (2) then

updates the estimator m with Jm and optimizes the encoder with a multi-task objective

Jm + αJut + γJuz, where α and γ are coefficients that control the strengths of p(t|x) and

p(z|x, t) regularization.
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Figure 4.3: Counterfactual estimation errors ϵMSE v.s. percentages of units whose
treatments are flipped (denoted as “flip rate”). From left: BlogCatalog “within-sample”,
BlogCatalog “out-of-sample”, Flickr “within-sample”, Flickr “out-of-sample”.
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4.4 Experiments

In this section, we evaluate the effectiveness of NetEst. We first set up the experiments

and then report the results compared to baseline models. We further study why and

when NetEst works.
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Algorithm 1 The optimization of NetEstimator
Input: Network G = ⟨A,X⟩; the observed treatment ti, peer exposure zi and outcome

Y i
ti,zi

; coefficients α and γ.

Output: Encoder ϕ, p(t|x) Regularizer dt, p(z|x, t) Regularizer dz and Estimator m.

Initialize ϕ, dt, dz and m;

for w = 1, 2, ..., W do ▷ Train model for W epochs

for o = 1, 2, ..., O do ▷ Train dt for O steps

Compute Jrt;

Do one step of gradient descent for dt:

θ
(o+1)
dt

= θ
(o)
dt

− η∇θdt
Jrt; ▷ η is learning rate

end for

for u = 1, 2, ..., U do ▷ Train dz for U steps

Compute Jrz;

Do one step of gradient descent for dz:

θ
(u+1)
dz

= θ
(u)
dz

− η∇θdz
Jrz;

end for

for s = 1, 2, ..., S do ▷ Train ϕ and m for S steps

Sample csi~[0, 1] for every i;

Compute Jm, Jut, Juz;

Do one step of gradient descent for ϕ and m:

θ
(s+1)
ϕ = θ

(s)
ϕ − η∇θϕ(Jm + αJut + γJuz);

θ
(s+1)
m = θ

(s)
m − η∇θmJm;

end for

end for

Return ϕ, dt,dz and m.
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Table 4.2: Results of causal effects estimation. The PEHE error ϵPEHE (precision of
estimating heterogeneous effects) is reported. The best is boldface while the second best
is underlined. “N/A” means the model is not applicable for the peer effects.

Data (Setting) effects TARNET CFR ND TARNET(+N) CFR(+N) ND(+N) NetEst_U NetEst_I NetEst_P NetEst

BC Individual 0.1140±0.0455 0.1292±0.0931 0.1442±0.0942 0.1315±0.0411 0.1121±0.0546 0.0969±0.0422 0.1207±0.0345 0.1088±0.0452 0.1139±0.0437 0.1186±0.0542

(Within-sample) Peer N/A N/A N/A 0.4850±0.0104 0.3346±0.0439 0.4680±0.0321 0.1245±0.0491 0.0632±0.0188 0.0685±0.0176 0.0647±0.0188

Total 0.9952±0.0811 0.8708±0.0931 0.8558±0.0941 0.9027±0.0852 0.5566±0.1373 0.7472±0.1135 0.4101±0.0358 0.2268±0.0970 0.2483±0.0791 0.2214±0.1000

BC Individual 0.1169±0.0457 0.1292±0.0931 0.1444±0.0944 0.1303±0.0406 0.1142±0.0540 0.1014±0.0443 0.1199±0.0399 0.1040±0.0457 0.1114±0.0469 0.1159±0.0516

(Out-of-sample) Peer N/A N/A N/A 0.4830±0.0110 0.3347±0.0440 0.4682±0.0323 0.1243±0.0498 0.0630±0.0198 0.0679±0.0182 0.0610±0.0181

Total 0.9903±0.0866 0.8707±0.0931 0.8557±0.0943 0.8952±0.0892 0.5555±0.1360 0.0.7438±0.1145 0.4051±0.0422 0.2205±0.1017 0.2436±0.0823 0.2166±0.1043

Flickr Individual 0.1029±0.0231 0.0760±0.0445 0.0926±0.0470 0.1195±0.0434 0.0613±0.0306 0.1483±0.0678 0.1855±0.0556 0.1529±0.0588 0.1632±0.0585 0.1513±0.0637

(Within-sample) Peer N/A N/A N/A 0.4327±0.0177 0.2967±0.0370 0.4977±0.0066 0.0911±0.0188 0.0612±0.0298 0.0759±0.0184 0.0734±0.0284

Total 1.0144±0.0620 0.9470±0.0704 0.9317±0.0711 0.8661±0.0701 0.5212±0.0593 0.8331±0.0755 0.3715±0.0634 0.2996±0.0583 0.3107±0.0669 0.3139±0.0545

Flickr Individual 0.1111±0.0215 0.0760±0.0445 0.0938±0.0467 0.1129±0.0376 0.0604±0.0297 0.1346±0.0568 0.1769±0.0543 0.1464±0.0592 0.1546±0.0627 0.1392±0.0646

(Out-of-sample) Peer N/A N/A N/A 0.4220±0.0204 0.2967±.0370 0.4876±0.0134 0.0827±0.0209 0.0544±0.0257 0.0662±0.0141 0.0568±0.0243

Total 0.9895±0.0648 0.9470±0.0704 0.9253±0.0621 0.8243±0.0654 0.5220±0.0586 0.7887±0.0822 0.3435±0.0647 0.2783±0.0572 0.2826±0.0586 0.2732±0.0571

4.4.1 Experiments Setup

Datasets. For every unit i, only one treatment ti, peer exposure zi and outcome Y i
ti,zi

can be observed(i.e., factual outcome). We can never know the groundtruth counterfactual

outcome, and thus it is impossible to evaluate causal effects estimation directly. Therefore,

following (Veitch et al., 2019; Ma et al., 2021; Guo et al., 2020c), we use semi-synthetic

datasets, i.e., the networks (features, topology) are real but treatments and potential out-

comes are simulated. We use two real-world social networks BlogCatalog and Flickr (Guo

et al., 2020c; Ma et al., 2021). In both datasets, a unit (node) is a user and an edge

indicates their social relationship. Because the raw features of units are high-dimensional

and very sparse, following (Guo et al., 2020b; Ma et al., 2021), we use LDA (Blei et al.,

2003) to reduce the dimension to 10. “Out-of-sample” estimation requires we have a new

network without observed outcomes, therefore, we use METIS (Karypis and Kumar, 1998)

to partition the original network into three sub-networks as train/valid/test respectively.

We evaluate the “within-sample” estimation on train networks and “out-of-sample” on the

test network. Treatments and potential outcomes are simulated according to Fig. 4.1.

Treatments simulation. The treatment ti is affected by i’s features xi and i’s

neighbors’ features {xj}j∈Ni
. Let wX1 be a randomly generated weight vector, then unit

i’s “propensity to treatment” pti is defined as pti = σ(wX1 · xi), where σ(·) is the sigmoid

function. wX1 mimics the causal mechanism of the confounders to treatments. We denote

by ptNi
the average of all i’s neighbors’ propensities, and denote by tpti = βx∗pti+βn∗ptNi
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the total propensity to treatment of i. Then the treatment ti is generated following:

ti =


1 if tpti > tpt

0 else
, (4.27)

where tpt is the average of all tpti. We set both βx and βn as 1. Given ti and the network

topology A, the peer exposure zi—the ratio of treated neighbors of i—can then be easily

calculated.

Potential outcomes simulation. The potential outcome Yi|do(ti, zi) of i is affected

by four factors: i’s treatment ti, peer exposure zi, i’s features xi and i’s neighbors’ features

{xj}j∈Ni
. We define “propensity to outcome” poi = σ(wX2 · xi), where wX2 is randomly

generated to represent the causal mechanism of features to potential outcomes. Similarly,

We let poNi
be the average of all i’s neighbors’ propensities. Then the potential outcome

is simulated by:

Yi|do(ti, zi) = βt · ti + βz · zi + βp · poi + βo · poNi
+ ϵ, (4.28)

where ϵ is a noise term. The parameters βt, βz, βp and βo are strengths to potential

outcome of treatment, peer exposure, features, features of neighbors, respectively. We set

βt, βz, βp as 1 and βo as 0.5. following the intuition that a unit’s own features should have

stronger effects than their neighbors. We use fixed parameters across networks because

the causal mechanism is invariant.

Metrics. We consider two metrics: Mean Squared Error (ϵMSE = 1
V

∑V
i=1(ŷi −

yi)
2) for counterfactual estimation where ŷi and yi are the estimated and groundtruth

potential outcomes, respectively, and (ϵPEHE =
√

1
V

∑V
i=1 (τ̂(X)− τ(X))2) for causal

effects estimation, where τ̂(X) is the estimation and τ(X) is groundtruth. Lower is better

for both metrics.

Baselines. NetEst is compared with six baselines and three variants. CFR (Shalit

et al., 2017): State-of-the-art model for causal effects estimation on independent data,
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which is optimized by the estimating observed outcomes estimation, and a so-called

Integral Probability Metrics(IPM) that forces treated and control group to be closer. We

use the Wasserstein distance implementation of IPM. TARNet (Shalit et al., 2017): a

variant of CFR without IPM. NetDeconf (Guo et al., 2020c): extension of CFR to

networked data, which uses GNN for encoding confounders, and Wasserstein distance

for representations balancing. CFR+(N), TARNet+(N), NetDeconf+(N): because

the above three models do not consider interference, we add the peer exposure (+N) as

extra input to them to evaluate their ability under network interference. NetEst_U,

NetEst_I, NetEst_P: variants of NetEst without any regularizers (α = γ = 0), only

with p(t|x) regularizer (α = 0.5, γ = 0), and only with p(z|x, t) regularizer (α = 0,

γ = 0.5), respectively.

Implementation details. We build our model as follow. We use 1 graph convolution

layer as encoder7. We use 3 fully-connected layers for estimator and the two discriminators.

All hidden embedding size is 32. Coefficient α and γ are set as 0.5. For hyperparameters,

we use full-batch training and set the learning rate to 0.001 for all modules. All parameters

are randomly initialized and updated by the Adam optimizer (Kingma and Ba, 2015a).

We run every task for five times (including simulation) and reported the average and

1-standard deviation. The experiment environment is an AWS g4dn.4xlarge instance.

4.4.2 Results Comparison

As stated in Sec. 4.2.2, we estimate the counterfactual outcomes and predict three inter-

esting causal effects: individual effects, peer effects and total effects. For counterfactual

estimation, a counterfactual treatments assignment T is over the entire network, we

therefore simulate the counterfactual outcomes by flipping the treatments of randomly

sampled subgroups of units. We try flip rates in {0.25, 0.5, 0.75, 1} and report the coun-

terfactual estimation errors in Fig. 4.3. In general, NetEst consistently outperform all

baselines in “within-sample” and “out-of-sample” estimations on both datasets, suggesting

7Note 1 layer is consistent with the Markov assumption of network effects in Sec. 4.2.3. More layers
may be necessary if network effects are beyond the 1-hop neighbors
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the effectiveness of our model in handling the confounding bias. We notice all models’

errors increase with a larger flip rate, but NetEst is still robust, showing a much lower

error even we flip the treatments of 100% units. NetEst and its variants exhibit a similar

superiority against baselines in predicting the three causal effects (Table. 4.2). We observe

that NetEst works generally better than other models in estimating the total effects.

This empirically demonstrates our conclusion in Sec. 4.3.1 forcing the p(t|x) and p(z|x, t)

into uniform distributions is essential for causal effects estimation on networks, which is

derived by studying the objective function of causal effects. We note that the two variants

NetEst_U and NetEst_I works better under some settings. We speculate that forcing

p(t|x) into uniform distribution will also make p(z|x, t) close to be uniformed and vice

versa, since both regularizers basically enforce the embeddings to be close with each other

(validated later in Fig. 4.5).
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Figure 4.4: Errors of causal model NetEst and graph machine learning model (GCN) on
three tasks: prediction, counterfactual estimation and causal effects estimation.
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Figure 4.5: T-SNE projections of learned units’ embeddings si. Left : without (α=0) and
with (α=0.5) the regularizer for p(t|x). A red point is a unit who was treated while a blue
point means a controlled unit. Right : without (γ=0) and with (γ=0.5) the regularizer for
p(z|x, t). Units are colored by their observed peer exposures z. Red means a higher z,
i.e., ratio of treated neighbors in this paper, while blue indicates a lower z. We use 3D
projection for p(z|x, t) as z is continuous.
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4.4.3 Why Does NetEst Work?

Motivation. We motivate NetEst by modifying the objective functions of graph

machine learning models for causal effects estimation. To verify this modification, we

compare NetEst with graph machine learning model GCN in Fig. 4.4. Causal model

NetEst has worse performance on general prediction task compared to GCN but better

on causal estimation tasks. It shows, as intended, forcing p(t|x) and p(z|x, t) into uniform

distributions sacrifices the general prediction performance but alleviates the distribution

mismatches and therefore favors beneficial for causal problem.

Visualized interpretation. The uniform regularizers are conducted on the

embeddings. We further visualize the learned embeddings si to understand why adversarial

training works. We use t-SNE (Van der Maaten and Hinton, 2008) to project units’

embeddings si into 2-dimension colored by their binary treatments ti and 3-dimension

colored by their peer exposures zi in for clearness in Fig. 4.5. With the distribution

regularizers, the units points are highly overlapped on both figures. This overlapping

means that for a given unit si, the discriminators dt, dz can not recover the treatment t

and peer exposure z, suggesting t and z are uniformly distributed given si.

4.4.4 When Does NetEst Work?

The potential outcome scale varies a lot in observational data. We stratify units by their

potential outcomes and break down the counterfactual estimation errors in Table. 4.3. We

find NetEst works much better on moderate samples than extreme ones. We speculate

NetEst can not alleviate the weakness of machine learning models on extreme data just

with the proposed distribution regularizers. Understanding and solving this challenge is

an interesting future direction.
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Table 4.3: Counterfactual estimation errors according to potential outcome percentile.
MSE error ϵMSE is reported.

Potential outcome strata BC Flickr

0-10% 0.3008±0.1529 0.2642±0.0784

10%-50% 0.1192±0.0375 0.0966±0.0143

50%-90% 0.0614±0.0235 0.0536±0.0060

90%-100% 0.2423±0.1756 0.4767±0.1368

4.5 Conclusion

This paper studies causal effects estimation on networked data. We theoretically show the

objective function of standard graph machine learning has two distribution mismatches

against causal effects estimation, motivating our model NetEst that mitigates the distri-

bution gaps via representation learning. Future works could study finding out the optimal

treatment strategy, such as vaccine distribution plan, on networks based on estimated

causal effects.
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CHAPTER 5

CF-GODE: Continuous-Time Causal Inference for

Multi-Agent Dynamical Systems

5.1 Introduction

Estimating counterfactual outcomes over time is critical to gaining causal understanding

for many useful practical applications, such as how to distribute the limited vaccines in the

early days to maximize protection over time (Medlock and Galvani, 2009), or how to design

proper scheduling of medical treatments to optimize the patient recovery process (Bica

et al., 2020). Randomized controlled trials (RCTs) are the gold standard for causal

inference, but they can be cost-prohibitive and ethically challenging, particularly when

considering the dynamical settings described above. Therefore, estimating counterfactual

outcomes from observational data is the key approach to answering causal questions in

real-world scenarios. Existing research on observational causal inference over time has

begun by utilizing basic linear regression (Robins et al., 2000) and Gaussian processes (Xu

et al., 2016) to capture the time-dependencies. Subsequently, advancements have been

made by incorporating more advanced deep learning models such as recurrent neural

networks (RNNs) (Bica et al., 2020; Fujii et al., 2022) and Transformers (Melnychuk

et al., 2022).

Despite the progress, all aforementioned studies have relied on the assumption that

units (e.g., people in the vaccine example) are independent of each other, i.e., each unit

is solely influenced by its own treatment but not by others. In many realistic scenarios,

however, this assumption is not valid. For instance, a person’s vaccination not only

protects themselves but also those close to them. This type of setting is referred to as a
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Figure 5.1: Causal graph at time t in a multi-agent dynamical system. The causal
variables are represented by shapes, while their relationships are distinguished by colors.

multi-agent dynamical system (Gazi and Fidan, 2007), where units (also known as agents)

interact with each other and evolve collectively over time. Many practical problems can be

expressed as multi-agent dynamical systems, such as the long-term effects of vaccination

where people mutually influence (Halloran and Hudgens, 2012), brain network signals

in which the regions of interest (ROI) in a brain are associated (Yu et al., 2022; Cui

et al., 2022), and molecular systems movements where the atoms are interconnected

(Durrant and McCammon, 2011). Prior approaches for causal inference over time are not

applicable to multi-agent dynamical systems since they are not capable of handling the

interconnections between units. In this paper, we propose to study this novel problem

counterfactual estimation in multi-agent dynamical systems, which has received limited

attention in the literature.

The dynamic and interrelated nature of multi-agent dynamical systems poses unique

and nontrivial challenges to causal inference. We illustrate them along with Fig. 5.1. 1)

Multi-source confounders. Confounders are variables that have an impact on both

treatments and outcomes, leading to spurious correlations between them. Therefore, in

observational data, the treatments are not balanced among units with different confounders

values, resulting in biased counterfactual outcomes estimation. For example, old people

are more likely to receive vaccines, but also face a higher risk of virus infection. If we

train a standard supervised model using such imbalanced data, it may wrongly predict

that vaccines may increase the infection risk for young people. In multi-agent dynamical

systems, the confounders are multi-source, including time-dependent confounders and
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neighbor confounders. Time-dependent confounders refer to the fact that the confounders

typically evolve over time and thus their impact on treatments and outcomes also changes

dynamically (Platt et al., 2009; Bica et al., 2020). For instance, people’s health conditions

change over time, affecting their likelihood of getting vaccinated and future health status.

Neighbor confounders mean that a unit’s treatment and outcome could also be confounded

by the covariates of its near units (neighbors) (Forastiere et al., 2021; Arbour et al., 2016),

For example, if family members are in poor health, a unit may be more likely to receive

a vaccine. Compared to the independent setting, neighbor confounders are additional

confounding factors in multi-agent dynamical systems. 2) Imbalance of interference.

As discussed in the previous example that vaccines protect not only a unit but also those

in close proximity, the outcome of a unit can be influenced by others’ treatments in

multi-agent dynamical systems. In causal language, this phenomenon is referred to as

interference. Similar to the treatments, interference is affected by the covariates and thus

is not balanced across the units in observational data (Forastiere et al., 2021). For instance,

highly educated units are more likely to receive vaccines and typically have more highly

educated friends. Therefore, they receive stronger protection through higher vaccination

rates among their social networks. Such imbalanced interference causes additional bias

in the estimation of counterfactual outcomes. 3) Continuous dynamics. In realistic

applications, a multi-agent dynamical system is continuous in nature (Porter and Gleeson,

2014). However, most existing causal models are discrete, making them inappropriate

for multi-agent dynamical systems. Modeling continuous-time observations (such as

covariates and outcomes) and continuously estimating counterfactual outcomes over time

remains an open challenge.

In this paper, we address the above challenges and study how to estimate continuous-

time counterfactual outcomes, in presence of multi-source confounders and interference,

in multi-agent dynamical systems. This is a novel, yet challenging and under-explored

problem with valuable real-world applications.

To this end, we model a multi-agent dynamical system as a graph, where nodes represent

units and edges capture their interactions. Inspired by recent achievements in graph

75



ordinary differential equations (GraphODE) (Huang et al., 2020), we propose CF-GODE,

a novel causal model that estimates continuous-time CounterFactual outcomes based on

Graph Ordinary Differential Equations in multi-agent dynamical systems. Specifically,

we use GraphODE as a backbone to model the continuous trajectory of each unit.

However, in this case, traditional GraphODE can only model the pure dynamics of

potential outcomes (Huang et al., 2020) and lacks the ability to incorporate additional

inputs such as treatments, making it inappropriate for causal inference. To address

this issue, in CF-GODE, we propose Treatment-Induced GraphODE, a new GraphODE

model capable of handling treatments when predicting the future trajectory of potential

outcomes. Treatment-Induced GraphODE uses graph neural networks (GNNs) (Kipf and

Welling, 2017b) to formulate its differential equations, which can effectively capture the

mutual dependencies between units including neighbor confounders and interference. This

advantage makes it a natural fit for counterfactual estimation in multi-agent dynamical

systems. Then a latent representation is learned for each unit from its observations as the

solution to Treatment-Induced GraphODE, which represents the continuous trajectory

driven by treatments. The core of ensuring CF-GODE is a causal model is to deal with

the aforementioned estimation bias caused by imbalanced treatments and interference in

the observational data. We solve this issue via domain adversarial learning (Ganin et al.,

2016; Wang et al., 2020), in which we treat the values of treatments (and interference)

as domains and ensure the latent representation trajectories are invariant to them. We

provide theoretical justification to demonstrate that the domain-adversarial balancing

objective functions proposed in CF-GODE can effectively achieve the balancing goal,

thereby removing bias in counterfactual estimation and ensuring that CF-GODE is causal.

We summarize our major contributions as follows: 1) We study how to estimate

counterfactual outcomes in multi-agent dynamical systems, which is a novel yet challenging

problem with useful practical implications. 2) We propose CF-GODE, a novel causal model

for causal inference multi-agent dynamical systems based on GraphODE and domain-

adversarial learning. 3) We provide theoretical analysis to show that CF-GODE is able

to handle the imbalanced treatments and interference, ensuring unbiased counterfactual
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estimation. 4)We conduct extensive experiments to evaluate CF-GODE’s performance on

counterfactual outcomes estimation in multi-agent dynamical systems.

5.2 Problem Setup

5.2.1 Problem Formulation

We study how to estimate counterfactual outcomes in the context of multi-agent dynamical

systems, where the units engage in mutual interactions and evolve simultaneously over

time. Throughout this paper, we use boldface uppercase letters to denote matrices

or vectors, boldface uppercase letters with subscripts to signify elements of matrices

or vectors, regular lowercase letters to represent values of variables, and calligraphic

uppercase letters to indicate sets.

Formally, a multi-agent dynamical system can be represented by a dynamical graph

Gt = (V , E t), where V = {v1, v2, ..., vN} is the set of N units (nodes) and E t denotes the

edge set at time t. An edge in E t describes the intersection between the two units it

connects at time t. In this paper, we present an early exploration of causal inference in

multi-agent dynamical systems, and for the purpose of simplicity, we assume that the

graph structure remains constant over time, i.e., Gt = G. Each unit is associated with

time-varying variables, which are the causal quantities in our case. We introduce them

together with the causal framework in the following.

We follow the longitudinal potential outcomes framework (Robins and Hernán, 2009;

Rubin, 1978) to formalize the counterfactual outcome estimation as in (Bica et al., 2020;

Seedat et al., 2022). The observational data ((Xt,At,Yt) ∪V) in a multi-agent dynam-

ical system contains time-dependent covariates Xt (e.g., health condition), dynamical

treatments At (e.g., vaccine allocation), and time-varying outcomes Yt (e.g., immunity to

infectious disease). It is worth noting that Yt is essentially a part of Xt. V denotes the

static covariates of units such as ethnicity. Let the historical records of the multi-agent

dynamical system up to time t be represented by Ht = {X̄t, Āt, Ȳt,V}, where X̄t, Āt, Ȳt
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are all the Xt− ,At− ,Yt− until t (t− ≤ t), respectively. In causal inference, we are fo-

cused on understanding the potential outcomes Yt+(At+ = a) that may occur in the

future (t+ > t) under a specific treatment a, which explains the impact of the treatment

assignment on the dynamics of the system.

Note that a is a treatment trajectory that includes all treatments in the future time.

Our goal is to estimate the future potential outcomes sequence driven by treatments in a

multi-agent dynamical system, which is formalized as:

E
(
Yt+(At+ = a) | Ht,G

)
. (5.1)

5.2.2 Causal Identification

The potential outcomes represented by Yt+(At+ = a) are a causal quantity. To make it

identifiable from observational data, we must adhere to the following necessary assump-

tions.

Assumption 1: Positivity (Overlap). The future treatment trajectory is proba-

bilistic regardless of the historical observation, i.e., 0 < P (At+ = a | Ht) < 1,∀Ht.

Assumption 2: Consistency. Under the same treatment trajectory a, the potential

outcome is equal to the observed outcomes, i.e., Yt+(At+ = a) = Y t+ .

The above two assumptions are standard for longitudinal counterfactual estimation. To

identify the potential outcomes, it is also necessary to assume that there are no unobserved

confounders, i.e., the strong ignorability assumption. However, the typical sequential

strong ignorability assumption (Bica et al., 2020; Seedat et al., 2022; Melnychuk et al.,

2022; Lim et al., 2018) is not appropriate for multi-agent dynamical systems, because

the graph structure G introduces extra graph confounders and interference. A plausible

strong ignorability assumption for graphs is first introduced by (Forastiere et al., 2021)

and later validated in studies such as (Ma and Tresp, 2021; Ma et al., 2022; Jiang and

Sun, 2022). However, the assumption made in these works is limited to static settings.

To address this, we extend it to longitudinal settings and adapt it to be applicable to
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multi-agent dynamical systems in the following.

We first introduce a summary function, denoted as g(·), that captures the interference

effects caused by the treatments of a node’s neighboring units in the graph as in (Forastiere

et al., 2021). Formally, Gt
i = g(At

Ni
,At

N−i
), where At

Ni
denotes the treatments of node i’s

immediate neighbors, and At
N−i

is the treatments of all the remaining node that are not

directly connected to node i. We refer to Gt
i as interference summary. Here for simplicity,

we adopt the assumption put forth in (Forastiere et al., 2021; Arbour et al., 2016; Jiang

and Sun, 2022) that a node is only influenced by the treatments of its immediate neighbors,

i.e., g(At
Ni
,At

N−i
) = g(At

Ni
,A′t

N−i
) = g(At

Ni
),∀At

N−i
,A′t

N−i
. g(·) can be instantiated using

any aggregation functions or models. As in previous studies (Forastiere et al., 2021; Ma

and Tresp, 2021; Jiang and Sun, 2022), in this paper, we define Gt
i as the proportion of

treated units in unit i’s neighbors, i.e., Gt
i :=

∑
j∈Ni

At
i

|Ni| . With Gt
i, we present the strong

ignorability assumption for multi-agent dynamical systems in the following:

Assumption 3: Strong Ignorability for Multi-Agent Dynamical Systems8.

Given the historical observations and the graph structure that describes the multi-agent

dynamical system, the potential outcome trajectory is independent of the treatments and

interference summary, i.e., Yt+(At+ = a) ⊥⊥ At+ ,Gt+ | Ht,G.∀a, t.

With these three assumptions, the potential outcome trajectory Eq. (5.1) can be

identifiable as:

E
(
Yt+(At+ = a) | Ht,G

)
= E

(
Yt+(At+ = a) | At+ ,Gt+ ,Ht,G

)
(5.2)

= E
(
Yt+ | At+ ,Gt+ ,Ht,G

)
. (5.3)

Eq. (5.2) is true because of assumption 3, while Eq. (5.3) holds under the assumption

2. The above causal identification enables us to estimate the potential outcomes in

multi-agent dynamical systems using observational data. More specifically, we can train

8Note that similar to the strong ignorability assumptions in static or non-graph sequential settings,
assumption 3 can not be verified only from data.

79



a machine learning model on observational data, which takes treatment trajectory At+ ,

interference summary Gt+ , historical observation Ht and graph G as inputs, and the

observed (factual) outcome Yt+ as targets, to predict the counterfactual outcomes given

new treatment trajectories. Our proposed model CF-GODE is grounded in this and will

be presented in detail in the subsequent section.

5.3 Proposed Model: CF-GODE

5.3.1 Overview

Our proposed CF-GODE is a causal model that predicts counterfactual outcomes in a

multi-agent dynamical system by learning from observational data. We show an overview

of our model in Fig. 5.2. Compared to most existing causal models designed for standard

sequential settings that consider discrete time intervals and independent units (Bica et al.,

2020; Melnychuk et al., 2022), multi-agent dynamical systems are more realistic and

present two challenging properties: the dynamics are continuous in nature, and units are

influenced by others. To address these, our proposed CF-GODE takes the advantage of

recent breakthroughs in graph ordinary differential equations (GraphODE) (Huang et al.,

2020, 2021) and extends it to handle treatments and interference, enabling continuous

estimation of counterfactual outcomes in multi-agent dynamical systems. We refer to

our ODE model as Treatment-Induced GraphODE (Sec. 5.3.2). The time-dependent

confounders lead the distribution of covariates to be quite discrepant between units

assigned to different treatments, resulting in high variances in counterfactual outcome

estimation (Johansson et al., 2016; Shalit et al., 2017; Robins et al., 2000). This effect

is further amplified by the imbalanced interference caused by the graph structure in

multi-agent dynamical systems (Forastiere et al., 2021; Jiang and Sun, 2022). CF-GODE

uses adversarial learning to alleviate this issue and guarantee unbiased estimates of

counterfactual outcomes (Sec. 5.3.3).
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Figure 5.2: Overview of CF-GODE. The initial latent representation Z0 is first learned
from initial observations. Then the continuous latent representation trajectory Zt is
learned as the solution to treatment-induced GraphODE, which is able to handle treat-
ments as additional inputs. The graph neural network (GNN) based ODE function
naturally models the mutual dependencies. The future potential outcomes can be decoded
from Zt at any given time. To remove confounding bias, Zt is balanced with respect to 1)
treatments, 2) interference when combined with corresponding treatments.

5.3.2 Treatment-Induced GraphODE

To facilitate continuous-time counterfactual outcome estimation, we propose to learn

a continuous latent trajectory Zt
i for every node in multi-agent dynamical system that

represents their movement. An ideal Zt
i should possess two characteristics: 1) the ability

to predict observed outcomes, and 2) not to be predictive of the received treatment or

interference in observational data9. We implement such a Zt
i by a novel model called

Treatment-Induced GraphODE, which empowers the recent GraphODE (Huang et al.,

2020, 2021) to deal with treatment and interference for counterfactual outcomes estimation.

In a multi-agent dynamical system, the future outcomes of node i might be affected

by not only its own past movement and current treatment, but also the movements and

interference from neighbors (e.g., a unit’s health condition and vaccination status have a

significant impact on how likely others are to be infected). We model this process and

9The second characteristic is discussed in Sec. 5.3.3.
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formalize treatment-induced GraphODE as:

Zt
i = Z0

i +

ˆ t

t′=0

GNN
(
Zt′

1 ,Z
t′

2 , ...,Z
t′

N

)
dt′. (5.4)

In Eq. (5.4), Zt′ and At′ denote the latent trajectory representations and treatments of

all nodes in the multi-agent dynamical system, respectively. ϕ(·) is the ODE function.

To comprehensively capture the effects from node i and its connected neighbors, we

parameterize ϕ(·) using graph neural networks (Kipf and Welling, 2017b) with self-loops.

Z0
i is the initial state and can be encoded from the initial observations as Z0

i = f(X0
i ,Vi),

where f(·) is an encoder parameterized by neural networks. With Z0
i , we can obtain the Zt

i,

which is the solution to treatment-induced GraphODE, by solving an ODE initial-value

problem (IVP) in Eq. (5.4), formalized as:

Z0
i ,Z

1
i · · ·ZT

i = ODESolve
(
ϕ, [Z0

1,Z
0
2 · · ·Z0

N ], (t0, t1 · · · tT )
)
, (5.5)

where T is the number of timestamps for the evaluation of Eq. (5.5). With the solution

latent trajectory Zt
i, we can then use a decoder dY(·) to transform it to the predicted

outcome Ŷt
i = dY(Z

t
i). We also use neural networks to instantiate dY(·). We compare

the prediction Ŷt
i to ground-truths Yt

i in all observed timestamps (t0, t1 · · · tT ) using a

mean square error as objective, which is formalized as:

L⟨Y ⟩ =
1

N

1

T

N∑
i

T∑
t

(
Ŷt

i −Yt
i

)2
. (5.6)

5.3.3 Balancing via Adversarial Learning

In the observational data, the treatments applied to each unit At
i are affected by the

time-dependent confounders present in the covariates (and thus in its latent representation

trajectory Zt
i). Consequently, the distribution of latent representation trajectory is not

balanced among units with different treatment assignments, i.e., P (At
i|Zt

i) is not uniform,

leading to high variances in the counterfactual outcome estimation (Johansson et al., 2016;
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Shalit et al., 2017). In the context of multi-agent dynamical systems, this effect is further

exacerbated by the presence of imbalanced interference among units. This is because

a unit’s interference is influenced by its covariates (also the latent representation) and

treatments in the observational data, i.e., P (Gt
i|Zt

i,A
t
i) is not uniform (Forastiere et al.,

2021; Jiang and Sun, 2022; Ma and Tresp, 2021). Here we give an intuitive example of

the imbalanced interference: consider that a highly educated person is more likely to be

surrounded by other highly educated friends, who believe in science and are more likely

to be vaccinated, thereby providing stronger protection for this person against infectious

diseases, i.e., higher interference.

A sufficient condition to remove the above bias is to ensure that the distribution of

latent representation trajectories is invariant to treatments, and when combined with

the corresponding treatments, is interference-invariant (Shalit et al., 2017; Bica et al.,

2020; Seedat et al., 2022; Forastiere et al., 2021; Jiang and Sun, 2022). This condition is

formalized as P (Zt|At = 0) = (Zt|At = 1) for treatment balancing, and P (Zt,At|Gt = g′)

is identical for any given value of g′ for interference balancing. The treatment At is binary

and interference Gt is continuous as in (Forastiere et al., 2021; Jiang and Sun, 2022).

Note that the aforementioned conditions are over the unit groups. This guarantees that

the treatment cannot be inferred from the latent representation trajectory, and that the

interference is not predictable when the treatment is combined with latent representation.

We implement this balancing goal through domain adversarial learning (Ganin et al.,

2016), in which the treatment is treated as binary domains and the interference is treated

as continuous domains (Wang et al., 2020). Specifically, we use the gradient reversal

layer proposed in (Ganin et al., 2016), denoted as r(·), to adversarially optimize the

latent representation trajectory at every observed time, making it agnostic towards the

treatments and interference.

Treatment Balancing. Formally, the predicted treatment is Ât
i = dA (r(Zt

i)),

where the dA is a neural network that attempts to recover the treatment from latent

representation. The gradient reversal layer r(·) does nothing in the forward pass, but

reverses the gradients in the back-propagation. This way, a min-max game is created in
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which dA aims to minimize the treatment prediction loss, while the latent representation

learner in treatment-induced GraphODE strives to maximize it, as formalized in the

following:

L⟨A⟩ = min
djA

max
f,ϕ

1

N

1

T

N∑
i

T∑
t

∑
j∈{0,1}

1(At
i=j) − log

(
djA
(
r(Zt

i)
))

, (5.7)

where djA represents the logits of dA(·) for predicting treatment j. We then provide a

theoretical analysis to justify the capability of L⟨A⟩ to attain balanced representations in

the following.

Theorem 1. Let j ∈ {0, 1} be the binary treatment values, and let N and T denote the

number of units and observed timestamp lengths, respectively. Let P t
j = P (Zt | At = j),

be the distribution of latent representation Zt for the group of units with treatments j at

time t. Let f , ϕ, djA be the initial state encoder, the ODE function of treatment-induced

GraphODE, and logits of predicting treatment j. The necessary and sufficient condition

for the min-max game in Eq. (5.7) to be optimal is P t
0 = P t

1,∀t ∈ (t0, t1 · · · tT ).

Theorem 1 suggests that the condition to obtain global optimum of Eq. (5.7) is

P (Zt|At = 0) = (Zt|At = 1). Therefore, by optimizing L⟨A⟩ in Eq. (5.7), we can ensure

the latent representation trajectory Zt is balanced with respect to treatments. In other

words, Zt is not predictive of At. We prove Theorem 1 in Appendix. 5.6.1.1.

Interference Balancing. The interference Gt
i is continuous, we thus adapt the

continuous domain adversarial learning (Wang et al., 2020) to achieve the interference

balancing. Similar to the binary case, we consider the continuous interference as continuous

domains, and use the gradient reversal layer r(·) to build a min-max game on interference

prediction as follows:

L⟨G⟩ = min
dG

max
f,ϕ

1

N

1

T

N∑
i

T∑
t

(
dG
(
r([Zt

i,A
t
i])
)
−Gt

i

)2 (5.8)

where dG is the interference predictor which is parameterized by neural networks, and
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[·, ·] is the concatenation operation. In the following, we also theoretically demonstrate

that L⟨G⟩ is able to achieve the interference balancing objective.

Theorem 2. Let f , ϕ, dG be the initial state encoder, the ODE function of treatment-

induced GraphODE, and the interference predictor. The necessary and sufficient condition

for min-max game in Eq. (5.8) to be optimal is P (Zt,At|Gt = g′) is identical for any g′.

Theorem. 2 indicates that if E([Zt,At] | Gt) is identical for any Gt = g′, Eq. (5.8)

achieves optimum. Therefore, it is sufficient to balance the combination of representations

and treatments with respect to interference Gt by optimizing the objective function L⟨G⟩.

We show the proof of Theorem 2 in Appendix. 5.6.1.2.

5.3.4 Training of CF-GODE

Objective Function. The overall objective function of CF-GODE is formalized in the

following:

L = L⟨Y ⟩ + αAL
⟨A⟩ + αGL

⟨G⟩, (5.9)

where coefficients αA, αG are the strengths of the treatment balancing and interference

balancing, respectively. By adversarially optimizing L, the latent representation trajectory

Zt
i is able to predict the outcome trajectory Yt

i while remaining invariant to the treat-

ments At
i and interference Gt

i (combined with treatments), which enables the unbiased

counterfactual outcome estimation in multi-agent dynamical systems.

Alternative Training as Trade-Off. In practice, we find that directly training

CF-GODE with the overall loss function L may not be stable as L⟨A⟩ and L⟨G⟩ could

hinder the ability of latent representation trajectory Zt
i to predict the outcome. Therefore,

we trade-off the training of CF-GODE in an alternative manner between L and L⟨Y ⟩, to

ensure that Zt
i is capable of predicting outcomes. Specifically, we switch the training

iterations between L and L⟨Y ⟩ with a ratio of K, i.e., IterL
Iter

L⟨Y ⟩
= K, where Iter means the

number of training iterations and K is a tunable hyperparameter.
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5.4 Experiments

5.4.1 Experimental Settings

Dataset. In observational data, we only have factual outcomes but not counterfactual

outcomes. Therefore, we use semi-synthetics data to evaluate CF-GODE as in (Ma

et al., 2022; Guo et al., 2020c; Veitch et al., 2019). That is, we use two real graphs

Flickr and BlogCatalog (Guo et al., 2020c; Chu et al., 2021; Ma et al., 2021) and use a

Pharmacokinetic-Pharmacodynamic (PK-PD) model (Goutelle et al., 2008) to simulate

the continuous trajectory of treatments and potential outcomes (Bica et al., 2020; Seedat

et al., 2022). The data simulation mimics the vaccine example in the real world. We

introduce the data simulation process in detail in Appendix. 5.6.2.

Metric. We focus on counterfactual outcomes estimation in this paper, which is a

continuous value. Therefore, we use mean square errors (MSE) as our metric to evaluate

the performance of our model, which is formalized as MSE := 1
N

1
T

∑N
i

∑T
t

(
Ŷt

i −Yt
i

)2
.

Baselines. The scope of our model is in continuous-time causal inference, there-

fore we compare CF-GODE with the following baselines: CDE (Kidger et al., 2020):

Ordinary differential equations with external inputs to adjust the continuous trajectory.

GraphODE (Huang et al., 2020) Ordinary differential equations model with graph

neural networks (GNNs) based ODE functions. TE-CDE (Seedat et al., 2022): the

state-of-the-art model for continuous-time counterfactual outcomes estimation based on

neural controlled differential equations (NeuralCDE).

Implementation. The parameters of CF-GODE are set as follows: the dimension

of latent representations is 64; the ODE solver is the Euler method; the balancing degrees

are αA = αG = 0.5. For training hyperparameters, the learning rate is 0.0001; the default

alternative training ratio K is 4. We train the model 5000 epochs and select the best

model according to the performance on the validation set. The parameters are optimized

by Adam (Kingma and Ba, 2015a). We run all experiments on a Lambda Labs instance

with one A100 GPU.
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Table 5.1: Counterfactual outcomes estimation errors on two datasets. “BC” is the
abbreviation of the BlogCatalog dataset. The errors are broken down in x-step future
estimation (x ∈ [1, 2, 3, 4, 5]). MSE errors are reported. The best results are in boldface
and the second best results are underlined. CF-GODE-N is the variant of our model
without any balancing; CF-GODE-T means balance only w.r.t. treatments; CF-GODE-I
denotes balance only w.r.t. interference.

Dataset Model 1-step 2-step 3-step 4-step 5-step Overall

Flickr

CDE 0.134±0.015 0.164±0.017 0.198±0.021 0.237±0.023 0.281±0.026 0.203±0.205

GraphODE 0.237±0.013 0.276±0.010 0.313±0.016 0.347±0.018 0.379±0.021 0.310±0.016

TE-CDE 0.189±0.025 0.216±0.021 0.246±0.027 0.281±0.041 0.326±0.063 0.252±0.031

CF-GODE-N 0.089±0.006 0.102±0.007 0.114±0.009 0.126±0.010 0.139±0.012 0.114±0.008

CF-GODE-T 0.058±0.017 0.066±0.020 0.075±0.023 0.084±0.027 0.098±0.036 0.076±0.025

CF-GODE-I 0.069±0.007 0.080±0.008 0.091±0.009 0.103±0.011 0.115±0.012 0.092±0.009

CF-GODE 0.056±0.0090.060±0.0090.067±0.0090.070±0.0100.077±0.0120.065±0.010

BC

CDE 0.255±0.120 0.324±0.178 0.407±0.263 0.515±0.383 0.640±0.549 0.427±0.296

GraphODE 0.195±0.018 0.223±0.023 0.251±0.028 0.280±0.033 0.309±0.040 0.252±0.028

TE-CDE 0.316±0.086 0.351±0.089 0.399±0.093 0.493±0.137 0.725±0.351 0.457±0.127

CF-GODE-N 0.167±0.012 0.188±0.015 0.209±0.018 0.228±0.023 0.246±0.028 0.207±0.019

CF-GODE-T0.139±0.0150.154±0.0190.172±0.0250.189±0.0270.202±0.0310.171±0.023
CF-GODE-I 0.164±0.016 0.188±0.020 0.210±0.024 0.232±0.029 0.253±0.035 0.209±0.025

CF-GODE 0.148±0.015 0.166±0.019 0.186±0.023 0.205±0.025 0.229±0.029 0.186±0.021

5.4.2 Can CF-GODE Deliver Accurate Estimations of Counterfactual Out-

comes in Multi-Agent Dynamical Systems?

We compare CF-GODE to three lines of models: 1) Continuous-time dynamical prediction

models CDE and GraphODE. Note that these baselines are not causal models since they

only preserve the dynamical statistical associations. 2) Continuous-time causal inference

model TE-CDE. But it is not capable of capturing the mutual dependencies between units

in multi-agent dynamical systems. 3) Variants of CF-GODE. We consider three variants:

CF-GODE-N means there is no any balancing (αA = αG = 0); CF-GODE-T denotes

balancing only w.r.t. treatments (αA = 1, αG = 0); CF-GODE-I means balancing only

w.r.t. interference (αA = 0, αG = 1). For a multi-agent dynamical system with N nodes

and length-A treatment trajectories, the total number of possible treatments for all nodes

is O(A · 2N ). Therefore, it is intractable to enumerate all treatment combinations. To this

end, we randomly flip 50% of all observed treatments in each experiment. We estimate

five-step (timestamp) ahead counterfactual outcomes and report estimation errors in

Table. 5.1. Generally, CF-GODE and the variants outperform the baselines by substantial
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margins. It is noteworthy that, despite being a causal model, TE-CDE performs clearly

worse than the family of CF-GODE, because it ignores the mutual influence between

units. This underscores our motivation to address this unique challenge in multi-agent

dynamical systems. We also note CF-GODE-N is generally the weakest estimator among

all variants, confirming the effectiveness of our proposed balancing objectives.

Lower Row:
BC

Before Flipping Treatments

Upper Row:
Flickr

After Flipping Treatments

Figure 5.3: T-SNE projections of latent representations “before” (factual) and “after”
(counterfactual) flipping the treatments. Each point represents a unit’s latent representa-
tion. The points are colored by the units’ corresponding interference. Upper row: Flickr
dataset; Lower Row: BlogCatalog dataset.

Why Does CF-GODE-T Show Superior Performance Than CF-GODE on

BlogCatalog Dataset? On BlogCatalog dataset, we observe that balancing solely

with respect to treatments (CF-GODE-T) yields the lowest estimation errors, even

outperforming balancing both treatments and interference (CF-GODE). To understand

this phenomenon, we project all units’ latent representations Zt into 2-D embeddings

using T-SNE (Van der Maaten and Hinton, 2008) and color these 2-D points by their

corresponding interference in Fig. 5.3. Specifically, we compare the units’ interference

before and after flipping the treatments. Compared to Flickr, we notice that in BlogCatalog

1) the latent representations are already comparatively more balanced before flipping

the treatments, and 2) the units’ interference does not change significantly after flipping

the treatments. This suggests that balancing solely with respect to treatments might be
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sufficient in the BlogCatalog dataset. Actually, since we use the same data simulation

protocol for Flickr and BlogCatalog, this difference in interference distribution is expected

to be caused by their distinct graph structures. Specifically, the average and standard

derivation of node degrees of the two datasets are Flickr: 2.0± 1.7; BlogCatalog: 30.7±

25.1. Intuitively, the interference of high degrees nodes is more resistant to flipping a

random portion of their neighbors, which is pretty common among nodes in BlogCatalog.

We provide further breakdown studies to better understand how node degrees affect

counterfactual outcomes estimation in Sec. 5.4.5.

Figure 5.4: Counterfactual outcomes estimation errors w.r.t. the percentage of units in
the graph whose treatments are flipped. Left: Flickr dataset; Right: BlogCatalog dataset.

5.4.3 How Does CF-GODE Respond to The Flipping of Counterfactual

Treatments?

In the above experiments, the default treatment flipping ratio is set at 50%. It’s intriguing

to investigate how CF-GODE reacts to different flipping ratios, as this would indicate the

degree of difference between factual and counterfactual outcomes in terms of treatments.

To this end, we set the flip ratio as [25%, 50%, 75%, 100%], and present the results of

CF-GODE and its variants under these settings in Fig. 5.4. As expected, all models

perform worse as the flip ratio increases, since the counterfactual treatments diverge

further from the observed factual treatments. However, we observe that with balancing

objectives, the error of CF-GODE increases generally slowly, highlighting the need for

balancing objectives.
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Figure 5.5: Counterfactual outcomes estimation errors w.r.t. 11 different confounding
degrees γa and γf . Note γa and γf are set as the same values in each experiment. The
red line points to the “no confounding bias” setting (γa = γf = 0).

5.4.4 How Does CF-GODE Respond to Different Confounding Degrees?

In data simulation, we use coefficients γa, γf to control the degree of the time-dependent

and neighbor confounding bias. With larger values of these coefficients, the confounding

bias is more severe, leading to increasingly imbalanced data. To study how CF-GODE

works under varying confounding degrees, we set γa = γf = γ, where γ is from 1 to

10, and present the counterfactual outcomes estimation errors of CF-GODE under these

conditions in Fig.5.5. The errors increase as the confounding bias becomes more severe,

but the rate of increase is relatively smooth, particularly on Flickr dataset. This implicates

CF-GODE’s robustness against high degree confounding bias. Additionally, CF-GODE

produces low errors when there is no confounding bias (γa = γf = 0), which demonstrates

the compatibility of CF-GODE with such settings.

5.4.5 How Does Graph Structure Impact Counterfactual Outcomes Estima-

tion?

As discussed in Sec. 5.4.2, the graph structure affects CF-GODE’s performance on

counterfactual outcomes estimation. To gain deeper insights into this phenomenon, we

break down the estimation errors on BlogCatalog dataset according to node degrees

in Table. 5.2. Interestingly, we find that CF-GODE’s counterfactual estimation errors

decrease as the node degrees become higher. Intuitively, this might also be because the

interference of high-degree nodes is more stable. However, in this paper, we do not have a
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theoretical understanding of the relationships between estimation errors and node degrees.

Table 5.2: The breakdown of counterfactual outcomes estimation errors by units (nodes)
degrees in BlogCatalog dataset.

Degree #Nodes Percentage% Error

(0,5] 176 10.2 0.243±0.337
(5,10] 185 10.6 0.235±0.344
(10,20] 389 22.5 0.216±0.296
(20,30] 312 18.0 0.218±0.314
(20,30] 200 11.5 0.221±0.295
(30,40] 165 9.5 0.195±0.284
(40,50] 98 5.7 0.176±0.269
>50 207 12.0 0.187±0.261

5.4.6 Can CF-GODE Be Generalized to New Multi-Agent Dynamical Sys-

tems?

Standard counterfactual outcome estimations are typically conducted on units whose

factual outcomes have been observed. However, the estimation of the potential outcomes

on new multi-agent dynamical systems is also of great importance. For instance, to

predict the effects of an initial vaccine distribution strategy for a new community. To

assess CF-GODE’s ability to generalize to new systems, i.e., new graphs, we split the

original graph into three subgraphs, denoted as training/validation/testing graphs (details

in Appendix. 5.6.2). We train our model on the training graph and evaluate its potential

outcome estimation on the testing graph. We report the results in Table. 5.3. We note that

the performance of CF-GODE and the variants on new graphs are also generally better

than baselines, which is consistent with the estimation of the counterfactual outcomes

within the same graph (Sec. 5.4.2). This demonstrates our model’s generalizability to

new multi-agent dynamical systems.

5.4.7 How Does Alternative Training Affect CF-GODE?

CF-GODE uses an alternative training strategy to trade off the latent representation

balancing and potential outcome prediction. We examine how this trade-off is performed

under varying alternative ratios K, where K = IterL
Iter

L⟨Y ⟩
represents the alternating training
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Table 5.3: Generalization errors of potential outcomes prediction for new multi-agent
dynamical systems (new graphs) on two datasets. “BC” is the abbreviation of the
BlogCatalog dataset. The errors are broken down in x-step future estimation (x ∈
[1, 2, 3, 4, 5]). MSE errors are reported. The best results are in boldface and the second
best results are underlined. CF-GODE-N is the variant of our model without any
balancing; CF-GODE-T means balance only w.r.t. treatments; CF-GODE-I denotes
balance only w.r.t. interference.

Dataset Model 1-step 2-step 3-step 4-step 5-step Overall

Flickr

CDE 0.134±0.017 0.166±0.022 0.201±0.026 0.241±030 0.285±0.034 0.205±0.025

GraphODE 0.209±0.010 0.243±0.012 0.275±0.015 0.306±0.018 0.335±0.022 0.274±0.014

TE-CDE 0.193±0.023 0.221±0.021 0.251±0.027 0.285±0.040 0.328±0.061 0.256±0.030

CF-GODE-N 0.087±0.06 0.099±0.008 0.111±0.009 0.122±0.010 0.134±0.011 0.111±0.008

CF-GODE-T0.057±0.014 0.064±0.016 0.072±0.018 0.081±0.022 0.092±0.029 0.738±0.020

CF-GODE-I 0.071±0.007 0.083±0.008 0.096±0.009 0.109±0.010 0.122±0.011 0.096±0.009

CF-GODE 0.057±0.0080.062±0.0090.067±0.0100.073±0.0110.081±0.0130.069±0.010

BC

CDE 0.251±0.113 0.317±0.174 0.399±0.259 0.500±0.380 0.625±0.548 0.418±0.294

GraphODE 0.183±0.021 0.210±0.026 0.237±0.032 0.265±0.039 0.293±0.046 0.237±0.033

TE-CDE 0.328±0.092 0.372±0.104 0.440±0.164 0.582±0.378 0.933±0.966 0.457±0.127

CF-GODE-N 0.168±0.008 0.190±0.009 0.213±0.012 0.235±0.015 0.255±0.021 0.213±0.013

CF-GODE-T0.141±0.0110.157±0.0150.175±0.0210.192±0.0220.203±0.0280.174±0.018
CF-GODE-I 0.164±0.014 0.187±0.018 0.209±0.022 0.231±0.028 0.253±0.034 0.209±0.023

CF-GODE 0.143±0.013 0.162±0.017 0.180±0.022 0.199±0.023 0.214±0.025 0.180±0.019

between the overall loss L and the outcome prediction loss L⟨Y ⟩. Fig. 5.6 shows the

2-D T-SNE projections of latent representations and their corresponding counterfactual

estimation errors for different K values. We note that compared to solely training on

L⟨Y ⟩ (i.e., no balancing), training with L is able to force the embeddings more balanced,

suggesting the effectiveness of our proposed domain adversarial learning based balancing

objectives. In addition, with a smaller K, CF-GODE achieves better estimation errors,

while a bigger K leads to more balanced latent representations. These results confirm

that our alternative training is able to trade off between latent representation balancing

and potential outcome prediction. In practice, choosing an appropriate value of K is

expected to be determined through empirical analysis for each dataset.

5.4.8 Case Study: When CF-GODE Is Good, and When It Is Not.

To intuitively understand how CF-GODE works in estimating counterfactual outcomes

and to study when CF-GODE would fail, we sample one successful unit and one failure

unit from Flickr dataset. We draw their factual outcomes, counterfactual outcomes, and
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No Balance Alternative ratio K=1 Alternative ratio K=3 Alternative ratio K=5 No Alternative Training

Interference
Balancing

Treatment
Balancing

Treated
Control

Error: 0.211±0.021 Error: 0.164±0.036 Error: 0.174±0.040 Error: 0.176±0.031 Error: 0.182±0.03

Figure 5.6: The T-SNE visualization of latent representations under different alternative
training settings. Each point represents a unit’s latent representation. The top line is
colored by the observed treatments and the bottom line is colored by observed interference.
Five columns from left to right: 1) only trained on L⟨Y ⟩ (no balancing); 2) IterL

Iter
L⟨Y ⟩

= 1; 3)
IterL

Iter
L⟨Y ⟩

= 3; 4) IterL
Iter

L⟨Y ⟩
= 5; 5) only trained on L (no alternative training). Each setting’s

corresponding counterfactual estimation error is marked in red.

the estimations made by CF-GODE and CF-GODE-N (without balancing) in Fig. 5.7. In

the successful case, the estimate by CF-GODE is able to conform to the counterfactual

treatment trajectory, while CF-GODE-N still follows the factual trajectory. This shows

the effectiveness of our proposed balancing objectives. However, CF-GODE also makes

mistakes. In the failure case, its estimate fails to catch up with the counterfactual outcome

trajectory, yielding a non-trivial error. We speculate that this is because the counterfactual

outcome of this unit is quite distinct from the factual one in terms of data scale, making

counterfactual estimation more difficult.

5.4.9 How Hyperparamters Affect CF-GODE?

The two balancing objectives are core to making CF-GODE causal. Therefore, we finally

study the impact of their degrees, represented by αA and αG in the loss function, on the

model performance. We test αA and αG values evenly ranging from [0, 0, 1.0], and present

the counterfactual outcomes estimation errors for each combination of αA and αG in

Fig. 5.8. Our results show that the errors are relatively higher when both αA and αG are

in low values, i.e., light balancing. On the other hand, with larger values, the estimation

errors generally become lower, but with high variance. This indicates the effectiveness of
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Figure 5.7: The predicted counterfactual outcomes of CF-GODE w/w.o balancing loss
functions. The treatments of factual outcomes At

i and treatments of counterfactual
outcomes Ãt

i are attached around the corresponding curves at each timestamp. The
estimation errors are noted in blue. Results are from Flickr dataset. Left: a successful
case; right: a bad case.

the balancing objectives but also highlights the instability of domain adversarial learning

based balancing.

Light Balancing Light Balancing

Figure 5.8: The counterfactual estimation errors w.r.t. different combinations of αA and
αG. The “Light Balancing” settings where αA and αG are both in small values are circles
in red.

5.5 Conclusion

In this paper, we study continuous-time counterfactual outcomes estimation in multi-

agent dynamical systems, where units interact with each other. To this end, we propose

CF-GODE, a novel causal model based on GraphODE to enable continuous potential

outcomes prediction, and domain adversarial learning to remove confounding bias. We

provide both theoretical justification and empirical analyses to demonstrate the effec-

tiveness of our model. One limitation of CF-GODE is it needs the assumption of strong

ignorability for multi-agent dynamical systems, which is not testable in practice. Recent
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studies relax this assumption by inferring latent proxy variables (Wang and Blei, 2019),

which could be a potential solution.

5.6 Appendix

5.6.1 Proofs of Theorems

5.6.1.1 Proof of Theorem. 1

Theorem 1. Let j ∈ {0, 1} be the binary treatment values, and let N and T denote the

number of units and observed timestamp lengths, respectively. Let P t
j = P (Zt | At = j),

be the distribution of latent representation Zt for the group of units with treatments j at

time t. Let f , ϕ, djA be the initial state encoder, the ODE function of treatment-induced

GraphODE, and logits of predicting treatment j. The necessary and sufficient condition

for the min-max game in Eq. (5.7) to be optimal is P t
0 = P t

1,∀t ∈ (t0, t1 · · · tT ).

The proof of Theorem 1 follows (Bica et al., 2020; Melnychuk et al., 2022) and consists

of two steps: to find the optimal djA while fixing f and ϕ, and then to prove the optimal

f and ϕ while fixing djA can balance the latent representations, i.e., P t
0 = P t

1. The first

step is given by Proposition 1.

Proposition 1. (Proposition 1 in (Melnychuk et al., 2022)) Let αj = P (At = j). When

the initial state encoder f and ODE function ϕ are fixed, the optimal djA at time t is:

djA
∗
=

αjP
t
j∑

j′∈{0,1} αj′P t
j′
. (5.10)

Proof. When fixing f and ϕ, djA
∗

is obtained by:

djA
∗
= argmin

djA

∑
j∈{0,1}

1(At=j) − log
(
djA
(
r(Zt)

))
, (5.11)

subject to
∑

j∈{0,1}

djA
(
r(Zt)

)
= 1, (5.12)
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where Eq. (5.11) is adapted from Eq. (5.7). Note Eq. (5.11) can be applied to any i and t

in Eq. (5.7), so we disregard the expectation with respect to them. Let αj = P (At = j)

and P t
j = P (Zt | At = j). Then Eq. (5.11) can be rewritten as:

djA
∗
= argmin

djA

∑
j∈{0,1}

−EZt∼P t
j
αj log

(
djA
(
r(Zt)

))
(5.13)

= argmin
djA

∑
j∈{0,1}

−
ˆ
Z′t

αj log
(
djA

(
r(Z′t)

))
P t
jdZ

′t. (5.14)

We can also take pointwise optimization for any Z′t in Eq. (5.14) Then by combining

Equation (5.14) with the constraint in Equation (5.12) and using Lagrange multipliers,

we have:

djA
∗
= argmin

djA

∑
j∈{0,1}

−αj log
(
djA

(
r(Z′t)

))
P t
j

+ λ

 ∑
j∈{0,1}

djA
(
r(Zt)

)
− 1

 . (5.15)

Let J =
∑

j∈{0,1}−αj log(d
j
A(r(Z

′t)))P t
j + λ(

∑
j∈{0,1} d

j
A(r(Z

t))− 1) be the objective in

Eq. (5.15) The optimal values can be obtained by taking partial gradients ∂J

∂djA
= 0 and

∂J
λ

= 0, respectively. By computing them jointly we can obtain djA
∗
=

αjP
t
j∑

j′∈{0,1} αj′P
t
j′

.

The second step is to prove Theorem. 1 that the optimal f and ϕ can obtain balanced

representations with respect to treatments.

Proof. With Proposition 1, we can fix the optimal djA
∗

and find the condition where

Eq. (5.7) achieves optimum. Putting djA
∗

into the objective in Eq. (5.7) and applying
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similar simplifications as in Eq. (5.14) and Eq. (5.15), we have:

f ∗, ϕ∗ = argmax
f,ϕ

∑
j∈{0,1}

−EZt∼P t
j
log

(
αjP

t
j∑

j′∈{0,1} αj′P t
j′

)
(5.16)

= argmin
f,ϕ

∑
j∈{0,1}

EZt∼P t
j
log

(
P t
j∑

j′∈{0,1} αj′P t
j′

)
+ log(αj) (5.17)

= argmin
f,ϕ

∑
j∈{0,1}

KL

P t
j

∣∣∣∣∣
∣∣∣∣∣ ∑
j′∈{0,1}

αj′P
t
j′

+ log(αj), (5.18)

(5.19)

where KL(·||·) is the KL divergence. Note that
∑

j∈{0,1} log(αj) is constant in observation

data. KL(·||·) ≥ 0 and it reaches 0 when the two operands are equal. Therefore, to

have f ∗, ϕ∗, for j ∈ {0, 1}, we have P t
0 = P t

1 =
∑

j′∈{0,1} αj′P
t
j′ . Therefore, the optimal

f ∗, ϕ∗ are those who achieve P t
0 = P t

1. We can apply this to all the N units and all the

T observed timestamps to obtain the global optimum of Eq. (5.7), which concludes the

proof of Theorem 1.

5.6.1.2 Proof of Theorem 2

Theorem 2. Let f , ϕ, dG be the initial state encoder, the ODE function of treatment-

induced GraphODE, and the interference predictor. The necessary and sufficient condition

for min-max game in Eq. (5.8) to be optimal is P (Zt,At|Gt = g′) is identical for any g′.

The proof of Theorem 2 follows (Wang et al., 2020). Similar to Theorem 1’s proof, it

first finds the optimum of dG, and then proves that the optimal f and ϕ can balance the

representations with respect to interference. We first restate the Lemma 4.1 in (Wang

et al., 2020) in Proposition. 2.

Proposition 2. (Lemma 4.1 in (Wang et al., 2020)) Let Ct = [Zt,At] be the concatenation

of Zt and At. When fixing initial state encoder f and ODE function ϕ, the optimal dG at

time t is:

d∗G = EGt∼p(Gt|Ct)(G
t). (5.20)
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Proof. Eq. (5.20) is adapted from Eq. (5.8). We disregard the expectation with respect

to i and t since Eq. (5.20) is applicable to any i and t. If fixing f and ϕ, the optimal d∗G

is given by:

d∗G = argmin
dG

E(Zt,At,Gt)∼p(Zt,At,Gt)

(
dG
(
r([Zt,At])

)
−Gt

)2 (5.21)

= argmin
dG

E(Ct,Gt)∼p(Ct,Gt)

(
dG
(
r(Ct)

)
−Gt

)2 (5.22)

= argmin
dG

ECt∼p(Ct)EGt∼p(Gt|Ct)

(
dG
(
r(Ct)

)
−Gt

)2
. (5.23)

As the quadratic expansion in (Wang et al., 2020), the optimal interference predictor is

d∗G = EGt∼p(Gt|Ct)(G
t).

Here we introduce and reformulate Theorem 4.1 in (Wang et al., 2020) as Lemma. 1.

Lemma 1. (Theorem 4.1 in (Wang et al., 2020)) Given ExV(y | x) where V denotes

variance, its global optimum can be achieved if and only if for any x, E(y | x) = E(y).

With Proposition. 2 and Lemma. 1, we can prove Theorem. 2.

Proof. Fixing the optimal d∗G in Proposition. 2, the optimal f and ϕ for objective Eq. (5.23)

is:

f ∗, ϕ∗ = argmax
f,ϕ

ECt∼p(Ct)EGt∼p(Gt|Ct)

(
EGt∼p(Gt|Ct)(G

t)−Gt
)2 (5.24)

= argmax
f,ϕ

ECt∼p(Ct)V
(
Gt | Ct

)
. (5.25)

Eq. (5.25) has the same form as the equation in Lemma. 1. Then substituting x = Ct and

y = Gt in Lemma. 1, we have E(Gt | Ct) = E(Gt). In other words, Gt ⊥⊥ Ct. Therefore,

we can also use the inverse form that E(Ct) = E(Ct | Gt) = E([Zt,At] | Gt) for any Gt,

which concludes the proof of Theorem. 2.
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5.6.2 Experimental Settings

Datasets. In observational data, we only have outcomes under one treatment trajectory

but not the ground-truths of counterfactual outcomes. Therefore, we follow (Ma et al.,

2022; Guo et al., 2020c; Veitch et al., 2019) to use semi-synthetic data to evaluate

CF-GODE. That is, the graph structure and node features are real, but treatments and

potential outcomes are simulated. We use the social networks Flickr and BlogCatalog as

in (Guo et al., 2020c; Chu et al., 2021; Ma et al., 2021) as the graph G. We follow these

works to first encode the node features into low-dimensional embeddings (10-dimensional

in this paper) via LDA (Blei et al., 2003). We then follow (Jiang and Sun, 2022) to use

Metis (Karypis and Kumar, 1998) to split the graph into training/validation/testing sets.

To simulate treatment and potential outcomes over time, (Geng et al., 2017; Bica et al.,

2020; Seedat et al., 2022) use a longitudinal simulation environment, which, however,

assumes the units are mutually independent. We extend it into our multi-agent dynamical

systems setting by considering the neighbor confounders and interference. During the

simulation, we are motivated by the vaccine’s use case. Specifically, treatment At
i denotes

getting a vaccine or not at time t of unit i. The trajectory of At
i denotes the vaccine

records over time, e.g., a unit may have a booster dose after the initial vaccine. In this

case, the time-dependent covariates Xt could be the health condition, static covariates V

could be race or educational background (assuming it does not change during the study)

and potential outcome Yt could be immunity to the virus. As discussed in Sec. 5.2.1, the

potential outcome Yt is essentially a part of Xt. This is a common setting in longitudinal

causal inference studies (Bica et al., 2020; Seedat et al., 2022; Melnychuk et al., 2022).

During the simulation, we follow this protocol: the health condition Xt
i has a value range

[0.1, 10], in which a higher value means a better health condition. Meanwhile, a higher

health condition means a lower probability to receive a vaccine (treatment).

Treatment simulation. The treatment At
i is affected by a unit’s own time-dependent

covariates Xt
i, static covariates Vi and those of their neighbors. Let Ei = waVi denote the

effects of static confounders on treatments, where wa is a generated parameter representing
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this mechanism. The treatment is then simulated by Bernoulli generator with probability

the pti(a) of unit i at time t:

pti(a) = σ

(
γa(δa − X̄t

i)︸ ︷︷ ︸
time-dependent covariates

+ γn

(
δn − (

1

|Ni|
∑
j∈Ni

X̄t
j)

)
︸ ︷︷ ︸

Neighbor time-dependent covariates

+ γfEi︸︷︷︸
Static covariates

+ γg(
1

|Ni|
∑
j∈Ni

Ej)︸ ︷︷ ︸
Neighbor static covariates

)
, (5.26)

where σ(·) is sigmoid function. γa, γn, γf and γg are degrees of time-dependent confounders,

neighbor time-dependent confounders, static confounders and neighbor static confounders,

respectively. The default values are [γa, γn, γf , γg] = [10, 3.3, 10, 3.3] ( γa
γn

=
γf
γg

= 3), to

mimic that a unit’s own confounding factors should affect it more than neighbors. Note

X̄t
i is the average time-dependent covariates until t. This reflects that past time-dependent

covariates also affect the treatment. We set δa = δn = 5 as adjustments.

Potential outcome simulation. We follow (Geng et al., 2017; Bica et al., 2020; Seedat

et al., 2022) to use a Pharmacokinetic-Pharmacodynamic (PK-PD) model (Goutelle et al.,

2008) to simulate the continuous trajectory. PK-PD model is a popular bio-mathematical

model and a natural fit for our vaccine use case. As mentioned above, Yt is essentially a

part of Xt. Therefore we directly simulate the trajectory of Xt
i:

dXt
i

dt
= Xt

i

(
ρu log

(
K

Xt
i

)
︸ ︷︷ ︸

Time-dependt covariates

+ ρn log

(
K

Xt
i

)
︸ ︷︷ ︸

Neighbor time-dependt covariates

+ ρfOi︸ ︷︷ ︸
Static covariates

+ ρg
∑
j∈Ni

Oj)︸ ︷︷ ︸
Neighbor static covariates

+ βaD
t
i︸ ︷︷ ︸

Treatment

+
1

|Ni|
∑
j∈Ni

βnD
t
j︸ ︷︷ ︸

Interference

+ eti︸︷︷︸
Noise

)
, (5.27)
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where K controls the effects of time-dependent covariates on future potential outcomes.

Oi = wxVi denote the effects of static confounders on potential outcomes, where wx

represents this mechanism. ρu, ρn, ρf and ρg are degrees of time-dependent covariates,

neighbor time-dependent covariates, static covariates and neighbor static covariates,

respectively. Their default values are [ρu, ρn, ρf , ρg] = [−0.001,−00033, 0.001, 0.00033]

(ρu
ρn

=
ρf
ρg

= 3). βa and βn control the strengths of treatment and interference. We set

them as [βa, βn] = [0.03, 0.01]. The values also reflect that a unit’s own covariates and

treatment should have stronger effects on its future potential outcomes than neighbors.

In reality, the effects of vaccines on providing protection decrease over time. To mimic

this phenomenon, we use the decay function Dt
i = D̃t

i +D
(t−1)
i /2 to model the effects of

treatments over time as in (Bica et al., 2020; Seedat et al., 2022), where Dt
i denote the

protection effect at time t, and D̃t
i means a full protection of vaccines given at t. In other

words, the unit receives a vaccine at time t, i.e., At
i = 1. We set D̃t

i = 1.
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CHAPTER 6

Conclusion

This dissertation studies dynamical systems modeling. First, mechanistic factors, including

physical laws and general periodic series, are demonstrated useful in improving the accuracy

of dynamical prediction. Second, to enable causal reasoning in dynamical systems, this

dissertation studies causal effects estimation on static graphs and then extends it to

dynamical systems.

Graphs are abstract models for dynamical systems. Building world models that

understand dynamics and can predict the next state would be precise and comprehensive

for modeling dynamics (LeCun, 2022). Meanwhile, video data encodes rich knowledge

about how the world evolves (Bardes et al., 2024). Therefore, future work could explore

learning from videos to build world models.
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