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.A:BSTRACT 

.. ~ ··-· 

The vector-spinor theory is examined to find whether there. 

are any Kronecker-delta terms in the angular-momentum plane or; in 

other words, to find whether all particles are on Regge trajectories~ 

It had previously been ·shown in lowest-order perturbation theory that 

a remarkable cancellation resulted in the vanishing· of the Kronecker- i \ 

delta term from the spinor channel. This conclusion is re-established 
. .. 

I 
I 

by general reasoning which is independent of perturba~ion theory. The 

channel with the quantum numbers of the vector particle is examined, and 

here there is no cancellation. The vector particle is not on a Regge 

trajectory. It is cor-eluded that the absence of Kronecker .. delta terms. 
I 

l' I 

in the. j-plane may still be used as a criterion for a "bootstrap" system~ .. ' 
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I d. JNTRODUCTION 

When scattering amplitudes calculated by Lagrangian field theory 
:' 

\ are expressed as a Regge representation, it usually happens that the 

' .. 

representation must be modified by the addition of polynomials in z , / 

_the eosin~ of the .scattering angle. A polynomial P ( z) will only . n 

affect the nth partial wave and will therefore leave the Regge contin-· 

uation. a(.t, s) unchanged •. The existence of such a term will mean however 

that the function a{.t,.s) is not equal to the physical partial wave at 
. . 

.t = n ·. • In other words, the Regge function will have a "Kronecker-delta" 

singularity at .t. = n it\ it is to represent all physical partial waves 

correctly. Since the channels. in which the Kronecker-delta singularit.ies 
' 

occur depend on the el&mentary·particles in the Lagrangian, the existence 

of such singularities has been suggested as a criterion for determining 

which particles are elementary. We shall see that one cannot obtain a 

criterion for determiQing unambiguously in all cases whether a particular 

channel possesses elementary particles. However, we shall be able to · 

determine whether a theory has any elementary particles or, ~in other words, ... 

to obtain a criterion for a "bootstrap" solution. Such a solution '?ill 

• be one in which there are no Kronecker-delta singularities in any charinel. 

Kronecker-delta singularities occur in the following instances: 

1. If a theory has an elementary particle of spin a , a .Kronecker

delta· singularity will occ'ur at . j = a in the channel with the quantum 
l 

' .. 

. f 

. : '~ 

.. ,._ 

numbers. of the elementary particle. To show this we need merely consider · · ··· · ·' ' · 

the integral equation one .has to solve to obtain the scattering amplitUde • 
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Generally the "potential" will be an anlytic function of j , so that 

~e can hope to pr~ve that the scattering amplitude is a meromorphic 

\ - function of j • · When there· is an elementary particle of spin a , 

hoW-ever, there will be .a term in the integral· equations vhich affects · · i 

only the partial wave j = a . • The integr-al equation for this partial 
~.. ·,: 

wave does not therefore have the same analytic form as the integral 

equation for the other partial waves, arid the 'scattering amplitude for ·' 

j = a . will not be equal to that obtained from other values of · j by 

analytic continUation. There is thus a Kronecker-delta singularity at 

j = C1 . •. 
, I 

2. In a theory_ with two elementary particles of spin a1 and 

~ Kronecker-delta singW.arity will occtir at ·. j = a1 + a2 - 1 in the · 
. . i 

:·channel with .qus:nt'lim ''ntimbers equal to the sum of the quantum nuni.bers bf .. · . ':' ·~ . . . 
2 ! . 

. the elementary particles. The reason· for this· singularity is the pre-
1 

sence of unphysical. or "nonsense" states. If we expand the scattering 

amplitud~ :in. orbital angular momenta .t,, the smallest possible value of :-- ·. 
.... ~ ; .. ,.. ; 

At j = a1 + a2 - 1., there will thus be a state . .'\' '·. ·' 

with t = - 1 If we first consider the equations for the scattering · .. 
.. ·· ., 
~ ~"'.:- ... · . 

. . amplitude at high values of j ·and then continue to j = a1 + a2 - 1 , · · 
. · ...... 

the nonsense state will ·be coupled to the physical state. In the equations ./ · 
'• '. 

for.the correct physical scattering amplitude, however, the coupling to 
. . . 

•-:· 

the nonsense state .should not be_included. Thus, the Regge continuation 
, ••. f •• · 

\ .. ... f ' -
. \ of the amplitude to j = a1 + a2 . - 1 will not be· equal to the physical . _ '· 

partial-wave a~plitude at. this -value -of. j • ' 
·.·.··· .. ". 
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·Gell-Mann and Goldberger3 ha~e rai~ed the· question whether 

there might be cancellations, so that the Kronecker-delta singularities 

\ · would not occur at the positions' just ~tated. They have suggested in 

·' , .. 

'.· 

. particular that the cancellation might occur in a theory of nucleons / 

interacting with vector mesons, and that the singularity might be 

abserit from the chB.nnel·with the quantum numbers of the nu:cleon. Such 
.. . ·-----~--

a channel has both an elementary particle (the nucleon) with a = _ ~ . ·;. 
~ 

and a pair of elementary particles (the nucleon and meson) with 

1 a1 + a2 - 1 = ~ The suggestion of Gell-Mann and Goldberger has 
4 . . 

been examined fur~her, and a factorization crite~ion has been given 

for the cancellation to occur. 
\I 

When the criterion was applied to the 1 ; 

nucleon channel of the•spinor-vector theory, it was found that the can-. 

cellation did indeed occur in the lowest order of perturbation theory. : _ 

In other words, the nucleon lies on the Regge trajectory in lowest order. 

The cancellation can only occur if nonsense channels are present, but 

it certa~nly does not always occur in such cases •. For instance, it does 

not occur in the theory of scalar "nucleons" interacting with vector 

mesons. 

The f~ct that the lowest-order perturbation amplitude in the 

vector-spinor· theory_ satisfieci· the factorization· ?rit'erion 'appeared to· 

be somewhat of a miracle. The perturbation terms were just such as to ·. 

' ; 

.. ·. 
produce a Regge behavior (without a Kronecker-delta singularity), but· r· · 

no deeper reason for this was evident. It is the aim of the present 
. ' 

paper to show ~irectly, without· detailed cal.culation, that there is no 
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Kronecker-delta singularity at j = ~ in .the nucleon channel. We '•: 

.. shall thus be able to confirm the conjecture of Gell-Ma.nn !:! ~that · 

the cancellation of the Kronecker-delta singularity·is not confined to· 

'·, 

the lowest order o~ perturbation theory, but is general. I 

We shall also examine the channel 'With the quantum nunibers of 

the vector meson in the vector-spinor theory. There is of cOUrse an· elem- · ' 

entary particle in this channel at j = ·1 and, while there does not 

exist a pair of particles with a1 + a2 - 1 = 1 , there exists a triplet 

of particles, namely three vector mesons, '\Yith ,0'1 + 0'2 + 0'3 .. 2 = 1 • 

It has therefore been suggested that the cancellation of the Krone.cker-. 
:I 

delta singularity might occur in this channel as well. The theory·wo~d 

then be free of such singularities. We shall find, however, that the 

singularity is in fact present. We shall make the approximation of 

neglecting intermediate states with more than thre~ particles, but .such 

an. approximation apprear to possess all the essentials of the problem. 
. ·-

!The characteristic feature of the nucleon channel in the vector-

· spinor theory is that the diagram Fig. l(a), 'With a one~nuGleon intermed-

. \ . 

iate state,. cannot exist by itself' but must be taken together 'With Fig. l(b). :. ,, 

·Either of these. diagrams r 
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~ ;. ' . 

.· .. · ' 

i t-.., 

' ,· .. ·j.'.: I· 

.; " .·.··' 
,· ~ . ·, :/. 
i ( . ) ..... 

·.· · ... ::, :: :: 'b . ' . ' 
• • • • 1 

(c) (a) 

Fig. 1. Lowest-order perturbat~on diagrams in the.nucleon 
meson .channels. ·. · ' 

on vector-

·• ".'t 
4 .• .\·.. • ' : 

··_.'· 1''\ .. i.' '· ·, ·,,. • ... 
' . . .. ' '' ' ..... ';_, ' '· .. ' .. /.< :;;.:.,<:·~:' ..... ·,, . .;-: 

~- .. _.:' '·, .. ~~-~- .!· ... ;.' ! '":' •. ~ • ,.,. ' 

-~. ,•,_ ::·~· ~~ ·1 •• ~ ... 
; • . .·• ' ' • . t . ;,1_.~ : . . ' ... 

''• ' 

·,,_ 

'. I. 

'•· 
'f 

. ... · .. · .. 

,f ..... 

•. 

. •, ' . ~ 

., .. '' 
. . . . . ' 

;; . 
.. ·.
·,. 



\ 
I 

• 

.,.. ...... . 

I 

' .. 

·. 

·-5- t'. ~ • • 

taken separately would give an amplitude whose asymptotic behavior ~s 

in conflict with unitarity. Stated more loosely, . the' individual diagrams; 

are not gauge invariant. The vector-meson channel does not have this· 

feat'ilre •. The diagram Fig. l(c) is gauge-invariant and can certainly 

exist alone. It had been suspected that this difference between the 

nucleon and meson cha~ls might lead·to a difference in. their Regge 
, . : 

.••• • .• '· • f • 

'ber...a vi or I . and-· we shall"\Jhow that such is the case. We should emphasize, 
,... ·. t. . '. .. 

·.however, that the necessity of' adding a,diagram like Fig. l(a) to one 
i 

like Fig. l(b)' does not in itself' guar~ntee a Regge behavior. One 

must compare the number of threshold conditions with the number of free 
. . !! 

parameters in a partial-~ve integral equation. The scaler-vector theory 
. I . 

'·· 

also has a diagram Fi~. l(b) which goes with_ Fig. l(a), but it is not 

Reggeistic. 

From the remarks made in this section, 'it is clear that one 

cannot use the Kronecker-delta singularities in the j-plane as a 
. ; 

universal criterion for distinguishing elementary from non-elementary;·' 

particles. Even in theories without vector mesons one cannot obtain 

an unambiguous criterion. If a theory has elementary :f'ermions of spin 

• ~ ; for instance, one cannot use such a method to test :f'or the 
. , 

existence of an elementary particle with·spin zero in the two-fermion 

channel. This channel has a pair. of particles, the two fermions, with 

a1 + a2 - 1 = 0 1_ and. there will therefore be a Kronecker-delta sing

ularity whether or not there_ is an elementary particle present. One 

can still use the criterion to test whether there are any elementary 

,. 1 •• •• -1 
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particles present in a theory~ The· vector-spinor system does not 

· provide a counter-example, since there is a ·Kronecker-delta singu

larity in. the meson channel even though there is no such singularity 

-in the nucleon channel. ' 

II·. THE BEHAVIOR OF THE :J?OTEN1!IAL AND OF· THE SCATTERING .AMPLITUDE ·. · 
! . 

/ 

• ... '0 

NEAR j = al +· a2 - 1 

Before treating our problem it: will be necessary to review ·· 

some properties_ of the amplitude in the j-plane near j. = cr.1 + a2 ,.. l • 

We write the scattering. amplitude as 

... A = ·AL + AR 
'(:2 .1) 

where 
.L R 
A is the integral over. the left-hand cut and A the integral 

• 
over the right-hand cut. 

. L . 
In general we would know A , eith~r 

explicitly or from a previous iteration, and we would then find AR_ 

by unitarity. 
L , . 

We shall refer to A as the "potentail" and shall 
·(. 

denote it by the symbol V • We shall use the subscripts. s 
i 

~to denote sense and nonsense states. 

When the angular momentum . j · approaches the value 

and n. ;. 
r- ~; 
t.' 

(11 + 0' . -1 ,. 2 . 
.~ 

the matrix elements of the potentia~ will behave as follows:· ·- .. 

..... 

r· 

> . 

. V -+ finite ss 

, ... ·· .. !, ., : .. ·.-·. V ~ ·. b/ > ... /(j · •. a1 -: ·.a2 -+l) 
-~ . .-~t-·"·' · ·1t\' · sn . ., .. :· V. . . 

. ' ! . 

·-··. ·:·.··.; '.• < ,,..•, I 

. :·.· .. 

. ) · . ..:- ;·':· ~--'.:'. ' .: 
:, : ~ . 
~ . ' . . · :· 

l:_.··. :\!' 

; ·.t 

. ··~ 

:,·\ . 

•. 

': ;~. 

.• . .. ·; 

,· .. ·. 

: · · (2.2a) 

(2.2b). 

(2.2c) 

(• ~ .~I .,. • - ' 

: .'' .~~ ': '•' I 

-·.,, 
. . ~-~ 

·, ·. 
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,. 

.'•. 

• 
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. ·., .. 

The pole in the element .V arises from :the fact that a nonsense nn 

amplitude involves a value of t equal to - 1 ( or another negative 

· .. ·.; 

,' 

.. · ... 

integer). We recall that the Froissart·Gribov formula for the analytically·· ... 

. ~·· .. -

, . 
. continued amplitude contains the .function Qt 1 which has poles when t . -: 

• is a negative integer. The sense·nonsense amplitude will also include 

a factor Qt with · t = .. 1 but, on the other hand, such an amplitude 

always has a factor -y-{J - a1 - a2 + 1) from the Clebsch-Gordon 
.. 

coefficient, and this factor vanishes at the integer in question. Thus 

Vsn only has a factor .-v-{j - a1 ·- o-2 + 1) in the denominator. 

If we examine 'th~ unitary scattering amplitude instead of the 
II 

potential we must bear in mind that each matrix element of' the scatter,ing 
' 

amplitude will be boun<ied by uni tari ty. The square-root branch point at 

j = a1 + a2 • 1 will stiU be present1 ·'so the amplitude ·wilFhave the 

behavior 

·•. 

,·. 

~, : . 

..• ': 'r. 

': ~ : ' :. 
.· ... 
'" 

·. {2 .'3b) >. ~<: ·, 

· , Equations {2 .. 2). a~d {2 .3) indi~at~ a diff'eren~e between the b~hayior of' .' 
. J . • ' ~ ' 

the potential: and the unitary scattering· amplitude near. j. = a1 + a2 .;. 1 .• 

'!.' 

• I ,. 

A question closely rela~ed to the singularities of' the potential 

is th~ behavior of the Regge trajectories as the coupling is turned on. 

In a theory without spin, the leading trajectory begins to move from the 

. · valu~ j = - 1 as the coupling· is increased. .If1 however,· there is a 

.4·· 
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nonsense channel at j ..; n 1 _where· ·n '.is a positive integer or zero, 

a trajectory will move from j = n • This· is an immediate consequence 

of the pole in the potential-at j =·n since, when the coupling is 

very small, the scattering amplitude must be almost equal to the potentia~ 

and must have a pole very near j = n • Similarly, if there are r. non-

sense channels at j = n 1 there will be r separate poles in the pot-

ential at j = n 1 so that _ r Regge trajectories will move form the 

· value j = n • In general, there will not be particles or resonances 

at the points where these trajectories cross the lines j = n , because 

the physical partial waves at. j = n are. not given by, the Regge function. 
I, 1! 

In the exceptional case of Gell-Mann et al.·, however, the nucleon w;i.ll,; 

lie.at the point where-the trajectory crosses the line 

III. THE PHYSICAL PARTIAL WAVES COMPARED WITH THE RIDGE CONTINUATION 

Before we·treat the spinor-vector system, let us examine a 

general Thannel which has a pair of elementary particles with spin a1: .. 

. and a2 1 and in which the special features of the spinor-vector system 

are not presen~. We shall compare the. correct physical partial wave at. . · · 
. '·.' ~· 

) . ~ a1 + a2 ~ ~ with the Regge continuatio~ and shall investigate h~ , _ .. 

they differ. ·We. shall find that the effect of the coupling to the nonsense>. · 

states can be replaced by a fictitious elementary particle. In § 4. we .. 
' ~. 

;, :..._. 

sh:all apply this result to the nucleon channel of the vector-spinor the6ry, ._·. · '> 
and shall d~uce the ~esults stated in·§ 1 •· 

The scattering amplitude can be determined from the potential, 

by solving the integral-equation ,·.·; .·· •' 

-·----- .... ------------------
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·:--·9---~-.-~(~,- ... __ 
. ~ : . 
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.··.- ·--·· 

· .. ·, 

1 •r-_ · 

. ' . -. ); _: 

I_ '~ f ' ... • f · 

k(s )N(j, s ) · 

(;.ia) '· .,·-
;: 

•I 

= i ·.- ..!.:. f. ds' · -L·k(s' )N(. 8') . 
• _ 1C . . s' -s . . 

. . 
(;.lb)" \.· 

· where k is a kinematic factor. The quantities N , D , and V will 

be matrices of order equal to' the number· of channels. If' we are, cal.:. · 

culating the physical partial wave we must include only the sense 
. .· 

channels, whereas we must include all channels for the Regge continuation. 
. ' 

. \ 
'/ . 

. Since the matrix elements of' V · involving the nonsense channels are \ i 
' 
' 

certainly not zero, the. physical partial wave will differ from the Regge ,'''I 

... 
. continuation. 

To investigate the matter further, we shall examine the conditions .·· 

. which led to Eq. (; .1) •. The equation is a consequence of the following 

three requirements: 
I 

. i). Analyticity 

ii) • Uni tarity ''· 

iii) • The choice of the lowest C. D •. D. · sol.ution, . . 

and we must determine whether·these conditions when applied to the 

' 
physical partial wave are 'different from when they are applied to the 

Regge continuation. 

The anaiyticity requirements (in the ·a-plane) for the physical.· 
I .. 

· .. _. 

·partial· wave: and the Regge continuation are of course identical. The~ 

unitarity equations are 

~ ... · 
' '~ ' •. j, 

. ;.· ... -
: ,. 

' .. 
···' 

. •. 
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·:;'' 
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·* ... ImA kA A.,··. 

ab·= ac .cb 

~ ' ' ' •~' • .'' I • 

• •. l ~ . 

(3.2) 
t -~--·· 

where the summation is over sense intermediate states c in the ./ 

physical partial wave, and over.sense and nonsense intermediate states 

c in the Regge continuation. We have already seen however that the 

scattering amplitude between a sense and a nonsense state is zero 

(Eq. (2.3 >] • - If, therefore, a and b are·sense 

~tates, the summation ? need be taken over sense states alone, even in 

· ·. ··the Regge continila.tidni. ·The unitarity condition for the physical· partial· 
'. !i 

'I 
! ; wave is, therefore, the same as for the Regge continuation. 

! 
The differencQ between the physical partial wave and the Regge 

continuation mus~ therefore, lie in the C. D. D. ambiguity. We have . 

mentioned in § 1 that r Regge trajectories start from the value j = n 

in question, where r is the number of nonsense states. For very small _ 

coupling~ same or all of these trajectories may pass through the value 

j = n at a particular value of s • The solution of the equations for 

f·' 

'· ·, ./-

the coupled sense and nonsense states wiD: have particles or resonances ·- .· · 

' ,, 

,at this· value- .of s • If, therefore, we take the solution and examine 

only the sense states, which we have seen to satisfy the unitarity 

equation among themselves, we maY: find that they represent any C. D. D. 

solution up to the (r + l)th • 

~e may ask whether Levinsohn's theorem does not forbid the 

higher c. D. D. solutions if elementary particles are ~ot introduced 

•' ·' 

'. 
•' ' 

•', ·' ' ' 

,• 

. .~ 

, I , 

-1. ,. 
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.'~: : . .- · .. :; ·: ·/ •: r --.· ·_,. not the · Regge continuation. · ~e ·oc:>Uld also apply Levinsohn' s theorem .-. ; 

·;~t'!:;0:\·5i~;·g;~jyto val~e~ ot j otber ~ban J • n , and then proceed to j • n by , ··. ;.; • :• 
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·. :·,· .. :.-:--:• ·:~~:·<:!,~·;:<:·;:in the. Regge continuation. Thus, if we solve the equations tor the ·· ,. 
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;: .'
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,' \),,.;;,":f~~ih•~u~ion, . we may find t~t it is a higber- c. D. D. solution, even it .. >> , 
· 'j, :, ·:._.:i:;": elementary ;particles ba.ve not been introduced into the calcula.tion. .. .. 

. :~;. ' .-, .. -~~:·_:~-~- . .... . . . . , .. ;·, .. 
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' ':'J.. To summarize,· the sense states of the Regge continuation· may 
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L. 
I' 

: ~ \·~ . . ·. 
\:_represent a.ny of the c. D. D. soiutions up to the (r + l)th '-where· 

,"' : ~ . . 
.· .. ' 

·, ~ ·... ~ '. ' ., ... 
f ... ~i ,' !i 

f.'t 

'r . is the number . of nonsense states. · In other· words_, there may be up 
. . ·. -:- ::;: :::;::.·;. 

.. :. 
'· .! . 

\to r + 1 fictitious elementary pai-ticles in the sense states of the 
:: 

•· . 
. . '. . ., ' -~ --~-.. . ....... ·. 

~ . t. 

' . '. 
-~ ._;· 0: ·.: ,·· 
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. · ....... -::· . ·' . 
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tv. THE NUCLEON CHANNEL JN THE VECToR;.SPINOR THEORY. 

For the nucleon channel of the vector-spinor .theory, the : 

ab~ve results must be supplemented by olir. knowledge that the _parameters 

associated with the elementary nucleon cannot be varied arbitrarily. if 
~ . 

-~: .·:. • • .: • • ' f • ••• • • 

the analyticity-unitarity equations ·are to b~ soluble. We have pointed 
. . ' 

.• : ...... '.- . 

out ~ha~ a poten~ial represented by Fig. l(b) has an asymptotic-be-
.· ... · .......... . 

havior which violates the_ unitarity·limit1 and that the equativns will 

not be soluble :unless Fig. l(a) is also included. Further, the 

' !. 

·.:··· 

. _,· 
' .... 

v· 

' . _.; ... 

param~ters: associated-wit~.- Fig. l(a) cannot b'e varied arbitrarily if . 
.. . 

the_ asymptotic behavior of. the terms associated with the two diagrams!! · · ,, 
I 

I 

is to cancel. The question, therefore, arises whether the parameters·'·. 

associated vTith Fig. l(a) , i.e. , the position and residues of the. ' · 

·.pole, can be varied at all without destroying the cancellation.between 

the two diagra!Yls. If treycannot, ~- may conclude -that the pS.rameters 

associated :with the real elementary particle in the physical partial.· 
i 

wave are the same as those associated with the fictitio:us elementary · 

....... 

::-
· . .s: . . -

.•··. particle in the Regge continuation. The two.aniplitudes then cannot 

differ:, and there will be no Kronecker-delta term in the j-plane. If 
1..; 

. on· the other hand,. we may vary the parameter,s asso9iated with the elemen;.. ., 

tary particle and still obtain a cancellation between the asymptotic 

behaviors, we can~ot conclude that the Ktonecker~delta·term must vanish. 

We shall'proceed to investigate this question by examining the 
. . 

• dispersion relation foJ;" the par~ial :waves. For simplicity we shall 

confine ourselves· to the ~qml-mass ca.se •. We· shall. f-ind .that ·the 
~ . . ' 

·r: J.· 

.·, 
.::··. . ,·· ... ' ·. ·.~- ' .. 

·' ·:. '"·. 
rO, .~ I ' . ~· ' 

~-· : . ~··:. ·····: .. , 

. ~. ' . ·.-:! 
i 

·j .· •• 

.. ~:' .-: -~-

• ·(' j <: .· .. ·<.:.i: 
; .. ~· 

' .. ~ .. ,. 

! . 

·. ~· .. ~· 
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parameters cannot be varied in the vector-spinor theory but that they 

can in the vector•scalar theory. Our reasoning will not depend upon 

\ the precise value of the discontinuity across the left-hand cut, so 

th.S.~ we will not be limited to an input correspond-ing to Fig. l(b). 

The conclusions are, therefdre, independent of perturbation theory. 

The partial wave of interest is that in the nucleon vector-meson 

channel ·with j = ~ and positive parity. There are two sense states 

and one nonsense state involved: 

Sense: s = _]__ 
2 

t = 1 

s 1 t 1 = = 2 

Nonsense: s = _]__ 
2 t = -1 

The variable S is the total spin, t is the orbital angular momentum. 

When we write down partial-wave despersion relations in a channel with 

half-integral spin, we have to take w , the square root, of s· , as out 

variable, otherwise, the amplitudes will contain kinematical singularities 

at s = 0 . On going from w· to -w , the partial waves will go into 

linear combinations of the partial waves with the same value of j but 

with opposite parity. The possible states are then: 

Sense: s = _]__ t = 2 Nonsense: s ::: 
_]__ t· = 0 

2 2 

s 1· 
,f, 0 = 2 

We now have to investigate the threshold and asymptotic be-

havior of the partial waves. We shall normalize the partial waves so· 
• I . 

that the unitarity condition conlitins a factor 
i \J 

where is the 
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centre-of-mass momentum. The amplitudes will then be free of kinematical 

singularities at w = 0 (in the e~ual-mass case). There will be three 

\ sense-sense amplitudes corresponding to the two sense states, and they 

will all have a constant asymptotic behavior .at infinity. At the 

thresholds w = 2m (for positive parity) and w = 2m (for negative 

parity) they will have the behavior: 

w = 2m. 

w =2m 

All three waves are P-waves , which qehave l~ke w = m 

DD "' 
2 (w + m) 

DS (w + m) 

SS "' const. 

If w~ set up an N/D caiculation for the sense states with a given 

left-hand cut, we can put in three subtraction constants corresponding 

to the constant asymptotic behavior of the tr~ee partial waves. On the 

other hand, we have six threshold conditions to s·,~·.;isfy. We therefore 

I 
have too few parameters available and unless the left-hand cut has 

special ·features, we shall not be able to solve the problem. 

We can overcome this difficulty by introducing an elementary 
; 

particle into the channel. As there are two sense states, we shall 

have three further parameters at our disposal, and we can just solve the: 

problem. None of the parameters will be free, they must all be given 

particular values if the threshold behaviors are to come out right. This 
~·· 

conclusion cannot be modified by assuming the left-hand cut to have special -. 
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features. The N/D :equations for the proplem with an undetermined 

elementary-particle pole are linear integral equations with no free 

\
1 

parameters and, therefore, have a unique solution, the case where the 

homogeneous equation is soluble being easily accounted for. With suit-

able 1elf-hand cuts the residues at the pole could turn out to be zero, 

though this does not occur in .the problem under consideration. The 

equations would then be soluble without any elementary-particle pole, 

but it cannot happen that the equations are soluble with a variable 

elementary-particle pole. 

We can now conclude that the physical partial wave must be 
: 

identical with the Regge continuation in the nucleon channel. The '\ 

physical partial wave has one elementary particle, and the Regge con-

tinuation has one fictitious elmentary particle which replaces the 

effect of the single nonsense state. Since we have just proved that the 

parameters associated with a single elementary particle are fixed by 
, 

the threspold conditions, it follows that the parameters associated with 

the real and the fictitious elementary particle must be the same. The 

physical partial wave j_s thus identical with the Regge continuation. 

We can also treat the scaler-vector problem, and we shall-examine 

the amplitude for the scattering of scalar particles by vector mesons. 

In the positive-parity state with· j = 0 there is one sense state (t = 1) 

and one nonsense state (t = -1) • The sense state must have a constant 

asymptotic behavior at infinity and must satisfy one threshold condition. 

The N/D integral equations are thus.soluble without any free parameters 

whatever the position and residue of the elementary-particle pole. The 
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parameters of the elementary particle are not determined by the re-

mainder of the problem, and the Regge continuation need not be the same 
' ~ 

as the physical partial wave.5 Such reasoning does not of course prove 

that the two amplitudes will not be equal, but direct examination shows 

that they are in fact unequal. · 

V. . VECTOR-MESON CHANNEL IN THE VECTOR·SPINOR THEORY . 

We have. remarked that there is no correlation between diagrams 
~ 

in the vector:--meson channel ana~ogous to that between Figs. i(a) and 

l (b)· -in the nucleon channel. The arguments which we have given above 

for the cancellation of the Kronecker-delta term in the nucleon channel 
:l 

I 

cannot, therefore, apply here. We now wish to examine the amplitude in 

that channel in order to show that the can:cellation does not occur and 

that there is a non-Regge term. 

We have already mentioned that the simplest intermediate state 

which might Reggeize the vector meson is the three-meson state. A 

complete 1treatment of the problem will, therefore, require a knowledge 

of complex angular momentum in the three-body systems. It is hoped to 

give a discussion of that topic in a subsequent paper. In the present 

paper we shall assume some general results concerning the three-body 

problem, and shall then show that there is a Kronecker-delta term in the 

vector-meson channel at j = 1 . 

We first summarize some results of Ref. 4 It is shown 

there that the potential has the following behavior in the j-plane 

near j = n , where n is an integer at which non-Regge terms occur: 

..,-., 

... 
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V = -a8 .. ; ss ss 

vmi - c/ (j - n) 

(5.1) 

The quantities a , b and c are independent of the· energy. If 

there are several sense and nonsense channels, a and·· c will be ., 
square matrices, b a diagonal .matrix. We note· that the type of sing-

ularity in the sense-sense amplitude is completely different from that 

in the nonsense amplitudes. In the sense-sense amplitude it is a Kro
\1 

necker-delta term, and,it may arise from diagrams such as Fig. l(a) ' 

pr Fig. l(c) which affect onii one value .of j. • In the nonsense 

amplitude it is an infinity, and it arises from the fact that the 

fUnction Qt has a pole when t is a negative integer. 

Gell-Mann et al. showed that the Kronecker-delta term in the --
scatteritig amplitude cancels provided that 

T -L 
a= b co 

. (5.2) 

They did not show conclusively that (5.2) was a sufficient condition? 

as there were some uncertainties regarding subtraction terms in dispersion 

relations. However, (5.2) was definitely a necessary condition, and it 

was obtained from the factorization property of residues at Regge poles. 

Note that (5.2) provides a separate equation for each'sense state, so 

that we may examine only those sense state which are convenient if we are 

. t 
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trying to prove that the eQuation ~s untrue. On the other hand, the. 

~Quation involves a sum over all the nonsense states. 

~inite matrices, and the QUestion arises whether the expression -1 
c 

has a meaning. We hope to show in our subseQuent paper.:on the three-

body problem that the operator c only spans a ~irtite number o~ the 

three-particle states, even though an in~inite number o~ three-particle 

states exist (at given values o~ s and j ). Thus the eQuations (5.1) 

remain ~inite matrix eQuations • 

. Let us,· there~ore, investigate a nucleon anti-nucleon sense 

state and the three-meson nonsense states. The potentials Vss and 

·V will be given in lowest order by Fig. 2(a) and 2(b) sn Since 

they are 0~ order g2 and g3 respectively, 

Figure 2. .Perturbation diagrams in the vector-meson channel.· 

the potential vnn will have to be 0~ order g4 i~ (5.2) is to hold. 

The only diagram o~ order 
4' 

g ~or the process 3 mesons ~ 3 mesons is 

the disconnected diagram Fig. 2(c) , and it has been suggested that this 

diagram might provide a contribution to c in· (5·.1:) which ~ul~ills the 
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'6 (5.2) . 
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We can conclude, however, that th~ diagram Fig. 2(c) does 

', not provide a contribution to the quantity c in (5.1) • Let us take 

as our angular variables the helicities ~ and ~' of the incoming 
I 

system AB and of the outgoing system A'B'. , together with the total 

angular momentum j The angle corresponding to j will be the angle 

of scattering of C • The scattering amplitude will then contain a factor 
., 

B(z) , so thB.t its angular-momentum projection will be BAA. 1 , which is 

independent of . j . This diagram, therefore, has no pole at j = l , 

and it will not contribute to the quantity c of (5.1) • 

We can see in another way that the potential represented by !I 
\. 

,' 
' 

Fig. 2(c) cannot give l;l. contribution to the quantity c • Fig. 2(b) , 

together with repeated iteration of Fig. 2(a) , would give ·Fi~. 3 . 

Figure 3. A diagram obtained by iteration of those in Fig. 2. 

Now the reasoning in Ref. 4 shows that repea:bed iteration 'of the potential 

diagrams must give increasing powers of the logarithm of the momentum 

transfer if they are to result in cancellation of the Kronecker-delta 
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·term. However, Fig. 3 was precisely the type of diagram considered 

by Mandelstam7 and, by a slight variation of the arguments used in §2 

\ and Appendix I of·'the;t paper, it can be shown that the· increasing powers 
' 

of the logarithm do not occur. 

Our conclusion is, therefore, that there is no contribution 

to c of order 
4 

g , so that the Kronecker-delta term in the vector-

meson amplitude at j = 1 is not cancelled. As a matter of fact, the 
.. 

three-meson states do not give any pole in the potential at j = 1 at 

all, and c 2 is zero to all orders of g There is thus no Regge 

trajectory which moves from j = 1 as the coupling is turned on. We 

shall prove ·this result when discussing the· three-body problem. The 1! 

conclusions. of the pre~ent paper are of cour.se independent of the last 

assertion. 

~·. 

\... 
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FIGURE CAPI'IONS 

. "(' 
Figure 1. Lowest-order perturbation diagrams in the nucleon on 

vector-meson channels. 

Figure 2. P~rturbation diagrams in the vector-meson channel. 

Figure 3· A diagram obtained by iteration of those in Fig. 2 • 

• 

'· 
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