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 .ABSTRACTy
The veétqr-spinor thédry iélexémined to £ind whether there K  °
are any Kronecker;delta terms in the angular-moméntum plane or; in
other words,‘£0vfind whether all‘pafticles are 6n Regge trajectories{
" It hed previously been shown in lowest-order perturbation theory that
- & remarkable cancellation resulﬁedvin the vaniéhing'éf the Kfronecker-i-‘».i
delta term from the spihor chammel. This conclusion is re-establiéhed:v
by general reasoning which is independent of perturbation theory. Thér'.u
- channel with the qnantum‘numbers of the vector particleAis.examined, and
' ﬁere there is no canéellation. The‘véctor particle is not‘pn 8 Regge

R

frajectofy. It is concluded that the absence of Kronecker-delta terms.
‘ .

1 R

in theij-plane may still be used as a criterion for a "bootstrap" systemifiJ]f"!;

B
o
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I INTRODUCTION
When scattering amplitudes calculated by Lagrangian field theory

are expressed as & Regge representation, it usually happens that the

representation must be modified by the addition of polynomials in 2z, ;

- the cosine of the .scattering angle. A polynomial Fh(z) will only

affect the nth partial wave and will therefore leave the Regge contine.
uvation . a(Y,s) unchanged. . The existence of such a term will mean however

that the function a(l,s) is not equal to the physical partial wave at

4 =n.. In other wordsé the Regge function will heve a "Kronecker-delta" =

singwlarity at ¢ .=n 1f 1t is to represent all physical partial wa.ves

: correctly. Since the channels.in which the Kronecker-delta singularities, S

occur depend on the elsmentary particles in the Lagrangian, the existence

- of such singularities has been suggested as a criterion for determining

" which particles are elementary. We shall see that one cannot obtain a

'.vcriterion for determining_unambiguously in all cases whether a particular
'~ channel possesses elementary particles. Howeter, we shall be able to -
1 determine whether a theory has any elementary particles or,.in other words,,al

Vf‘to obtain a criterion for a "bootstrap" solution. Such a solution will. '

ibe one in which there are no Kronecker-delta singularities in any channel.l:f”:

Kronecker-delta singularities occur in the following instances:

1. If a theory has an elementary particle of spin 0., a Kronecker-

' delta'singularity will'ocdur at ;j'=:o in the channel with the quantum -ﬂ;;gﬂxs
’: numbers of the elementary particle. To show this we need merely consider . - R

~ the integral equation one has to solve to dbtain the scattering amplitude. K
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"4 is ' J - 0, - 0@

.«amplitude at high values of 3 and then continue to J=0, + 0

" of the emplitude 6 J =0+

Generally the "potential“l will bé an anlytic function‘of J, so that

e can hope to prove that the scattering amplitude is a meromorphic

" function of J . When there is an elementary particle of spin ¢,

hovever, there will be.a term in the integral equations: vhich'affects '._:_g T

only the partial wave J = o.. The integral equation for this partial

wave does not therefore have the same analytic form as the integral

equation for the other partial waves, and the scattering amplitude for j:?_t'
" J = o will not be equal to that obtalned from other values of J by 5

analytic continuation. .There is thus a Kronecker~delta singuwlarity at'f* -

-

|

2,' In a theory with two elementary particles of spin oy and %

’ a Kronecker-delta singularity will occur at j =0, +0, - l in the

1 2 ;
channel with-quantum numbers equal to the sum of the quantum numbers of

.‘_,the elementary particles.2 The reason for this singularity is the pre- N

‘sence of unphysical or "nonsense" states. If we expand the scattering

amplitude in orbital sngular momenta ¢, the smallest possible value of ?5'“
1 > . At j =0 +0, -

with 4= -1, If we first consider the equations for the scattering

1 2

' the nonsense state will be coupled to the physical state. In the eéuationsiﬁf?ff

for .the correct physical scattering amplitude, however, the coupling to

the nonsense state should not be included. Thus, the Regge continuation'fisfhhl

L 172 P
f, partial-wave amplitude at this value of j .ﬁi-t' o I

.,,w

-1 il not 'be equal to the physical s

I, o

1., there vin thus be a state

-1 ,.w"
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-, for the cancellation to occur. When the ¢riterion was applied to the‘

Gell-Mann and Goldberger3 have raised the question whether
there might be cancellations, so that the Kronecker-delta singularities
would not occurvat the positions just stated. They have suggested in‘;’gl't;

particular that the cancellationvnight occur in a theory of nucleons

) interacting with vector mesons, and that the singularity might be

absent from the channel with the quantum numbers of the nucleon. Such

il

a channel has both an elementary particle (the nucleon) with o = 7%7';j

and a pair of elementary particles (the nucleon and meson) with

oi-+ o, - 1= -%— + The suggestion of Gell-Mann ‘and Goldberger has

been examined further,h and a.factorization criterion has been given -

hol

nucleon channel of thesspinor-vector theory, it was found that the can-:ﬂ

cellation did indeed occur in the lowest order of perturbation theory. -

In other words, the nucleon lies on the Regge trajectory in lowest order.;‘{?

The cancellation can only occur if nonsense channels are present, but f_ RN
it certainly does not always occur in such cases. For instance, it doesi_.glr
- not occur in the theory of gcalar "nucleons" interecting_withvvector

- mesons.

The fact that the lowest-order perturbation amplitude in the
vector-spinor:theory,satisfied'the factorization'critErionxappeared to:

be somewhat of a miracle. The perturbation terms were just such as to ' =~ .

" produce & Regge behavior (without a Kronecker-delta singularity), but™ i .-

no deeper reason for this uas evident, It is the aim of the present'

. paper to show directly, without detailed calculation, that there is no =~




_ wlm i“t', S s
Kronecker-delta cingulnrify aﬁ' j‘—“~£¥ in the nucleon channel. Wé
. shall thus be able to confirm the conjecture of GellJMann et al that
the cancellation of the Kronecker-delta singularity is not confined to
' the lowest order: of perturbation theory, but is general. “‘};o);} ;'f_"

We shall also examine the channel with the quantum nutbers of -

the vector meson in the vector-spinor theory. There is of course an‘elem-ﬁiJ;1 
- entary particle in this channel at J =1 and, while there does not

»

' exist a pair of particles with o, + 0, - 1 = 1, there exists a triplet -_:

1 2
of particles, namely three vector mesons, with o +0,+0, =2=1,

1 2 3
It has therefore been suggested that the cancellation of the Kronecker-
delta singularity might‘occur in this channel as well. The theory would
then be free of such singularities. We shall find, however, that the
 singularity is in fact present. We snall make the approximation of
neglecting intermediate states-with more than three particles, but such
an approximation apprear to possess all the essentials of the problem. .
iThe characteristic feature of the nucleon channel in the vectof;fgfégl
spinor theory is that the dlagram Fig. 1(a), with a onef-nizcl\eon intermed- ‘f i _'
iate state, cannot exist by itself but must be taken together with Fig. 1(b).

;Bither of these diagrams

Co(a) T o (o) A
-.Fig. 1. LOWest-order perturbation diagrams in the nucleon on vector-_"“
' _meson channels.;,:. - EDEU o S




taken separately roul@ giyegan amplituoe.vhose asymrtotic behaviorbwa;:
in eonflict with unitarity. Stated more loosely,;the’individual diagrams;"'l
are not gauge invariant; The vector-meson channel does not have this'
featUré; The disgram Fig. l(c) 1is gauge-invariant and can certainly --:9f;;7f
exist alone, It had been suspected that this difference between,the
nucleon and meson channels might lead to a difference in their Regge f
;behszior, and’ we shall show that such.is the case. ' We should emphasize,
._';however, that the necessity of’ adding a diagram 1ike Fig. l(a) to one
like Fig. l(b) does not in itself guarantee a Regge behavior. One
jvmust compare the number of threshold conditions with the number of free.
parameters in a partial-wave integral equation. The scaler-vector theory .
also has a diagram Fig, 1(b) which goes with Fig, l(a), but it is hot :
Reggeistic, '

From the remarks made in this section, ‘it is clear that one
cannot use the Kronecker-delta singularities in the J-plane as a
universal criterion for distinguishing elementary from non-elementary'gf{g ;
:_particles. Even in theories without vector mesons one cannot obtain e
~an unambiguous criterion. If a theory has elementary fermions of spin.f¥i”*‘
';.%_ , Tor lnstance, one cannot use such a method to test for the
existence or an elementary farticle with spin zero in the'two-fermionfvf““-'
channel. This ohannel has a pair'of particles, the two fermions, with
oi + Oé -1l= 6 ’ and there will therefore be & Kronecker-delta sing-
wlarity whether or not there is an elementary particle rresent. One

can still use the criterion to test whether there are any.elementary
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4pa.rticles present in a theory,' The vector-spinor system does not
' provide a counter-emmple, since there is a Kronecker-delta. singu-
larity in the meson channel even though there is no such singularity L 5 -

- in the nucleon channel. C . - L k u o RES

- IT. TEE BEHAVIOR OF THE POTENTIAL AND OF THE SCATTERING AMPLITUDE
NEARJ-01+0'2-1 o | |
Before treating. our problem it will be necessary'to review = - . - S

' some properties of the amplitude in the J-plane near. ,j a.l + 0'2‘ -1 . |

. We write the scattering amplitude as - .
A=A Ay
where A‘L‘ is the :Lntegral over the left-hand cut and AR the integral . . .

over the right-ha.nd. cut. In general we would know AL ’ 'either

explicitly or from & previous iteration, and we would then find AR =
by~ unitarity. We shall refer to AL' ‘as the ".potentail" and shall o
denote 'it by'th‘e symbol V o We shall use the subseripts. s and n o

Tto denote sense and nonsense states. = - . SN

When the angula.r momentum o approaches the value dl + 02

" the matrix. elements of the p_otential will behave as follows“ ¥

: .Vss - fin:tte
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3= gy
" behavior

‘.Equations (2. 2) and (2 3) indicate a difference between the behavior of

i

. the potential and the unitary scattering'amplitude near ‘Jv=-oi +'°é - lﬁ'

~ The pole in the element V arises‘from the factvthat a nonsense ,

7 amplitude involves a value of L equal to =1 ( or another negative

s

t integer). We recall that the Froissart-Gribov formula for the analytically

continued amplitude contains the function QL ) which has poles when b
“is. a negative integer, The sense-nonsense amplitude will also include

a factor Q with ¢ = = l but, on the other hand, such an amplitude

1 2

" always has a factor \[‘(J - 0, = O, + l) from the Clebsch-Gordon

»

coefficient, and this factor vanishes at the integer in question. Thus fuf~;iﬂr-

Vo, only has a factor w/ (3 - o0, = ¢ + l) in the. denominator..a_

1 2 o
If we examine the unitary scattering amplitude instead of the -

amplitude will be bounded by uniterity. The square-root branch point at

R RS

<1 will still be present, so the amplitude will have the N ‘

A By e e l)
o L F' o e B (2 3b)

A question closely related to the singularities of the potential_f¥vﬂ
is the behavior of the Regge trajectories as the coupling is turned on.
In a theory without spin, the leading traJectory begins to move from the ”;,

value J == 1 as_the coupling is increased. 1If, ‘however, ' there is_a'_73-ﬁv

. 1 v
- potential we must bear in mind that each matrix element of the scattering T



.

‘4; the physical partial waves at. J=n arenot given by the Regge function.‘:nV'

\

R - T
. .
. -8- (3

‘nonsense channel at J = n, where 'n .is a positive integer or zero,

a trajectory will move from J =n. This:is an immediate consequence

of the pole in the potential-at J ='n since, when the coupling is

f_ and must have a pole very near J =n . Similarly, if there are r non-;'"

"' sense channels at J = n , there will be r separate poles in the potfv L

ential at J =n, s0 that'_r Regge trajectories will move form the

v

" value j =n. In general, there will not be particlés or resonances

' ‘; at the points wvhere these trajectories cross the lines J = n , because

J=0, + ¢
&

t

In the exceptional case of Gell-Mann et al., however, the nucleon will.

lie at the point where<the trajectory crosses the line j ; .

' very small, the scattering amplitude must be almost equal to the potentialt5,3*

III. TEE PHYSICAL PARTIAL WAVES COMPARED WITH THE REGGE commUATION R

Before we treat the spinor-vector system, let us examine a

general channel‘which has a pair of elementary particles with spin"df;.'”

and 0, , and in which the special features of the spinor-vector system o

2

"are not present.A We shall compare the correct physical partial wave at‘,‘g*’--'

Lt - l with the Regge continuation and shall investigate how ’

states can be replaced by a fictitious elementary particle. In § h Vwe

shall apply this result to the nucleon channel of the vector-spinor theory)

;’7 and shall deduce the results stated in § l .' h

by solving the integral equation ?ff}fgvfﬁ i7*1

“they differ. We shall find that the effect of the coupling to the nonsense f}&

" The scattering amplitude can be determined from the potential‘ o "‘

P




N(J;S) = V(J,S) + —-—f ds' V(J’S ) = V(J’s) k(s )N(J 8 )
S - 8 - . R
S (5 1a)

_ D(J,s)=l_ "i""fds'g‘i}:;k(s')l\l(s') |
 here X iz a Kinematic factor.  The quantities N D B and v will
be matrices of order equal to the number of channels. .If we are cal~ '
‘ culating the physical partial wave we must include‘only the sense
o channels, whereas we must include all channelskfor the Regge continuetion.lj
 Since the matrix elementsxof VV -involving the nonsense channels are u -
certainly not ;ero, the physical partial vave will differ from the Regge | o
continuation. . | | | . |
To investigate the matter further, we shall examine the conditions ff7
. which led to Eq. (3.1). . The equation 1s & consequence of the following ]
 three :equirements: - | | | | | '
1), AnalytiCity o etb ‘i "".‘.“-‘Aj:i “_». ‘lr
11). Uniterity e
' 4i1). The cholce of the lowest c. D,‘D. solution, R
‘and we must determine whether these conditions when ahplied to the “
physical partial wave are different from when they are appliedvto_the ;'-:'ﬂu‘;‘
"‘h Regge continuation. A BN | ‘ ) L
' The analyticity requirements (in the s-plane) for the physical

"partial  wave; and the Regge continuation are of course identical. The,

unitarity equations aree_fé“




a.b'= ] B.Cv,(l!lb E o " S
where the summation is over sense intermediate states c¢ in the N P

physical partiel' vreye, and over_sense a.nd? noneense intermediate states |
¢ 1in the Regge continuation. We have already seen however that the .
scattering emplitude between &2 sense and & nonsense state is zero
et J=o0 +0, -1 [Eq- (2;3)].' If, therefore, & and b ;.re*sense"

fstates, the summation c need be taken over sense states a.lone, even in

A '“the Regge continuations. The unita.rity cond.ition for the physica.l pa.rtia.l'

l
H

-wave 1is, therefore, the same as for the Regge continuation. , ‘.
The differenca between the physica.l pertial wave and the Regge |
continuetion must therefore, lie in the C. D, D. az_n'biguity. We have . |
; mentioned in § 1 that r Regge trajectories start from the value J =
| in question, where r 1s the mumber of nonsense statee.' For very _small _
coupling, some or..a.ll of these trajectories may pass through the value-
J = n at a particular va.iue of ‘s .. The solution of the equations for.
‘the coupled sense and monsense states will have particles or resonances = . - 5
.at tniSt va.:_l.ue of s . If, tnerefore,_ we take the solution and',examine._"_-if‘."v"v' o
only the sense states, which we have seen to_ setisfy the unita.rity |
equation among‘ themselvee; we may f£ind that'they represent any C. D. D. - o o
‘solution up to the (r +1)tn . ” "
One may ask whether Levinsoh.n's theorem does not forbid the’

higher C. D. D. solutions if elementa.ry particles are not introduced o ;



explicitly into the calculations. ; However, Levinsohn's theorem epplied.
: %o the pertisl vave' J = n would rei‘er to the physical partial vave, '

not the Regge continuation. One oould also apply Levinsohn's theorem : j?_ L

to values of J other tha.n .j =, and. then proceed to J =0 'by

a.nalytic continuation. In that case the theorem would involve the sum

e - t

of the,; phase shlfts in the sense and nonsense channels. The theorem

d.oes not say anythlng about the pha.se shift of the sense chs.nnels alone e

in the Regge continuation. ‘I.’hus, if we solve the equations for the

coupled sense and nonsense channels and examine the sense channel _of‘the L

solution, We may find that it is & higher C. D. D. solution, even if .. .-
elementa.ry pa.rticles have not been introduced into the calcu.'l.a.tion.
To summa.rize, the sense states of the Regge continuation may

‘represent any of the C. D. D. solutions up tbo the (r + 1)th * where

IS

A f:"r .1s the number of nonsense states. - In other wards, there may be up -

r

| " ito T+ 1 fictitious elementa.ry' particles in the sense states of the -

’Regge continuationr The parameters corresponding to these perticles ‘,-‘:';‘j-

cannot be found without solving the equations with the nonsense states

l

| 1nclude st ’but, once they are known, ‘the nonsense states can be ignored..

=‘l‘he differnece 'between the physica.l partia.l wave and the Regge contin~ ";

'- ua.tion will, therefore, be that the physical pa.rtial ‘wave involves the :

1.real elementa.ry particles which are introduced explicitly into the

:calctﬂiation, while the Regge continuation involves the fictitious elemen- :

: ta.ry ps.rticles which replace the nonsense sta.tes.

In general, the number




G

.‘: v_,l‘ ! .

. wave are the same as those associated with the fictitious elementary"y"b"

.differ, and there will be no Kronecker-delta term in the j-plane. If"'“"

. l

73behaviors, we cannot conclude that the Kronecker~delta‘term muet vaniah. ned

"1V, ""I‘HE' NUCLE‘ON' CHANNEL, IN THE vaTOR;srmoR '.fHE'ORY, e

For ‘the nucleon chamnel of the vector-spinor theory, the VJQgMV“:;%@;

4 above results must be supplemented by our knowledge that the parameters ;

associated with the elementary nucleon cannot be varied arbitrarily if

the analyticity-unitarity equations are to be soluble,~ We have pointed p%f_ o

5

out that a potential represented by Fig, l(b) has an asymptotic be-

havior which violates the unitarity llmit, and that the equations will ‘ ‘ff

: not be soluble unless Fig. l(a) is also included. Further, the

parameters associated with Fig. l(a) cannot be varied arbitrarily if

the asymptotic behavior of the terms assoclated with the two diagrams;"

is to cancel. The question, therefore, arises whether the parameters

associated with Fig. 1(a) , i.e. , the position and residues of the

' pole, can be varied at all without destroying the cancellation.between 7ﬁ'7~

‘the two diagrams. If tleycannot,we: may conclude that the parameters'

essociated with the real elementary particle in the physical partial’

particle in the Regge continuation. The two amplitudes then cannot

~on the other hand, We may vary the parameters associated with the elemen-'ﬂ,.g

'tary particle and still: obtain a cancellation between the asymptotic

We shall’ proceed to investigate this question by examining the

, ‘;rydispersion relation for the partial waves. For simplicity we shall L A

' r‘4confine ourselves to the equal-mass case.. We shall find that the ;

S '_.'
ot
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parameters cannot be varied in the Vectdréspinor theory but that they

can in the_vector«scalar'théory. Our reasoning will not depend upon

the precise value of the discontinuity across the 1eft-hand cut, so.A

that we will not be limited to an ‘input corresponding to Fig. l(b);

Tﬁe conclusioﬁs are, therefdre;'independent of perturbationrtheory.

The partial wave of interest_ié that in the nuclgon vector-meson

éhannel*with hi ; ;%;; and positivé parity{ There are two sense“states
. : « >

and one nonsense state involved:

- Sense: S = =1 ‘Nonsense: S = 2 L= -1

0| rofor

The variable S is the total spin, ¢ 1is the orbital angular momentum.
‘When we write down partial-wave despersion relations in a channel with
half-integral spin, we have to take w , the square root, Qf s , as out
variable, otherwise, the amplitudes will contain kiﬁematical singularities
at s =0 .. On going from w to -w , the partial waves will go into
linear combinatiqns of the partial waves Wiﬁh the same value of J but-

with opposite parity. The possible states are then:

Sense: S = L =2 Nonsence: ,'S = == L =0

rblk;'n4\N
Ay

We now have to investigate the threshold and asymptotic be-

havior of the partial waves. We shall normalize the partial waves so-

that the unitarity condition coﬂéi}né a factor -%k', where gq is the
. BN :ji\,,, ’ . - '



~1h-
centre-of-mass. momentum. The amplitudeé will then be free of kinematical
singularities at W = 0 (in the equal-mass éase). There will be thfee
seﬁse-sense amplitudes corresponding to the two sense étates, and they
will all have a constant asymptotic behavior at infinity. At the'
thrééhbl@s- W= ém (for positive parity) and w = 2m (for negative

parity) they will have the behavior:

2m : All three waves are P-waves , which behave like w =m

‘F
i

Ww=2m DD ~ (v +m)°
DS ~ (W +m)

38 ~ const. ! , hE

It we set u? an N/D calculation for the sense states with a given
left-hand cut, we can put in thfee subtraction constants corresponding
to the constant asymptotic behavior of the three partial waves. On the
other hand, we have six threshold conditions to s=uisfy. We therefore
have too %ew parameters available and unléss}the left-hand cut has
special'features, we shall not be ablé to solve the problem.

We can overcome this diffiéulty by introducing én élementary

barticle into the channel. As thére are two sense states, we shall

~ have three further paraméters at our disposal, and we can just solve the.

problem. None of the parameters will be free, they must all be given
perticular wvalues if the threshold behaviors are to come out right. This

conclusion cannot be modified by assuming the left-hand cut to have spe¢ial

[ $

hd
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'»features. The N/D requations for the problém with an undetermined

elementary-particlé pole are linear integral equations with no frée
paraméters and, therefore, have a unique solution, the case where the
hompéeneous eQuation is soluble_being eésily accounted fof. With suit-
able lelf-hand cuts the residues at the pole could turn out.to be zero,
though this does not occur in the problem under cpnsiderafioﬁ. The |
equations would then be soluble ﬁithbut any elementary-particle pole,
but itvcannot happen that the equations ére soluble with a variable
elementaryfpafticle pole. | |

We can now conclude that the physical partial wave must be

i

idenéical with the Regge continuation in the nucleon channel. The >2L
physical partial Qave hés one elementary particle, and the Regge con-
éinﬁatibn has one fictitious elmentary particle which replaces the
effect of the single nonsense state. Since we have just proved that the

parameters associated with a single elementary particle are fixed by

- 4
the threspold conditions, it follows that the parameters associated with

‘the real and the fictitious elementary particle must be the same. . The

>physical partial wave is thus identical with the Regge continuation.

\ We can also treat the scaier-vector problem, and we-sﬁaii*examine

the amplitude for the scattéring of scalér particles by vector mesons.

In the positive-parity state with: j = O there is one sense state: (¢ = 1)

and one nonsense state (£ = -1) . The sense state must have a constant

asymptotic behavior at infihity and must satisfy one threshold condition.

The N/D integral equations are thus.soluble without any free parameters

whatever the position and résidue of the eiementary-particle pole. The

&

L
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=16~
parameters of the elementary particle are not determined by the re-
mainder of the problem, and the Regge continuation need not be the same

as the physical partial wave.5 Such reasonlng does not of course prove

—r-w_._

that the two amplitudes w1ll not bYe equal, but direct examination shows

that they are in fact unequal.
V. VECTOR-MESON CHANNEL IN THE VECTQR-SPINCOR THEORY .

We have. remarked that there is no correlation'between’diagrams
in the vector-meson channel analogous to that between Figs. 1(a) and
1(b). -in the nucleon channel. The arguments which we have given above

for the cancellation of the Kronecker-delta term in the nucleon channel

i
v}
1

cannot, therefore, apply here. We now wish to examine the amplitude in
that channel iﬁ order to show that the'cancellation does not occur and .
that there is a non-Regge tern.

We have already mentioned that the simplest intermediate state

-which might Reggeize the vector meson is the three-meson state. A

COmpleteitreatment of the problem will, therefore, require a knowledge

of complex angular momentum in the three-body systems. It is hoped to

give a discussion of that topic in a subsequent paper. In the present

‘paper we shall assume some general results concerning the three-body

problem, and shall then show that there is a Kronecker-delta term in the
vector-meson channel at J =1 .-
. ' . £
We first summarize some results of Ref. 4 . It is shown

there that the potential has the following behavior in the j-plane } -

near j=n, where n is an integer at which non-Regge terms occur:
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Vés.= éasss o - . -
=%/ (§-n)
Vﬁn'; e/ (5 - n)

] | (5.1)
The.quantities a, b énd_ c. are indebendent of the energy. If

there are several sense andfnonsense chaﬁnels, a and c wil} be
square.métrices, b a diagonal matrix. Weé note that fhe tyﬁe of sihg¥
wlarity in theisénse~sense amplitude is_completely.differalt frém thgt

in the nonsense amplitudes. In the sense-sense amplitude it is a Kro-
. : . ‘ !

necker-delta term, and it may arise from diagrams such as Fig. i(a) N
or Fig._l(p) which éffect only one value of j,. In the nonsense
amplitude it is an infinity, and it arises from the fact thaf the
function Q, has a pole when ¢ 'is a negative.integer.f‘ ' | |

. Gell-Mamn et al. showed bhat the Kronecker-delta term in the

scatteriﬁg amplitude cancels provided that

- (5.2)
They did not show conclusively that (5.2) was a sufficient condition,
as thefe were some uncertainties regarding subtraction.terms in dispersion

relations. However, (5.2) was definitely a necessary condition, and it

- was obtained from the factorization property of residues at Regge poles. .

Note that (5.2) provides a separate equation for each sense state, so

that we may examine only those sense stéte:which are convenient if we are

w
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trying to prove that the equation‘is untrue. On the other hand, the
eqpation ihvolveé a sum over ali the nonsense stétes. |
: If the nonsense states in question are three-particle‘states,r

» . : . .
the quantities a , b and c¢ will be integral operators instead of

finite matrices, and the queetion arises.whether the expression e
has e meaning. We ﬁope to show in our subsequent papereon‘the three- -
body problem that the operator ¢ only spans & finite number of_the
three-particle states, eveh though.an infinite number of three-particle
states exist (at.given-valﬁes of s and J ). Thus the equaﬁions (5.1)
‘remain finite matrix equations. |

.Let us, therefore, investigate a nucleon anti-nucleon sense iy
state‘and the three-mesén nensense states. ihe potentialsv Vgs and |
.Vgg will be given in lowest ordef by'.Fig._e(a)v and ~2(b) . éince

5

they are of order ge énd‘:g respectively,

(a) 4)

Figure 2. Perturbation diagrams in the vector-meson channel.

the potential th will have to be of order gu if (5.2)\ is to hold.
. The only‘diagfam of order gh for the process 3 mesons - 3 mesons is
the disconnected diagram Fig. 2(c) , and it has been suggested that this

diagram might provide a contribution to ¢ in- (5.1) which fulfills the
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criterion (5.2) ;6

Wé‘can’concludé, however, that the diagram Fig. é(c) does
not providé a contribution to the quantity c¢ in (5.1) . Let us take |
as owr angular variébles ﬁhe helicities A and A' ‘of the iﬁcoming
system .AB and of the outgoing system A'B' s together with the total
angular mpmentum' j . The angle corresponding to § will be‘the ang;e
of scattering of C. The scattering amplltude will then contain a factor

5(z) , 50 that 1ts angular-momentum projection w1ll be B ) whlch is

Ml
independent of_‘j . This diagram, therefore, has no pole at Jj =1,

and it will not contribute to the quantity c of (5.1)

We can see in another way that the potential represented by ’&i‘

Fig. 2(c) camot give & contribution to the quantity c¢ . Fig. 2(b).,

together with repeated iteration of TFig. 2(a) , would give Fig. 3 .

11

‘ | R
Figure 5. A diagram'dbtained by iteration of those in Fig. 2.
Now the reasoning in Ref. 4 shows that repeated iteration of the potential

dlagrams must give 1ncrea51ng powers of the logarithm of the momentum

transfer if they are to result 1n cancellatlon of the Kronecker-delta
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term. However, Fig. 3 was precisely the type of diagram considered

7 and, byla slight variation of the arguments used in §

and Appendix I of “thet paper, it cén be shown that the;increasing povers

of the logarithm do not occur.
Our conclusion is, therefore, that there is no contribution
to ¢ of order gh ,‘so that the Kronecker-delta term in the vector-

meson amplitude at J =1 is not.cancelled. As a mattér of fact, the

three-meson states .do not give any pole in the potential at j’= 1 at

all, and c is‘zero to all orders of 'ge . There is thus no Regge
trajectory which moves from J = 1 as the coupling is turned on. We
shall prpve-this result when discussing the three-body problem. The W‘

conclusions of the pregent paper are of course independent of the last

assertion.
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The %bove reasoning would appear‘to indicate that one could dbtdin-'
a solution with arbitrary vaiues of both the position and residue

of the elementary-particle pole. Actually only one of these par-
ameters is abritrary. The reasoh.is tﬁat there is a relation bet-
ween the helicity amplitudés at s = 0, analogous to Eq. (7.15a)-
in the paper of Goldberger, Grisafuj MacDowell and Wong, FPhys. Rev.
120 , 2250 (1960). This relation must hold for the Kronecker-delta
term, and will reduce the number‘of parametefs from two to one.

The assertion that © must be of order gh for (4.2) to hold

. could possibly be wrong if the matrix b vanished in lowest
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~order. Thus,if b = b3g3 , ¢c= é6g6!+ c8g8 and b
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the right-hand side of (4.2) would be of order gg . We shall

show in our paper on the three-body problem that this does not

occur for the case in question. °

5. Mandelstam, Nuovo Cimento gg_;_llEY (1963).
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' FIGURE CAPTTONS

Lowest-order perturbation diagrams in the nucleon on
vector-meson channels.
‘Perturbation diagrams in the vector-meson channel.

.A'diagram obtained by iteration of those in Fig. 2.
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