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Abstract: Lyme disease has been documented in northern areas of Canada, but the source of the
etiological bacterium, Borrelia burgdorferi sensu lato (Bbsl) has been in doubt. We collected 87 ticks
from 44 songbirds during 2017, and 24 (39%) of 62 nymphs of the blacklegged tick, Ixodes scapularis,
were positive for Bbsl. We provide the first report of Bbsl-infected, songbird-transported I. scapularis
in Cape Breton, Nova Scotia; Newfoundland and Labrador; north-central Manitoba, and Alberta.
Notably, we report the northernmost account of Bbsl-infected ticks parasitizing a bird in Canada.
DNA extraction, PCR amplification, and DNA sequencing reveal that these Bbsl amplicons belong
to Borrelia burgdorferi sensu stricto (Bbss), which is pathogenic to humans. Based on our findings,
health-care providers should be aware that migratory songbirds widely disperse B. burgdorferi-infected
I. scapularis in Canada’s North, and local residents do not have to visit an endemic area to contract
Lyme disease.

Keywords: Lyme disease; Borrelia burgdorferi sensu lato; blacklegged ticks; Ixodes scapularis; songbirds;
bird migration; northern Canada

1. Introduction

Lyme disease is caused by members of Borrelia burgdorferi sensu lato (Bbsl) complex, and this
spirochetal bacterium is typically transmitted to vertebrates by certain ixodid (hard-bodied) ticks
(Acari: Ixodidae) [1]. East of the Rocky Mountains, the primary vector of Bbsl is the blacklegged
tick, Ixodes scapularis Say, which is an ectoparasite of more than 125 species of North American
vertebrates (avian, mammalian, reptilian) [2]. This tick species commonly parasitizes passerine birds
(Passeriformes) and, recently, in eastern Canada, has been found parasitizing an American Kestrel,
Falco sparverius Linnaeus, a small-size raptor [3]. Historically, Scott et al. provide the first report of a
Bbsl-infected tick on a bird in Canada [4], and motile spirochetes were isolated from an I. scapularis
nymph collected from a passerine migrant on Bon Portage Island, Nova Scotia. Blacklegged tick larvae
and nymphs are known to feed on 81 bird species. In central and eastern Canada, Bbsl infection
prevalence for songbird-transported I. scapularis nymphs ranges from 31–35% [5,6]. Blacklegged ticks
are known to harbour at least 10 tick-borne pathogens, and engorging females may cause tick paralysis.

Worldwide, the Bbsl complex consists of at least 23 genospecies. In Canada, six genospecies have
been detected in ixodid ticks, and these genospecies comprise: B. americana [7,8], B. burgdorferi sensu
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stricto (Bbss) [9,10], B. kurtenbachii [11], B. lanei (formerly Borrelia genospecies 2) [12,13], B. garinii [9,14],
and B. bissettiae (formerly B. bissettii) [15–17].

Migratory songbirds are very mobile, and have exceptionally flight capability to transport
bird-feeding ticks long distances during bidirectional migrations. DeLuca et al. reported a Blackpoll
Warbler, Setophaga striata (Forster) flying 923 km/d during a 3-day, non-stop, overwater flight during
autumn migration [18]. In addition, Amblyomma species ticks (A. americanum, A. dissimile, A. humerale,
A. longirostre, A. maculatum, A. rotundatum) have been transported into Canada from as far south
as Brazil [4,19–21]. Previously, bird-feeding I. scapularis immature ticks have been reported as far
north and as far west as the municipality of Slave Lake, Alberta [4,19,21]. Furthermore, Lyme disease
vector ticks have been reported on spring passerine migrants as far north as Watson Lake, Yukon [21].
Here, we present the first records of Bbsl-positive I. scapularis in several northern regions of Canada;
these findings demonstrate the wide geographic dispersal of Lyme disease vector ticks by migratory
songbirds in northern latitudes of North America.

2. Materials and Methods

2.1. Tick Collection

Ticks were collected from songbirds by bird banders, wildlife rehabilitators, biologists, citizen
scientists, Fatal Light Awareness Program staff, and the public who captured and rescued songbirds
at 12 locations from Alberta to Newfoundland and Labrador (Figure 1). Fine-pointed, stainless
steel forceps were used for tick removal. These ticks were placed in vented vials and, then,
placed in ziplock plastic bags with slightly moistened paper towel, and sent directly to the lab
(J.D.S.) for identification. Tick species, developmental life stage, and extent of engorgement were
determined [22–24]. Live, fully engorged ticks were held to molt in a special housing unit with 95%
humidity. In late summer, when daylength shortened, we used a full spectrum light bulb (FC LifeLite,
LED 12W) on a timer for an extended photoperiod of 16:8 h. (L:D).
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Figure 1. Collection sites across Canada where ixodid ticks were collected from songbirds, 2017. (1) 
Grand Bank, Newfoundland and Labrador, 47.10° N, 55.75° W; (2) St. Albans, Newfoundland and 
Labrador, 47.86° N, 55.84° W; (2) Middle River, Cape Breton Island, Nova Scotia,46.19° N, 60.92° W; 
(4) Ste-Anne-de-Bellevue, Quebec, 45.40° N, 73.95° W; (5) Toronto, Ontario (Tommy Thompson Park 
Bird Research Station), 43.63° N, 79.33° W; (6) Toronto, Ontario (Fatal Light Awareness Program), 
43.63° N, 79.42° W; (7) Ruthven Park, Ontario (Cayuga), 42.98° N, 79.87° W; (8) Long Point, Ontario 
(Port Rowan), 42.52° N, 80.17° W; (9) McKellar Island, Ontario (Thunder Bay), 48.19° N, 89.13° W; (10) 
Swan River, Manitoba, 52.11° N, 101.27° W; (11) Saskatoon, Saskatchewan, 52.13° N, 106.67° W; and 
(12) Peace River, Alberta, 56.23° N, 117.29° W. The locations in parentheses represent mailing 
addresses. 

2.2. Molecular Tick Identification 

In order to confirm the identification of a representative tick (17-5A8), 8 legs from this tick were 
barcoded at the Centre of Biodiversity Genomics (CBG), University of Guelph with accession number 
BIO-17-124. The sample ID is: BIOUG35422-H11. The DNA extract is being held at −80°C at the same 
location. The collection data and barcode sequence is stored on the Barcode of Life Datasystems 
(BOLD; www.boldsystems.org), and can be accessed in the BOLD dataset at: dx.doi.org./10.5883/DS-
IGAK. The nucleotide sequence has been deposited in GenBank with the accession number: 
MG521417. 

2.3. Spirochete Detection 

The ticks were divided into 2 lots, and sent to 2 separate molecular laboratories for Bbsl testing. 
In Lab F (J.E.F.), Bbsl DNA was extracted from ticks and tested for Bbsl via real time PCR (RT-PCR) 
using methods previously described by Barbour et al. [25]. We selected the PCR primer that was 
specifically designed to identify B. burgdorferi sensu lato. Sterile water was used for negative controls, 
and positive controls consisted of DNA from cultured Bbss. Samples were considered positive if the 

Figure 1. Collection sites across Canada where ixodid ticks were collected from songbirds, 2017.
(1) Grand Bank, Newfoundland and Labrador, 47.10◦ N, 55.75◦ W; (2) St. Albans, Newfoundland
and Labrador, 47.86◦ N, 55.84◦ W; (3) Middle River, Cape Breton Island, Nova Scotia, 46.19◦ N, 60.92◦ W;
(4) Ste-Anne-de-Bellevue, Quebec, 45.40◦ N, 73.95◦ W; (5) Toronto, Ontario (Tommy Thompson Park Bird
Research Station), 43.63◦ N, 79.33◦ W; (6) Toronto, Ontario (Fatal Light Awareness Program), 43.63◦ N,
79.42◦ W; (7) Ruthven Park, Ontario (Cayuga), 42.98◦ N, 79.87◦ W; (8) Long Point, Ontario (Port Rowan),
42.52◦ N, 80.17◦ W; (9) McKellar Island, Ontario (Thunder Bay), 48.19◦ N, 89.13◦ W; (10) Swan River,
Manitoba, 52.11◦ N, 101.27◦ W; (11) Saskatoon, Saskatchewan, 52.13◦ N, 106.67◦ W; and (12) Peace River,
Alberta, 56.23◦ N, 117.29◦ W. The locations in parentheses represent mailing addresses.

2.2. Molecular Tick Identification

In order to confirm the identification of a representative tick (17-5A8), 8 legs from this tick were
barcoded at the Centre of Biodiversity Genomics (CBG), University of Guelph with accession number
BIO-17-124. The sample ID is: BIOUG35422-H11. The DNA extract is being held at −80 ◦C at the same
location. The collection data and barcode sequence is stored on the Barcode of Life Datasystems (BOLD;
www.boldsystems.org), and can be accessed in the BOLD dataset at: dx.doi.org./10.5883/DS-IGAK.
The nucleotide sequence has been deposited in GenBank with the accession number: MG521417.

2.3. Spirochete Detection

The ticks were divided into 2 lots, and sent to 2 separate molecular laboratories for Bbsl
testing. In Lab F (J.E.F.), Bbsl DNA was extracted from ticks, and tested for Bbsl via real time
PCR (RT-PCR) using methods previously described by Barbour et al. [25]. We selected the PCR
primer that was specifically designed to identify B. burgdorferi sensu lato. Sterile water was used

www.boldsystems.org
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for negative controls, and positive controls consisted of DNA from cultured Bbss. Samples were
considered positive if the cycle threshold (CT) was <40, and there was a characteristic amplification
curve. However, for DNA sequencing, RT-PCR positive samples were re-tested to amplify a portion of
the conserved 41-kDa chromosomal flagellin (flaB) gene using primers described by Clark et al. [26].
The two primers for the flaB gene were: (1) Fla OutF: AAR-GAA-TTG-GCA-GTT-CAA-TC and (2) Fla
OutR: GCA-TTT-TCW-ATT-TTA-GCA-AGT-GAT-G.

In Lab C (K.L.C.), all extracts were also screened for the presence of Bbsl flaB DNA by using
nested PCR as described previously [13]. For verification of the presence of Bbsl DNA, flaB positive
samples were sequenced in both directions with forward and reverse primers used in the nested PCRs.
Representative sequences from positive samples were deposited in the GenBank database.

3. Results

3.1. Tick Collection

During 2017 (8 April to 3 October), we collected 87 ticks from 44 songbirds consisting of 20 bird
species (Table 1), from 12 sites across Canada from Alberta to Newfoundland and Labrador (Figure 1).
Of these ixodid ticks, 84 were tested for Bbsl. The bird with the most frequent parasitism by host-seeking
ticks was the Common Yellowthroat (n = 10) (Figure 2), and it was followed next by the Swainson’s Thrush
(n = 5). With exception of one location (Site 11), we obtained Bbsl-positive ticks from passerines from
all sites (Table 2). Although we recorded low tick numbers on passerines in Saskatchewan, all ixodid
ectoparasites collected in this province were the bird-rabbit tick, Haemaphysalis leporispalustris.
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Figure 2. Common Yellowthroat: (A) male parasitized by 3 I. scapularis nymphs, 17-5A42, of which
1 is not visible; all nymphs were positive for B. burgdorferi sensu stricto. (B) female parasitized by 2
I. scapularis nymphs, 17-5A39. Photo credits: Simon Duval.
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Table 1. Detection of Borrelia burgdorferi sensu lato in ixodid ticks collected from songbirds in
Canada, 2017.

Bird Species No. of Birds
Hlp Iaf Imu Isc No. Ticks No. Ticks

L N N L F L N Collected Pos/Tested (%)

Eastern white-crowned Sparrow,
Zonotrichia leucophrys (Forster) 1 - - 0/1 - - - - 1 0/1 (0)

Song Sparrow,
Melospiza melodia (Wilson) 2 - - - - - 0/1 1/1 2 1/2 (50)

Brown Thrasher,
Toxostoma rufum (L.) 1 - - - - - - 1/1 1 1/1 (100)

Northern House Wren,
Troglodytes aedon (Vieillot) 4 - - 0/1 0/3 - 3/5 9 3/9 (33)

Hermit Thrush,
Catharus guttatus (Pallas) 1 - - - - - - 0/1 1 0/1 (0)

Swamp Sparrow,
Melospiza georgiana (Latham) 1 - - - - - - 0/1 1 0/1 (0)

Ovenbird,
Seiurus aurocapillus (L.) 2 - - - - - - 0/2 2 0/2 (0)

White-throated Sparrow,
Zonotrichia albicollis (Gmelin) 3 - - - - 0/1 - 1/4 5 1/5 (20)

Northern Waterthrush,
Parkesia noveboracensis (Gmelin) 2 - - - - - - 1/3 3 1/3 (33)

Common Yellowthroat,
Geothlypis trichas (L.) 10 - - 0/2 - - - 8/17 19 8/19 (42)

Magnolia Warbler,
Setophaga magnolia (Wilson) 1 - - - - - - 0/2 2 0/2 (0)

Veery,
Catharus fuscescens (Stephens) 2 - - 0/1 - - 0/1 0/3 5 0/5 (0)

Gray-cheeked Thrush,
Catharus minimus (Lafresnaye) 2 - - - - - - 1/2 2 1/2 (50)

Swainson’s Thrush,
Catharus ustulatus (Nuttall) 5 5 † 1 † - - - 0/2 6/9 17 6/11 (55)

Indigo Bunting,
Passerina cyanea (L.) 1 - - - - - - 1/4 4 1/4 (25)

Mourning Warbler,
Geothlypis philadelphia (Wilson) 1 - - - - - - 0/2 2 0/2 (0)

Dark-eyed Junco,
Junco hyemalis (L.) 1 - - - - - - 1/2 2 1/2 (50)

Lincoln’s Sparrow,
Melospiza lincolnii (Audubon) 2 - - - - - - 0/3 3 0/3 (0)

Chipping Sparrow,
Spizella passerina (Bechstein) 1 0/4 0/2 - - - - - 6 0/6 (0)

Gray Catbird,
Dumetella carolinensis (L.) 1 - - - 2 ‡ - - - 2 0/1 (0)

Total: 20 species 44 14 3 5 3 4 4 24/62 (39) 89 24/87 (28)

L, larva(e); N, nymph(s); F, female(s); Hlp, Haemaphysalis leporispalustris; Iaf, Ixodes affinis; Imu, Ixodes muris; Isc, Ixodes
scapularis; †, none tested; ‡, one tested, one not tested.
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Table 2. Associations of Borrelia burgdorferi sensu stricto-infected Ixodes scapularis nymphs and songbirds
during northward spring migration, Canada, 2017.

Tick No. Geographic
Location Prov. Site Host GenBank

Accession No. Lab

17-5A4 Ruthven Park ON 7 Song Sparrow MG952944 JEF
17-5A6 Ruthven Park ON 7 Brown Thrasher MG958137 JEF

17-5A7B Ste-Anne-de-Belleville QC 4 Northern House Wren MG958138 JEF
CN17-5A32 Toronto ON 6 Northern House Wren MH290726 KLC
CN17-5A35 Toronto ON 6 Ovenbird MH290727 KLC
CN17-5A38 Ste-Anne-de-Bellevue QC 4 Northern Waterthrush MH290728 KLC

CN17-5A39-2 Ste-Anne-de-Bellevue QC 4 Common Yellowthroat † MH290729 KLC
CN17-5A42-1 Ste-Anne-de-Bellevue QC 4 Common Yellowthroat † MH290730 KLC

CN17-5A51A, C Swan River MB 10 Swainson’s Thrush MH290731–MH290732 KLC
CN17-5A62-2 Long Point ON 8 Indigo Bunting MH290733 KLC
CN17-5A74-2 McKellar Island ON 9 Dark-eyed Junco MH290734 KLC

CN17-5A77B-2, 3 Toronto ON 5 Swainson’s Thrush MH290735–MH290736 KLC
17-5A80A, B Peace River AB 12 Swainson’s Thrush MG967647–MG967648 JEF
17-5A81A, B Middle River NS 3 Common Yellowthroat MG967649–MG967650 JEF
17-5A82B, C Grand Bank NL 1 Common Yellowthroat MG967651–MG967652 JEF
CN17-5A83B St. Albans NL 2 Gray-cheeked Thrush MH 290737 KLC

† photos, see Figure 2.

3.2. Molecular Tick Identification

Using a taxonomic key [24], the preliminary identification of the nymph (17-5A8) was I. scapularis.
Likewise, the Ixodes female, following its nymph-adult molt, was I. scapularis [23]. The specimen
(TJSD017-17) was successfully sequenced for the DNA barcode region of COI, with a sequence length
of 658 base pairs. Comparison with the DNA barcode library using the BOLD ID Engine resulted
in 99.67–99.85% pairwise nucleotide matches to over 100 I. scapularis specimens housed in BOLD,
further confirming its identification (Figure 3). The barcode sequence is available at GenBank with the
following accession: MGS521417.Healthcare 2018, 6, x  6 of 15 
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package [27].

3.3. Spirochete Detection

Overall, 24 (28%) of 87 ticks tested were positive for Bbsl (Table 1). The Bbsl infection prevalence
for I. scapularis nymphs was 24/62 (39%). All of the H. leporispalustris and I. affinis ticks tested were
negative for Bbsl. Using the flagellin (flaB) gene, DNA sequencing revealed that all Lyme borreliae
belong to Bbss. The northernmost location where Bbsl-positive I. scapularis immature ticks were
collected from migratory songbirds was Peace River, Alberta. This locality is on the flight path for
many neotropical and southern temperate songbirds that breed and rear their young in the northern
boreal forest.

Blacklegged tick nymphs were collected from a Swainson’s Thrush, Catharus ustulatus, on 26 May 2017
at Swan River, Manitoba. The 3 nymphs molted to adults (1 male, 2 females) in 51, 55, and 59 days,
respectively. Both females were positive for Bbsl. When these 2 borrelial amplicons were sequenced,
they were characterized as Bbss.

Several B. burgdorferi-positive I. scapularis ticks were collected at Ste-Anne-de Bellevue, Québec. In one
particular collection, all 3 I. scapularis nymphs (17-5A42) from a Common Yellowthroat, Geothlypis trichas,
collected on 20 May 2017, were positive for Bbsl (Figure 2). Bird species that were parasitized by
B. burgdorferi s.l.-infected I. scapularis ticks collected in Québec include the Northern Waterthrush,
Parkesia noveboracensis, Northern House Wren, Troglodytes aedon, and Common Yellowthroat.
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Three fully engorged I. scapularis nymphs were collected from a Swainson’s Thrush on 27 May 2017
at Peace River, Alberta. They were held to molt to adults (2 females, 1 male) in 47, 52 and 55 days.
One female (17-5A80A) and one male (17-5A80B) were positive for Bbsl.

3.4. Spirochete Amplicon Sequences

We sequenced PCR-amplified flaB gene fragments from 21 of 24 Bbsl-positive samples,
and compared the sequences to those obtained via BLAST (Basic Local Alignment Search Tool)
by searching the GenBank database (Table 2). The sequences were trimmed to the same length
(367 nucleotides long) from base position 356 through to the base position 722 of the Bbsl flaB gene,
and compared to the reference strain B31 (sequence ID X15661 in GenBank). All of the tick-derived
Bbsl flaB sequences were between 99% and 100% similar to the B31 strain sequence with 0, 1, or 2
nucleotide differences.

4. Discussion

This study presents evidence of ground-foraging songbirds transporting Lyme disease vector
ticks to northern latitudes in Canada. We have documented Bbsl in Ixodes ticks parasitizing migratory
songbirds collected from Alberta to Newfoundland and Labrador. Some of these neotropical and
southern temperate migrants have wintering ranges in the Caribbean, Central and South America.
These long-distance migrants provide insights into how people in northern areas contract Lyme
disease. In this study, we detected a Bbsl infection prevalence of 39% in songbird-transported
I. scapularis nymphs which is slightly higher than previous bird-tick-pathogen studies that ranged from
31–35% [5,6]. Although Lyme disease vector ticks have been reported as far north as the Yukon [21],
we report the first Bbsl-positive Ixodes ticks parasitizing migratory songbirds in several northern
regions of Canada.

4.1. Photoperiod to Molt Blacklegged Ticks

When we obtained fully engorged I. scapularis larvae and nymphs from fall passerine migrants,
we found that they would not molt unless they had more than 14 h of daylength. Even though these
replete ticks were held at room temperature (21 ◦C), they would not molt unless they had extended
daylength. In order to have these larval and nymphal ticks molt to the next life stage, we had to
use a full spectrum light bulb on a timer with a photoperiod of 16:8 h (L:D). Photoperiod is critically
important in determining whether I. scapularis can establish at any given latitude [28].

4.2. Obstacles Facing Migratory Songbirds

In this study, we obtained bird-feeding ticks in several different ways, especially during northward
spring migration. Some migratory songbirds, such as the Willow Flycatcher, Epidonax traillii, may fly
8000 km or more between wintering and breeding grounds [29]. Migration requires high energy
reserves, and enhances exposure to predators; thus, it is typically a period of high mortality.
Migratory songbirds are susceptible to predatory cats, power transmission lines, vehicles, hunting,
agricultural pesticides, houses and tall buildings. Blancher [30] calculated that outdoor feral and
domestic cats kill more than 196 million birds annually in Canada, making them the most significant
bird mortality factor. In our study, we collected ticks from 11 different ground-frequenting songbirds
either by rescuing birds from domestic cats or birds obtained after collisions with moving vehicles
or with tall buildings with reflective glass. When songbirds collide with lighted skyscrapers and
glass facades, they normally fall to the ground, and often predator birds, such as gulls, prey on these
helpless, stunned birds. In some urban locales, Fatal Light Awareness Program volunteers come to
the rescue and rehabilitate birds and, at the same time, collect host-seeking ticks. Specifically, 2 of
3 engorged, I. scapularis nymphs collected on 2 May 2017 from a Northern House Wren, which collided
with a multi-story buildings in downtown Toronto, were spirochetemic for Bbsl. Some researchers
suggest that 80% of annual bird mortalities occur during migration [31].
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4.3. Bird Parasitism during Spring Migration

The migratory flight path of many songbirds corresponds with Lyme disease endemic areas in the
northern U.S.A., and likewise, with several Lyme disease foci in central and northern Canada. While en
route to more northerly breeding grounds, especially the boreal forest, these north-bound passerines
make landfall at stopovers to replenish their energy reserves. As these ground-foraging songbirds
look for food, they are often parasitized by I. scapularis immatures, especially nymphs. Peak questing
activity of I. scapularis nymphs, in May and early June, corresponds closely with peak northward
migration of many neotropical and southern temperate migrants [32]. After these bird-feeding ticks
have taken a blood meal, they are subsequently dispersed in tick-supportive habitats across Canada.

4.4. Spirochete-Positive Blacklegged Ticks in Central Manitoba

Our findings reveal that Bbsl-positive host-seeking I. scapularis immatures are being transported
by migratory songbirds to mid-central latitudes of Manitoba. These findings are consistent with
other bird-tick-pathogen studies [5,6,21], which documented migratory songbirds transporting Lyme
disease-carrying ticks in Manitoba during the annual northward spring migration.

4.5. Bird-Feeding Ticks Positive for Lyme Disease Spirochete in Québec

Our results show that passerines are dispersing blacklegged tick larvae and nymphs in Québec,
some of which are infected with Bbsl. Since transovarial transmission (female-egg transfer) of Bbsl
does not occur in I. scapularis ticks [33], the Bbsl-positive nymphs must have acquired infection when
larvae fed on Bbsl-infected hosts or directly from its avian host.

4.6. Songbird-Transported Ticks Infected with Lyme Disease Bacterium in Alberta

We provide the first report of Bbsl-positive I. scapularis ticks parasitizing a bird in Alberta.
Previously, tick researchers have documented I. scapularis immature ticks in this province [4,19].
When the amplicons underwent DNA sequencing, they were delineated as Bbss. However, there was
considerable heterogeneity between two Bbss strains detected in these two Bbsl-positive nymphs. It is
likely that the initial spirochetal infections occurred at two different locations when these ticks were in
their larval stage. Alternatively, the host bird may have been harbouring two different Bbss strains,
and transmitted them directly to the nymphs during their blood meals. The Bbsl-positive I. scapularis
female has the potential to infect any suitable mammalian host, including humans.

At this northern latitude (56.23◦ N), the daylength is less than 14 h in late August. Consequently,
immature stages of I. scapularis will not molt to the next life stage in late summer. A photoperiod of
>14 h is required for I. scapularis larvae and nymphs to molt [28]. Therefore, I. scapularis cannot become
established in this northern location or further north. However, songbird-transported I. scapularis
immatures could molt in early summer after spring migration and, after molting, could bite humans
and other suitable hosts.

In retrospect, Bbsl was detected in H. leporispalustris, collected from a snowshoe hare, Lepus americanus,
at Grande Prairie, Alberta [34]. Clearly, Bbsl is present in the environment in Alberta, and migratory
songbirds facilitate long-distance dispersal of Bbsl-infected ticks, especially during the spring and
fall migration. In addition, researchers have reported immature stages of Lyme disease vector ticks
(i.e., I. pacificus, I. scapularis, I. spinipalpis) parasitizing songbirds in Alberta [4,19,21], and each of these tick
species exhibits vector competency [35]. These epidemiological findings provide sound evidence of how
people can contract Lyme disease and associated tick-borne diseases in this province.

4.7. Ticks Positive for Lyme Disease Spirochete in Cape Breton, Nova Scotia

Three engorged I. scapularis nymphs were collected from a Common Yellowthroat on 28 May 2017
at Middle River, Cape Breton, Nova Scotia. These nymphs molted to adults (2 males, 1 female) in 43,
48, and 55 days. The Lyme borreliae were characterized as Bbss. Notably, we provide the first record



Healthcare 2018, 6, 89 9 of 15

of Bbsl-positive ticks on a bird captured in Cape Breton. It is noteworthy that the first Bbsl-infected
tick on a bird in Canada was collected in southern Nova Scotia [4].

4.8. Ticks Infected with Lyme Disease Spirochete in Newfoundland and Labrador

Three engorged I. scapularis nymphs were collected from a Common Yellowthroat on 28 May 2017
at Grand Bank, Newfoundland and Labrador. These nymphs molted to adults (2 males, 1 female) in 37,
44, and 49 days. Two of the 3 adults tested positive for Bbsl and, when sequenced, were characterized
as Bbss. This novel bird parasitism constitutes the first record of a Bbsl-positive tick on a bird in
Newfoundland and Labrador. In addition, 2 engorged I. scapularis nymphs were collected from a
Gray-cheeked Thrush, Catharus minimus, on 29 May 2017 at St. Albany, Newfoundland and Labrador.
Both nymphs molted to females in 38 and 45 days. One I. scapularis female was positive for Bbsl; it was
characterized as Bbss.

4.9. Songbirds Establish Tick Populations

Tick-laden songbirds have the capacity to initiate new foci of ticks hundreds of kilometres
from their original source. Any heavily infested songbird, which is parasitized by Bbsl-infected
I. scapularis, has the makings to establish a new population of I. scapularis ticks in a suitable
habitat [36–38]. Oftentimes, migratory songbirds will make stop-overs at Lyme disease endemic areas,
and become parasitized by Lyme disease vector ticks. In the present study, a Common Yellowthroat
(tick no. 17-5A42), which was parasitized by the 3 Bbsl-positive I. scapularis nymphs, and has the means
to start a Lyme disease endemic area. As well, neotropical songbirds transport ticks from as far south
as Brazil, and import them into Canada during northward spring migration [39,40]. After these ticks
molt, they have the potential to infect suitable hosts in northern latitudes.

Some passerine migrants are parasitized by I. scapularis immatures that are co-infected with more
than 1 tick-borne pathogen. Hersh et al. detected 3 different pathogens (Anaplasma phagocytophilum,
Babesia microti, Borrelia burgdorferi) in an I. scapularis nymph collected from a Veery, Catharus
fuscescens [41]. This triple co-infection shows that birds have the potential to be parasitized by ticks
harbouring a wide range of tick-borne pathogens, such as Babesia duncani [42], and subsequently,
these tick-associated pathogens can be transmit to other vertebrates. Such bird parasitisms reveal
how numerous tick-borne pathogens can be introduced into a breeding colony of I. scapularis ticks.
Similarly, people can be co-infected with multiple zoonotic pathogens during a tick bite.

4.10. Viability of B. burgdorferi Sensu Lato in Bird-Feeding Ticks

The viability of Bbsl in this study has been questioned because ticks were not cultured.
Culturing and sub-culturing isolates is a very time-consuming and labour-intensive task, and this
procedure is commonly bypassed. Contamination of cultures by unwanted microorganisms often
occurs, and is a laboratory bugbear. Regardless of whether culturing is successful or not, nucleic acid
testing, namely PCR, is ultimately employed to detect and identify Bbsl.

In this study, many of the fully engorged I. scapularis ticks completed the nymph-adult molt before
they were preserved. During the molt, the midgut of I. scapularis larva and nymphs remains intact
during development of the next life stage; the rest of the tick exoskeleton, including the foregut and
hindgut, is shed at the end of the molt [43]. Lyme disease spirochetes reside in the midgut, and remain
viable throughout the molt.

When I. scapularis larvae and nymphs molt, Bbsl remains viable and infective during the
typical 5–8 week molt, and the resulting nymphs and females are able to infect subsequent hosts.
Any I. scapularis ticks, which tested positive for Bbsl in the present study, would have been harbouring
motile spirochetes prior to the 94% ethyl alcohol preservation. Notably, I. scapularis has transstadial
transmission of Bbsl and, when this tick species becomes infected, retains Lyme disease spirochetes for
the rest of its life.
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In previous bird-tick-pathogen studies, Lyme disease spirochetes were isolated from host-seeking
ticks collected from songbirds during spring migration [4,5,19,21]. The only difference between these
earlier bird-tick-pathogen studies, and the present study, is the timeframe. Despite our not culturing
ticks, 39% of the I. scapularis nymphs were positive for Bbsl. The bird-feeding ticks in the present study
would, no doubt, have been infected with motile Lyme disease spirochetes just before preservation in
94% ethyl alcohol.

In mammalian hosts, non-viable Lyme disease spirochetes are promptly shed by the body.
When Straubinger et al. inoculated the skin of beagles with heat-killed Bbsl, the borrelial fragments
were no longer present after 3 wk [44]. Notably, the molt period in I. scapularis ticks is significantly
longer than the time for clearance of Bbsl from mammalian hosts. Blacklegged ticks retain viable Bbsl
bacteria in the midgut, whereas mammalian hosts promptly shed them.

Based on culturing of Bbsl from I. scapularis nymphs in previous studies, and the ability of Bbsl to
remain in ticks during the current study, we have substantive evidence that Bbsl bacteria in I. scapularis
ticks are infective. Even though we preserved ticks for PCR testing, we are assured that if they were
kept alive, they would have been able to transmit infective, Lyme disease-causing spirochetes to people.

4.11. Implications of Human Lyme Disease

Because Lyme disease is a zoonosis, it is pathologically important to provide an interconnecting
link between vector ticks and humans. These ectoparasites have super-sensitive sensory organs
that detect urine, carbon dioxide, and phenols given off by potential hosts [45]. Ticks can transmit
innumerable pathogens to people during engorgement, and these pathogenic microorganisms typically
cause multisystem infections, including Lyme disease.

When Bbsl-infected I. scapularis bite, they commonly transmit Lyme disease spirochetes in
24–48 h [46]; however, Cook [47] reported transmission in less than 16 h, particularly if the tick salivary
glands are infected. Whenever I. scapularis ticks harbour other tick-borne pathogens, such as Anaplasma
phagocytophilum (the causative agent of human anaplasmosis), they can often transmit these pathogens in
less than 24 h [48]. Additionally, Powassan virus can be transmitted in less than 15 min [49]; thus, there is
no grace period between tick attachment and transmission. Because Babesia sporozoites reside in tick
salivary glands, they can be transmitted immediately when the tick starts to take a blood meal [50].

After transmission, spirochetes disseminate throughout the body, and lodge in tissues and organs.
Lyme disease patients may have an erythema migrans rash (i.e., bull’s-eye, homogenous, erythema
multiforme, atypical); however, 40% or less have erythematous rashes [51–54]. Only 14% of Lyme
disease patients recall a tick bite [55]. As spirochetes advance in the body, patients typically experience a
wide array of symptoms, including fatigue, flu-like symptoms, muscle aches and pain, radicular pain,
arthritis, peripheral neuropathy, cognitive impairment, increased impulsivity, sensory hypersensitivity
(to sound, touch, smell, taste and/or light), and intense emotional lability [56]. Spirochetes evade and
slip by host defenses, lodge intracellularly, and form more resilient forms, such as biofilms [57,58].
These stealth pathogens also attach to, invade and kill B and T lymphocytes [59]. When Bbsl bacteria
are killed off, the byproducts (biotoxins) induce inflammatory cytokines (i.e., interleukin 1, interleukin 6,
TNF-alpha) [60,61]. These biotoxins typically cause fever, muscle ache and pain, headaches, cognitive
impairment, and sometimes, skin discoloration [61,62]. For instance, acrodermatitis chronica atrophicans
shows up as skin discoloration on body extremities [62]. At an elevated level, biotoxins can cause tick
paralysis [63,64]. In addition, borrelial biotoxins will induce mitochondrial dysfunction, oxidative stress,
hormonal abnormalities, depressive tendencies, and neuropsychiatric manifestations [61,65]. Patients will
often experience a Jarisch-Heixheimer reaction when treatment is initiated [66–68].

If left untreated or inadequately treated, Bbsl will sequester and persist in deep-seated tissues including
brain [69–71], collagenous tissue (i.e., ligament, tendon) [72,73], bone [74], eye [75], muscle [76], glial and
neuronal cells [77,78], synovium [79], and fibroblasts/scar tissue [80]. In addition, live Bbsl spirochetes
have been cultured from human blood after the patient was bitten by a blacklegged tick [81,82]. Since Bbsl
is pleomorphic, these diverse forms (i.e., spirochete, blebs, granules, spherocytes) facilitate intracellular
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Borrelia sequestration in these tissues [83]. Collectively, these aggregates combine to form slime-coated,
polysaccharide matrices, called biofilms, and exacerbate persistence of infection [58]. Bbsl has persister
cells and sleeper cells, which are known to survive antimicrobials, and subsequently, recrudescence of
infection may occur [68,84–87]. Since Lyme disease spirochetes are in human testicles, seminal and vaginal
secretions, this spirochetosis has the potential to be sexually transmitted [87,88].

Early treatment is paramount; delayed treatment may be arduous and challenging [89,90],
and result in fatal outcomes [69,91]. Lyme disease can have traumatic social and psychological
effects on patients, partners, and family that include extreme temper tantrums, increased irritability,
oppositional behaviors, aggressiveness, violence, suicide, homicidality, and homicide [92,93].

In conclusion, we report the northernmost locations in North America, where bird-feeding,
Bbsl-positive ticks have been collected. Passerine migrants widely disperse Bbsl-infected I. scapularis
from Alberta to Newfoundland and Labrador, and people do not have to visit an endemic area to
contract Lyme disease and associated tick-borne diseases. Our flagship findings reveal that 39% of
the songbird-transported I. scapularis nymphs are positive for Bbsl, and these spirochetes belong
primarily to B. burgdorferi sensu stricto, which is pathogenic to humans. Based on our data, we provide
substantive evidence to show how people in northern latitudes of Canada may contract Lyme disease
via the bite of a Bbsl-infected, songbird-transported ticks. The medical profession should be cognizant
that Ixodes ticks infected with Lyme disease spirochetes are a major public health risk across Canada.
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