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ABSTRACT OF THE DISSERTATION

Unsupervised and Zero-Shot Learning for Open-Domain Natural Language Processing

by

Muhammad Abu Bakar Siddique

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2021

Dr. Evangelos Christidis, Chairperson

Natural Language Processing (NLP) has yielded results that were unimaginable only a few

years ago on a wide range of real-world tasks, thanks to deep neural networks and the

availability of large-scale labeled training datasets. However, existing supervised methods

assume an unscalable requirement that labeled training data is available for all classes: the

acquisition of such data is prohibitively laborious and expensive. Therefore, zero-shot (or

unsupervised) models that can seamlessly adapt to new unseen classes are indispensable

for NLP methods to work in real-world applications effectively; such models mitigate (or

eliminate) the need for collecting and annotating data for each domain. This dissertation ad-

dresses three critical NLP problems in contexts where training data is scarce (or unavailable):

intent detection, slot filling, and paraphrasing. Having reliable solutions for the mentioned

problems in the open-domain setting pushes the frontiers of NLP a step towards practical

conversational AI systems.

First, this thesis addresses intent detection — extracting the intents implied in

natural language utterances. We propose RIDE: a zero-shot intent detection model that
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captures domain-oblivious semantic associations between an utterance and an intent by

analyzing how the phrases in an utterance are linked to an intent label via commonsense

knowledge. RIDE significantly and consistently outperforms SOTA intent detection models.

The second contribution of this dissertation is a zero-shot model for the slot filling

task — extracting the required query parameters, given a natural language utterance. Our

model, LEONA, exploits domain-independent pre-trained NLP models and context-aware

utterance-slot similarity features via attention mechanisms by taking advantage of the

fact that slot values appear in similar contexts across domains. LEONA significantly and

consistently outperforms SOTA models in a wide range of experimental setups.

Finally, we propose an unsupervised model, PUP, for paraphrasing. Unsupervised

paraphrasing has applications in conversational AI, among others. PUP uses a variational

autoencoder (trained using a non-parallel corpus) to generate a seed paraphrase that warm-

starts a deep reinforcement learning model. Then, it progressively tunes the seed paraphrase

guided by a novel reward function that combines semantic adequacy, language fluency, and

expression diversity measures. PUP achieves an unprecedented balance across the paraphrase

quality metrics.
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Chapter 1

Introduction

Artificial Intelligence (AI) has emerged as a leading force in revolutionizing society,

economy, governance, and almost every aspect of our lives through AI-driven systems.

Such systems augment critical human capabilities including driving trucks and translating

languages, among others. Natural Language Processing (NLP), the branch of AI that enables

humans to interact with machines through intuitive natural language interfaces such as

Amazon Alexa, has yielded results that were unimaginable only a few years ago on a wide

range of demanding real-world tasks, thanks to the advances in deep neural networks and

the availability of massive labeled training data. Nonetheless, this performance boost is still

restricted to a handful of resource-rich domains in most NLP tasks because existing supervised

NLP solutions typically rely on the critical assumption that the training and test sets are

drawn from the same underlying distribution. Such supervised solutions are likely to result

in a significantly diminished performance when confronted with new unseen domains. The

requirement of having massive labeled training data for each new domain is unsustainable:
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NLU
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Dialogue 
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O B-amount O B-recipient O B-method

Send 50$ to Umar with Zelle
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Dialogue Policy’s action: 

System
Response:

Figure 1.1: A typical pipeline for goal-oriented dialogue systems; NLP tasks are illustrated
at each component of the pipeline.

the acquisition of such data is prohibitively laborious and expensive. Therefore, zero-shot (or

unsupervised) models that can seamlessly adapt to new unseen domains are indispensable

to real-world NLP applications; such models mitigate (or eliminate) the need for collecting

and annotating data for each domain, resulting in open-domain NLP solutions.

Open-domain NLP models are critical to the success of real-world conversational

AI systems, especially goal-oriented ones. Such systems enable users to instruct machines to

perform tasks such as adding a song to a playlist, setting an alarm, and booking a train ticket

through a natural language interface. Figure 1.1 presents the typical pipeline of goal-oriented

dialogue systems and shows a simple example to highlight the role of each module. The

Natural Language Understanding (NLU) module performs intent detection and slot filling,

which infer the desired task and extract the required parameters given an utterance. The

Dialogue Management module summarizes the state of the dialogue and decides the next

action, i.e., the next utterance of the bot at the semantic level; this module usually has access

2



to structured data source(s) or a set of APIs. The Natural Language Generation (NLG)

module converts the selected action into a natural language response. For goal-oriented

dialogue systems to perform reliably in real-life settings (when domains are unknown prior

to model deployment), each of the mentioned modules needs to seamlessly adapt to new,

unseen domains where neither training data nor the full list of classes are available. This

dissertation focuses on the NLU module and proposes reliable ways of integrating readily

available, domain-oblivious knowledge into neural models in this module. Furthermore, this

dissertation proposes an incremental framework for training deep reinforcement learning

agents in a way that saves the agent from doing expensive global explorations, which is

particularly critical in open-domain settings. Combined, the ideas in this dissertation make

it possible to build reliable, open-domain NLP models.

1.1 Dissertation Contributions

Chapter 2 provides a brief introduction to the relevant NLP and conversational AI concepts.

Chapter 3 proposes a generalized zero-shot intent detection model, RIDE. It leverages

commonsense knowledge in an unsupervised fashion to overcome the issue of training data

scarcity. RIDE computes robust and generalizable relationship meta-features that capture

deep semantic relationships between utterances and intent labels; these features are computed

by considering how the concepts in an utterance are linked to those in an intent label via

commonsense knowledge. The motivation for this work is that most of the existing work

on intent detection is in the supervised settings. However, in practice, new intents emerge

after deploying an intent detection model. Thus, these models should seamlessly adapt

3



and classify utterances with both seen and unseen intents – unseen intents emerge after

deployment and they do not have training data. The few existing models that target this

setting rely heavily on the training data of seen intents and consequently overfit to these

intents, resulting in a bias to misclassify utterances with unseen intents into seen ones. Our

extensive experimental analysis on three widely-used intent detection benchmarks shows

that relationship meta-features significantly improve the detection of both seen and unseen

intents and that RIDE outperforms the state-of-the-art models. Specifically, RIDE is 30.36%

to 58.50% more accurate than the SOTA model for unseen intents.

Chapter 4 proposes a new zero-shot slot filling neural model, LEONA, which works in

three steps. Step one acquires domain-oblivious, context-aware representations of utterance

words by exploiting (a) linguistic features such as part-of-speech tags; (b) named entity

recognition cues; and (c) contextual embeddings from pre-trained language models. Step

two fine-tunes these rich representations and produces slot-independent tags for each word.

Step three exploits generalizable context-aware utterance-slot similarity features at the word

level, uses slot-independent tags, and contextualizes them to produce slot-specific predictions

for each word. The motivation for this work is that slot filling is one of the most important

challenges in modern goal-oriented dialog systems and although supervised approaches have

proven effective at tackling this challenge, they need a significant amount of labeled training

data in a given domain. However, new domains (i.e., unseen in training) may emerge after

deployment. Thus, it is imperative that these models seamlessly adapt and fill slots from

both seen and unseen domains – unseen domains contain unseen slot types with no training

data, and even seen slots in unseen domains are typically presented in different contexts.

4



This setting is commonly referred to as zero-shot slot filling. Little work has focused on

this setting, with limited experimental evaluation. Existing models that mainly rely on

context-independent embedding-based similarity measures fail to detect slot values in unseen

domains or do so only partially. Our thorough evaluation on four diverse public datasets

demonstrates that our approach consistently outperforms state-of-the-art models by 17.52%,

22.15%, 17.42%, and 17.95% on average for unseen domains on SNIPS, ATIS, MultiWOZ, and

SGD datasets, respectively.

Chapter 5 proposes Progressive Unsupervised Paraphrasing PUP: a novel unsupervised

paraphrase generation method based on deep reinforcement learning (DRL). PUP uses a

variational autoencoder (trained using a non-parallel corpus) to generate a seed paraphrase

that warm-starts the DRL model. Then, PUP progressively tunes the seed paraphrase

guided by our novel reward function which combines semantic adequacy, language fluency,

and expression diversity measures to quantify the quality of the generated paraphrases in

each iteration without needing parallel sentences. The motivation for this work is that

paraphrasing can improve the performance of the NLU module of the conversational agents.

However, most existing work on paraphrasing use supervised models that are limited to

specific domains (e.g., image captions). Such models can neither be straightforwardly

transferred to other domains nor generalize well, and creating labeled training data for new

domains is expensive and laborious. The need for paraphrasing across different domains and

the scarcity of labeled training data in many such domains call for exploring unsupervised

paraphrase generation methods. Our extensive experimental evaluation shows that PUP

outperforms unsupervised state-of-the-art paraphrasing techniques in terms of both automatic

5



metrics and user studies on four real datasets. Specifically, our method achieves up to

90% and 34% performance gains for the BLEU and the i-BLEU metrics compared to

state-of-the-art unsupervised methods, respectively. We also show that PUP outperforms

domain-adapted supervised algorithms on several datasets.

1.2 Dissertation Organization

This dissertation contains published work. Chapter 3 is based on a paper [131]

accepted for publication at the International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR’21). Chapter 4 is based on a paper [130]

published at the International World Wide Web Conference (a.k.a. The Web Conference)

(WWW’21). Chapter 5 is based on a paper [132] published at the ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining (KDD’20).
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Chapter 2

Background and Related Work

2.1 Knowledge Graphs

Knowledge graphs (KG) [12, 138, 155, 2, 141] are structures that capture relation-

ships between entities, and are typically used to capture knowledge in a semi-structured

format; i.e., they are used as knowledge bases. Knowledge graphs can be viewed as col-

lections of triples, each representing a fact of the form 〈head, relation, tail〉 where head

and tail describe entities and relation describes the relationship between the respective

entities (e.g., 〈apple, IsA, fruit〉). Although creating and maintaining knowledge graphs

is laborious and time consuming, the immense utility of such graphs (e.g., search engines,

question-answering services, commonsense reasoning) has led many researchers and institu-

tions to make the effort of building and maintaining knowledge graphs in many domains,

which lifts the burden off of other researchers and developers who utilize these graphs. It

turns out that the commonsense knowledge captured in knowledge graphs, which is uniform

across domains, can facilitate building open-domain NLP models as we show in Chapter 3.
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Figure 2.1: A sample subgraph from ConceptNet knowledge graph. The commonsense
knowledge captured in knowledge graphs can improve the discriminative power of NLP
models as we show in Chapter 3.

We make heavy use of the ConceptNet [138], which is a rich and widely-used commonsense

knowledge graph in this dissertation. This KG originated from the crowd-sourcing project

Open Mind Common Sense and includes knowledge not only from crowd-sourced resources

but also expert-curated resources. It is available in 10 core languages and 68 more common

languages. Figure 2.1 presents a subgraph from ConceptNet knowledge graph.

2.2 Link Prediction in Knowledge Graphs

While large knowledge graphs may capture a large subset of knowledge, they are

incomplete: some relationships (or links) are missing. Link prediction [86, 63, 150, 94]

augments knowledge graphs by predicting missing relations using existing ones. For example,

link prediction is used in predicting relationships among friends within a social network

or co-authorship relationships in a citation network. Given a knowledge graph G = (V, E),
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Figure 2.2: An example subgraph from ConceptNet augmented with predicted link (red
edges) via link prediction.

where V represents the entities in the KG and E ⊆ V × R × V represents the set of links

among entities in the KG; each item in set E is of the form 〈head, relation, tail〉, where

head and tail ∈ V, relation ∈ R, and R represents the set of relationship types in the

KG. The goal of a link predictor is to predict missing (i.e., not present) links based on

the existing set of entities V and the set of links E . For the link prediction task, graph

embedding is one of the most effective techniques. Graph embedding methods [46, 63, 45]

learn to embed graph nodes in a high-dimensional space where nodes with similar properties

or relationships remain close to each other and vector similarity measures (e.g., euclidean

distance) hold in the embedding space. It is usually formulated as a binary classification

task that can classify novel links of the form 〈head, relation, tail〉 as either positive or

negative. Figure 2.2 presents a subgraph from ConceptNet, where a trained link predictor

has predicted several missing links. In this dissertation, we use link predictors to overcome

the missing links issue in the ConceptNet KG.
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2.3 Conditional Random Fields

Conditions Random Fields (CRFs) [145] are discriminative models that are the

most appropriate choice for structured prediction tasks (e.g., part of speech tagging [24],

named entity recognition [125]) where contextual information or neighboring predictions

influence the current prediction [148]. Based on our feature vector X = {x1, x2, · · · , xT },

we want to predict the output vector Y = {y1, y2, · · · , yT }. The goal is to learn a per-token

classifier f that maps xs 7→ ys for all s while maximizing the number of labels ys that are

correctly classified by learning inter-dependencies among neighbouring predictions. Linear

chain CRFs, one of the most common CRFs, are trained by estimating maximum conditional

log-likelihood. Essentially, it estimates a transition cost matrix of size, num tags × num tags,

where the value at the indices [i, j] represents the likelihood of transitioning from the j-th

tag to the i-th tag. The tasks of Part of Speech (POS) tagging [24] and named entity

recognition (NER) [125], among others, have successfully employed CRFs. Figure 2.3

presents a sample sentence along with its POS and NER tags. We utilize CRF for the task

of slot filling in Chapter 4.

Part of Speech tagging. The task of POS tagging is the process of assigning special

labels to each token in a text, in order to indicate its part of speech, such as PROPN, VERB,

and ADJ. Since POS tags have very high interdependence among tags of neighbouring words,

CRFs are highly suitable for the task, because CRFs do not only assume that features are

interdependent, but also take into account future observations while learning a pattern. In

recent years, CRFs have been used as a final layer in deep neural networks for making final

predictions for POS tags [89, 60]. We take advantage of existing POS taggers in Chapter 4.
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Input Sentence POS tags NER tags

I PRON O

would VERB O

like VERB O

to PART O

book VERB O

a NOUN O

table NOUN O

at ADP O

8 PROPN B-ORG

Immortals PROPN I-ORG

Restaurant PROPN I-ORG

in ADP O

San PROPN B-GPE

Francisco PROPN I-GPE

Figure 2.3: Example utterance with its POS and NER tags; NER tags are expressed using
the IOB tagging scheme.

Named Entity Recognition. The goal of the NER model is to identify information units

from unstructured text, such as names of people, organizations, and locations. The most

common case for NER models is to detect named entities for PER, GPE, ORG, and MISC. Inside

outside beginning (IOB) [114] is a common tagging scheme for NER models when they

employ CRFs. Given a sequence of words X = {x1, x2, · · · , xT }, we want to give a tag for

each word as follows. The first word of an entity value associated with an entity type (e.g.,

PER) is labeled as B-Entity, the other words inside the same entity value are labeled as

I-Entity, and non-entity words are labeled as O. We follow this notation in the remainder

of this dissertation and employ pre-trained NER model in Chapter 4.
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Figure 2.4: Illustration of an LSTM-based language model.

2.4 Language Models

Language modeling [54, 106] is the task of assigning a probability to the next

token given all previous ones. For example, in a word-level language model, the probability

of the next word, wi, given previous ones is p(wi|wi−1, wi−2, ..., w0). A recurrent neural

network (RNN) such as long short-term memory (LSTM) language model [9, 95, 100] can be

trained by iteratively passing over the text data in an unsupervised fashion. The goal is to

predict word wi at timestamp i given the previous n tokens. At every word wi, the negative

log-likelihood loss is L = − log p(wi|wi−1, wi−2, ..., wi−n+1), where n is the backpropagation

through time (BPTT) [48] window size. Figure 2.4 presents such a language model.

Transformers [151] can process sequential input data (e.g., text data), but un-

like an RNN, it is not necessary for the data to be processed in order, allowing massive

parallelization. Following the transformer architecture, training language models (e.g.,

BERT [28], ELMo [109]) over huge amounts of text data has become possible. These

models have billions of parameters and thereby capture general semantic and syntactic
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Figure 2.5: Illustration of BERT’s Masked Language Modeling task.

information in an effective manner. Unlike GloVe [108] or Word2vec [99] that produce fixed

word emebeddings, pre-trained language models (LM) such as BERT [28] and ELMo [109]

produce embeddings for the words by considering the context of the words. Pre-trained

LMs [28, 109, 84, 62, 167] with appropriate fine-tuning have provided state-of-the-art results

on many NLP benchmarks [113, 14, 53, 110, 149, 137].
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Figure 2.6: Overview of the Encoder-Decoder Framework.

We train ELMo with a bidirectional LSTM-based language models that can capture

bidirectional context rather than context in one direction. As a result, contextualized

embeddings are produced through concatenating the final and initial hidden states followed

by their weighted summation. BERT employs the masked language model and the next

sentence prediction tasks for training. The masked language model randomly masks ≈15%

of the input tokens and the goal is to predict the masked tokens. Figure 2.5 presents this

task. Similarly, the next sentence prediction task is to predict the likelihood that a given

sentence B belongs after another sentence A or not. Consequently, the model learns robust,

contextual, and generaliazble word embeddings and has shown state-of-the-art results on

a wide range of NLU benchamrks. We utilize pre-trained language models in Chapters 3

and 4.

2.5 Encoder-Decoder Framework

Many NLP tasks like neural machine translation, abstractive text summarization,

conversational AI, and question answering involve converting an input text sequence to

another text sequence. Input and output sequence lengths typically have mismatching lengths

in such tasks (commonly referred to as sequence transduction tasks), which makes building
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models for such tasks challenging. We can use an encoder-decoder architecture to handle

inputs and outputs of this type. An encoder-decoder model (e.g., seq2seq [144]) tries to

generate a target sequence Y = (y1, y2, · · · , ym) given an input sequence X = (x1, x2, · · · , xn),

where m and n are target and input sequence lengths, respectively. Figure 2.6 illustrates the

encoder and decoder components of the seq2seq model. First, the encoder transforms the

input sequence X into a sequence of hidden states (h1, h2, · · · , hn) employing RNN units such

as LSTM [56]. The encoder reads the input sequence, one token at a time, until the end of

the input sequence token occurs and converts it to hidden state hi = Encoder(hi−1, emb(xi))

by considering the word embedding of the input token xi and the previous hidden state

hi−1 at time-step i. Encoder(.) is a non-linear mapping function and emb(.) maps the given

word into a high dimensional space. The decoder utilizes another RNN to generate the

paraphrased (i.e., target) sequence Y. The decoder is initialized with the last hidden state

hn , and generates one token at a time until the end of sentence token (i.e., < eos >) is

generated. At time-step i, the generation is conditioned on the previously generated words

ŷi−1, · · · , ŷ1 and the current decoder hidden state h′i:

P (yi|ŷi−1, · · · , ŷ1,X ) = softmax(Decoder(h′i, yi−1)), (2.1)

where Decoder(.) is a non-linear mapping function and softmax(.) converts the given vector

into a probability distribution. Such an encoder-decoder model is typically trained by

minimizing the negative log-likelihood of the input-target pairs. However, in the task of

unsupervised paraphrasing we do not have access to target sequence, so we utilize the deep
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Figure 2.7: VAE learns a latent space z from observations X , then draws samples from the
learned latent space z.

reinforcement learning (DRL) paradigm coupled with the encoder-decoder framework in

Chapter 5.

2.6 Variational Autoencoder

Variational Autoencoders (VAEs) [65, 119] are powerful generative models and

have a wide range of applications from making realistic human-looking faces to creating

synthetic music. Moreover, they have been used to generate text [15]. VAEs learn a nonlinear

latent representation z from data points X . It is trained in an unsupervised fashion for the

following loss function:

L(ϕ, φ) = −Eqϕ(z|X )

[
log pφ(X|z)

]
+ KL(qϕ(z|X )||p(z)), (2.2)

where qϕ(z|X ) is the encoder with parameters ϕ that encodes the data points X into a

stochastic latent representation z. pφ(X|z) is the decoder with the parameters φ that tries

to generate an observation X̂ given the random latent code z where p(z) is prior distribution,
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i.e., standard normal distribution N (0, I). The first term in Equation 2.2 is the negative

log-likelihood loss for the reconstruction of the data points X . The second term is used

to measure Kullback-Leibler (KL) divergence between the encoder’s distribution qϕ(z|X )

and the prior distribution p(z). We can train a VAE model on a corpus in an unsupervised

way and learn the corpus’ latent representation z. At inference time, sentences can be

sampled [15] from the learned latent representation z. VAE is also illustrated in Figure 2.7.

In the unsupervised paraphrasing task, we employ a pre-trained VAE to provide a warm-start

to the DRL-based paraphrasing model so that it does not start from a random policy in

Chapter 5.
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Chapter 3

Zero-shot Intent Detection

3.1 Introduction

Virtual assistants such as Amazon Alexa and Google Assistant allow users to

perform a variety of tasks (e.g., Alexa Skills) through a natural language interface [59]. For

example, a user can set an alarm by simply issuing the utterance “Wake me up tomorrow

at 10 AM” to a virtual assistant, and the assistant is expected to understand that the

user’s intent (i.e., “AddAlarm”) is to invoke the alarm module, then set the requested

alarm accordingly. Intent detection is typically the first step towards performing any task

in conversational systems and it is a challenging problem due to the vast diversity in user

utterances. The challenge is further exacerbated in the more practically relevant setting

where intents are added over time. This setting is an instance of the generalized zero-shot

classification problem [36]: labeled training utterances are available only for seen intents but

are unavailable for unseen ones, and at inference time, models do not have prior knowledge

18



on whether the utterances they receive imply seen or unseen intents. This setting is the

focus of this work.

Little research has been conducted on building generalized zero-shot (GZS) models

for intent detection, with little success. Earlier works [69, 21, 136] used zero-shot (ZS)

learning to train an intent classification model that could classify utterances from unseen

intent classes through transferring knowledge from seen classes. The test set in the standard

ZS setting is not representative of the real world, as it exclusively includes samples from

unseen classes (as opposed to having samples from both seen and unseen classes as in the

GZS setting). ZS methods perform poorly in the GZS setting [19, 122], which is primarily

caused by their strong bias towards seen classes; ZS intent detection models misclassify

almost all test samples from unseen classes into seen ones [163, 162, 81].

To mitigate the issue of training data scarcity for unseen intents and ZS models’

inability to effectively handle the GZS setting, we propose incorporating commonsense

knowledge into a GZS intent detection model. We argue that such knowledge, if incorporated

properly, helps overcome training data scarcity and allows detecting intents regardless of

whether they are seen or not, given that commonsense knowledge is uniform across intents.

We leverage ConceptNet [138] — a rich and widely-used commonsense knowledge graph (KG)

that captures a large subset of knowledge in a semi-structured format (i.e., facts in the form

〈head, relation, tail〉 such as 〈apple, IsA, fruit〉). Given that ConceptNet is incomplete,

similarly to other KGs, we pre-train a link predictor [63] that learns from an existing KG to

infer novel edges (i.e., relationships) among nodes (i.e., head/tail) to overcome the missing

information challenge.
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Figure 3.1: A toy example for computing relationship meta-features using link predictor.

Figure 3.1a presents a toy commonsense KG where a link predictor can learn to infer

missing facts such as 〈feeling hungry, IsRelated, restaurant〉 from existing facts such as

〈feeling hungry, CausesDesire, eat〉 and 〈restaurant, UsedFor, eat〉. We infuse the

knowledge from our link predictor into our model by extracting relationship meta-features.

These features quantify the level of relevance between an utterance and an intent in the form

of relationship weights, where each weight describes the level of relatedness between the

phrases in an utterance and an intent label based on a certain relationship type. Figure 3.1b

shows an example utterance, an intent label, and an inference about the relationships between

the phrases in the utterance and the intent label in the from of a relationship meta-features.

Relationship meta-features augment embeddings using commonsense knowledge, which

significantly reduces our model’s reliance on the scarcely available seen intents training data.

Furthermore, these features reduce our model’s bias towards seen intents given that they

are similarly computed for both seen and unseen intents; i.e., they are domain-oblivious.
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Our model, RIDE1, combines relationship meta-features with contextual word

embeddings [109], and feeds the combined feature vectors into a trainable prediction function.

RIDE is able to accurately detect both seen and unseen intents in utterances. Our extensive

experimental analysis using the three widely used benchmarks SNIPS [23], SGD [115], and

MultiWOZ [170] show that our model outperforms the state-of-the-art (SOTA) model in F1

scores on unseen intents in the GZS setting by at least 25.66%.

A secondary contribution of this work is that we managed to further improve the

performance of GZS intent detection by employing Positive-Unlabeled (PU) learning [32] to

predict if a new utterance belongs to a seen or unseen intent. PU learning assists intent

detection models by mitigating their bias towards classifying most utterances into seen

intents. A PU classifier is able to perform binary classification after being trained using only

positive and unlabeled examples. We found out that the PU classifier also improves the

performance of existing intent detection works. Our model, however, outperforms existing

ones regardless of the PU classifier’s integration.

3.2 Preliminaries

3.2.1 Intent Detection

Let S = {I1, · · · , Ik } be a set of seen intents and U = {Ik+1, · · · , In} be a set

of unseen intents where S ∩ U = ∅. Let X = {X1,X2, ...,Xm} be a set of labeled training

utterances where each training utterance Xi ∈ X is described with a tuple (Xi , Ij ) such

that Ij ∈ S. An intent Ij is comprised of an Action and an Object and takes the form

1RIDE: Relationship Meta-features Assisted Intent DEtection.
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“ActionObject”2 (e.g., “FindRestaurant”); an Action describes a user’s request or activity

and an Object describes the entity pointed to by an Action [22, 154, 152]. In both the

zero-shot (ZS) and the GZS settings, the training examples have intent labels from set S

only, however, the two settings differ as follows.

ZS Intent Detection. Given a test utterance X ′i whose true label Ij is known to be in U

a priori, predict a label I ′j ∈ U .

GZS Intent Detection. Given a test utterance X ′i , predict a label I ′j ∈ S ∪ U . Note that

unlike in the ZS setting, it is not known whether the true label of X ′i belongs to S or U ,

which exacerbates the challenge in this setting; we focus on this setting in this work.

3.2.2 ConceptNet Knowledge Graph

In this work, we use ConceptNet [138], which is a rich and widely-used commonsense

knowledge graph. For tasks that involve commonsense reasoning such as generalized zero-shot

intent detection, the ConceptNet [138] commonsense knowledge graph stands out as one of

the most popular and freely available resources. It was employed to show state-of-the-art

results at SemEval 2017 [139]. In this work, we considered 35 relation types to generate

our relationship meta-features. The relation types are: RelatedTo, FormOf , IsA, PartOf ,

HasA, UsedFor, CapableOf , AtLocation, Causes, HasSubevent, HasFirstSubevent,

HasLastSubevent, HasPrerequisite, HasProperty, MotivatedByGoal, ObstructedBy,

Desires, CreatedBy, Synonym, Antonym, DistinctFrom, DerivedFrom, SymbolOf ,

DefinedAs, MannerOf , LocatedNear, HasContext, SimilarTo, EtymologicallyRelatedTo,

2If intents are described using a complex textual description, Actions and Objects can be extracted using
existing NLP tools such as dependency parsers.
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EtymologicallyDerivedFrom, CausesDesire, MadeOf , ReceivesAction, ExternalURL,

and Self .

The relationship meta-feature generator produces 35× 4 = 140 dimension vector

for each utterance-intent pair. Specifically, we generate relationships: (i) from utterance to

Object (i.e., Object part in intent label); (ii) utterance to Action (i.e., Action part in intent

label); and (iii) Object to utterance; (iv) Action to utterance.

Knowledge Graph augmentation with background knowledge. A knowledge graph

may not have redundant, but necessary information. For example, a knowledge graph may

have the entry 〈movie, IsA, film〉 but not 〈film, IsA, movie〉 or vice-versa, because one

triple can be inferred from the other based on background knowledge (i.e., symmetric nature

of the IsA relation). Similarly, the triple 〈movie, HasA, subtitles〉 can be used to infer the

triple 〈subtitles, PartOf, movie〉 based on the background knowledge (i.e., inverse relation

between HasA and PartOf). So, if this kind of redundant information (i.e., complementing

entries for all such triples) is not available in the knowledge graph itself, there is no way for the

model to learn these relationships automatically. To overcome this issue, we incorporate the

background knowledge that each of the relation types IsA, RelatedTo, Synonym, Antonym,

DistinctFrom, LocatedNear, SimilarTo, and EtymologicallyRelatedTo is symmetric; and

that the relation types PartOf and HasA are inversely related in our link prediction model

as described in [63].

3.2.3 Link Prediction

We pre-train a state-of-the-art link prediction model (LP) [63] on the augmented

ConceptNet KG to score novel facts that are not necessarily present in the knowledge graph.
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Given a triple (i.e., fact) in the form 〈head, relation, tail〉, the pre-trained link prediction

model scores the triple with a value between 0 and 1, which quantifies the level of validity of

the given triple. The training data for a link prediction model is prepared as follows. First,

the triples in the input knowledge graph are assigned a label of 1. Then, negative examples

are generated by corrupting true triples (i.e., modifying the head or tail of existing triples)

and assigning them a label of −1 [13]. Finally, we train our LP using the generated training

data by minimizing the L2 regularized negative log-likelihood loss of training triples [150].

3.2.4 Positive-Unlabeled Learning

Positive-Unlabeled (PU) classifiers learn a standard binary classifier in the unconven-

tional setting where labeled negative training examples are unavailable. The state-of-the-art

PU classifier [32], which we integrate into our model, learns a decision boundary based

on the positive and unlabeled examples, and thus can classify novel test examples into

positive or negative. The aim of the PU classifier is to learn a probabilistic function f(Xi )

that estimates P (Ij ∈ S | Xi ) as closely as possible. In this work, we train a PU classifier

using our training set (utterances with only seen intents labeled as positive) and validation

set (utterances with both seen and unseen intents as unlabeled). We use 512-dimensions

sentence embedding as features when using the PU classifier, generated using a pre-trained

universal sentence encoder [18].
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Figure 3.2: Overview of RIDE.

3.3 Our Approach

Figure 3.2 shows an overview of our model: given an input utterance Xi, we

first invoke the PU classifier (if it is available) to predict whether Xi implies a seen or an

unseen intent; i.e., whether Xi’s intent belongs to set S or U . Then, an instance of our

core model (the red box in Figure 3.2) is invoked for each intent in S or U based on the

PU’s prediction. Our core model predicts the level of compatibility between the given

utterance Xi and intent Ij , i.e., the probability that the given utterance implies the given

intent P (Ij |Xi) ∈ [0, 1]. Finally, our model outputs the intent with the highest compatibility

probability, i.e., argmaxIj P (Ij |Xi).

Our core model concatenates relationship meta-features, utterance embedding, and

intent embedding and feeds them into a trainable prediction function. The Relationship

Meta-features Generator (RMG) is at the heart of our model, and it is the most influential

component. Given an utterance and an intent, RMG generates meta-features that capture

deep semantic associations between the given utterance and intent in the form of a meta-

feature vector.
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3.3.1 Relationship Meta-feature Generation

RMG extracts relationship meta-features by utilizing the “ActionObject” structure

of intent labels and commonsense knowledge graphs. Relationship meta-features are not only

generalizable, but also discriminative: while the example utterance “Look for something

nearby. I am feeling hungry.” may be related to the intent “ReserveRestaurant”, the Action

part of this intent is not related to any phrase in the utterance; thus, “ReserveRestaurant”

is less related to the utterance than “FindRestaurant”.

RMG takes the following inputs: a set of relations in a knowledge graph (35 in the

case of ConceptNet) R = {r1, r2, .., rt}; the set of n-grams Gi = {g1, g2, .., gq} that correspond

to the input utterance Xi , where |G| = q ; and an intent label Ij = {A,O}, where A and

O are the Action and Object components of the intent, respectively. RMG computes a

relationship meta-features vector in four steps, where each step results in a vector of size |R|.

The smaller vectors are: e
−→
A
Xi

, e
−→
O
Xi

, e
←−
A
Xi

, and e
←−
O
Xi

, where e
−→
A
Xi

captures the Action to utterance

semantic relationships and e
−→
O
Xi

captures the Object to utterance relationships. The remaining

two vectors capture relationships in the other direction; i.e., utterance to Action/Object,

respectively. Capturing bi-directional relationships is important because a relationship in

one direction does not necessarily imply one in the other direction – for example, 〈table,

AtLocation, restaurant〉 does not imply 〈restaurant, AtLocation, table〉. The final

output of RMG is the relationship meta-features vector erelationship, which is the concatenation

of the four aforementioned vectors. We explain next how the smaller vectors is computed.

RMG computes e
−→
A
Xi

by considering the strength of each relation in R between A and

each n-gram in Gi . That is, e
−→
A
Xi

has |R| cells, where each cell corresponds to a relation r ∈ R.
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Algorithm 1: RMG
Input: R = {r1, · · · , rt}: relations in KG

Gi = {g1, · · · , gq}: utterance n-grams
Ij = {A,O}: intent’s Action and Object

Output: erelationship: Xi-Ij relationship meta-features

1 Let e
−→
A
Xi = RM (A, Gi , →) // Action to utterance

2 Let e
−→
O
Xi = RM (O, Gi , →) // Object to utterance

3 Let e
←−
A
Xi = RM (A, Gi , ←) // utterance to Action

4 Let e
←−
O
Xi = RM (O, Gi , ←) // utterance to Object

5 Let erelationship = [e
−→
A
Xi , e

−→
O
Xi , e

←−
A
Xi , e

←−
O
Xi ]

6 return erelationship

7 Function RM(concept, phrases, direction):
8 Let e = []
9 foreach r ∈ R do

10 if direction = → then
11 Let p = Max (LP (concept, r, g)) for g ∈ phrases

12 if direction = ← then
13 Let p = Max (LP (g, r, concept)) for g ∈ phrases

14 e.append(p)

15 return e

Each cell is computed by taking max(LP (A, r, g)) over all g ∈ Gi . LP (head, relation, tail)

outputs the probability that the fact represented by the triple 〈head, relation, tail〉 exists.

The vector e
−→
O
Xi

is computed similarly, but with passing O instead of A when invoking the link

predictor; i.e., taking max(LP (O, r, g)) over all g ∈ Gi to compute each cell. The vectors

e
←−
A
Xi

and e
←−
O
Xi

are computed similarly, but with swapping the head and tail when invoking

the link predictor; i.e., utterance phrases are passed as head and Action/Object parts are

passed as tail. Algorithm 1 outlines the previous process and Figure 3.3 illustrates the

computation e
−→
O
Xi

for an example utterance-intent pair. Finally, the generated meta-features

are passed through a linear layer with sigmoid activation before concatenation with the

utterance and intent embeddings.
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r1

max

g1g2
gq

rt

max

g1g2
gqL.P. L.P.

Look for
something nearby.
I am feeling
hungry.

[RelatedTo, SimilarTo, ... , AtLocation]

[0.9, 0.0,     ...     ...    ...    , 0.0]

Utterance: Relations:

Intent:
FindRestaurant

  Object to utterance
Relationship Meta-features

Figure 3.3: Illustration of the computation of e
−→
O
Xi

for an example utterance-intent pair.
Intent’s Object “Restaurant” is related to the word “hungry” in the utterance; thus, the cell

corresponding to relation RelatedTo (the first cell in e
−→
O
Xi

) has a high probability value.

3.3.2 Utterance and Intent Encoders

Given an utterance Xi = {w1,w2, · · · ,wu} with u words, first we compute an em-

bedding emb(wj ) ∈ Rdim for each word wj in the utterance, where emb(wj ) is the concatenation

of a contextual embedding obtained from a pre-trained ELMo model and parts of speech

(POS) tag embedding. Then, we use bi-directional LSTM to produce a d -dimensional

representation as follows:

−→
h j = LSTMfw (

−→
h j−1, emb(wj )). (3.1)

←−
h j = LSTMbw (

←−
h j−1, emb(wj )). (3.2)

Finally, we concatenate the output of the last hidden states as utterance embedding eutterance =

[
−→
h u ;
←−
h u ] ∈ Rd . We encode intent labels similarly to produce an intent embedding eintent ∈ Rd .
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3.3.3 Training the Model

Our model has two trainable components: the LSTM units in the utterance and

intent encoders and the compatibility probability prediction function. We jointly train these

components using training data prepared as follows. The training examples are of the form

((Xi , Ij ),Y), where Y is a binary label representing whether the utterance-intent pair (Xi , Ij )

are compatible: 1 means they are compatible, and 0 means they are not. For example, the

utterance-intent pair (“I want to play this song”, “PlaySong”) gets a label of 1, and the same

utterance paired with another intent such as “BookHotel” gets a label of 0. We prepare our

training data by assigning a label of 1 to the available utterance-intent pairs (where intents

are seen ones); these constitute positive training examples. We create a negative training

example for each positive one by corrupting the example’s intent. We corrupt intents by

modifying their Action, Object, or both; for example, the utterance-intent pair (“Look for

something nearby. I am hungry.”, “FindRestaurant”) may result in the negative examples

(..., “ReserveRestaurant”), (..., “FindHotel”), or (...,“RentMovies”). We train our core model

by minimizing the cross-entropy loss over all the training examples.

3.4 Experimental Setup

In this section, we describe the datasets, evaluation settings and metrics, competing

methods, and implementation details of our proposed method.

3.4.1 Datasets

Table 3.1 presents important statistics on the datasets we used in our experiments.
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Table 3.1: Datasets statistics.

Dataset SNIPS SGD MultiWOZ

Dataset Size 14.2K 57.2K 30.0K
Vocab. Size 10.8K 8.8K 9.7K
Avg. Length 9.05 10.62 11.07
# of Intents 7 46 11

SNIPS [23]. A crowd-sourced single-turn NLU benchmark with 7 intents across different

domains.

SGD [115]. A recently published dataset for the eighth Dialog System Technology Challenge,

Schema Guided Dialogue (SGD) track. It contains dialogues from 16 domains with a total of

46 intents. It is one of the most comprehensive and challenging publicly available datasets.

The dialogues contain user intents as part of dialogue states. We only kept utterances

where users express an intent by comparing two consecutive dialogue states to check for the

expression of a new intent.

MultiWOZ [170]. Multi-Domain Wizard-of-Oz (MultiWOZ) is a well-known and publicly

available dataset. We used the most recent version 2.2 of MultiWOZ in our experiments,

which contains utterances spanning 11 intents. Similarly to the pre-processing of SGD dataset,

we only kept utterances that express an intent to maintain consistency with the previous

work.

3.4.2 Datasets Preprocessing

SNIPS Natural Language Understanding benchmark (SNIPS) [23] is a commonly

used dataset for intent detection, whereas Dialogue System Technology Challenge 8, Schema

Guided Dialogue dataset (SGD) [115] and Multi-Domain Wizard-of-Oz (MultiWOZ) [170]
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were originally proposed for the task of dialogue state tracking. For SGD and MultiWOZ, we

perform a few trivial preprocessing steps to extract utterances that contain intents, along

with their labels, and use them for the task of generalized zero-shot intent detection. First,

we provide the details on the preprocessing steps specific to the SGD and MultiWOZ dataset

and then describe the preprocessing steps that are common for all datasets.

Steps for SGD and MultiWOZ. To maintain consistency with the previous work on

intent detection, we extract only the utterances where user/system expresses an intent, and

discard the rest from the original SGD and MultiWOZ datasets. The dialogue state contains

a property “active intent” that keeps track of the user’s current intent. After each user

utterance, we compare dialogue states to check for the expression of a new user intent,

i.e., whether the value of the “active intent” is modified. Whenever the user expresses a

new intent, the value of the “active intent” is updated. Moreover, sometimes, the bot (i.e.,

system) also offers new intents to the user (e.g., offering reserving a table to the user, who has

successfully searched for a restaurant), which is tracked in the system actions property “act

= OFFER INTENT”, and “values = <new intent>”. We also keep such system utterances.

Common Steps. We perform some standard preprocessing steps on all the datasets. We

use spaCy to tokenize the sentences. Since intent labels are given in the “ActionObject”

format, we tokenize them into “Action Object” phrases before feeding them into our model.

For example, the intent labels “FindHotel” and “RateBook”, are transformed into “Find

Hotel” and “Rate Book”, respectively. Note that some Objects parts of intent labels are

compound. Consider the intent label “SearchOneWayFlight” whose Action is “Search” and

Object is “OneWayFlight”. In such cases, our relationship meta-features generator computes
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meta-features for each part of the compound object then averages them to produce the

Object meta-features vector. In the previous example, “OneWayFlight” meta-features vector

is computed as the average of the meta-features of “OneWay” and “Flight”.

3.4.3 Evaluation Methodology

We use standard classification evaluation measures: accuracy and F1 score. The

values for all the metrics are per class averages weighted by their respective support. We

present evaluation results for the following intent detection settings:

ZS intent Detection. In this setting, a model is trained on all the utterances with seen

intents – i.e., all samples (Xi , Ij ) where Ij ∈ S. Whereas at inference time, the utterances

are only drawn from those with unseen intents; the model has to classify a given utterance

into one of the unseen intents. Note that this setting is less challenging than the GZS setting

because models know that utterances received at inference time imply intents that belong

to the set of unseen intents only, thus naturally reducing their bias towards classifying

utterances into seen intents. For each dataset, we randomly place ≈ 25%, ≈ 50%, and

≈ 75% of the intents in the seen set for training and the rest into the unseen set for testing,

and report the average results over 10 runs. It is important to highlight that selecting

seen/unseen sets in this fashion is more challenging to models because all the intents get an

equal chance to appear in the unseen set, which exposes models that are capable of detecting

certain unseen intents only.

GZS intent Detection. In this setting, models are trained on a subset of utterances

implying seen intents. At inference time, test utterances are drawn from a set that contains

utterances implying a mix of seen and unseen intents (disjoint set from training set) and the
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model is expected to select the correct intent from all seen and unseen intents for a given

test utterance. This is the most realistic and challenging problem setting, and it is the main

focus of this work. For the GZS setting, we decided the train/test splits for each dataset as

follows: For SNIPS, we first randomly selected 5 out of 7 intents and designated them as

seen intents – the remaining 2 intents were designated as unseen intents. We then selected

70% of the utterances that imply any of the 5 seen intents for training. The test set consists

of the remaining 30% utterances in addition to all utterances that imply one of the 2 unseen

intents. Previous work [80] used the same number of seen/unseen intents, but selected the

seen/unseen intents manually. Whereas we picked unseen intents randomly, and we report

results over 10 runs resulting in a more challenging and thorough evaluation. That is, each

intent gets an equal chance to appear as an unseen intent in our experiments, which allows

testing each model more comprehensively. For SGD, we used the standard splits proposed

by the dataset authors. Specifically, the test set includes utterances that imply 8 unseen

intents and 26 seen intents; we report average results over 10 runs. For MultiWOZ, we used

70% of the utterance that imply 8 (out of 11) randomly selected intents for training and the

rest of the utterances (i.e., the remaining 30% of seen intents’ utterances and all utterances

implying unseen intents) for testing.

3.4.4 Competing Methods

We compare our model RIDE against the following state-of-the-art (SOTA) models

and several strong baselines:
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SEG [165]: A semantic-enhanced Gaussian mixture model that uses large margin loss

to learn class-concentrated embeddings coupled with a density-based outlier

detection algorithm LOF to detect unseen intents.

ReCapsNet-ZS [80]: A model that employs capsule neural network and a dimensional

attention module to learn generalizable transformational metrices from seen

intents.

IntentCapsNet [161]: A model that utilizes capsule neural networks to learn low-level

features and routing-by-agreement to adapt to unseen intents. This model was

originally proposed for detecting intents in the standard ZS setting. We extended

it to support the GZS setting with the help of its authors.

Other Baseline Models: We extend the following baseline ZS models to support GZS

setting.

(i) Zero-shot DDN [69]: A model for ZS intent detection that achieves zero-

shot capabilities by projecting utterances and intent labels into the same high

dimensional embedding space.

(ii) CDSSM [21]: A model for ZS intent detection that utilizes a convolutional

deep structured semantic model to generate embeddings for unseen intents.

(iii) CMT [136]: A model for ZS intent detection that employs non-linearity

in the compatibility function between utterances and intents to find the most

compatible unseen intents.

(iv) DeViSE [40]: A model that was originally proposed for zero-shot image
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classification that learns a linear compatibility function. Note that baseline ZS

models have been extended to support GZS setting.

3.4.5 Implementation Details

We lemmatize ConeptNet KG, that has 1 million nodes (English only after lemma-

tization), 2.7 million edges, and 35 relation types. The link predictor is trained on the

lemmatized version of ConceptNet KG. The link predictor has two 200-dimensional embed-

ding layers and a negative sampling ratio of 10; it is trained for 1, 000 epochs using Adam

optimizer with a learning rate of 0.05, L2 regularization value of 0.1, and batch size of 4800.

Our relationship meta-features generator takes in an utterance’s n-grams with n ≤ 4 and an

intent label, and uses the pre-trained link predictor to produce relationship meta-features

with 140 dimensions. Our utterance and intent encoders use pre-trained ELMo contextual

word embeddings with 1024 dimension and POS tags embeddings with 300 dimension, and a

two-layer RNN with 300-dimensional bidirectional LSTM as recurrent units. Our prediction

function has two dense layers with relu and softmax activation. Our core model is trained

for up to 200 epochs with early stopping using Adam optimizer and a cross entropy loss

with initial learning rate of 0.001 and ReduceLROnPlateau scheduler [112] with 20 patience

epochs. It uses dropout rate of 0.3 and batch size of 32. A negative sampling ratio of up to 6

is used. We use the same embeddings generation and training mechanism for all competing

models.

35



D
eViS

E
C

M
T

C
D

S S M

Ze ro
-s

hot D
N

N

In
te

ntC
apsN

e t

R
eC

apsN
e t

S E
G

R
ID
E

M e thod

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0
F

1
 S

c
o

r
e

(a) SNIPS dataset
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(b) SGD dataset

D
eViS

E
C

M
T

C
D

S S M

Ze ro
-s

hot D
N

N

In
te

ntC
apsN

e t

R
eC

apsN
e t

S E
G

R
ID
E

M e thod

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

F
1

 S
c

o
r
e

(c) MultiWOZ dataset

Figure 3.4: F1 scores for competing models in the ZS setting with varying percentages of
seen intents. In the ZS setting, utterances with only unseen intents are encountered at
inference time, and models are aware of this. Our model RIDE consistently outperforms all
other models for any given percentage of seen intents.

3.5 Results

Standard ZS Intent Detection. Figure 3.4 presents the F1 scores averaged over 10

runs for all competing models with varying percentages of seen intents in the ZS setting.

The performance of all models improves as the percentage of seen intents increases, which

is expected because increasing the percentage of seen intent gives models access to more

training data and intents. Our model RIDE consistently outperforms the SOTA model

SEG [165] and all other models in the ZS setting with a large margin across all the datasets.

Specifically, it is at least 12.65% more accurate on F1 score than the second best model

for any percentage of seen intents on all the datasets. Note that all models perform worse

on SGD and MultiWOZ compared to SNIPS because these two datasets are more challenging:

they contain closely related intent labels such as “FindRestaurant” and “FindHotel”.
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Table 3.2: Accuracy and F1 scores for competing models in the GZS setting for SNIPS
dataset.

Method Unseen Seen
Accuracy F1 Accuracy F1

DeViSE 0.0311 0.0439 0.9487 0.6521
CMT 0.0427 0.0910 0.9751 0.6639
CDSSM 0.0521 0.0484 0.9542 0.7028
Zero-shot DNN 0.0912 0.1273 0.9437 0.6687
IntentCapsNet 0.0000 0.0000 0.9749 0.6532
ReCapsNet 0.1249 0.1601 0.9513 0.6783
SEG 0.6943 0.6991 0.8643 0.8651

RIDE w/o PU 0.8728 0.9103 0.8906 0.8799
RIDE /w PU 0.9051 0.9254 0.9179 0.9080

Table 3.3: Accuracy and F1 scores for competing models in the GZS setting for SGD dataset.

Method Unseen Seen
Accuracy F1 Accuracy F1

DeViSE 0.0197 0.0177 0.8390 0.5451
CMT 0.0254 0.0621 0.9014 0.5803
CDSSM 0.0367 0.0284 0.8890 0.6379
Zero-shot DNN 0.0662 0.1168 0.8825 0.6098
IntentCapsNet 0.0000 0.0000 0.8982 0.5508
ReCapsNet 0.1062 0.1331 0.8762 0.5751
SEG 0.3723 0.4032 0.6134 0.6356

RIDE w/o PU 0.3865 0.4634 0.8126 0.8295
RIDE /w PU 0.5901 0.5734 0.8315 0.8298

GZS Intent Detection. Table 3.2, 3.3, and 3.4 show accuracy and F1 scores averaged

over 10 runs for all competing models in the GZS setting for SNIPS, SGD, and MultiWOZ

datasets, respectively. Recall that GZS models receive both seen and unseen intents at

inference time, which makes the setting more challenging than the ZS setting) We present

results for two variants of our model: RIDE w/o PU which does not use a PU classifier,

and RIDE /w PU which uses one. Our model consistently achieves the best F1 score for

both seen and unseen intents across all datasets, regardless of whether the PU classifier

is integrated or not. For unseen intents, our model RIDE outperforms all other competing

37



Table 3.4: Accuracy and F1 scores for competing models in the GZS setting for MultiWOZ
dataset.

Method Unseen Seen
Accuracy F1 Accuracy F1

DeViSE 0.0119 0.0270 0.8980 0.5770
CMT 0.0253 0.0679 0.9025 0.6216
CDSSM 0.0373 0.0244 0.8861 0.6515
Zero-shot DNN 0.0802 0.1149 0.8940 0.6012
IntentCapsNet 0.0000 0.0000 0.9249 0.6038
ReCapsNet 0.1081 0.1467 0.8715 0.6170
SEG 0.3712 0.4143 0.6523 0.6456

RIDE w/o PU 0.3704 0.4645 0.8558 0.8816
RIDE /w PU 0.5686 0.5206 0.8844 0.8847

models on accuracy with a large margin. Specifically, RIDE is 30.36%, 58.50%, and 53.18%

more accurate than the SOTA model SEG on SNIPS, SGD, and MultiWOZ for unseen intents,

respectively. Moreover, our model consistently achieves the highest F1 score on seen as

well as unseen intents, which confirms its generalizability. CMT and IntentCapsNet achieve

the highest accuracy for utterances with seen intents on all datasets, but their F1 score is

among the worst due to their biased-ness towards misclassifying utterances with unseen

intents into seen ones. RIDE outperforms the SOTA model SEG regardless of whether a PU

classifier is incorporated or not. For SNIPS, the role of the PU classifier is negligible as it

causes a slight improvement in accuracy and F1 score. For SGD and MultiWOZ, which are

more challenging datasets, the PU classifier is responsible for significant improvements in

accuracy. Specifically, it provides 20.36 and 19.82 percentage points improvement for SGD

and MultiWOZ, respectively, on unseen intents.

Effect of PU Classifier on Other Models. We observed that one of the main sources

of error for most models in the GZS setting is their tendency to misclassify utterances with
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(a) SNIPS dataset
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(b) SGD dataset
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(c) MultiWOZ dataset

Figure 3.5: F1 scores for unseen intents for the competing models in the GZS setting after
integrating a PU classifier.

unseen intents into seen ones due to overfitting to seen intents. We investigated whether

existing models can be adapted to accurately classify utterances with unseen intents by

partially eliminating their bias towards seen intents. Figure 3.5 presents F1 scores of all the

models with and without PU classifier. A PU classifier significantly improves the results of all

the competing models. For instance, the IntentCapsNet model with a PU classifier achieves

an F1 score of 74% for unseen intents on SNIPS dataset in the GZS setting compared to an

F1 score of less than 0.01% without the PU classifier. Note that the PU classifier has an

accuracy (i.e., correctly predicting whether the utterance implies a seen or an unseen intent)

of 93.69 and an F1 score of 93.75 for SNIPS dataset; 86.13 accuracy and 83.54 F1 score for

SGD dataset; and 87.32 accuracy and 88.51 F1 score for MultiWOZ dataset. Interestingly, our

model RIDE (without PU classifier) outperforms all the competing models even when a PU

classifier is incorporated into them, which highlights that the PU classifier is not the main

source of the performance of our model. We did not incorporate the PU classifier into SEG

model because it already incorporates an equivalent mechanism to distinguish seen intents

from unseen ones (i.e., outlier detection).
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Table 3.5: Ablation study: F1 scores for unseen intents in GZS setting; the key reason
behind our model’s astonishing accuracy is our relationship meta-features.

Configuration SNIPS SGD MultiWOZ

UI-Embed w/o PU 0.2367 0.1578 0.1723
Rel-M w/o PU 0.7103 0.3593 0.3321
RIDE w/o PU 0.9103 0.4634 0.4645

UI-Embed /w PU 0.7245 0.4202 0.4124
Rel-M /w PU 0.8463 0.5167 0.4781
RIDE /w PU 0.9254 0.5734 0.5206

Ablation Study. To quantify the effectiveness of each component in our model, we present

the results of our ablation study in Table 3.5 (in the GZS setting). Utilizing utterance and

intent embeddings only (i.e., UI-Embed) results in very low F1 score, i.e., 23.67% on SNIPS

dataset. Employing relationship meta-features only (i.e., Rel-M) results in significantly better

results: an F1 score of 71.03% on SNIPS dataset. When utterance and intent embeddings

are used in conjunction with relationship meta-features (i.e., RIDE w/o PU), it achieves

better F1 score compared to the Rel-M or UI-Embed configurations. A similar trend can

be observed for the other datasets as well. Finally, when our entire model is deployed (i.e.,

including utterance and intent embeddings, relationship meta-features, and the PU classifier,

i.e., RIDE /w PU), it achieves the best results on all the datasets.

Intent Existence Prediction. In real human-to-human or human-to-machine conversa-

tions, utterances do not necessarily imply intents. Most existing intent detection models

formulate the problem as a classification problem where utterances are assumed to imply an

intent, which limits utility of such models in practice. In what follows, we describe a simple

method for extending intent detection models (including ours) to accommodate the case

when utterances do not necessarily imply intents. We propose to do binary classification as

a first step in intent detection, where a binary classifier is used to identify utterances that
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Table 3.6: F1 score for intent existence binary classifiers.

Method SGD MultiWOZ

CNN 0.9497 0.9512
GRU 0.9528 0.9619
LSTM 0.9512 0.9607
Bi-LSTM 0.9525 0.9621

do not imply an intent. To validate the viability of this proposal, we experimented with

several binary classifiers. To train the classifiers, we created datasets of positive and negative

examples from seen intents data; positive examples are utterances that imply intents, and

negative examples are utterances that do not have intents (See Section 3.4.2 for details

on identifying utterances that imply intents). For the SGD dataset, we used the standard

train/test splits, and for the MultiWOZ dataset, we used the same splits described in the

GZS setting. We report in Table 3.6 the average F1 score over 5 runs of several binary

classifiers for the SGD and the MultiWOZ datasets. All classifiers use ELMo [109] and POS tag

embeddings. These results show that intent existence classification can be done accurately

using the available training data; consequently, intent detection models can be easily and

reliably extended to support the case when some input utterances do not imply intents.

Pre-trained LMs with appropriate fine-tuning have produced state-of-the-art results on many

NLP benchmarks [113, 14, 53, 110, 149, 137]..

3.6 Related Work

We organize the related work on intent detection into three categories: (i) supervised

intent detection, (ii) standard zero-shot intent detection, and (iii) generalized zero-shot

intent detection.
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Supervised Intent Detection. Recurrent neural networks [116] and semantic lexicon-

enriched word embeddings [64] have been employed for supervised intent detection. Recently,

researchers have proposed solving the related problems of intent detection and slot-filling

jointly [79, 171, 164]. Supervised intent classification works assume the availability of a

large amount of labeled training data for all intents to learn discriminative features, whereas

we focus on the more challenging and more practically relevant setting where intents are

evolving and training data is not available for all intents.

Standard Zero-shot Intent Detection. The authors in [168] proposed using label

ontologies [37] (i.e., manually annotated intent attributes) to facilitate generalizing a model

to support unseen intents. The authors in [26, 69, 158] map utterances and intents to the

same semantic vector space, and then classify utterances based on their proximity to intent

labels in that space. Similarly, the authors in [41] employ the outlier detection algorithm

LOF [16] and likelihood ratios for identifying out-of-domain test examples. While these

works showed promising results for intent detection when training data is unavailable for

some intents, they assume that all utterances faced at inference time imply unseen intents

only. Extending such works to remove the aforementioned assumption is nontrivial. Our

model does not assume knowledge of whether an utterance implies a seen or an unseen intent

at inference time.

Generalized Zero-shot Intent Detection. To the best of our knowledge, the authors

in [80] proposed the first work that specifically targets the GZS intent detection setting.

They attempt to make their model generalizable to unseen intents by adding a dimensional

attention module to a capsule network and learning generalizable transformation matrices
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from seen intents. Recently, the authors in [165] proposed using a density-based outlier

detection algorithm LOF [16] and semantic-enhanced Gaussian mixture model with large

margin loss to learn class-concentrated embeddings to detect unseen intents. In contrast, we

leverage rich commonsense knowledge graph to capture deep semantic and discriminative

relationships between utterances and intents, which significantly reduces the bias towards

classifying unseen intents into seen ones. In a related, but orthogonal, line of research, the

authors in [90, 75, 47] addressed the problem of intent detection in the context of dialog

state tracking where dialog state and conversation history are available in addition to an

input utterance. In contrast, this work and the SOTA models we compare against in our

experiments only consider an utterance without having access to any dialog state elements.

3.7 Conclusion

We have presented an accurate generalized zero-shot intent detection model. Our

extensive experimental analysis on three intent detection benchmarks shows that our model

is 30.36% to 58.50% more accurate than the SOTA model for unseen intents. The main

novelty of our model is its utilization of relationship meta-features to accurately identify

matching utterance-intent pairs with very limited reliance on training data, and without

making any assumption on whether utterances imply seen or unseen intents at inference time.

Furthermore, our idea of integrating Positive-Unlabeled learning in GZS intent detection

models further improves our models’ performance, and significantly improves the accuracy

of existing models as well.
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Chapter 4

Zero-shot Slot Filling

4.1 Introduction

We discussed in Chapter 3 that goal-oriented dialog systems allow users to accom-

plish tasks through an intuitive natural language interface. For instance, a user may issue

the following utterance: “I would like to book a table at 8 Immortals Restaurant in San

Francisco for 5:30 pm today for 6 people”. For dialog systems to fulfill such a request, after

the successful detection of the user’s intent (see Chapter 3), they also need to extract the

parameter (a.k.a. slot) values of the request. Slots in the restaurant booking domain in-

clude restaurant name and city, whose values in our example utterance are “8 Immortals

Restaurant” and “San Francisco”, respectively. Only after all slot values are filled, the

system can call the appropriate API to actually perform the intended action (e.g., reserving a

table at a restaurant). Thus, the extraction of slot values from natural languages utterances

(i.e., slot filling) is a critical step to the success of a dialog system.
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Slot filling is an important and challenging task that tags each word subsequence in

an input utterance with a slot label (see Figure 4.1 for an example). Despite the challenges,

supervised approaches have shown promising results for this task [44, 171, 169, 7, 96, 70, 51,

164]. The disadvantage of supervised methods is the unsustainable requirement of having

massive labeled training data for each domain; the acquisition of such data is laborious

and expensive. Moreover, in practical settings, new unseen domains (with unseen slot

types) emerge only after the deployment of the dialog system, rendering supervised models

ineffective. Consequently, models with capabilities to seamlessly adapt to new unseen

domains are indispensable to the success of dialog systems. Note that unseen slot types do

not have any training data, and the values of seen slots may be present in different contexts

in new domains (rendering their training data from other seen domains irrelevant). Filling

slots in settings where new domains emerge after deployment is referred to as zero-shot slot

filling [5]. Alexa Skills and Google Actions, where developers can integrate their novel

content and services into a virtual assistant are a prominent examples of scenarios where

zero-shot slot filling is crucial.

There has been little research on zero-shot slot filling, and previous works presented

limited experimental evaluation results. To the best of our knowledge, existing models

were evaluated using a single public dataset. Recently, the authors in [127] proposed a

cross-domain zero-shot adaptation for slot filling by utilizing example slot values. Due to

the inherent variance of slot values across diverse domains, this framework faces difficulties

in capturing whole slot values in unseen domains; for instance, it captures “Immortals

Restaurant” instead of “8 Immortals Restaurant” for slot type “restaurant name” in
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Figure 4.1: Overview of LEONA with an example utterance and its words’ label sequence
(following the IOB scheme).

Figure 4.1’s example utterance. Coach [85] proposed to address the issues in [127, 5] with a

coarse-to-fine approach. Coach [85] uses the seen domain data to learn templates for the slots

based on whether the words are slot values or not. Then, it determines a slot type for each

identified slot value by matching its representation against that of each slot type description.

The diversity of slot types across different domains makes it practically impossible for Coach

to learn general templates that are applicable to all new unseen domains; for example, “book”

and “table” can be slot values in an e-commerce domain, but not in the restaurant booking

domain.

We propose an end-to-end zero-shot model LEONA1 that relies on the power of

domain-independent linguistic features and contextual representations from pre-trained

language models (LM), and context-aware utterance-slot similarity features. LEONA works

in three steps as illustrated in Figure 4.1. Step one leverages pre-trained Natural Language

1Linguistically-Enriched and cONtext-Aware
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Processing (NLP) models that provide additional domain-oblivious and context-aware

information to initialize our embedding layer. Specifically, Step one uses (i) syntactic cues

through part of speech (POS) tags that provide information on the possibility of a word

subsequence being a slot value (e.g., proper nouns are usually slot values); (ii) off-the-shelf

Named Entity Recognition (NER) models that provide complementary and more informative

tags (e.g., geo-political entity tag for “San Francisco”); and (iii) a deep bidirectional

pre-trained LM (ELMo) [109] to generate contextual character-based word representations

that can handle unknown words that were never seen during training. Combined, these

domain-independent sources of rich semantic information provide a robust initialization for

the embedding layer to better accommodate unseen words (i.e., never seen during training),

which greatly facilitates zero-shot slot filling.

Step two fine-tunes the semantically rich information from Step one by accounting

for the temporal interactions among the utterance words using bi-directional Long Short

Term Memory (LSTM) network [55] that effectively transfers rich semantic information

from pre-trained NLP models to the proposed model, LEONA. This step produces slot-

independent tags (i.e., Inside Outside Beginning IOB), which provide complementary cues at

the word subsequence level (i.e., hints on which word subsequences constitute slot values)

using a Conditional Random Field (CRF) [71]. Step three, which is the most critical step,

learns a generalizable context-aware similarity function between the utterance words and

those of slot descriptions from seen domains, and exploits the learned function in new unseen

domains to highlight the features of the utterance words that are contextually relevant to a

given slot. This step also jointly contextualizes the multi-granular information produced
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at all steps. Finally, CRF is employed to produce slot-specific predictions for the given

utterance words and slot type. This step is repeated for every relevant slot type, and the

predictions are combined to get the final sequence labels. In our example in Figure 4.1, the

predictions for “restaurant name” and “city” are combined to produce the final sequence

labels shown in the figure.

In summary, this work makes the following contributions:

• We propose an end-to-end model for zero-shot slot filling that effectively captures

context-aware similarity between utterance words and slot types, and integrates

contextual information across different levels of granularity, leading to outstanding

zero-shot capabilities.

• We demonstrate that pre-trained NLP models can provide additional domain-

oblivious semantic information, especially for unseen concepts. To the best of

our knowledge, this is the first work that leverages the power of pre-trained NLP

models for zero-shot slot filling. This finding might have positive implications for

other zero-shot NLP tasks.

• We conduct extensive experimental analysis using four public datasets: SNIPS [23],

ATIS [83], MultiWOZ [170] and SGD [115], and show that our proposed model

consistently outperforms state-of-the-art models in a wide range of experimental

evaluations on unseen domains. To the best of our knowledge, this is first work

that comprehensively evaluates zero-shot slot filling models on many datasets

with diverse domains and characteristics.
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4.2 Preliminaries

4.2.1 Problem Formulation

Given an utterance with J words Xi = (x1, x2, · · · , xJ), a slot value is a span of

words (xe, · · · , xf ) such that 0 ≤ e ≤ f ≤ J , that is associated with a slot type. Slot filling is

a sequence labeling task that assigns the labels Yi = (y1, y2, · · · , yJ) to the input Xi , following

the IOB labeling scheme [114]. Specifically, the first word of a slot value associated with

slot type Sr is labeled as B-Sr , the other words inside the slot value are labeled as I-Sr , and

non-slot words are labeled as O. Let Dc = {S1,S2, . . . }, be the set of slot types in domain c.

Let DSEEN = {D1, · · · ,Dl } be a set of seen domains and DUNSEEN = {Dl +1, · · · ,Dz} be a set of

unseen domains where DSEEN ∩DUNSEEN = ∅. Let {(Xi ,Yi )}n
i=1 be a set of training utterances

labeled at the word level such that the slot types in Yi are in Dp ∈ DSEEN. In traditional

(i.e., supervised) slot filling, the domains of test utterances belong to DSEEN, whereas in

zero-shot slot filling, the domains of test utterances belong to DUNSEEN; an utterance belongs

to a domain if it contains slot values that correspond to slot types from this domain. Note

that in zero-shot slot filling, the output slot types belong to either seen or unseen domains

(i.e., in Dp ∈ DSEEN ∪ DUNSEEN). We focus on zero-shot slot filling in this work.

4.2.2 Pre-trained NLP Models

In this work, we utilize several pre-trained NLP models that are readily available.

Specifically, we use: Pre-trained POS tagger, Pre-trained NER model, and Pre-trained

ELMo. The cues provided by POS/NER tags and ELMo embeddings are supplementary in
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our model, and they are further fine-tuned and contextualized using the available training

data from seen domains. Next, we provide a brief overview of these models.

Pre-trained POS tagger. This model labels an utterance with part of speech tags, such

as PROPN, VERB, and ADJ. POS tags provide useful syntactic cues for the task of zero-shot

slot filling, especially for unseen domains. LEONA learns general cues from the language

syntax about how slot values are defined in one domain, and transfers this knowledge to

new unseen domains because POS tags are domain and slot type independent. For example,

proper nouns are usually values for some slots. In this work, we employ SpaCy’s pre-trained

POS tagger2, that has shown production level accuracy.

Pre-trained NER model. This model labels an utterance with IOB tags for four entity

types: PER, GPE, ORG, and MISC. The NER model provides information at a different

granularity, which is generic and domain-independent. Although the NER model provides

tags for a limited set of entities and the task of slot filling encounters many more entity

types, we observe that many, but not all, slots can be mapped to basic entities supported by

the NER model. For instance, names of places or locations are referred to as “GPE” (i.e.,

geo-political entity or location) by the NER model, whereas in the task of the slot filling,

there may be a location of a hotel, restaurant, salon, or some place the user is planing to

visit. Nonetheless, it remains challenging to assign the name of the location to the correct

corresponding entity/slot in the zero-shot fashion. Moreover, NER models can not identify

all slots/entities that slot filling intends to extract, resulting in a low recall. Yet, cues from

2https://spacy.io/api/annotation#pos-tagging
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NER model are informative and helpful in reducing the complexity of the task. In this work,

we employ SpaCy’s pre-trained NER model3.

Pre-trained ELMo. In this work, we employ the deep bidirectional language model

ELMo to provide contextualized word representations that capture complex syntactic

and semantic features of words based on the context of their usage, unlike fixed word

embeddings (i.e., GloVe [108] or Word2vec [99]) which do not consider context. The pre-

trained ELMo [109] with appropriate fine-tuning has provided state-of-the-art results on

many NLP benchmarks [113, 14, 53, 110, 149, 137]. Furthermore, these representations are

purely character based and are robust for words unseen during training, which makes them

suitable for the task of zero-shot slot filling.

4.2.3 Conditional Random Fields

Conditional Random Fields (CRFs) [145] have been successfully applied to various

sequence labeling problems in natural language processing such as POS tagging [24], shallow

parsing [126], and named entity recognition [125]. To produce the best possible label sequence

for a given input, CRFs incorporate the context and dependencies among predictions. In

this work, we employ linear chain CRFs that are trained by estimating maximum conditional

log-likelihood. Moreover, CRFs allows enforcing constraints in a flexible way (e.g., tag “I”

can not be preceded by tag “O”).

3https://spacy.io/api/annotation#named-entities
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4.3 Approach

Our model LEONA is an end-to-end neural network with six layers that collectively

realize the conceptual three steps in Figure 4.1. Specifically, the Embedding layer realizes

Step one and it also jointly realizes Step two together with the Encoding and the CRF

layers. The Similarity, Contextualization, and Predication layers realize Step three. We

briefly summarize each layer below, and we describe each layer in detail in the following

subsections. The Embedding layer maps each word to a vector space; this layer is responsible

for embedding the words from both the utterance and the slot description. The Encoding

layer uses bi-directional LSTM networks to refine the embeddings from the previous layer

by considering information from neighboring words. This layer encodes utterances as well

as slot descriptions. The CRF layer uses utterance encodings and makes slot-independent

predictions (i.e., IOB tags) for each word in the utterance by considering dependencies

between the predictions and taking context into account. The Similarity layer uses utterance

and slot description encodings to compute an attention matrix that captures the similarities

between utterance words and a slot type, and signifies feature vectors of the utterance words

relevant to the slot type. The Contextualization layer uses representations from different

granularities and contextualizes them for slot-specific predictions by employing bi-directional

LSTM networks; specifically, it uses representations from the Similarity layer, the Encoding

layer, and the IOB predictions produced by the CRF layer. The Prediction layer employs

another CRF to make slot-specific predictions (i.e., IOB tags for a given slot type) based on

the input from the contextualization layer. Note that the prediction process is repeated for
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Figure 4.2: Illustration of the layers in our model LEONA.

all the relevant slot types and its outputs are combined to produce the final label for each

word.

4.3.1 Embedding Layer

This layer maps each word in the input utterance to a high dimensional vector

space. Three complementary embeddings are utilized: (i) word embedding of the POS tags

for the input words, (ii) word embedding of the NER tags for the input word, and (iii)

contextual word embedding from the pre-trained ELMo model. Then, we employ a two-layer

Highway Network [140] to combine the three embeddings for each word in an effective

way; such networks have been shown to perform better than simple concatenation. They

produce a dim-dimensional vector for each word. Specifically, the embedding layer produces

X ∈ Rdim×J for the given utterance {x1, x2, · · · , xJ} with J words, and S ∈ Rdim×K for the

given slot description {s1, s2, · · · , sK} with K words. This representation gets fine-tuned

and contextualized in the next layers.
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4.3.2 Encoding Layer

We use a bi-directional LSTM network to capture the temporal interactions between

input words. At time-step i , we compute hidden states for the input utterance as follows:

−→
h i = LSTM(

−→
h i−1,X:i ) (4.1)

←−
h i = LSTM(

←−
h i−1,X:i ) (4.2)

Then, we concatenate the output of the hidden states
−→
h i and

←−
h i to get the bi-directional

hidden state representation hi = [
−→
h i ;
←−
h i ] ∈ R2d . This layer produces H ∈ R2d×J from

the context word vectors X (i.e., for utterance). Essentially, every column of the matrix

represents the fine-tuned context-aware representation of the corresponding word. A similar

mechanism is employed to produce U ∈ R2d×K from word vector S (i.e., for slot description).

4.3.3 CRF Layer

The task of the CRF layer is to predict one of three slot-independent tags (i.e.,

I, O, or B) for each utterance word based on the utterance’s contextual representation

H = {h1,h2, · · · ,hJ} produced by the encoding layer. Let Y refer to a sequence label,

and the set of all possible state sequences is C. For the given input sequence H, the

conditional probability function for the CRF, P (Y|H;W, b), over all possible label sequences

Y is computed as follows:

P (Y|H;W, b) =

J∏
i=1

θi (yi−1, yi ,H)

∑
y ′∈C

J∏
i=1

θi (y ′i−1, y ′i ,H)

(4.3)
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where θi (y ′i−1, y ′i ,H) = exp(W T
y ′,yhi + by ′,y) is a trainable function, that has W T

y′,y weight and

by′,y bias matrices for the label pair (y′, y).

Note that the slot-independent predictions also represent the output of Step two;

i.e., information about utterance words at a different granularity than the initial cues from

NLP models. Essentially, Step two learns general patterns of slot values from seen domains

irrespective of slot types, and transfers this knowledge to new unseen domains and their slot

types. Since it is hard to learn general templates of slot values that are applicable to all

unseen domains, we do not use these slot-independent predictions to predict slot-specific

tags. Instead, we pass this information to the contextualization layer for further fine-tuning.

4.3.4 Similarity Layer

The similarity layer highlights the features of each utterance word that are important

for a given slot type by employing attention mechanisms. The popular attention methods [157,

3, 79] that summarize the whole sequence into a fixed length feature vector are not suitable

for the task at hand, i.e., per word labeling. Alternatively, we compute the attention vector

at each time step, i.e., attention vector for each word in the utterance [124]. The utterance

encoding H ∈ R2d×J and slot description encoding U ∈ R2d×K metrics are input to this

layer, that are used to compute a similarity matrix A ∈ RJ×K between the utterance and

slot description encodings. Ajk represents the similarity between j -th utterance word and

k -th slot description word. We compute the similarity matrix, as follows:

Ajk = α(H:j ,U:k ) ∈ R (4.4)
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where α is a trainable function that captures the similarity between input vectors H:j

and U:k , where H:j and U:k are j -th and k -th column-vectors of H and U , respectively.

α(h, u) = w>(a)[h⊕u⊕h⊗u], where ⊕ is vector concatenation, ⊗ is element-wise multiplication,

and w(a) is a trainable weight vector.

The similarity matrix A is used to capture bi-directional interactions between

the utterance words and the slot type. First we compute attention that highlights the

words in the slot description that are closely related to the utterance. At time-step t , we

compute it as follows: U ′:t =
∑

k vtkU:k where vt = softmax(At :) ∈ RK is the attention

weight for a slot description computed at time-step t and
∑

vtk = 1 for all t . U ′ ∈ R2d×J

represents the attention weights for the slot description with respect to all the words in the

utterance. Basically, every column of the matrix represents closeness of the slot description

with the corresponding utterance word. Then, attention weights that signify the words in the

utterance that have the highest similarity with the slot description are computed as follows:

h′ =
∑

j bjH:j where b = softmax(maxcol(A)) ∈ RJ and max operates across columns, and

H′ ∈ R2d×J is obtained by tiling h′ across columns.

Intuitively, U ′ represents features that highlight important slot description words

with closely similar words of an utterance, and H′ highlights features of the utterance with

high similarity with the slot description, computed based on the similarity matrix A. Note

that A is computed based the contextual representations of the utterance (H) and slot

description (U) generated by the encoding layer that considers surrounding words (employing

bi-LSTM) to generate the representations. Finally, U ′ and H′ are concatenated to produce
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G ∈ R4d×J , where every column of the matrix represents rich bi-directional similarity features

of the corresponding utterance word with the slot description.

Essentially, this layer learns a general context-aware similarity function between

utterance words and a slot description from seen domains, and it exploits the learned function

for unseen domains. Due to the general nature of the similarity function, this layer also

facilitates the identification of slot values in cases when Step two fails to correctly identify

domain-independent slot values.

4.3.5 Contextualization Layer

This layer is responsible for contextualizing information from different granularities.

Specifically, the utterance encodings from the Encoding layer, the bi-directional similarity

between the utterance and the slot description from the Similarity layer, and the slot-

independent IOB predictions from the CRF layer are passed as inputs to this layer. This

layer employs 2 stacked bi-directional LSTM networks to contextualize all the information

by considering the relationships among neighbouring words’ representations. It generates

high quality features for the prediction layer; specifically, the features are ∈ R2d×J , where

each column represents the 2d -dimensional features for the given word in the utterance.

4.3.6 Prediction Layer

The contextualized features are passed as input to this layer, and it is responsible

for generating slot-specific predictions for the given utterance and slot type. First, it passes

these features through 2 linear layers with ReLU activation. Then a CRF is employed to

make structured predictions, as briefly explained in the CRF layer. The prediction process
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is done for each of the relevant slot types (i.e., slot types in the respective domain) and the

resulting label sequences are combined to produces the final label for each word. Note that

if the model made two or more conflicting slot predictions for a given sequence of words, we

pick the slot type with the highest prediction probability.

4.3.7 Training the Model

The model has two trainable components: the slot-independent IOB predictor

and the slot-specific IOB predictor. We jointly train both components by minimizing the

negative log likelihood loss of both components over our training examples. The training

data is prepared as follows. The training examples are of the form (Xi ,Sr ,Y ′i ,Y ′′ir ), where Xi

represents an utterance, Sr represents a slot type, Y ′i represents slot-independent IOB tags

for the given utterance Xi , and Y ′′ir represents slot-specific IOB tags for the given utterance

Xi and slot type Sr . For a sample from the given dataset of the form (Xi ,Yi ) that has

values for m slot types, first slot-indepedent IOB tags Y ′i are generated by removing slot

type information. Then, we generated m positive training examples by setting each of m slot

types as Sr and generating the corresponding label Y ′′ir (i.e., slot-specific tags for slot type

Sr ). Finally, q negative samples are generated where slot types that are not present in each

respective utterance are selected. For example, the utterance in Figure 4.1 “I would like to

book a table at 8 Immortals Restaurant in San Francisco” has true labels as “O O O O O O

O O B-restaurant name I-restaurant name I-restaurant name O B-city I-city”. The positive

training examples would be: (· · · , “restaurant name”, “O O O O O O O O B I I O B I”,

“O O O O O O O O B I I O O O”) and (· · · , “city”, · · · , “O O O O O O O O O O O O B

I”). Whereas the negative examples can be as follows: (· · · , “salon name”, · · · , “O O O O
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Table 4.1: Datasets statistics.

Dataset SNIPS ATIS MultiWOZ SGD

Dataset Size 14.5K 5.9K 67.4K 188K
Vocab. Size 12.1K 1K 10.5K 33.6K
Avg. Length 9.0 11.1 13.3 13.8
# of Domains 6 1 8 20
# of Intents 7 18 11 46
# of Slots 39 83 61 240

O O O O O O O O O O”), (· · · , “cuisine”, · · · , · · · ), (· · · , “phone number”, · · · , · · · ), and

so on. Note that slot types are shown in the above example for brevity; slot descriptions are

used in practice.

4.4 Experimental Setup

In this section, we describe the datasets, evaluation methodology, competing

methods, and the implementation details of our model LEONA.

4.4.1 Datasets

We used four public datasets to evaluate the performance of our model LEONA:

SNIPS Natural Language Understanding benchmark (SNIPS), Airline Travel Information

System (ATIS), Multi-Domain Wizard-of-Oz (MultiWOZ), and Dialog System Technology

Challenge 8 Schema Guided Dialogue (SGD). To the best of our knowledge, this is first work

to comprehensively evaluate zero-shot slot filling models on a wide range of public datasets.

Table 4.1 presents important dataset statistics.

SNIPS [23]: A crowd-sourced single-turn Natural Language Understanding (NLU) bench-

mark widely used for slot filling. It has 39 slot types across 7 intents from different
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domains. Since this dataset does not have slot descriptions, we used tokenized slot names

as the descriptions (e.g., for slot type “playlist owner”, we used “playlist owner” as its

description).

ATIS [83]: A single-turn dataset that has been widely used in slot filling evaluations. It

covers 83 slot types across 18 intents from a single domain. Many of the intents have only a

small number of utterances, so all the intents having less than 100 utterances are combined

into a single intent “Others” in our experiments. Moreover, similarly to SNIPS dataset, we

used the tokenized versions of the slot names as slot descriptions.

MultiWOZ [170]: A well-known dataset that has been widely used for the task of dialogue

state tracking. In this work, we used the most recent version of the dataset (i.e., MultiWOZ2.2).

In its original form, it contains dialogues between users and a dialog system. For the task of

slot filling, we take all the user utterances and system messages that mention any slot(s)

and shuffle the order to make it as if it was a single-turn dataset to maintain consistency

with the previous works. For experiments in this work, utterances with intents that have

less than 650 (< 1% of the dataset) utterances are grouped into the intent “Others”.

SGD [115]: A recently published comprehensive dataset for the eighth Dialog System

Technology Challenge; it contains dialogues from 20 domains with a total of 46 intents

and 240 slots. SGD was originally proposed for dialogue state tracking. This dataset is also

pre-processed to have single-turn utterances labeled for slot filling. Moreover, we merge

utterances from domains that have no more than 1850 (< 1% of the dataset) utterances,

and we name the resulting domain “Others”.
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Since not all datasets provide a large enough number of domains, we do the splits

in our experiments based on intents instead of domains for datasets that have more intents

than domains. That is, we consider intents as domains for SNIPS, ATIS, and MultiWOZ.

4.4.2 Evaluation Methodology

We compute the slot F1 scores4 and present evaluation results for the following

settings:

Train on all except target intent/domain. This is the most common setting that

previous works [85, 127, 5] have used in their evaluation. A model is trained on all

intents/domains except a single target intent/domain. For SNIPS dataset, for example, the

model is trained on all intents except a target intent “AddToPlatlist” which is used for

testing the model’s capabilities in the zero-shot fashion. This setup is repeated for every

single intent/domain in the dataset. The utterances at test time only come from a single

intent/domain (or “Others”) which makes this setting less challenging.

Train on a certain percentage of intents/domains and test on the rest. This is a

slightly more challenging setting where test (i.e., unseen in training) intent/domains are

usually from multiple unseen intents/domains. We vary the number of training (i.e., seen)

and testing (i.e., unseen) intents/domains to comprehensively evaluate all competing models.

In this setting, we randomly select ≈ 25%, ≈ 50%, and ≈ 75% of the intents/domains for

training and the rest for testing, and report average results over five runs.

Train on one dataset and test on the rest of the datasets. This is the most challenging

setting, where models are trained on one dataset and tested on the remaining datasets.

4Standard CoNLL evaluation script is used to compute slot F1 score.
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For example, we train on the SGD dataset and test on SNIPS, ATIS, and MultiWOZ datasets.

Similarly, we repeat the process for every dataset. Since datasets are very diverse (i.e., in

terms of domains, slot types and users’ expressions), this setting can be thought of as a “in

the wild” [29] setting, which resembles real-world zero-shot slot filling scenarios to a large

degree.

4.4.3 Competing Methods

We compare against the following state-of-the-art (SOTA) models:

Coach [85]: This model proposes to handle the zero-shot slot filling task with a coarse-

to-fine procedure. It first identifies the words that constitute slot values. Then,

based on the identified slot values, it tries to assign these values to slot types by

matching the identified slot values with the representation of each slot description.

We use their best model, i.e., Coach+TR, that employs template regularization

but we call it Coach for simplicity.

RZS [127]: This work proposes a zero-shot adaption for slot filling by utilizing example

values of each slot type. It employs character and word embedding of the utterance

and slot descriptions, which are then concatenated with the averaged slot example

embeddings and passed through a bidirectional LSTM network to get the final

prediction for each word in the utterance.

CT [5]: This model fills slots for each slot type individually. Character and word-level

representations are concatenated with the slot type representation (i.e., embed-
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dings) and an LSTM network is used to make the predictions for each word in

the utterance for the given slot type.

Note that we do not compare against simple baselines such as BiLSTM-CRF [72],

LSTM-BoE, and CRF-BoE [61] because they have been outperformed by the previous works

we compare against.

4.4.4 Implementation Details

Our model uses 300 dimensional embeddings for POS and NER tags, and pre-

trained ELMo embedding with 1024 dimensions. The encoding and contextualization layers

have two stacked layers of bi-directional LSTMs with hidden states of size 300. The prediction

layer has two linear layers with ReLU activation, and the CRF uses the “IOB” labeling

scheme. The model is trained with a batch size of 32 for up to 200 epochs with early stopping

using Adam optimizer and a negative log likelihood loss with a scheduled learning rate,

starting at 0.001, and the model uses a dropout rate of 0.3 at every layer to avoid over-fitting.

Whereas q is set to three for negative sampling.

4.5 Results

We present in the next subsections quantitative and qualitative analysis of all

competing models. We first present the quantitative analysis in Subsection 4.5.1 and show

that our model consistently outperforms the competing models in all settings. Furthermore,

this subsection also has an ablation study that quantifies the role of each conceptual step in
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Table 4.2: SNIPS dataset: Slot F1 scores for all competing models for target intents that
are unseen in training.

Target Intent ↓ CT RZS Coach LEONA w/o IOB LEONA

AddToPlaylist 0.3882 0.4277 0.5090 0.5104 0.5115
BookRestaurant 0.2754 0.3068 0.3401 0.3405 0.4781
GetWeather 0.4645 0.5028 0.5047 0.5531 0.6677
PlayMusic 0.3286 0.3312 0.3201 0.3435 0.4323
RateBook 0.1454 0.1643 0.2206 0.2224 0.2318
SearchCreativeWork 0.3979 0.4445 0.4665 0.4671 0.4673
SearchScreeningEvent 0.1383 0.1225 0.2563 0.2690 0.2872

Average 0.3055 0.3285 0.3739 0.3866 0.4394

Table 4.3: ATIS dataset: Slot F1 scores for all competing models for target intents that are
unseen in training.

Target Intent ↓ CT RZS Coach LEONA w/o IOB LEONA

Abbreviation 0.4163 0.5252 0.4804 0.4965 0.6405
Airfare 0.6549 0.5410 0.6929 0.7490 0.9492
Airline 0.7126 0.6354 0.7212 0.7762 0.8586
Flight 0.6530 0.7165 0.8072 0.8521 0.9070
Ground Service 0.4924 0.6452 0.7641 0.8463 0.8490
Others 0.4835 0.5169 0.6586 0.7749 0.8337

Average 0.5688 0.5967 0.6874 0.7492 0.8397

our model. We dig deeper into the limitations of each competing model in our qualitative

analysis in Subsection 4.5.2.

4.5.1 Quantitative Analysis

Train on all except target intent/domain. Table 4.2, 4.3, 4.4, and 4.5 present F1

scores for SNIPS, ATIS, MultiWOZ, and SGD datasets, respectively. All models are trained

on all the intents/domains except the target one that is used for zero-shot testing. LEONA

is consistently better than SOTA methods. Specifically, it outperforms SOTA models by

17.52%, 22.15%, 17.42%, and 17.95% on average for unseen intents/domains on SNIPS, ATIS,
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Table 4.4: MultiWOZ dataset: Slot F1 scores for all competing models for target intents
that are unseen in training.

Target Intent ↓ CT RZS Coach LEONA w/o IOB LEONA

Book Hotel 0.4577 0.3739 0.5866 0.6181 0.6446
Book Restaurant 0.3260 0.4200 0.4576 0.6268 0.6269
Book Train 0.4777 0.5269 0.6112 0.6317 0.7025
Find Attraction 0.2914 0.3489 0.3029 0.3787 0.3834
Find Hotel 0.4933 0.5920 0.7235 0.7673 0.8222
Find Restaurant 0.6420 0.6921 0.7671 0.7969 0.8338
Find Taxi 0.1459 0.1587 0.1260 0.1682 0.1824
Find Train 0.6344 0.4406 0.7754 0.8779 0.8811
Others 0.1205 0.0878 0.1201 0.1687 0.1721

Average 0.3988 0.4045 0.4967 0.5594 0.5832

MultiWOZ, and SGD datasets, respectively. We also present a variant of our model that does

not employ “IOB” tags from Step two, we call it LEONA w/o IOB. Even this variant of our

model outperforms all other SOTA models. This performance gain over SOTA methods can

be attributed to the pre-trained NLP models that provide meaningful cues for the unseen

domains, the similarity layer that can capture the closeness of the utterance words with the

given slot irrespective of whether it is seen or unseen, and the contextualization layer that

uses all the available information to generate a rich context-aware representation for each

word in the utterance.

LEONA achieves its best performance on ATIS dataset (see Table 4.3) as compared

to other datasets. This highlights that zero-shot slot filling across different intents within

a single domain is relatively easier than across domains, since ATIS dataset consists of a

single domain, i.e., airline travel. On the contrary, SGD dataset is the most comprehensive

public dataset with 46 intents across 20 domains, yet our proposed method LEONA has

better performance on it (see Table 4.5) than on SNIPS and MultiWoz datasets. This
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Table 4.5: SGD dataset: Slot F1 scores for all competing models for target domains that are
unseen in training.

Target Domain ↓ CT RZS Coach LEONA w/o IOB LEONA

Buses 0.4954 0.5443 0.6280 0.6364 0.6978
Calendar 0.5056 0.4908 0.6023 0.6216 0.7436
Events 0.5181 0.6324 0.5486 0.7405 0.7619
Flights 0.4898 0.4662 0.4898 0.4907 0.5901
Homes 0.4542 0.7159 0.6235 0.6927 0.7698
Hotels 0.4069 0.5681 0.7216 0.7266 0.7677
Movies 0.5100 0.3424 0.5537 0.5687 0.7285
Music 0.4111 0.6090 0.5786 0.7466 0.7613
RentalCars 0.4138 0.3399 0.6576 0.7344 0.7389
Restaurants 0.4620 0.3787 0.7195 0.7451 0.7574
RideSharing 0.6619 0.5312 0.7273 0.7656 0.8172
Services 0.6380 0.6381 0.7607 0.7628 0.8180
Travel 0.6556 0.6464 0.8403 0.9013 0.9234
Weather 0.4605 0.5180 0.6003 0.6178 0.8223
Others 0.4362 0.5312 0.4921 0.5129 0.5592

Average 0.5013 0.5302 0.6363 0.6842 0.7505

highlights another critical point: dataset quality. We observes that SGD dataset is not only

comprehensive but also has high quality semantic description for slot types. Furthermore,

all SGD’s domains have enough training examples with minimal annotation error (based on a

manual study of a small stratified sample from the dataset). For example, the slot types

“restaurant name”, “hotel name”, and “attraction name” belong to different domains,

but are very similar to one another. The rich semantic description of each slot type makes it

easier for the model to transfer knowledge from one domain to new unseen domains with high

F1 scores. LEONA shows poor performance on SNIPS dataset (see Table 4.2) as compared

to other datasets, especially for intents: “RateBook” and “SearchScreeningEvent”. This

poor performance further highlights our previous point (i.e., quality of the dataset) since

SNIPS dataset does not provide any textual descriptions for slot types. Moreover, slot names

(e.g., “object name” and “object type”) convey very little semantic information, which
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exacerbates the challenge for the model to perform well for unseen domains. Finally, the

results on MultiWOZ dataset (see Table 4.4) highlight that transferring knowledge to new

unseen intents/domains is easier when some similar intent/domain is present in the training

set. For example, our model is able to transfer knowledge for new unseen target intent “Find

Hotel” (i.e., not in the training) from other similar intents such as, “Find Restaurant” and

“Book Hotel” effectively. However, for the target domain “Find Attraction” that does not

have any similar domain in the training set, the model shows a relatively poor performance.

Similar observations can also be made about other competing models.

Comparison for seen and unseen slot types. An unseen target intent/domain may

have both unseen and seen slot types. The unseen ones were never seen during training,

and seen ones might have different contexts. For example, “date” is a common slot type

that may correspond to many different contexts in diverse domains such as date of a salon

appointment, date of a restaurant booking, return date of a round-trip flight, and so on. We

evaluate the performance of the competing models on unseen and seen slot types individually

to test each model’s ability in handling completely unseen slot types. Table 4.6 and 4.7

presents results in further detail where results for unseen and seen slot types are reported

separately. LEONA is consistently better than other models on unseen as well as unseen slot

types. On average, LEONA shows 18% and 17% gains in F1 scores over the SOTA model

for seen and unseen slots, respectively. These gains are due to our slot-independent IOB

predictions (which provide effective templates for seen slot types) and our context-aware

similarity function (which works well regardless whether slot types are unseen or seen).

Moreover, all models have better performance on seen slots than on unseen ones as it is
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Table 4.6: Averaged F1 scores for all competing models for seen and unseen slot types in
the target unseen intents/domains for SNIPS and ATIS datasets.

Method ↓ SNIPS ATIS

Slot Type → Seen Unseen Seen Unseen

CT 0.4407 0.2725 0.7552 0.4851
RZS 0.4786 0.2801 0.8132 0.5143
Coach 0.5173 0.3423 0.7742 0.7166

LEONA w/o IOB 0.5292 0.3578 0.8155 0.7130
LEONA 0.6354 0.4006 0.9588 0.7524

Table 4.7: Averaged F1 scores for all competing models for seen and unseen slot types in
the target unseen intents/domains for MultiWOZ and SGD datasets.

Method ↓ MultiWOZ SGD

Slot Type → Seen Unseen Seen Unseen

CT 0.6062 0.3040 0.7362 0.3940
RZS 0.6604 0.3301 0.7565 0.4478
Coach 0.7034 0.4895 0.7996 0.6614

LEONA w/o IOB 0.6651 0.5638 0.7986 0.7424
LEONA 0.7765 0.5962 0.9192 0.8167

relatively easier to adapt to a new context (i.e., in a new domain) for seen slots than to new

unseen slots in an unseen context. We also note that LEONA achieves a similar performance

on ATIS dataset for seen slots in the unseen target domain when compared with the results

reported by SOTA supervised slot filling methods in [171], i.e., F1 score of 0.952 vs 0.959 by

our method.

Train on a certain percentage of intents/domains and test on the rest. Large

labeled training datasets are an important factor in accelerating the progress of supervised

models. To investigate whether zero-shot models are affected by the size of training data

from different domains, we vary the size of the training data and report our results to

quantify the effect. Table 4.8 and 4.9 present results on all datasets when the training set

has data from ≈ 25%, ≈ 50%, and ≈ 75% of the intents/domains (and the rest are used
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Table 4.8: Averaged F1 scores for all competing models in the target unseen domains of
SNIPS and ATIS datasets. The train/test sets have variable number of intents/domains,
which makes this setting more challenging.

Method ↓ SNIPS ATIS

% Seen Intents → 25% 50% 75% 25% 50% 75%

CT 0.1043 0.2055 0.2574 0.5018 0.7341 0.6542
RZS 0.1214 0.1940 0.3207 0.6393 0.7727 0.7811
Coach 0.1248 0.2258 0.3081 0.6070 0.7341 0.8104

LEONA w/o IOB 0.1550 0.2631 0.4108 0.6495 0.9437 0.9378
LEONA 0.1710 0.2895 0.4220 0.8093 0.9659 0.9764

for testing). The choice of intents/domains to be in the training or testing sets is done

randomly, and average results are reported over five runs. This setting is more challenging

in two ways: models have access to less training data and the test utterances come from

multiple domains. LEONA is at least 19.06% better (better F1 scores) than other models

for any percentage of unseen intents on any dataset. Overall, the performance of LEONA

improves as it gets access to training data from more intents/domains, which is a desirable

behaviour. Moreover, we also observe that our model achieves 0.72 F1 score on SGD with

only 25% of domains in the training data, which once again validates our intuition that the

availability of better quality data is very critical to adapt models to new unseen domains.

Similar results are observed on ATIS dataset (i.e., single domain dataset), that highlights

that knowledge transfer within a single domain is easier, and models can perform well on

unseen intents even with a small amount of training data (e.g., 25% intents in the training

set). Similar conclusions hold true for other methods.

Train on one dataset and test on the rest of the datasets. This setting closely

resembles the real-world zero-shot setting, where a model is trained on one dataset and
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Table 4.9: Averaged F1 scores for all competing models in the target unseen domains of
MultiWOZ and SGD datasets. The train/test sets have variable number of intents/domains,
which makes this setting more challenging.

Method ↓ MultiWOZ SGD

% Seen Intents → 25% 50% 75% 25% 50% 75%

CT 0.2991 0.4371 0.6607 0.4523 0.5389 0.6160
RZS 0.4566 0.4703 0.6951 0.6677 0.6578 0.6741
Coach 0.4408 0.4505 0.6522 0.5888 0.6419 0.6725

LEONA w/o IOB 0.5137 0.5529 0.7843 0.6861 0.7315 0.7704
LEONA 0.5248 0.5533 0.8581 0.7180 0.7925 0.8324

Table 4.10: F1 scores for all competing models where the model is trained on one dataset
(i.e., either SNIPS or ATIS) and tested on the rest. This setting resembles real-life scenarios.

Method ↓
Train Dataset → SNIPS ATIS

Test Dataset → ATIS MultiWOZ SGD SNIPS MultiWOZ SGD

CT 0.0874 0.1099 0.0845 0.0589 0.0725 0.0531
RZS 0.0915 0.1209 0.1048 0.0819 0.0809 0.0912
Coach 0.1435 0.1191 0.1301 0.0976 0.0962 0.0871

LEONA w/o IOB 0.1544 0.1433 0.1504 0.1156 0.1124 0.1359
LEONA 0.2080 0.1832 0.1690 0.1436 0.1394 0.1361

tested on the rest. This is the most challenging setting, since the test datasets come from

purely different distributions than those seen during training. Although each domain within

a dataset can be thought of as a different distribution, every dataset shows some similarity of

expression across different domains. Table 4.10 and 4.11 presents the results of all competing

models for this setting. All models show relatively poor performance for this challenging

setting. However, LEONA is consistently better than others; specifically, it is up to 56.26%

better on F1 score than the SOTA model. Our model achieves the best performance when it

is trained on the SGD dataset (relatively better quality dataset) and tested on the rest. On

the contrary, it shows the worst performance, when trained on ATIS (i.e., single-domain)

and tested on the rest. Similar observations can be made for the other models. These results
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Table 4.11: F1 scores for all competing models where the model is trained on one dataset
(i.e., either MultiWOZ or SGD) and tested on the rest. This setting resembles real-life
scenarios.

Method ↓
Train Dataset → MultiWOZ SGD

Test Dataset → SNIPS ATIS SGD SNIPS ATIS MultiWOZ

CT 0.0646 0.0878 0.0616 0.1463 0.2290 0.1529
RZS 0.1496 0.2103 0.0875 0.1905 0.3435 0.2134
Coach 0.1201 0.1730 0.1102 0.1795 0.3383 0.1903

LEONA w/o IOB 0.1242 0.1885 0.1258 0.2544 0.4714 0.2743
LEONA 0.1847 0.2662 0.1620 0.2761 0.5205 0.2884

Table 4.12: Ablation study of our model LEONA in the zero-shot setting: averaged F1
scores for unseen target domains.

Configuration SNIPS ATIS MultiWOZ SGD

Step 2 0.3689 0.6719 0.4792 0.6375
Step 3 0.3812 0.6915 0.4999 0.6407
Step 2 + 3 0.4013 0.7605 0.5412 0.6684

Step 1 + 2 0.3820 0.6895 0.4936 0.6471
Step 1 + 3 0.3866 0.7492 0.5594 0.6842

Step 1 + 2 +3 0.4394 0.8397 0.5832 0.7505

once again highlight the importance of the quality and comprehensiveness of the training

dataset(s). Finally, this setting also indicates that current SOTA models are not yet ready

to be deployed in real-world scenarios and calls for more exploration and research in the

important yet challenging and under-explored task of zero-shot slot filling.

Ablation study. To quantify the role of each component in our model, we present our

ablation study results in Table 4.12 over all datasets. First, we study the significance of the

pre-trained NLP models in the first three rows in Table 4.12. To produce the results in these

rows, we used traditional word [11] and character [52] embeddings instead of employing

powerful pre-trained NLP models. We observe that Step three, i.e., variant of the model that

does not use pre-trained NLP models and does not consider “IOB” tags from Step two, is
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the most influential component in the model, as it alone can outperform the best performing

SOTA model Coach [85], but the margin is not significant (i.e., 0.3812 vs. 0.3739 on SNIPS,

0.6915 vs. 0.6874 on ATIS, 0.4999 vs. 0.4967 on MultiWOZ, and 0.6407 vs. 0.6363 on SGD). If

“IOB” predictions from Step two are incorporated into it (i.e., row Step 2 + 3) or pre-trained

NLP models are employed with it (i.e., row Step 1 + 3), its performance is further improved.

Moreover, if we just use Step two by predicting “IOB” tags and assigning these “IOB” tags

to the slot type with the highest similarity (i.e., row Step 2), or combine Step one with Step

two (i.e., row Step 1 + 2), we note that we do not achieve the best results.

4.5.2 Qualitative Analysis

In this experiment, we randomly selected 100 utterances in the unseen target domain

“Restaurant” from the SGD dataset and visually analyzed the performance of the competing

models in extracting the values of the slot type “restaurant name” from the selected

utterances. The goal of this experiment is to visually highlight the strengths/weaknesses of

the competing models. We retrieved the multi-dimensional numerical representations of the

words in the selected utterances from the final layers of each model and reduced the number

of dimensions of each representation to two using t-SNE [91]. Figure 4.3 shows scatter plots

for the resulting 2-dimensional representations for each model. We observe that all models

produce clear-cut clusters for each class: B, I, or O, which indicates that all models are able

to produce distinguishing representations. However, LEONA produces better representations

in the sense that less words are misclassified. That is, there are less violating data point in

the clusters of LEONA in Figure 4.3c.
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Figure 4.3: t-SNE visualization of word representations from selected utterances; the selected
utterances belong to the unseen domain “Restaurant” in SGD dataset and contain the slot
type “restaurant name”. Results are presented for the best performing 3 models.

We further analyze the results for two utterances: “Golden Wok would be a great

choice in ...” and “I would like to book a table at 8 Immortals Restaurant in ...”. RZS [127]

is able to predict the full slot value (i.e., Golden Wok) for the slot “restaurant name” in

the first utterance. However, we notice that RZS fails to capture the full value (i.e., “8

Immortals Restaurant”) for the slot “restaurant name” in the other utterance. RZS

could extracts “Immortals Restaurant” as the slot value and mistakenly assigns label O

to the word “8”, which led to subsequent wrong prediction for the word “Immortals” (i.e.,

predicted label B, whereas the true label is I). This misclassification is also highlighted

in Figure 4.3a by coloring the wrongly predicted words with red. Since RZS relies on the

example value(s) and there is a high variability across the lengths of slot values, along with

the diversity of expression, this model faces problems in detecting whole slot values.

We notice that Coach [85] fails to detect the value (i.e., Golden Wok) for the slot

“restaurant name” in the first utterance. However, it successfully captures the slot value in

the other utterance. Since Coach relies on learning templates from seen domains and exploits

those for unseen domains, it fails to handle the deviation of the unseen domains from the

learned templates. LEONA is able to detect full slot values for both utterances successfully,
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thanks to: the slot-independent IOB predictions from Step two; the similarity function in

Step three which is robust to errors from the previous steps; and the contextualization

layers of the model. Finally, we observe that our model also fails to fully detect very

long slot values. For example, slot values “Rustic House Oyster Bar And Grill”, “Tarla

Mediterranean Bar + Grill”, and “Pura Vida − Cocina Latina & Sangria Bar” for the

slot type “restaurant name” are challenging to detect in unseen domains not only because

of their long length, but also because of the presence of tokens like &, +, and −, that further

exacerbate the challenge. Note that other SOTA models also fail to detect the above example

slot values. We plan to overcome this challenge in our future work by learning phrase-level

representations to detect such slot values in their entirety.

4.6 Related Work

We organize the related work on slot filling into three categories: (i) supervised

slot filling, (ii) few-shot slot filling, and (iii) zero-shot slot filling.

Supervised Slot Filling. Slot filling is an extensively studied research problem in the

supervised setting. Recurrent neural networks such as Long Short-Term Memory (LSTM) or

Gated Recurrent Unit (GRU) networks that learn how words within a sentence are related

temporally [96, 70] have been employed to tag the input for slots. Similarly, Conditional

Random Fields (CRFs) have been integrated with LSTMs/GRUs [60, 118]. The authors

in [129, 147] proposed a self-attention mechanism for sequential labeling. More recently,

researchers have proposed jointly addressing the related tasks of intent detection and slot

filling [44, 51, 79, 171, 164]. The authors in [171] suggested using a capsule neural network
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by dynamically routing and rerouting information from wordCaps to slotCaps and then to

intentCaps to jointly model the tasks. Supervised slot filling methods rely on the availability

of large amounts of labeled training data from all domains to learn patterns of slot usage.

In contrast, we focus on the more challenging as well as more practically relevant setting

where new unseen domains are evolving and training data is not available for all domains.

Few-shot Slot Filling. Few-shot learning requires a small amount of training data in

the target domain. Meta-learning based methods [38, 104, 103] have shown tremendous

success for few-shot learning in many tasks such as few-shot image generation [117], image

classification [134], and domain adaptation [153]. Following the success of such approaches,

few-shot learning in NLP have been investigated for tasks such as text classification [143, 43,

166], entity-relation extraction [88, 42], and few-shot slot filling [87, 39, 57]. The authors

in [87] exploited regular expressions for few-shot slot filling, Prototypical Network was

employed in [39], and the authors in [57] extended the CRF model by introducing collapsed

dependency transition to transfer label dependency patterns. Moreover, few-shot slot filling

and intent detection have been modeled jointly [68, 10], where model agnostic meta learning

(MAML) was leveraged. Few-shot slot filling not only requires a small amount of training

data in the target domain, but also requires re-training/fine-tuning. Our model addresses

the task of zero-shot slot filling where no training example for the new unseen target domain

is available and it can seamlessly adapt to new unseen domains – a more challenging and

realistic setting.

Zero-shot Slot Filling. Zero-shot learning for slot filling is less explored, and only a handful

of works has addressed this challenging problem, albeit, with very limited experimental
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evaluation. Coach [85] addressed the zero-shot slot filling task with a coarse-to-fine approach.

It first predicts words that are slot values. Then, it assigns the predicted slot value to

the appropriate slot type by matching the value with the representation of description of

each slot type. RZS [127] utilizes example values of each slot type. It uses character and

word embeddings of the utterance and slot types along with the slot examples’ embeddings,

and passes the concatenated information through a bidirectional LSTM network to get the

prediction for each word in the utterance. CT [5] proposed LSTM network and employed

slot descriptions to fill the slots for each slot type individually. The authors in [74] also

employed LSTM, slot descriptions, and attention mechanisms for individual slot predictions.

To tackle the challenge of the zero-shot slot filling, we leverage the power of the pre-trained

NLP models, compute complex bi-directional relationships of utterance and slot types, and

contextualize the multi-granular information to better accommodate unseen concepts. In a

related, but orthogonal line of research, the authors in [90, 75, 47] tackled the problem of

slot filling in the context of dialog state tracking where dialog state and history are available

in addition to an input utterance. In contrast, this work and the SOTA models we compare

against in our experiments only consider an utterance without having access to any dialog

state elements.

4.7 Conclusion

We have presented a zero-shot slot filling model, LEONA, that can adapt to new

unseen domains seamlessly. LEONA stands out as the first zero-shot slot filling model that

effectively captures rich and context-aware linguistic features at different granularities. Our
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experimental evaluation uses a comprehensive set of datasets and covers many challenging

settings that stress models and expose their weaknesses (especially in more realistic settings).

Interestingly, our model outperforms all state-of-the-art models in all settings, over all

datasets. The superior performance of our model is mainly attributed to: its effective use of

pre-trained NLP models that provide domain-oblivious word representations, its multi-step

approach where extra insight is propagated from one step to the next, its generalizable

similarity function, and its contextualization of the words’ representations. In the most

challenging evaluation setting where models are tested on a variety of datasets after being

trained on data from one dataset only, our model is up to 56.26% more accurate (in F1

score) than the best performing state-of-the-art model. It remains challenging for all models,

including ours, to identify slot values that are very long or that contain certain special

tokens. We plan to further improve our model by incorporating phrase-level representations

to overcome this challenge and allow our model to accurately extract slot values regardless

of their length or diversity.

77



Chapter 5

Unsupervised Paraphrasing

5.1 Introduction

Paraphrasing is the task of generating a fluent output sentence, given an input

sentence, to convey the same meaning in different wording. It is an important problem in

NLP with a wide range of applications such as summarization [66], information retrieval [67],

and question answering. Moreover, paraphrasing can improve the performance of the NLU

module (i.e., responsible for intent detection that we discussed in Chapter 3 and slot filling

that we discussed in Chapter 4) of conversational agents [93]. Figure 5.1 presents a scenario

where the conversational agent fails to understand the user utterance and asks the user to

paraphrase it. Whereas ideally, the conversational agent should have paraphrased it by herself.

Most of the previous paraphrasing work [111, 76, 49] has focused on supervised paraphrasing

methods, which require large corpora of parallel sentences (i.e., input and corresponding

paraphrased sentences) for training. Unlike large datasets in neural machine translation,

there are not many parallel corpora for paraphrasing, and they are often domain-specific;
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How can I help you?

Yesterday, I visited the University Avenue business 
center and requested a new card. But so far, they have 

not informed me anything on it? Can you please 
update me on it?

I couldn’t quite get you. Can you try again?

Figure 5.1: A common case in today’s state-of-the-art conversational systems: The conversa-
tional agent fails to understand a user’s utterance and asks the user to try again.

e.g., Quora is a questions dataset and MSCOCO is an image captioning dataset. Acquiring

big parallel datasets for paraphrasing across many domains is not scalable because it is

expensive and laborious. Moreover, a model trained in one domain does not generalize well

to other domains [77].

The abundance of domains and applications that could benefit from paraphrasing

calls for exploring unsupervised paraphrasing, which is still in its infancy. There are relatively

few works on unsupervised paraphrasing such as Variational Autoencoder (VAE) [15],

Constrained Sentence Generation by Metropolis-Hastings Sampling (CGMH) [98], and

Unsupervised Paraphrasing by Simulated Annealing (UPSA) [82]. Although unsupervised

approaches have shown promising results, the probabilistic sampling based approaches such

as VAE [15] and CGMH [98] are less constrained, and they produce paraphrases that lack

semantic similarity to the input. On the other hand, UPSA [82] does not effectively explore

the entire sentence space, resulting in paraphrases that are not different enough from the

input.

79



Figure 5.2: Illustration of the decoding process of the proposed unsupervised paraphrasing
method: PUP. Red and black color tokens represent the output from VAE and the DRL’s
chosen action sequences respectively. Whereas the sentence in green is the final paraphrased
sentence generated by PUP for the given input sentence.

Given the success of Deep Reinforcement Learning (DRL) [146] in a wide range of

applications such as Atari games [102], alphaZero [133], and supervised paraphrasing [76],

can DRL also help boost the performance of unsupervised paraphrase generation? To the

best of our knowledge, this is the first work to employ DRL in unsupervised paraphrase

generation, which is challenging due to the following reasons: (i) DRL is known to not

work well with large vocabulary sizes when starting with a random policy (i.e., random

exploration strategy) [27, 76]; (ii) paraphrasing is a multi-step (word-by-word) prediction

task, where a small error at an early time-step may lead to poor predictions for the rest

of the sentence, as the error is compounded over the next token predictions; and (iii) it is

challenging to define a reward function that incorporates all the characteristics of a good

paraphrase with no access to parallel sentences (i.e., the unsupervised setting).
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Our proposed method, Progressive Unsupervised Paraphrasing (PUP), progressively

trains a DRL-based model for unsupervised paraphrasing and addresses the aforementioned

three challenges using the following techniques:

Unsupervised warm-start of DRL. PUP warm-starts reinforcement learning by an

unsupervised pre-trained VAE [15], which acts as an expert [25, 120] in the pre-training

phase. The pre-trained VAE saves the DRL model from expensive global exploration during

the initial training phase. Remarkably, the proposed technique is the first instance that can

successfully warm-start DRL with an unsupervised model. At the end of DRL training,

our DRL model achieves up to 54% higher reward compared to the initial VAE model. We

expect that our idea of warm-starting DRL models in an unsupervised fashion may have

implications on a broader range of NLP problems with limited labels.

Progressive transition for seq2seq DRL. Another major issue DRL models face is the

accumulation of error over the predictions of future tokens. This is particularly significant

during the initial exploration of the space. To overcome this, we use a progressive transition

that takes advantage of the Sequence-to-Sequence (seq2seq) [144] nature of the problem by

transitioning between algorithms (e.g., VAE to DRL) token by token, as shown in Figure 5.2.

Instead of taking actions according to the initial policy (i.e., random action), the model

chooses VAE’s output as the action, and then incrementally (i.e., one token per epoch) allows

the agent to take actions according to the DRL policy. This technique greatly facilitates the

convergence of DRL to models with high rewards and is at the heart of the success of DRL.

Unsupervised reward function for paraphrasing. We propose a novel reward function

for the DRL model that can measure the quality of the generated paraphrases when no parallel
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sentences are available. This is accomplished by incorporating the most desirable qualities

of a good paraphrase , informed on the paraphrasing literature [173, 172, 174, 20, 97, 142].

Our reward function is a combination of semantic adequacy, language fluency, and diversity

in expression.

Figure 5.2 provides an illustration of the decoding process of PUP. First, the

decoder of the DRL model relies on the VAE’s sample to pick its actions in the pre-train

phase. Then, in the transition phase, the model gradually starts taking actions according to

its policy. Finally, in the DRL phase, the model picks actions entirely according to its policy

to maximize the expected reward. For example, when our DRL model is pre-trained with

the VAE sample “how can i serve in microsoft”, our fully-trained DRL model amazingly

generates the paraphrase “how do i get a job at microsoft”.

We evaluate PUP on four real datasets and compare it against state-of-the-art

unsupervised paraphrasing techniques; we show that PUP outperforms them in all standard

metrics. We also conduct a human study, which demonstrates that human evaluators find

PUP’s paraphrases to be of higher quality compared to other methods’ paraphrases across

several carefully selected measures. Moreover, we consider comparisons against domain-

adapted models – i.e., models trained on one dataset such as Quora in a supervised setting

and then domain-adapted for another dataset such as WikiAnswers in an unsupervised

fashion. Remarkably, PUP outperforms domain-adapted supervised paraphrasing methods

in datasets where applicable.
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5.2 Preliminaries

5.2.1 Problem Formulation

Given an input sequence X = (x1, x2, · · · , xn) with the length n, the goal of the

proposed model is to generate a target sequence (i.e., paraphrase) Y = (y1, y2, · · · , ym) ,

where m is the target sequence length. Note that unlike supervised setting, the proposed

model does not have have access to target sentences at training time, which makes the

problem challenging.

5.2.2 Overview of PUP

This section provides an overview of the progressive training phases of PUP (Fig-

ure 5.2). It consists of three phases: pre-train, progressive transition, and DRL.

Pre-train phase. For tasks like unsupervised paraphrasing, the big vocabulary impedes

the learning process of DRL models. It becomes practically infeasible to train such a model

based on the reward alone. To address this issue, we employ a pre-trained VAE (trained on

a non-parallel corpus) to provide a warm-start to the DRL model — it does not start from

a random policy. That is, the output of VAE is used to pick action sequences instead of the

agent policy’s output. We can think of it as demonstrating the expert’s (VAE) actions to

DRL, where the expert is an unsupervised model.

Progressive transition phase. The next critical step is to gracefully transition from

following the expert’s actions to taking actions according to the policy (i.e., DRL decoder’s

distribution). An abrupt transition can obstruct the learning process due to the nature of

the task, i.e., multi-step prediction, where error accumulates. Especially, an inappropriate
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Figure 5.3: Deep reinforcement learning paradigm for unsupervised paraphrase generation.

sample at an early stage of the sentence (i.e., first few words) may lead to a poor eventual

paraphrase generation (i.e., ungrammatical or semantically unfaithful). We propose an

intuitive way to pick the first max(0,m− ω) tokens from VAE’s output, and pick the rest

according to the agent policy, where m is the length of the generated sentence and ω is the

epoch number. Moreover, we pass the output of VAE to the decoder’s next time-step with

a decreasing probability δ (i.e., decreasing with respect to ω), and the DRL’s generation

otherwise. This helps with mitigating the accumulation of error, especially in the beginning

of the transition phase when the model is expected to make mistakes.

DRL phase. Finally, the model is trained to produce an optimized policy by sampling

sentences according to its policy and maximizing its expected reward, which is a combination

of the semantic adequacy, language fluency, and diversity in expression.
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Figure 5.3 presents an overview of the DRL paradigm, where action sequences are

picked either from VAE’s output or the agent policy (highlighted by red dashed arrows)

depending on the different phases.

5.3 Progressive Unsupervised Paraphrasing (PUP)

We first describe how to incorporate DRL for the unsupervised paraphrasing task,

then the proposed reward function, and finally we describe the details of PUP.

5.3.1 Reinforcement Learning Paradigm

The reinforcement learning paradigm for unsupervised paraphrasing is presented in

Figure 5.3. In DRL terminology, the encoder-decoder model (Section 2.5) acts as an agent,

which first encodes the input sentence X and then generates the paraphrased version Ŷ . At

time-step i, the agent takes an action ŷi ∈ V according to the policy PDRL(ŷi|ŷ1:i−1,X ) (see

Equation 2.1), where V represents the possible action space (i.e., vocabulary for generation).

The hidden states of the encoder and the previous outputs of the decoder constitute the

state. The agent (i.e., model) keeps generating one token at a time, until the end of sentence

token (i.e., < eos >) is produced, which completes the action sequence (i.e., trajectory)

Ŷ = (ŷ1, ŷ2, · · · , ŷm). The policy is optimized by maximizing the expected reward r for the

action sequences.
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5.3.2 Paraphrasing Reward

Automatic quality measures for machine translation (or paraphrasing) such as

BLEU [105], Rouge [58], TER [135], and METEOR [4] only work when parallel sentences (i.e.,

targets or references) are available. We propose a novel reward function that incorporates

all the characteristics of a good paraphrase and does not require parallel sentences. The

most desired qualities of a good paraphrase [173, 172, 174, 20, 97, 142] include: semantic

adequacy (i.e., similarity in meaning), language fluency (i.e., grammatical correctness), and

diversity of expression (i.e., sentence dissimilarity). We define the reward r (X , Ŷ) of an

output sequence Ŷ generated by the DRL model for input X as a combination of the above

components:

r (X , Ŷ) = α. rSim(X , Ŷ) + β. rF (Ŷ) + γ. rD(X , Ŷ), (5.1)

where rSim(X , Ŷ), rF (Ŷ) and, rD(X , Ŷ) ∈ [0, 1]. rSim(X , Ŷ) is the semantic similarity between

input X and generated paraphrase Ŷ . rF (Ŷ) captures whether the generated sentence Ŷ is

grammatically correct or not. rD(X , Ŷ) measures the diversity between X and Ŷ . α, β, and

γ ∈ [0, 1] are respective weights. Each component is described below.

Semantic Adequacy. The semantic adequacy reward rSim(X , Ŷ) makes sure that the

generated paraphrase Ŷ is similar in meaning to the input sequence X . We use the universal

sentence encoder [18], as it has achieved state-of-art results for semantic textual similarity

on the STS Benchmark [17] and it provides a straightforward process to incorporate it in any

implementation. In a nutshell, it is trained with a deep averaging network (DAN) encoder,

and it generates 512-dimension embedding vector for arbitrary length sentence(s). Then,

the semantic similarity can be calculated using the cosine similarity of the vectors vX and
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vŶ , which are embedding vectors for the input sequence X and the paraphrased sequence Ŷ ,

respectively.

rSim(X , Ŷ) = cos(vX , vŶ) =
vX . vŶ
‖vX ‖‖vŶ‖

(5.2)

Language Fluency. The fluency reward rF (Ŷ) measures the grammatical correctness of the

generated paraphrase Ŷ. Since language models such as n-grams [54] and neural models [8]

are trained to predict the next token given previous tokens, they can be used to score

sentences for fluency. Recently, the Corpus of Linguistic Acceptability (CoLA) [156] has

produced the state-of-art results on the grammatical acceptability for in-domain as well as

out-of-domain test sets. In its simplest form, CoLA [156] utilizes ELMo-Style (Embeddings

from Language Models) and pooling classifier, and it is trained in a supervised fashion. We

use a pre-trained CoLA [156] to score our generated paraphrased sequences Ŷ.

Expression Diversity. The expression diversity reward rD(X , Ŷ) encourages the model

to generate tokens that are not in the input sequence X . One of the simplest methods to

measure the diversity, inverse Jaccard similarity (i.e., 1− Jaccard Similarity), could be used.

In this work, we use n-grams dissimilarity. To measure the diversity in expression, we use

the inverse BLEU of input sequence X and the generated sequence Ŷ, which is computed

using 1 - BLEU( X , Ŷ). The average of the uni-gram and bi-gram inverse BLEU scores are

used in rD(X , Ŷ).

Combining the three components. In practice, a reward function that can force the

DRL model to generate good quality paraphrases must maintain a good balance across the

reward components (i.e., semantic similarity, fluency, and diversity). For example, generating
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diverse words at the expense of losing too much on the semantic adequacy or fluency is

not desirable. Similarly, copying the input sentence as-is to the generation is clearly not

a paraphrase (i.e., cosine similarity = 1). To achieve this, we impose strict criteria on the

components of the reward function as given below:

rSim(X , Ŷ) =


rSim(X , Ŷ), if τmin ≤ rSim(X , Ŷ) ≤ τmax

0, otherwise

(5.3)

rF (Ŷ) =


rF (Ŷ), if rF (Ŷ) ≥ λmin

0, otherwise

(5.4)

rD(X , Ŷ) =


rD(X , Ŷ), if rSim(X , Ŷ) ≥ τmin, rF (Ŷ) ≥ λmin

0, otherwise

(5.5)

Equation 5.3 makes sure that the model does not copy the input sentence as-is to

the generation (i.e., condition: rSim(X , Ŷ) ≤ τmax) to enforce the diversity in expression,

and does not generate random sentence, which has very low similarity with the input (i.e.,

condition: rSim(X , Ŷ) > τmin). Equation 5.4 penalizes the generations that are not fluent.

Finally, diverse words (i.e., Equation 5.5) get rewarded only if the generated sentence achieves

a reasonable score on the semantic similarity (i.e., condition: rSim(X , Ŷ) ≥ τmin) and fluency

(i.e., condition: rF (Ŷ) ≥ λmin). Note that a diversely expressed output sentence, which is not

fluent or is not close in meaning to the input sentence needs penalization so that the model

may learn a policy that generates not only diverse sentences but also fluent and semantically

similar to the input. The objective of combining all the constraints is to ensure competitive
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outputs in all metrics and to penalize the model for poor generations on any metric. The

weights for each component in the reward (i.e., α, β, and γ), and thresholds (i.e., τmin, τmax,

and λmin) for Equations 5.3, 5.4, and 5.5 can be defined based the application needs.

5.3.3 Progressively Training the DRL

The training algorithm optimizes the policy (i.e., encoder-decoder model’s distribu-

tion PDRL(.|X )) to maximize the expected reward r (.) for the generated action sequence

Ŷ = (ŷ1, ŷ2, · · · , ŷm).

The loss for a single sample from the possible action sequences is:

L(θ) = −E(ŷ1,ŷ2 ,··· ,ŷm ) ∼ PDRL(.|X )[r (ŷ1, ŷ2, · · · , ŷm)] (5.6)

The loss is the negative expected reward for the action sequences. Infinite number of possible

samples make the expectation calculations infeasible, thus it is approximated [159]. The

gradient for the L(θ) is:

∇L(θ) ≈
m∑
i=1

∇ logPDRL(ŷi|ŷ1:i−1,X )[r (ŷ1, ŷ2, · · · , ŷm)]. (5.7)

The training process for the DRL-based unsupervised paraphrase generation model

is outlined in Algorithm 2. We explain each of the training phases below. Note that the

pre-trained VAE and the DRL model share the same vocabulary.

Pre-train Phase. Pre-training is a critical step for DRL to work in practice. Since one of

the main contributions of this work is to make DRL work in purely unsupervised fashion for
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Algorithm 2: Progressively training DRL-based method.

Input: A non-parallel training example X = (x1, x2, · · · , xn)
Paraphrase generated by VAE S = (s1, s2, · · · , sm ′)
Probability δ to pass VAE’s output as input to decoder
Probability ε to sample according to the policy
Epoch number ω
Pre-training status ρ
Learning rate η

1 Initialize L(θ)← 0
2 for i=1,· · · , m do
3 vae in← Uniform(0, 1)

if vae in < δ then
4 ŷi−1 ← si−1

5 if i ≤ m − ω OR ρ = True then
6 ŷi ← si

7 else
8 explore← Uniform(0, 1)

if explore < ε then
9 ŷi ← Sample PDRL(ŷi|h′i, ŷi−1)

10 else
11 ŷi ← Argmax PDRL(ŷi|h′i, ŷi−1)

12 L(θ)← L(θ) + logPDRL(ŷi|h′i, ŷi−1)

13 θ ← θ + η.(∇L(θ).r (X , Ŷ))

the task of paraphrase generation, the pre-training step also has to be unsupervised. We

use VAE [15], which is trained in an unsupervised way, and serves as a decent baseline in

unsupervised paraphrase generation tasks [98]. The pre-trained VAE (section 2.6) guides

as an expert in the pre-train phase to provide a warm-start. Line 6 in Algorithm 2 refers

to the pre-train phase. At time-step i, the algorithm picks VAE’s sample si as the action

ŷi. The loss L(θ) is computed and accumulated (see line 12 in Algorithm 2). Once, the

action sequence is complete (i.e., (ŷ1, ŷ2, · · · , ŷm)), the reward r is calculated and parameters

θ are updated (line 13). This step is a requisite for the DRL model to work in practice for

unsupervised paraphrasing.

90



Transition Phase. Once the model is able to generate sensible sentences, the next critical

step is to progressively allow the agent (i.e., encoder-decoder model) to take actions according

to its policy. Line 5 in Algorithm 2 refers to whether to take action according to the policy

PDRL or to utilize VAE’s output S. First max(0,m− ω) tokens are picked from VAE, and

the rest are sampled according to the policy PDRL(ŷ1, ŷ2, · · · , ŷm) at time-step i, where m is

the length of the generation (i.e., action sequence) and ω is the epoch number. This way,

the model picks all tokens from VAE in epoch 0, and in epoch 1, the model is allowed to

pick only the last token according to its policy, and so on. Similarly, by epoch m , the model

learns to pick all the tokens according to its policy and none from the VAE. The intuition

behind this gradual token-by-token transition is that mistakes at earlier tokens (i.e., words

at the beginning of the sentence) can be catastrophic, and picking the last few tokens is

relatively easy. Moreover, allowing the model to pick according to its policy as soon as

possible is also needed, hence we employ gradual transitioning.

Since we allow the DRL model to pick according to its policy at an early stage in

the transition phase, the model is expected to make mistakes. However, letting these errors

compound over the next predictions may result in never being able to generate sufficiently

good samples that can get high rewards. Lines 3-4 in Algorithm 2 attempt to overcome this

issue by passing the VAE’s previous token Si−1 to the decoder as input at time-step i with

probability δ = sigmoid(m − i− ω/l)) ∈ [0, 1], where m is the length of the output sentence,

ω is the epoch number, and l is the slow-down factor to decay the probability δ as ω grows.

It is similar to the above gradual transitioning, but l times slower and probabilistic. The

intuition behind the slow progressive transition is that if the DRL model samples wrong
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Table 5.1: Statistics about paraphrase datasets

Dataset Train Valid Test Vocabulary

Quora 117K 3K 20K 8K
WikiAnswers 500K 6K 20K 8K
MSCOCO 110K 10K 40K 10k
Twitter 10K 2K 2K 8K

token, passing the VAE’s output to upcoming time-step’s decoder would eliminate the

accumulation of error in the beginning of the transition phase.

DRL Phase. The DRL phase is the classic reinforcement learning, where the agent takes

action Ŷ according to its policy PDRL, gets reward r, and optimizes its policy to maximize its

expected reward. Greedy decoding impedes the exploration of the space, whereas continuous

exploring is also not a desirable behaviour. To keep a balance between exploration (i.e.,

sample) and exploitation (i.e., argmax), we use a probabilistic decaying mechanism for

exploration with probability ε = κω, where κ ∈ [0, 1] is the constant to control the decay rate

of the probability ε as ω grows. Lines 7-11 in Algorithm 2 refer to this phase. Pre-trained

VAE is used as a baseline model in this phase.

5.4 Experimental Setup

In this section, we describe the datasets, competing approaches, evaluation metrics,

and the implementation details of PUP.

5.4.1 Dataset

We use Quora [1], WikiAnswers [34], MSCOCO [78], and Twitter [73] datasets to

evaluate the quality of the paraphrase generated by PUP and other competing approaches.
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Table 5.1 presents key statistics about the datasets. It is important to mention that although

these datasets have parallel sentences, we don’t use them for training. We only use parallel

sentences for validation and to compute the evaluation results on the respective testing sets.

Quora [1]. It is a popular dataset for duplicate question detection annotated by humans

which has been used for evaluating paraphrase quality as well, since a pair of duplicate

questions can also be considered paraphrases of each other. We follow the training, validation,

and testing splits used by [98, 82] for a fair comparison.

WikiAnswers [34]. It contains 2M duplicate question-paraphrase pairs. We use 500K

non-parallel sentences for training, following previous works [77, 82].

MSCOCO [78]. It is an image captioning dataset that has over 120K images, each

captioned by 5 different human annotators. Since all the captions for an image can be

thought of as paraphrases, it has also been utilized for the paraphrasing task. We follow the

standard splitting [78] and evaluation protocols [82, 111] in our experiments.

Twitter [73]. This dataset is also annotated by humans for duplicate detection. We use

the standard train/test split [73], and further split the training set to create a validation set

(i.e., 2K sentences).

5.4.2 Competing Methods

We consider the following unsupervised methods and domain-adapted approaches

for comparison.

UPSA [82]. UPSA is a simulated annealing based approach that attempts to generate

paraphrases using a stochastic search algorithm and achieves state-of-art unsuper-
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vised paraphrasing results. We use its open source implementation to generate

the paraphrases and compare against our approach.

CGMH [98]. CGMH is a Metropolis-Hastings based approach that generates paraphrase by

constraining the decoder at inference time. We use its open source implementation

in our comparisons.

Domain-adapted models. We compare against several state-of-the-art supervised meth-

ods that are trained in a supervised fashion on one dataset and adapted to

another dataset in an unsupervised fashion. For this, we use previously reported

results in [77] for Quora and WikiAnswers datasets. We do not compare with

the rule-based approaches such as [93, 6] due to the lack of availability of the

rules or any implementation.

5.4.3 Evaluation Metrics

We use well-accepted automatic quantitative evaluation metrics as well as qualitative

human studies in order to compare the performance of our method against the competing

approaches. For quantitative measures, we use BLEU [105] and ROUGE [58] metrics, which

have been widely utilized in the previous work to measure the quality of the paraphrases.

Additionally, we use i-BLUE [142] by following the metrics in the most recent work [77, 82].

The metric i-BLUE [142] aims to measure the diversity of expression in the generated

paraphrases by penalizing copying words from input sentences.
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5.4.4 Implementation Details

The VAE contains two layers with 300-dimensional LSTM units. Our DRL-based

model also has two-layers and uses 300-dimensional word embeddings (not pre-trained) and

300-dimensional hidden units. LSTM is utilized as a recurrent unit, and dropout of 0.5 is

used. All the sentences are lower cased, and the maximum sentence length is 15 (i.e., we

truncate longer sentences to maintain consistency with previous work). The vocabulary size

for each dataset is listed in Table 5.1, and infrequent tokens are replaced with < unk >

token. We use Adam optimizer with learning rates of 0.15, 10−3, and 10−4 in the pre-train,

transition, and DRL phases, respectively. The mini-batch size is 32 and gradient clipping of

a maximum gradient norm of 2 is used in all the phases. The validation is done after every

epoch and the model with the best rewards is saved automatically. Whether to sample or

use argmax, κ = 0.9995 is used. To compute the probability δ, which determines whether

to pass VAE’s output to the decoder, l is set to 8 during training. At inference time, we

utilize beam search [160] with a beam size of b = 8 to sample paraphrases for the given

input sentences. For the reward function, α = 0.4, β = 0.3, γ = 0.3, τmin = 0.3, τmax = 0.98,

and λmin = 0.3 are used. All the hypterparameters are picked based on the validation split

of the Quora dataset, and then consistently used for all the other datasets.
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Table 5.2: Performance of the unsupervised and domain-adapted methods on Quora dataset.

Method i-BLEU BLEU Rouge1 Rouge2

Supervised + Pointer-generator 5.04 6.96 41.89 12.77
domain adapted Transformer+Copy 6.17 8.15 44.89 14.79

Shallow fusion 6.04 7.95 44.87 14.79
MTL 4.90 6.37 37.64 11.83
MTL+Copy 7.22 9.83 47.08 19.03
DNPG 10.39 16.98 56.01 28.61

Unsupervised VAE 8.16 13.96 44.55 22.64
CGMH 9.94 15.73 48.73 26.12
UPSA 12.02 18.18 56.51 30.69
PUP (this work) 14.91 19.68 59.77 30.47

5.5 Results

5.5.1 Automatic Metrics

Table 5.2 and 5.3 present the performance of unsupervised and domain-adapted

methods on the Quora and WikiAnswers datasets, respectively. The best method among

all is shown in bold and the best among unsupervised methods is underlined for each

metric. Unsupervised methods are trained with non-parallel corpora, and domain-adapted

techniques are trained on Quora dataset in a supervised fashion and then domain adapted

for WikiAnswers dataset in an unsupervised fashion (and vice versa). Our proposed method,

PUP, outperforms all the unsupervised approaches on all metrics for Quora and WikiAnswers

datasets (except Rouge2 for Quora dataset where performance is very competitive with

UPSA). Similarly, PUP also outperforms domain-adapted methods for automatic metrics on

Quora and WikiAnswers (except i-BLEU for WikiAnswers dataset where the performance

is competitive). Although domain-adapted approaches have the advantage of supervised

training on one dataset, this advantage does not transfer effectively to the other dataset

despite the similarities between the datasets – i.e., Quora and WikiAnswers are both questions
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Table 5.3: Performance of the unsupervised and domain-adapted methods on WikiAnswers
dataset.

Method i-BLEU BLEU Rouge1 Rouge2

Supervised + Pointer-generator 21.87 27.94 53.99 20.85
domain adapted Transformer+Copy 23.25 29.22 53.33 21.02

Shallow fusion 22.57 29.76 53.54 20.68
MTL 18.34 23.65 48.19 17.53
MTL+Copy 21.87 30.78 54.10 21.08
DNPG 25.60 35.12 56.17 23.65

Unsupervised VAE 17.92 24.13 31.87 12.08
CGMH 20.05 26.45 43.31 16.53
UPSA 24.84 32.39 54.12 21.45
PUP (this work) 25.20 38.22 58.88 26.72

datasets. This also highlights that unsupervised approaches are worth exploring for the

paraphrasing task as they can be applied to a variety of unlabeled domains or datasets in

a flexible way without a need for adaptation. Moreover, the results for VAE (which we

use to pre-train our DRL model) are presented in Table 5.2 and Table 5.4 to highlight the

performance gain of PUP on each metric.

Table 5.4 presents the results of all unsupervised approaches on MSCOCO and Twitter

datasets, where the best model is shown in bold for each metric. Our proposed method,

PUP, is a clear winner on all the metrics among all the unsupervised approaches, which

demonstrates the stellar performance of our method as well as the quality of our DRL

reward function. The lower performance of unsupervised methods on Twitter dataset can

be ascribed to the noisy tweets data, however, PUP has significantly better performance

(i.e., 90% performance gain on BLEU, and 34% on i-BLEU scores with respect to UPSA)

compared to other methods on all of the metrics, which signifies the robustness of the PUP.
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Table 5.4: Performance of Unsupervised approaches on MSCOCO and Twitter dataset.

MSCOCO Twitter
Method i-BLEU BLEU Rouge1 Rouge2 i-BLEU BLEU Rouge1 Rouge2

VAE 7.48 11.09 31.78 8.66 2.92 3.46 15.13 3.4
CGMH 7.84 11.45 32.19 8.67 4.18 5.32 19.96 5.44
UPSA 9.26 14.16 37.18 11.21 4.93 6.87 28.34 8.53

PUP 10.72 15.81 37.38 13.87 6.62 13.03 39.12 12.91

5.5.2 Subjective Human Evaluations

To further illustrate the superior quality of the paraphrases generated by PUP, we

conduct subjective human evaluations on Quora dataset. Table 5.5 presents the average

scores along with the confidence intervals of human evaluators for diversity in expression,

language fluency, and semantic similarity on randomly selected 300 paraphrases generated

by all three unsupervised methods (CGMH, UPSA, and PUP). We used Amazon Mechanical

Turk (a widely-used crowd sourcing platform) in our human studies. We selected Mechanical

Turk Masters from the USA with a HIT approval rate of ≥ 90% to rate the paraphrases

on a scale of 1 − 5 (1 being the worst and 5 the best) for the three evaluation criteria

diversity, fluency, and similarity. Each paraphrase is scored by three different evaluators.

Our method PUP outperforms all the competing unsupervised approaches on all criteria. It

should also be noted that CGMH is better on diversity of expression than UPSA, and the

opposite results are observed for semantic similarity and fluency. In contrast, our reward

function facilitates a good balance between the diversity in expression, semantic similarity,

and fluency. A similar trend can also be observed in Table 5.6 and Table 5.7, which present

automatically calculated reward and a few example paraphrases generated by all three

unsupervised approaches, respectively.

98



Table 5.5: Subjective human studies on paraphrase generations by unsupervised methods on
Quora dataset.

Method Diversity Fluency Similarity

CGMH 3.14 ± 0.053 4.1± 0.042 2.97± 0.055
UPSA 2.96± 0.052 4.35± 0.033 3.89± 0.045

PUP 3.27± 0.048 4.42± 0.027 4.09± 0.035

Table 5.6: Performance of the unsupervised methods for the components of the reward
function on Quora dataset.

Method Diversity Fluency Similarity Reward

VAE 0.31 0.72 0.47 0.497
CGMH 0.29 0.73 0.49 0.502
UPSA 0.25 0.72 0.68 0.563

PUP 0.53 0.95 0.81 0.768

5.5.3 Evaluation on Reward Function

Table 5.6 presents the average scores of all the components of our proposed reward

function on Quora dataset for all the unsupervised approaches. Perhaps not surprisingly, our

method outperforms other methods on each individual component of the reward by large

margin. Intuitively, this arises from the fact that our DRL-based model is explicitly trained

to optimize these reward components. Remarkably, DRL process improves the reward by

more than 50% compared to the pre-training phase, i.e., the reward of VAE. This is also

visible in Figure 5.4 where PUP starts with a reward value of around 0.5 and is able to

achieve up to 0.77 towards the end of the last phase of training.

5.5.4 Ablation Study

Figure 5.4 presents the rewards achieved over the course of different epochs by three

models: (i) PUP, pre-trained and uses the transition phase; (ii) No Transition, pre-trained
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Table 5.7: Example paraphrase generations by PUP and other unsupervised competing
methods on Quora dataset.

Input Sentence CGMH Generation UPSA Generation PUP Generation

how can i work
in microsoft

how can i prepare

for cpt

how can i
get to work

at microsoft

how do i get a job at

microsoft

which is the
best shampoo
for dandruff

what is the best
shampoo for
sciatica

which is the best
shampoo for
oily skin

what are the proper

shampoos for

dandruff

which book is
the best to
learn algo

which
programming

language is the

best to learn
algo

which book is
best to learn
algo

what is a best book
for learning algos

what is the
best mac
game

what is the
best video
game

what is the best
mac app for

android games

what are some good

mac games

what are the
reasons of war

what are the
positive aspects

of nuclear war

what are the
main reasons for
a civil war

what is the main
reason for war

but does not use the transition phase; and (iii) No Pre-train, not pre-trained at all. It

highlights the need for the distinct phases in our training procedure. It can be observed that

without the pre-training phase, No Pre-train model is unable to maximize the expected

reward. The reward remains small and fluctuates randomly. Similarly, transition phase is

also required, as abrupt shift from VAE to DRL derails the training for No Transition

model, whereas PUP is able to rapidly and consistently improve the reward as the number

of epochs grow.
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Figure 5.4: Evolution of the reward value for PUP variants over the course of the training.

5.6 Related Work

The task of automatic paraphrasing is one of the common NLP research problems,

which has widespread applications. A wide range of approaches have been developed to

solve this problem. Rule-based [93, 33, 107, 6] and data-driven approaches [92, 172] are

some of the earliest techniques. Automatically constructed paraphrase detection datasets

using SVM-based classifiers and other unsupervised approaches are introduced in [30, 31].

Recently, supervised deep learning approaches have also been used for paraphrase

generation. Stacked residual LSTM networks [111] is one of the earliest efforts in the

paraphrase generation utilizing deep networks. [76] makes use of deep reinforcement learning

for paraphrase generation in a supervised fashion. Supervised paraphrase generation using

LSTM-based VAE [49], transformer model [151], pointer-generator networks [123] have also

shown promising results. Supervised paraphrase generation at different granularity levels (i.e.,

lexical, phrasal and sentential levels) [77] is achieved with template learning. Additionally
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these models can also be adapted to new domains in an unsupervised fashion, utilizing the

learned templates with the assumption that both domains share similar templates.

Unsupervised paraphrasing is a challenging and emerging NLP task, and the

literature is relatively limited. The VAE [15] is trained in an unsupervised fashion (i.e., no

parallel corpus is required), by maximizing the lower bounds for the log-likelihood. The

VAE’s decoder can sample sentences (i.e., paraphrases), which are less controllable [98], but

serve as a good baseline for the unsupervised paraphrasing task. CGMH [98] proposes a

constrained sentence generation using Metropolis-Hastings Sampling by adding constraints

on the decoder at inference time, and hence does not require parallel corpora. UPSA [82]

generates paraphrases by simulated annealing, and achieves state-of-art results on the task.

It proposes a search objective function, which involves semantic similarity and fluency

for performing diverse word replacement, insertion or deletion operations, thus generating

paraphrases in an unsupervised fashion. In contrast, we formulate the task as a deep

reinforcement learning problem and progressively train the policy to maximize the expected

reward, which includes semantic adequacy, language fluency, and diversity in expression.

5.7 Conclusion

We have presented a progressive approach to train a DRL-based unsupervised

paraphrasing model. Our method provides a warm-start to the DRL-based model with

a pre-trained VAE (i.e., trained on non-parallel corpus). Then, our model progressively

transitions from VAE’s output to acting according to its policy. We also propose a reward

function which incorporates all the attributes of a good paraphrase and does not require
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parallel sentences. The paraphrases generated by our model outperform both state-of-the-art

unsupervised paraphrasing and domain-adapted supervised models on automatic metrics.

Specifically, our method achieves up to 90% and 34% performance gains for the BLEU

and the i-BLEU metrics compared to state-of-the-art unsupervised methods, respectively.

Moreover, the paraphrases generated by our method were rated the highest by human

evaluators for all considered criteria: diversity of expression, fluency, and semantic similarity

to input sentences. Since our technique is the first to successfully warm-start DRL with an

unsupervised model, we plan on investigating the broader implications of our technique on

other NLP problems with scarce labeled training data.
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Chapter 6

Conclusions

This dissertation demonstrates various reliable techniques for incorporating readily

available, domain-independent knowledge into neural models for open-domain NLP. We

showed that when commonsense knowledge is integrated into neural models properly, it

significantly improves their discriminative power, particularly in the open-domain settings,

and we showed that pre-trained NLP models offer yet another rich resource that, when

combined with otherwise low-performing embeddings, greatly improves the expressive power

of textual embeddings. Additionally, this dissertation demonstrates a progressive training

approach for the deep reinforcement learning paradigm — the first instance that has

successfully warmed-started a deep reinforcement learning agent with an unsupervised model.

With the proposed framework, DRL agents save time and resources by avoiding expensive

global exploration, which is particularly critical in open-domain settings. Combining the

ideas presented in this dissertation facilitates the development of robust, reliable, and

open-domain NLP models. Specifically, this dissertation has the following take-aways.
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First, this dissertation proposes a robust and generalizable method for combining

commonsense knowledge with embeddings from pre-trained language models. We proposed

a framework for studying direct and latent relationships between pairs of phrases with the

help of a commonsense knowledge graph. We have built a neural model that takes advantage

of our framework, RIDE, which is able to accurately detect both seen and unseen intents

in utterances (i.e., generalized zero-shot setting). Compared to state-of-the-art models (in

terms of accuracy and F1 score), RIDE is better by up to 42.21% and 58.50%, respectively, for

unseen intents on SNIPS, MultiWOZ, and SGD datasets. Additionally, our model consistently

results in the highest F1 score on seen intents, which confirms the generalizability of our

framework. It would be worthwhile to investigate whether commonsense knowledge can

improve the performance of other zero-shot classification tasks, in particular for class labels

with little to no training data.

Second, this dissertation proposes to integrate domain-independent, pre-trained

NLP models with context-aware utterance-slot similarity features to facilitate sequence

tagging tasks in contexts where training data is scarce. We applied our ideas to the critical

problem of slot filling and showed that they significantly improve the performance of slot

filling models in unseen domains. To the best of our knowledge, this is the first work to use

pre-trained NLP models for zero-shot slot filling. Our proposed model, LEONA, outperforms

state-of-the-art models by 17.52%, 22.15%, 17.42%, and 17.95% on average for unseen

domains on SNIPS, ATIS, MultiWOZ, and SGD datasets, respectively. Moreover, in the most

challenging evaluation setting where models are tested on a variety of datasets after being

trained on data from one dataset only, our model is up to 56.26% more accurate (in F1
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score) than the state-of-the-art model. It remains to be seen whether the same techniques

can benefit other zero-shot NLP tasks.

Finally, this dissertation proposes a progressive approach to stabilize the training

process of DRL agents by warm-starting the DRL model with predictions from an unsuper-

vised model. We applied our approach in the context of unsupervised paraphrasing, and we

showed that when this training framework is augmented with a novel reward function (that

captures semantic adequacy, language fluency, and expression diversity in an unsupervised

fashion), our resulting model, PUP, produces high-quality paraphrases. Comparing PUP

to state-of-the-art unsupervised methods, we achieve 90% and 34% performance gains

for the BLEU and i-BLEU metrics, respectively. PUP also outperforms domain-adapted

methods for automatic metrics on Quora and WikiAnswers datasets. Furthermore, human

evaluators ranked our paraphrases as the best in all criteria: fluency, diversity of expression,

and semantic similarity to the input text. Since our technique is the first to successfully

warm-start DRL with an unsupervised model, it would be interesting to explore the broader

implications of our technique on other NLP tasks with scarce labeled training data.
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[9] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural
probabilistic language model. The journal of machine learning research, 3:1137–1155,
2003.

107

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs


[10] Hemanthage S Bhathiya and Uthayasanker Thayasivam. Meta learning for few-shot
joint intent detection and slot-filling. In Proceedings of the 2020 5th International
Conference on Machine Learning Technologies, pages 86–92, 2020.

[11] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. Transactions of the Association for Computational
Linguistics, 5:135–146, 2017.

[12] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: A collaboratively created graph database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’08, page 1247–1250, New York, NY, USA, 2008. Association for
Computing Machinery.

[13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances
in neural information processing systems, pages 2787–2795, 2013.

[14] Samuel Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A
large annotated corpus for learning natural language inference. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pages 632–642,
2015.

[15] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz,
and Samy Bengio. Generating sentences from a continuous space. arXiv preprint
arXiv:1511.06349, 2015.

[16] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof:
identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, pages 93–104, 2000.

[17] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-
2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evalua-
tion. arXiv preprint arXiv:1708.00055, 2017.

[18] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John,
Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal
sentence encoder. arXiv preprint arXiv:1803.11175, 2018.

[19] Wei-Lun Chao, Soravit Changpinyo, Boqing Gong, and Fei Sha. An empirical study
and analysis of generalized zero-shot learning for object recognition in the wild. In
European conference on computer vision, pages 52–68. Springer, 2016.

[20] David L Chen and William B Dolan. Collecting highly parallel data for paraphrase eval-
uation. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, pages 190–200. Association for
Computational Linguistics, 2011.

108



[21] Yun-Nung Chen, Dilek Hakkani-Tür, and Xiaodong He. Zero-shot learning of intent
embeddings for expansion by convolutional deep structured semantic models. In 2016
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 6045–6049. IEEE, 2016.

[22] Zhiyuan Chen, Bing Liu, Meichun Hsu, Malu Castellanos, and Riddhiman Ghosh.
Identifying intention posts in discussion forums. In Proceedings of the 2013 conference
of the North American chapter of the association for computational linguistics: human
language technologies, pages 1041–1050, 2013.

[23] Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier, David
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Bouchard. Complex embeddings for simple link prediction. International Conference
on Machine Learning (ICML), 2016.

[151] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017.

[152] Nikhita Vedula, Nedim Lipka, Pranav Maneriker, and Srinivasan Parthasarathy. Open
intent extraction from natural language interactions. In Proceedings of The Web
Conference 2020, pages 2009–2020, 2020.

[153] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching
networks for one shot learning. In Advances in neural information processing systems,
pages 3630–3638, 2016.

[154] Jinpeng Wang, Gao Cong, Wayne Xin Zhao, and Xiaoming Li. Mining user intents
in twitter: A semi-supervised approach to inferring intent categories for tweets. In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15,
page 318–324. AAAI Press, 2015.

[155] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and
Anshul Kanakia. Microsoft academic graph: When experts are not enough. Quantitative
Science Studies, 1(1):396–413, 2020.

[156] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability
judgments. Transactions of the Association for Computational Linguistics, 7:625–641,
2019.

119



[157] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

[158] Kyle Williams. Zero shot intent classification using long-short term memory networks.
Proc. Interspeech 2019, pages 844–848, 2019.

[159] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[160] Sam Wiseman and Alexander M Rush. Sequence-to-sequence learning as beam-search
optimization. arXiv preprint arXiv:1606.02960, 2016.

[161] Congying Xia, Chenwei Zhang, Xiaohui Yan, Yi Chang, and Philip S Yu. Zero-shot
user intent detection via capsule neural networks. arXiv preprint arXiv:1809.00385,
2018.

[162] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot
learning—a comprehensive evaluation of the good, the bad and the ugly. IEEE
transactions on pattern analysis and machine intelligence, 41(9):2251–2265, 2018.

[163] Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot learning-the good, the bad
and the ugly. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4582–4591, 2017.

[164] Puyang Xu and Ruhi Sarikaya. Convolutional neural network based triangular crf
for joint intent detection and slot filling. In 2013 ieee workshop on automatic speech
recognition and understanding, pages 78–83. IEEE, 2013.

[165] Guangfeng Yan, Lu Fan, Qimai Li, Han Liu, Xiaotong Zhang, Xiao-Ming Wu, and
Albert YS Lam. Unknown intent detection using gaussian mixture model with an
application to zero-shot intent classification. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 1050–1060, 2020.

[166] Leiming Yan, Yuhui Zheng, and Jie Cao. Few-shot learning for short text classification.
Multimedia Tools and Applications, 77(22):29799–29810, 2018.

[167] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and
Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding.
arXiv preprint arXiv:1906.08237, 2019.

[168] Majid Yazdani and James Henderson. A model of zero-shot learning of spoken language
understanding. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 244–249, 2015.

[169] Steve Young. Talking to machines (statistically speaking). In Seventh International
Conference on Spoken Language Processing, 2002.

[170] Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo Zhang,
and Jindong Chen. MultiWOZ 2.2 : A dialogue dataset with additional annotation

120



corrections and state tracking baselines. In Proceedings of the 2nd Workshop on
Natural Language Processing for Conversational AI, pages 109–117, Online, July 2020.
Association for Computational Linguistics.

[171] Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, and Philip Yu. Joint slot filling and
intent detection via capsule neural networks. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 5259–5267, Florence, Italy,
July 2019. Association for Computational Linguistics.

[172] Shiqi Zhao, Xiang Lan, Ting Liu, and Sheng Li. Application-driven statistical para-
phrase generation. In Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 2-Volume 2, pages 834–842. Association for Computational
Linguistics, 2009.

[173] Shiqi Zhao and Haifeng Wang. Paraphrases and applications. In Coling 2010: Para-
phrases and Applications–Tutorial notes, pages 1–87, 2010.

[174] Shiqi Zhao, Haifeng Wang, Xiang Lan, and Ting Liu. Leveraging multiple mt engines
for paraphrase generation. In Proceedings of the 23rd International Conference on
Computational Linguistics, pages 1326–1334. Association for Computational Linguistics,
2010.

121


	List of Figures
	List of Tables
	Introduction
	Dissertation Contributions
	Dissertation Organization

	Background and Related Work
	Knowledge Graphs
	Link Prediction in Knowledge Graphs
	Conditional Random Fields
	Language Models
	Encoder-Decoder Framework
	Variational Autoencoder

	Zero-shot Intent Detection
	Introduction
	Preliminaries
	Intent Detection
	ConceptNet Knowledge Graph
	Link Prediction
	Positive-Unlabeled Learning

	Our Approach
	Relationship Meta-feature Generation
	Utterance and Intent Encoders
	Training the Model

	Experimental Setup
	Datasets
	Datasets Preprocessing
	Evaluation Methodology
	Competing Methods
	Implementation Details

	Results
	Related Work
	Conclusion

	Zero-shot Slot Filling
	Introduction
	Preliminaries
	Problem Formulation
	Pre-trained NLP Models
	Conditional Random Fields

	Approach
	Embedding Layer
	Encoding Layer
	CRF Layer
	Similarity Layer
	Contextualization Layer
	Prediction Layer
	Training the Model

	Experimental Setup
	Datasets
	Evaluation Methodology
	Competing Methods
	Implementation Details

	Results
	Quantitative Analysis
	Qualitative Analysis

	Related Work
	Conclusion

	Unsupervised Paraphrasing
	Introduction
	Preliminaries
	Problem Formulation
	Overview of PUP

	Progressive Unsupervised Paraphrasing (PUP)
	Reinforcement Learning Paradigm
	Paraphrasing Reward
	Progressively Training the DRL

	Experimental Setup
	Dataset
	Competing Methods
	Evaluation Metrics
	Implementation Details

	Results
	Automatic Metrics
	Subjective Human Evaluations
	Evaluation on Reward Function
	Ablation Study

	Related Work
	Conclusion

	Conclusions
	Bibliography



