UC Berkeley
SEMM Reports Series

Title
Elastic-plastic dynamic analysis of axisymmetric solids

Permalink
bttgs:ggescholarshiQ.orgéucgitem428k2g5bg
Authors

Nagarajan, Sambamurthy

Popov, Egor

Publication Date
1973-07-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/28k2g5b9
https://escholarship.org
http://www.cdlib.org/

NIScE/COMPUTER AYPPL I
DAVIS HALL
UNIVERSITY OF CALIT
BERKELEY, CALIFORNIA

(415) ©642-5113

oA TRy
e Uy D
|

CINIA
94720

REPORT NO. STRUCTURES AND MATERIALS RESEARCH

UC SESM 73 -9 DEPARTMENT OF CIVIL ENGINEERING

ELASTIC-PLASTIC
DYNAMIC ANALYSIS OF
AXISYMMETRIC SOLIDS

by

S.NAGARAJAN
and

E.P.POPOV

Report 1o

Picatinny Arsenal, Dover, New Jersey
Contract No.DAAA21-72-C-0727

JULY 1973 STRUCTURAL ENGINEERING LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY CALIFORNIA




Structures and Materials Research
Department of Civil Engineering
Division of Structural Engineering

‘ and Structural Mechanics

Report Number 68-2

STABILITY OF SOME NONLINEAR SYSTEMS

by

N. Mostaghel
Graduate Student in Civil Engineering
University of California at Berkeley

and

J. L., Sackman
Professor of Civil Engineering
University of California at Berkeley

Contrasct Number DA-31-124-ARO-DB-460
DA Project No: 20014501B33G
ARO Project No: 4547-E

"Requests for additional copies by Agencies of the
Department of Defense, their contractors, and other
Government agencies should be directed to:

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Department of Defense contractors must be established
for DDC services or have their 'need-to-know' certified
by the cognizant military egency of their project or
contract, '

Structural Engineering Laboratory
University of Californis
Berkeley, Californiza

February 1968




ABSTRACT

The stability of svstems governed by
X o+ £{x) + g(x,x) X - () r(x) = S(x;t)

is studied, Liszpunov’s Direct Method and a linearization approach have
been used in the study of stability of the above system for (1) Ll
integrable, and periodic, respectively. In the former case a sufficiency
region of stsbility is constructed through the use of a Liapunov function.
In the latter case, which is investigated by mesns of 3 linearization pro-
cess, a Hill eguation 1s obtained, whose stability is studied by a method
suggested by Malkin. Malkin's method is then modified to obtain, by use

of & first approximatiion, the first stability region in parameter space.

A second approximstion is aslsc worked out. When the approximeticnsobtained
herein for general pericdic function are reduced to the special cases of
the Mathieu egquation and the_HillmB—term equation, the results compare very

well with the available numerical results based on the exact solution of

ezch of those egquations.
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. INTBODUCTION

The study of those physiczl systems which are describable by a set of

crdinsry differential egustions raises two distincet problems. The first
problem is to obtain a solution: either in “closed form' (which usuzlly is
not possible) or else, approximetely. The second problem is to obtzin

pertinent information about the whole class of sclutions. The latter study
leads to the gualitstive theory of differential equation. A major gues-
tion in the gualitstive theory is that of stability. This guestion can be
answered from a knowledge of the solution, if one has been sable to obtain
it. BSince this is not ususzlly possible, one has to fall back on 2 qualita-
tive anslysis of the sclution,

The systematic analysis in this dirvection, as far as stability is con-
cerned, starts with the works of Poincare and Lispuncv. The work of
Poincare is not directly applicable to non-autonomous systems (i.e., systems
in whichk the time varisble sppears explicitly), while the Liapunov approach
is applicable to non-autcenomous as well zs autonomous ones. For this
reason Liapunov'’s approach, rather than that of Poincare, will be used in
this study.

In its early stages of development, stability analysis based on
Lippunov's Direct Method was an ares of research almost exclusively re-
stricted to Russizan investigaéors, As the importance of this subject
matter became evident, more and more researchers from all parts of the world
were attracted to work in this ares, and, in sddition, meny Russian works
were s1sc translated, At present there are many good books which treat

stability anslysis of systems by Liapuncv's BPirect Method. For example,
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LaSzlle and Lefschetz Elj( ) have 2 monograph which treats, primarily,

autonomous systems; Yoshizawa [2], [3] worked on ssymptotic behavior of
solutions and periodic solution of systems; Hsle (4] worked on periodic
systems; Massera (5], Hahn [6, Krasovskii [7), Nemytskii and Stepanov [8]

and Malkin [9] treat a variety of systems through Liaspunov's Direct Method,

The Question of Stability

The term 'stability” itself aslmost expresses the intuitive cohcept
behind it. Given that a system operates under certzin conditions, one can
ask, TIf we change these conditions slightly, does this change have s
slight or a considersble effect upon the operstion of the system?  In
the former case the system is considered stable and in the latter case it
is considered unstable. In mechanics this intuitive concept had found its
main early use in the characterizations of the eguilibrium of a rigid body.
For such & system equilibrium position is said to be stable if the body
resumes its original position after it has become subjected to any Tsuffi-
ciently small’ perturbation,

It should be pointed out that stability is not s uniquely defined
concept. In fact, there exist many different types of stability, depending
on the system, the menner in which the system is utilized, snd the par-
ticular definition of stability employed.

Cut Line of This Work

Although wmost of the discussion and theorems on stability may be

(] =]

extended to nth eorder equation {(i.e., - degrge of freedom systems),
this work is mainly concerned with second order equations of the following

type:

(*) Number in brackets indicate references listed at the end of this paper,

v e

o e G -



¥+ £(x) o+ oglx,%)x% -~ ©(t) r(x) = S(x;t) (1~1)

Hovwever, the general definitions and theorems which will be given in
section 11 are zll for n-dimensional systems.

Equation (I-1)} and, speciazl cases of it, have numercus applications
in engineering and physics. However, here the basic motivation for in-
vestigation was its application in the study of a column which has heen
idealized s0 that its mass may be considered to be concentrated a2t one
end of the column and its material properties at the other end. The
loading on this c¢olumn is composed of a time varying vertical load and a
time wvarying vertical base acceleration, plus time varying latersl dis-
turbsnces which can be either a load, or sn acceleration, or both., The
differentizl eqguation governing the behavicr of this column is & special
case of (I-1). This problem will he more fully discussed in section VI,
in the following sections, however, the differential eguation {I-1) will
be discussed in 2 genersl manner,

t
In section III the case lim j i@(?)‘dT < ® and the case (1)
t® O

periodic for finite time will be considered. The case {t) periodic
for all t & t0 will be discussed in section IV. In this gase, as 2
special form of (I-1), a Hill eguation [¥ + (B - p 9{(t) x = 0] will be
obtzined, of which the classical method of solution is discussed in several
textbooks [10], {11]. The classical method involves the evaluation of an
infinite determinant, which proves to be difficult, unless the Fourier
coefficients in the expansion of P{t) decrease very rapidly. Malkin [9
using the Floguet solution, suggested a method for the analysis of the

stability of the Hill equation. In section V Maslkin's method hzs been



modified to obtain the stebility regions in perameter space for the Hill

equation. Section VI is devoted to comparisons, applications snd some

remarks. For the sake of convenience, the details of some of the deriva=-

tions are given in Appendices A and B,



II. DEFINITIONS AND GENERAL THEOREMS

As was pointed out in the previous section, there are many different
definitions of stability, depending on the system and its spplication, In
this section, only those definitions which are needed in the subseguent
development of this work will be given, ({There are sxcellent works, like
those of LaSalle and Lefschetz [1], Bellman [12)] and Zadeh and Descer [13],
which give definitions of various kinds of stabilitv.) No proofs will be
given for the theorems in this section, since these thecrems are well known;
however, references will be given where their proofs are cited.

A. Bufficient Cénditions For Stability

Consider s system whose motion is governed by the vector differentist

eguation:

¥o=Y {y:t) (11-1)

Let y = € (t) be a particular solution of (II-1). To study the behavior
of solutions of (II-1) in the neighborhood of the solutions £ (t) , it is

convenient to make the following substitutions:

y - £ (1) (11-2)

The solution y = E (t) or x = 0 is czlled the unperturbed motion
i - =
et

{(solution}., Now the new variable % satisfies

55 = £ (x;t) (11-3)
where
I (ﬁ,t) :}i (x + E;t) - Y (_i,t) (11-4)
therefore
f {ot) = o {I1-5)



In {II-3) =x denotes an n-dimensionsal vector, and it will be assumed in

the sequel that the vector I (=;t) is =& given vector field which is

. , . ] . n noo
defined and continuous in the product gpace E x J , where E is
Euclidesn n-space and J is the interval t Z O Furthermore, I (=t
is of such 2 nature thzt the existence and unigueness of the solutions, as
well as their continuous dependence on the initial values, are zssured in

n ) .

some region O of E for all © 20 . The region {I will be an open

set contairing the point =10,

Equation (i1-3) is called the equation of perturbed moticn. This

ggustion has the trivial solution X =0 which is called an egquilibrium

point or a singular point, or 2 null solution of the differential eqguation,

The majority of the theorems of stability sre about the stability or
instability of the trivial solution of (II-3). As was shown in the pre-
vious paragraph, one can, by s simple substitution, transform the study of
the stability of a non~trivial scolution to that of a trivial one.

Definition (I1I-1): [7], [14] The null solution x = O of the 5ystem

P

(I1-3) is said to be stable (at £ = to ), provided that for arbitrary
positive € * 0 there is a & = & (e,to) such that, whenever

H x {t ) ? < & , the inequality H.E (x (tG) , to;t) H < € iy satisfied

o
for all t =2 to . {(if 8 may be chosen independently of to ., then the
trivizl solution is said to be uniformly stable), where H x ”
= 8 '

up (l%ll, ,lxni)

-

Definition (II-2): [7], [14] If the trivial soclution of {(I1-3) is stable

and in addition lim | x (x €t), t ;t) | =0, i =1, ... n ., then the
+ e 1 e O 8]

null solution X =0 is s3id to be asymptotically stable.

Definition {II-3): {1] A scalar function V {x;t} is said to be positive




definite in {2 , a neighborhood of the origin {x = G} , if it satisfies

the following conditions:
al V (x:t} is defined in 1 for all t 2 0O
b)) ¥V {o;t) = ¢ for all t Z0
¢) V (x;t) dominates a certain positive definite function W {E)

in {2, that is, ¥ (x;t) EW (x) for all x in ) and sl1

It will be supposed that the function V (x:t) has continucus first
partial derivatives with respect to all variasbles, in the neighborhood ) |

Therefore, one has

. Vo o{(x:
Vo {(x:it) = Eng%mﬁi + £ (x:t) ¢ Grad V (x:t) {I1-8)
Definition (II~4): [1] A scalar function V (x:t) is szid to be a

Lispunov function in {2 , a neighborhood of the origin (X = 0}, if:

a}) V {x:;t) 1is positive definite in

»

by V (x;t) =0 4in .

Definition (II-5): [7], [14] A scalar function V (x:t) 1is said to

permit an infinitesimal upper limit if, for any positive number ) , we !

can find another number & such thst for all values t, x_,..., xn which

1 3

satisfy

the following inequslity will be satisfied:

L v oo | =

(*) W (x) is said to be a positive definite function if W (§)> g for
X% 0 and W (o) =0



In other words, the function V permits =zn infinitesimaj uwpper limit

I

N 2
if it approaches zero as AJ xs * 0 uniformly with regspect to
s=1

Theorem {II-1): [1], [2] If there exists in some neighborhood

the origin of system (11-3) a Lispunov functien V (x;%t) , then
unperturbed motion x = 0 is stable,

Theorem (1I-2): (1}, 9] 1f besides satisfying the conditions

t

{0 of

the

of Theorem

(Ii-1}, the derivative V (2;t) is negative definite (i.e,, Vix;t)= -~ U(x)

where U (x) is 2 positive definite function) and the function

Vo(x:t)

itself permits an infinitesimal upper limit, then the unperturbed motion

=9 is asymptotically stable.

It should be noted that the above theorems are only sufficient condi-

ticns fo ensure stability and asymptotic stsbility,

B, Stability Analysis through Lirearization, of Systems with Periodic Input

Consider the system [15], [16], [177,

@

X=48(t) x+ £ {x:t)

Loty

in which A (t) is continuous, periodic, of period T »oend  f (x:t) is

holomorphic in X for all t din an open get 8 of the X-space, and its

Dower series expansion in X starts with terms of degree no less than 2

Further, £ (z;t) 1is continuous and periodic of the same period as 4 (1)

i.e., f (x;t + T = I (x;0)

Theorem (I1-3): [15] If the characteristic exponents of

(I1-8)

are all less than unity in asbsolute value, then (I1-7) is asymptotically

stable at the origin,

H



Remark (II-13: The above theorem is essentially due to Liapunov {18} and

it mey be formulsted in 2 somewhat different form (8], [17], namelyv: If
the trivial solution of (I1-8} is exponentialiywasymptctically Stable, so

is the trivizl solution of (11-7), Exponentialmasymptotic stability implies

the existence of positive numbers N, v such that given any to 20 and
Any x € Rn with ” X H sufficientiy small, every solution u of
—Cy oy 2 e
(I1~-7) with u (t ) = % is defined for t z ¢ and satisfies
- o =) o
' mv(t—to)
‘ =N | ;
feo =xliac) ], e
: 2 2.1/2
where Q X ﬁ = {t] + .., + x) 4
2 1 n

1t should be noted that, if all the characteristic exponents of {(I1-8)
are less than unity in absolute value, then using the Flogquet solution one
€an show that everv solution of {I1-8) is asymptotica11y~exponential1y

Stable,

C. BStability in the Presence of Persistent Disturbatces that are Bounded

in the Mesan

When one deals with practical systems, it usually happens that the
system will be perturbed not only because of the bresence of nonzero initial
conditions, but zlso becsuse of external disturbing zctions. Thus the

system that one should consider is a modification of {I1~3):

=1 (Xit) + R (x;0) (11-9)

o

In general, one msy not have completely detailed information of the exter-

nal disturbances R {x;t) , and they do not Decessarily reduce to zero at

the point % =0 . This problem has been discussed by many Russians,
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netably Malkin [9] and Krasovskii [7]. In Malkin's study, he assumes that
Ri {z;8) , i =1, 2, sy T, 8re all small for 211 values of time, In
practice, this assumption can be too restrictive, and Krasovskii hes
generalized it to R, (#;t) , i =1, 2, ..., n , which are "bounded in the
£?
mean,
The following definitions and Theorem zre due to Krasovskiid [7], to

which the resder is referred for proof and more discussion,

Definition (II-8): [7] Ri (x;0) , i =1, ..., n is called bounded in

the mezn if the intervals of time t = t, during which the Ri (x:t),
i=1, ..., n have large values are extremely short,

Definition (II-7): [7] The null solution % =0 of the system (II-3)

is called stable for persistent disturbsnces thsat are bounded in the mean
if for every positive € (¢ ® 0) and positive T (T 2 Q) |, there are two
positive numbers & , T (6 >0 |, T > 0) such thet whenever the continuous
function % (t) satisfies the relations

t+T
© () a8 <M, R (x;0[5 9(t) for H5H2< e,

epfnmy

every solution 5}(50, tg;t) of egustion (II~9) which has initigl values

I goﬁz <& will satisfy || 2zt <e for all t = t

Definition (II-8): [7] The null solution X =0 of equation (II-3) is

called asymptotically stable uniformly with respect to the time to and
the coordinstes of the initial perturbation X, in the region Gé , if:
{5) the solution X2 =9 1is stable in the ssnse of Lizpunov {(definitions
(11-1), (I11-2)), (1) for every positive number 1 >0 | there is a number

T (") such that the inequality IE‘(go, togt)H2 < T is satisfied for



il

t 2t + T (T , independent of the initial moment of time ¢ and the
e} o

coordinates of the initis} perturbation g | X E Gé ;
o (o]

Theorem (II-4): [7] Suppose the null scolution of (II—S},‘g =0 | is

asymptoticslily stable wniformly in to and dgo in the sense of defini-
tion (II-8). Then stability also holds for persistent disturbances that
are bounded in the mean,

Remark (I1-2): [7] 1If the functions f (x:t), i = 1, ..., n are
i &

periodic in time t , or if they have the form fi (%) {that is, are

independent of the time t ), then uniform 5tability is zn obvious conse--
gquence of asymptotic stability. Theorem (11-4) therefore gsgserts in this
case that mere asymptotic stability implies Stability for persistent dis-

turbances that are bounded in the mean.
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I1I. STABILITY ANALYSIS THROUGH LIAPUNOV'S DIRECT METHOD

In the following, the stability properties of the nulil solutions of
special cases of eguation (I1-1) will be studied. A sufficiency region
of stability will be constructed, and the gusstion of the control of its

size will be discussed,

A. Analysis of Particular Systems

In this section the stability properties of the following system
X+ LX) v g (5,%) % -9 () r(x) =0 (I11-1)
will be studied under the conditions that 9 {(1t) is Ll integrable, i.e.,

t

lim f le (] dr < = (I111-2)
=m0

First, equation (III-1) will be discussed for the speciel case of

q(x,x) = 0 | i.e.,
X+ £(x) = @(t) r(x) = 0 (I11-3)

In 211 of the following discussions, it will be assumed that f{x)
qi{x,%) ;o @t} and r{x) are s1l of such a nature that the existence of
a unique solution for (III-1) is gssured. It is convenient, in order to
use definitions and theorems of section II, to write (III-1) and (III-3)

in the following forms, respectively.

x ¥
- f{x) - glx,y) v + w{t) rix)} 1 (IT1=4)
.

o

%l v
J = £{x) + QL) r{x} (I11-5)

S

3

la



i3

WX
Let F(x) = J f(E} d% and let [ be some punctured neighborhoad
N 1 2
of x =90 for which F(x) z 5 © {x) and define (I to be the following
Certesian product.
0= O U {x = O} X {y:ly]é =} {I11-8)

Theorem (I11-1): If for system {III-5) the following are satisfied:

I
e+

{a) i ]w(T}idT < e g

{b) % f{x} >0 for =x F 0, f(o) =0

{c) rio) =0

(d} In some punctured neighborhood ¥ of X =0, F(x) =
x
where F(x) = f f(E) 68€ , then the origin, x =y = 0 , is g
o
Stable trivial solution,

Proof: A Liapunov function will be constructed and through the use of

Theorem (II~-1) the gbove theorem will be proved.

From assumptions {(b) and (c}, it is seen that x = ¥y =0 dis a trivisi

solution of (III-5). Let,

t
~£ lecm |ar
Vix,y;t) = E % yz + F(x)} e © (X11-7)
Therefore
t
-t lotm far
é(x,y;t) = - |¢(t)|e © [ % y2 + F{x) j
ot
-1 e Jar
% i}

e © [&& + f(x) iJ
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substitution for % and ¥y from {(IIi-5) into the above expression yields:

£
“I t@(T)IdT
. ~ - t
Vix,v;t) = - {If;(t)l i_%y?‘ + FLx) jm P(t) v r{x) }e “
t
r
ch lom |ar
1 2 7 | 3 o
= - {Iﬁ(t)} [ 5 ¥ F{x) |- oty v r(x)l } e
Therefore t
- e Jar
%(x,y;t) £ - { % y2 + F{x} ~ 1y r(x}l} |${t)le “ {1I1-8;

As it is seen from (III-8), V(x,y;t) 20 for 211 (x,y) for which
-1z -
R,y) {5y +F® - lyrw] } 20 (111-9)

R(x,y) «can be written in the following form by adding to it and subtracting

from it % rz(x)

RGx,y) =3 (Jreo | - yh? + res - 2 2o (111-10)

Assumption (b) implies that F(x) ™ 0 for all IXI ¥ 0 and assumption
{d), in conjunction with (II1-10), implies that R{x,y) 20 for all
{(x,¥) ¢ O, where [} is defined by (111-6). Therefore %(x,y;t) 240 for
all (x,v¥) e 0.

As is seen from (III-7), assumption (&) and the above discussion,
V{(x,y;t) satisfies the fellowing conditions:

() V(x,y;t) is defined in the whole of {z,y) space for all t = to

(b V{o.o;t) =0



(¢} Vix,y;t) 2 W(x,y) = [ % y2 + F{x) 3 e~M
t
wherg M = lim J 1@(7)[d7
1w to

1A

(@) Vx,y;t) 20 for all (x,3) €0

Therefore, according to definition (I1I-4) V{z,y;t) is a3 Lispunov
function for the system (III-5) and according to Theorsem (Ii-1} the null
solution x = y = 0 of the system (III-5) is stable.

Theorem {I11-2}: If for the system (I11-4) , besides the conditions of

Theorem (11II-1), the following condition

(e) qgix,y} 20
is also satisfied for all (x,y) ¢ Q , then x =y =0 is a stable trivial
solution.
Proof: The same Liapunov function as used in Theorem (I11-1) may be used
here, and following exactly the same menipulzations one obtains that in

the same neighborhood 0

= 2 -M
Vix,v,t) £ - alx,y) v =

which sccording to Theorem {II-1) implies stability of the null solution
of the system (III-4), because ¢(x,y) 20 according to condition {e)
above.

B. S8tability in the Czse of a Periodic Input for Finite Time

Definition (I11-1): ©(t} is said to be pericdic for finite time if:

Pt

il

= < -
wit + T) for to £ tl T

>t
for t 1

HH
[

p(t)
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where T is the period. From sbove definition it follows that

t
T 1

1im i lp(m) ja7 = i lo(m) [d7 = M < = (I11-11)
§ =0
o

Therefore ®{t) satisfies the condition {a) of Theorem {(I11i-31). As =

result of this, Theorems {(III-1) and (III-2} will ziso be true for the case

@(t) periodic for finite time. This seems to be rather an interesting
result, because the systems under snslysis are non-anticipative, therefore
2t any time t = t¥ E t1~T they behave as if @(t} were golng to be
periodic for all t & t*

Since in many practicsl systems @(t) is periedic for finite time,
one may use the above method in the study of stebilifty of such systems.
However, in applying the above method to particular sysiems, one should
note that if tl is too large, even though theoretically the null solu-~
tions of the systems are slways stable, the region of initial disturbances
may become toc small to be of any practical interest, This idea will

hecome more clear in sub-section (III-C} where a sufficigncy region of

stability is constructed.

C. Sufficiency Region of Stability

If the systems whose stability were snalyzed in {I11-A) were linear,
then their stability properties would have been glohal and would have
depended only on the paraﬁeters of the systems. For ponlinear systems
this fails to be true and stability properties become local properties of
the solutions. It is of practical interest to know the extent of the region
in which these locsl stability properties hold. To find the extenf of these

regions, one should examine the nonlinearities.
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it was shown, in Theorem (I11-1), in order for the trivial solution
of {I11I~5) to be stable, 211 (x,v} shoulsd beicng to a set [ defined by

(ii1-5}. HNow 8 region QI , 2 neighborhood of the crigin, will be deter-

N
mined such that (x(t yov{t }) [ (x{t);y(t}) € C% for all t & ¢t
O o] 1 %

where [  is some bounded region which includes the region QI . The

region is called a Bufficiency Begion of Stability.

Determination of QI

Malkin [9]}, in his discussion of the proof of Theorem (II1-1}, has
shown that if the coordinates of the initial perturbation, for the System
{(II-3), are such that V(ﬁ(to), to) < ¢ , then the moving surface
V(x,t) = ¢ will always lie within the stationary surface Wix) = ¢,
where V(x;t) 1is z Liapunov function, ¢ igs some constant and W(x) is
some positive definite function such that Vix;t) = W(x) . This implies
that if the point % whose motion is defined by equation {II-3), at some
instant of time, falls within the surface V(z;t) = ¢ , then it will re-
main within this surface at all times.

The abeve information will be used to construct the region f% and

QE . Let
n o= 4 : ; < -
QI i{xo,yo) V(Xo’yo’to) c} (111-12)
Substituting for V(xo,yo;to) from (I1I-7) into the above, one obtains
2
o

y_ o+ F(xo)} < c} (II1-13)

B e

QI = {(Xo’yo) 0
In the proocf of Theorem (III-1), W{x,v) was defined as

Ve ro] e = vy 0 | (111-14)

B | s

W(X;}’) = [
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Thereforse

>
Wix,y} = ¢ = % yUo+ Fx) = ¢ e (F11-15)

In general, it is desirable to have the sufficiency region QI as
large as possible. This would imply that one should choose ¢ as large
A constant a3 possible. For linear fystems, since the stability is com-
plete, ¢ «can he chosen arbitrarily. For nonlinsar Systems, in genersal,
¢ cannct be chosen srbitrarily lsrge because then (%,¥} may assume vaiues

for which %(x,y;t) $ 0 . 1t was shown in the proot of Theorem {Ii1~1),

i 1
in order that V(x,v;t) =0 in 0O , one should require F(x) = 3 rz(x}
in O . Now let
2
FG0 = 2 %) (111-16)
and assume an’ an’ « e andg Xpi’ sz’ ... are the negative and

positive roots of (ITI-16). Let

X

pl’ Tpg’ T !XML ]‘anl’ L ari-ain

x*¥ = min {x

Now all ]xl £ 5" = V{x,y;ty 20 ., Let

-M

c =EF(x*) e (1I1-18)
and substitute into (I1I-15) to obtain:
i 2 %
5 Y 4 F(x) = F(x7) (I11-12)
Let
— 1 2 = *®
QE E o=,y | 5y o+ F{x)] £ P(x™) (III-20)

Since F{x) is monofone incressing (I11-20) implies that all



Also let

oz f o i
ggz L(Xaay ) A = ¥

+ F(x )] < ¢} (I11~24)

Now one may vary ¢¥ in (I11~24) by varying « in (II11-22) until fgl

gets 25 close, from the outside, to QPI as is desired, i.e,,prg Q%I \
(see Figure 1), Now the ensuing motions Are restricted o a set (gE given

by

*
y2 + Flx)] =7 (gm)} (I11-25)

Q= (w0

B f bt

This is obtsined in the same way as QE in {II1~-20) except that ¢ 4ig
* * X* 0
. i } . . =
replaced by ¥, i.e., x 1z replaced by . Now o1 o Cgl (%E g:ﬂ;ﬁ

therefore (x(t), y(t ) e o = (x(D), y(&)) ¢ @E

Remark (III-1): Since the region Q;I rather than QPI is used ss =

region for initial Perturbations and since C%I is imbedded in Q;I .

therefore one does 10t need to know the exact region QPI asg long as one

knows thst it is imbedded in Q;I

Remark (I1I1-2): As is seen from (I1I-21), the size of the region of

initial perturbation is directl broportional to e—M - Thig implies
¥y

that the smaller the M , the larger QI could be, When P(t) is periodie
for finite time, if tl is too large then according to (I1I-11) w may
become veéry large and this in turn implies that QI may become too small

to be of any Bractical interest,
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IV, STABILITY ANALYSIS, THROUGH LINEARIZATION,

OF SYSTEMS WITH PERIODIC INPUT

In this section the stability properties of
¥+ E(x) + g(x,x)x - @(t) r{x) = 5(x;t) {(Iv-1>

will be studied under the condition that ©(%) 1s periodic of peried T
and S{x;i) is a persistent disturbance which is bounded in the mean in

the sense of definition (II-6). First the eguation
¥ o+ F(x) + gf{x,%)%x - 9{t) r(x) = O (IV-2)

will be considered and then the resultis of its snalysis will be extended
to (IV-1) by mesns of Theorem (I1-4}. As before, it will be assumed that
F(x), g(x,x), 9(t} and r(x) =are all of such a nature that the existence
of a unique solution for (IV-2) is assured. It will be assumed also that

f(x), g(x,%), r(x) =and ©{t) can be represented as follows:

=]

5 2+
f{x) = kx + ZJ ki by

1=0

e
— i (1V-3)
r{x} = ¢x + Z; €, X

i=o

a(x,%) = £+ g% (x,%)

where £ » 0 and g™(x,%) is such that its power series expansion in x

and ¥ starts with terms of degree no less than two,
. , *
Pty = ¢+ (D

where {IV-4)

w¥{T)dT = O , ©_ = constant

Qb—y
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Substituting (IV-3) and (IV-4) into (IV-2) one obtsins:
¥ v [BP - wo" (] x + 2k o+ Fix %:8) = 0 (IV-5)
where B* = k - ., B = c and
oo
Fx, ;1) = a"(x,%) + E; Eki - e, Wit ] <2+ (IV-8)
i=0
Note that F(x,x;t) is periodic in t iee., Flx,x:1) = Flx,%:t+T)
Now let {IV-1) and (IV-5) be written ss follows:
f = + {IV-73
]ﬁJ - f{x} - g{x,y)y + ©{t) r{x) lS(x;t)
(x] 0 1 x f 0
; = * L (IV=8)
5’»} - BY 4w (1) -4 ¥ IF(x,y;t)

Now consider the linear part of {IV-8)

ji‘l 0 1 J X 1
;= {IV-9)

b Lewemea ]l

Assuming the characteristic gxponents of {(IV-9) are all less than unity
in absolute value, then according to Theorem (II-3) and Remark (II-1) the
trivial solution of {(IV-8) is exponentially asymptotically stable. There-
fore, according tc Theorem {(I1-4) aund Remark {I1-2), the trivial sclution
of (IV-8) is stable in the presence of a persistent disturbance, S(x;t) |
which is bounded in the mean. Then from the definition {I1-7) it follows
that the system described by Equation (IV~7) is stable.

Now the task is to study the linear system {IV-8) and to consfruct a
sufficiency region of stebility in psrameter space {B,4} . For the sake

of convenience in manipulation, & transformation of dependent wvarisble
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V. STABILITY ANALYSIS OF THE HILL EQUATION

Consider the eguation

X+ [B - wp()Ix = 0 (V=13
. ) , ‘ L. . {*) )
in which (%} is periodie of pericd W with zero mesn valug, i.e,
I
j P(73dT = 0, Let ¥(t) be represented zs a Fourier series:
o
o
= s 2m in 2mt) -2
G(t) /. {amco mt o+ bm 5in 2mt ] (V-2)
m=31
where
ki kil
2 7 2 r .
8. =7 | P(s) cos 2ms ds , bm = = J P(s) sin 2ms ds
o] G
If a_ %0 , b =0 and 3 =1 = 0 , mo= 2.3,

then (V-1) becomes the Mathieu equation. Another specisl case of Hill's

€quation which has received particular attention [18], [20] is that in which

al F O, 82 + 0, bl = b2 = 0 and a = bm =0, m=3, 4,

which is called Hill's 3-term aquation.

The classical method oﬁ handling (V~-1), as is found in most text
books [10],[11], is to expand P(t) snd x(t) into s Fourier series,
Substitution of these expansions in (V-1) yields an infinite system of

simultansous linear homogenous egquations whose non-trivial solution can

{*} If ©(t) has a period other than T, its period can he changed to T
by a simple transformation of the independent variable ¢t
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only be obtained if the corresponding infinite determinant is zero,
¥hittaker [10], using the condition of absolute convergence of the Fourier
coefficients in the expasnsion of ©(t) , gave s method for a caleculation

of this infinite determinant. The computation is very difficult unless

the Fourier coefficients in the expansion of @{t)} decrease very rapidily.
Mslkin [9], using the Floguet solution [217,{22],{23 suggested another method
for studying the stebility of (V-1}. His method will be discussed snd
modified in sub-sections {(V-~B) and (V-C}, As a prerequisite to Malkin's
method, certain basic considerations will be discussed in (V-A). It should
be noted that the discussion in the next sub-section can be extended for
systems of any order, but since (V-1) is of the second order, the discus-

sion will be limited to second order systems,

A, Basic Considerations
Consider
2
%a = 24 PQS(t) g o =1,2 (V-3)
B=1

wherse Pa (t) 1s a continucus pericdic function of periocd M0 , i.e.,

(t + ™ = P _(tYy . Let {t) be a fundamental system of solutions

Pag R *op

for {(V-3). It is essy to show that xaa(t + T} is also s sclution of
{V-3). Since XQB is & fundamential system, it follows that sll other solu-
tions should be expressible in terms of linear combinations of XQB .

Hence,

(V-4)
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The characteristic equation( ) of {(V-4) is
%31 7 F “12
D{p) = = O . (V-5)
5 ‘
Lazl fag 7 P |

suppose that the fundsmental system being considered is defined by the

initial cenditions

X&B oB

where 6G5 is the Kronecker delts. Assuming € = D 4n (V-4) and sub-
stituting (V-6) into it one obtains

(17} = a‘Q"B (V-7)

XQB
Substitution of (V-7) in (V-5) yields

xll(ﬂ) - P Klz(ﬂ)
b{p) = =0 . (V-8)

le(ﬂ) xzz(ﬂ) -0

Expanding the determinant in (V-8) one ohtains

ol Ap e a, =0 V-9

where
Al w e {xll(wo + ng(ﬂ)} (V-10)
A2 = Xll(ﬂ§ Xzz(ﬂ} - xlz(ﬂ) le(ﬁ) . {v-11)

It can be shown, [8],[14] that
11
j (trace P(t))dt

0

A= f~12

P ; (v )

{*}) The fact that the charascteristic equation does not depend upon the

selected fundamental system is well known (see Malkin [9]).

28
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where P(t} dis the matrix of coefficients Paﬁ(t} , of (V~3). The
fundamental system of solutions of (V-3) as obtained by Floguet's theorem

is of the following form:

gt |
Xaﬁ(t} = ?Qa{t} e , (a?ﬁ = 1,2) , (V-133
where
A, = fa p (B=1,2) (V-14)
B T B 4 - §
and gaB(t) are all pericdic functions of period T . ‘The kB are

distinct and they are cslled charascteristic exponents. The g

B are the
distinct roois of (V-8) and they can be represented in their general form

as

i(eB + 2nm
ae = aB + ib8 = r5 e , B=1,2 , (V-15)
where 95 and bB are real =and
R b
2 2 B
= d = . : = — . -
rB mo OB V/ap + bB : BB tan 55 (V-16)

Substituting {V-15) in (V-14) and then putting this result into (V-13)

one cbtains

(6. = t t
1(9S = 2nm = (4n rB) =
XQB(t} = Yaa(t) e e .
(V-17)
(O’a5=1} 2)
Now the components x&(t) » ©f the solution vector, are given by
2
T
xa(t) = ZJ XQB(t} XB(O) , w=1, 2 , {(V-18)

81
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where =x=.(c) are the initial conditions. Therefore, 285 it is seen from
B
¥
(v~17) and (V-18), the solution will be stable( ) if
mod 0, = v, =1 , B=1, 2 , {(V-19)

=

and it will be unstable if any of r is greater than unity. Therefore,

=
to determine whether {V-3) is stable or not, it is only necessary to find
05 the roots of (V-9). But this is not simple because the coefficient

A1 of the charscteristic equation depends on the fundamental system of
solutions [see (V-10)], while the fundamental system of solutions, in turn,
depends on the roots of the characteristic equations [see (V-17)]. There-
fore, one becomes enmeshed in a kind of vicious circle. A way out is
through the use of some method of approximation for the evaluation of the
fundamental system of sclutions, Fortunstely, the fundamental system of
solutions is needed only for t = 1 , and also the stability conditions

are determined by inequalities. This situation permits the use of an ap-

proximate method of integration in order to determine A1 approximately.

B, Mzlkin's Procedurs

Tt wss shown in the previous section that in order to discuss the

stability of (V-3) one needs toc know mod PE , where the Pg were the dis-

tinct roots of (V-9). Since (V-9) is 2 quadratic equation, its roots are
A A, .2
:~<-—]—:)i (-—i) - & (V-20)
P12 2 2 2
The exsct value of A2 , as given by (V-12), is known. Al is unknown and

to determine it one needs to know s fundamental system of solutions of (V-3)

(*) Note that the roots should be distinct, i.e., ?l + p2

P
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for t = 7 (see (V-10)) . As was pointed out in the previous section, it
is not, in genersl, possible to find such a fundamental system exactly.
Malkin {9] has suggested an approximate procedure through which s funda-
mental system mey be computed with sny desgired degree of accuracy. His
procedure will be outlined here, with some of the details omitted,.

Consider (V-3) snd expsnd PQB(t) into & power series of the fol-
lowing form:

P_.{(t) =g (1) + Y uj P(j) (t) (V-21)
ap{t) = 9qp L of :

J=1

(13 (2> . L
where q&B(t) and PQB (t) , PQS (t) , ... are all continuous periodic

functions of period T , and it is assumed that (V-21) converges in 1
certain region Eul £ E . Consider azlso o fundamental system of solutions

xaa(t,u) of (V-3) represented by the following series expansion:

Xyt ) = xég) 0+ ) W x;é)(t) (V-22)
j=1

converging for a1l values of t in the region Iu[ < E and defined Ly

the initial conditions

(o)
XQS {(0) = 538
(V-23)
xé;) ) = xéz) ©) = ... =0

Substituting (V-21) and (V-22) into (V-3) and equating the coefficients

of like powers of i , one obtains a recursive system for the determination

(o) (L

PR name
XQS s XQ,B » ’ ly

of sl11



As is Sgen, all

i
B 1 X{o)
T4 Y4 if
i=1
n hel
T RES N (1 (o
B dos Fip t [ By xg
i=1 J=1
Ep n r-1
N {r) N o (r-s}
- Z,J Yoi XiE L s Posj
i=]1 J=1 s=3

(o, B

these nonhomogenous linear systems

fame homogenous part. If the homogenous system of
n
%(O) _ o X(O)
af T i TiB
i=1

has a closed integral,

tions (V-23),

Then, @ssuming

one obtains an approximate value for

bPermits a Successive,

then (V-24) in conjunction

t = 17 in (V-22), and substituting

!

complete determination of ail
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x

of eguzations have the

gquations
(V-25)

with the initiga1l congi -
(r)
@B

the result in {(V-106),

X

E S
a. Zones of Stability for the Hill*Equation( )

Let (V-1) be written as follows:

Therefore B(t)

X 0 1 { %
= {(V-26)
v = B + (1) o ¥
» the matrix of coefficients P@B(t) of (V-3), is given by

(*) It should be remsrked here that these zones are in parameter Bpace,
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3 1
Py = {v-27)
- B+ pp(t) 0
Hence, the exact value of AE . 88 given by (V-12), is eqgual to unity.
| (*‘1\:". o .
Therefore, if L5 ) < 1 in {(V-20), then £y * o, and mod 0 = JAE = 1,

and according to (V-19) the trivial sclution would be stable. Hence the
stability and instability boundary curves sre given by

2
A

<;}. AR (V-28)
2 /F

Therefore Al iz the key quantity in the determinztion of zones of
stabhility. In the following, the boundsries of these zones will be deter-

mined by using Malkin's procedure to evaluate Al approximately.

b, Determination of Al by First Approximation

Let(*}

Q= ay = mz . (v-29)

P < pé;) = [O ’ (V-30)
LCP(t) 0

X0 =[x (0] (v-31)

P = 1w (v-32)

o = P (v-33)

From (V-27), {¥-29), and (V-30),

(*} Matrix notation will bhe used now and then for the sake of convenience,
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P(t) = Q + up {V-34)

Therefore, the series (V-21) converges for all vaiues of o, Now

sceording to the procedure suggested in {V-B), let

5(0) (1)

(D) = () + wx (1) (V-35)

be s fundamentzl system of solutions defined by the initial conditions:

2‘;(0)(0) -1
{V-36)
0y =0

Substitute (V-34) and (V-35) inte (V-26) to obtain the first two systems

of (v-24)
é(o) - Q.E(D} (V-37)
i(l) - q 5(1) . P(1) zg(o) (v-38)
where Q and g(l) are defined by (V-29) and (V-30). The solution of
. s (*)
the above system yields :
x§§)(n) + xég){ﬁ) = 2 cos /B m (V-39)
T
1 (1) in /B
x;l%ﬁ) + Xy, (M) = SIDBJ i Pls)ds {V-40)

Therefore, from (V-10), (V-35), (V-39) and {V~40} one obtaing

Al =~ 2 cos /BT -y {xii)(ﬂ) + xéé)(fﬂ} (V-41)

{*) Zee Appendix A For details,
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or

™
Al = = 2 gos /BT ~ 1 §E§%£§3 J wis)ds {V-42)
o
i
But J w(s}ds = 0 ; therefore,
Al \2 2
( 5 ) = cos” J/BW {V=d43)
2

but asccerding to (V-28}, ( 7 ) = 1 should yield the boundaries of

stability and instsbility =zones, that is

2
cos” JBW = 1 (V-44)

should define these boundaries. As is seen, (V-44) gives only the points

B = n , n=0,1,2, .., (V-45)

as boundaries. It would be very discouraging if the first approximation
gives only a sequence of points a5 the boundaries of stability and
instability zones. It would be even more so if one notices that these
points are completely independent of the function gl

Malkin obtgined the expression {V-41) from his first approximation,

but apparently he did not notice the fact that

ki

f P(s)ds = 0 = xii)(m s x;;)(ﬂ) =0 (V-46)
<

and introduced another expansion in (V-28), nsmely

B = n s z o Wt n=o0,1, 2, ... (V-47)
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Then, by seiting the coefficients of similar powers of W egual to ZeTOo,
he obtained systems of equations analogous to system {(V-24},

There are certain inherent dissdvasntages to this method., One dig-
advantage 1s that the terms going to infinity must be absent; that is, one
must insure the periodicity of solutions by ferreting out the coefficients
of secular terms and setting them egusl to zero. Another disadvantsge is
that for each value of n = n° a different system of differential egua~
tions needs to be studied, and the results do not improve on any of the

*

solutions for which n <n In the following, Mslkin's procedure will

be modified by using s value for AE consistent with Al , rather than
its exact value from (V-12), which is unity. This, as will become clear
later on, yields the boundaries of the stability and instiability =zones,

No use will be made of expansion (V~47}), and the difficult problem of

ferreting out secular terms does not arise.

C:a. Modified Malkin's Method, First Approximation

Here, instead of using an exact value for 52 , 85 given by (V-12),

oneg deternines A2 to the same degree of asccuracy as Al . This would
then be 2 more consistent method of approximation, Az will be evaluated
through (V-11), in which the fundamental system of solutions has been ob-

tained by the method of approximation described in (V-RB).

To determine the boundaries of the zones of stability and instability,

instead of setting A2 = 1 and ( 55 ) < 1 , one sets
AI \2
—— ] <« VAR
(2 < s, -
A, =1 (V-49)
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The lrequalities (V~48) and {(V-49) insure that 1 £ P and mod pp = mod Py
= jhg £ 1 which, according to (V-19), implies stability. Now if the

fundamental system of soclutions X(t) in (V-35) [which has been obtained

by a first approximstion through (V-36), V-37), and {V-38)Y] is substituted

L3
into {V-11), there results( )
/
T 2 - 2
2 |7 [
A2 = 1 - %ﬁ Lf @(s) cos 2/BS ds + é f ©(s)sin 2/BS ds
o L o
(V-503)

Replacement of ©(s) in the above by its Fourier series representastion

(V~-2} yvields

2 2
- m . -
.2 ]/ — a /B — mb_ 5
A2 =1 - i \X__. 3 ) + ( L 5 ) sin /BT (V~51}
=1 B-m n=1 B-m

S 2 - 2
2 - am/é _ mbm
B ) + Sﬁ <1 (V-52)
4R i 2 i z
B-m B-m
m=1 m=1

Comparing (V-52)} with (V~531) it is seen that the ineqguality (V-~48) is also

satisfied, Now from (V-52) one obtains:

2/B
< e
| - 5 - - (v-53)
— a8 JB —
( m . ( ZJ mbm )
2 2
m=1 B~m mel B-m

(*) See Appendix A for details.
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ool
- mbm

£ ©{t) is even, then / 5 =0 and /B cancels from the
me1 BR

numerator and denominator of (V~53), but if @{t) is not gven, then (V-53)
is true only for B real., Egusation {(V-53) defines the 5tability zones

in u,B space., In section VI it will be applied to Mathieu's equation

and Hill's~3~term eguation, and it will bhe seen that it compares verv well
With resulis available for those equations, 1In the folliowing, a second
approximation is worked ocut, and, as will be seen in section VI where it

is applied to Mathieu's equation, it yields a marked improvement on the

first approximation,

C:b. Modified Malkin's Method - Second Approximstion

The second approximation proceeds in the Bame way as the first one
except for the fact that three terms of series (V-21} and (V-22) will be

considered; therefore

(1){t) . u2 (2)

S,

(1) (V~-54)

#

P(E) = Q(t) + up

(1}

#2X(2)

fo-

) = x4 o (1) (t) , (V-55)

where X{t) is the fundamental system of solutions defined by the initial

conditions
o) - g
- - (V-56)
Py = x@ gy =g
o (2) , . . . . i
N¥ote that p {t) iz zero becsuse P{t) is given by {V-27). Substituting

{(V-54) ang (V-55) into (v-28) and setting P(z)(t) equal to zero and

€quating +the coefficients of iike powers of | one obtains



Note that the

respectively,

X(l}

o

{m, and
tains X{T

Al and Az
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20 L g 1@
A0 g gD, pD @ Vo5
£ g x @, p® W

first two eguations are identical with {(V-36) and (V-37)
#
The solution( ) of {V-57} at t = T yields (§{0}(ﬂ?,
2
5( )(ﬂ) whereby substituting them into (V-553), one ob-

Now, substitution of XK{mm into {(V-10) and {V-11) yields

Putting Al and A2 into the inequalities {V-48) and

{V-49) one obtains the following inegqualities, respectively: (see

Appendix B for detsils)

2 3 4
> 7
Cy+ Cy B+ Cyp” 4+ C, 0 (V-58)
5. 4+ S 92 Y] {V-59)
1 2 -
where
=~

c, = sinZ SBT

1 r Ai + As 5

— o e - ; /1 e

C2 = i l(gAsc As AC) sin 2/BT + 5 cos” /BT

1

= e (A A - A )
CS 2B/B ¢ o s2 8 ACE >
. 2

1 Ai * ‘f 2 2

T, 5 s sin /BT - (2 A - A A cos /B -4 {87 _ + A7)
4 2 2 s5C & © 2 52
16B |
(V-58:a}
Y,

(*) See Appendix B for details.
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5; 7 mE B A - Ag Ao
(V-59:a)
2
1 ’ A% v ) 2 2
g, = g —t ) - 4 (A ot ASZ) + (2 ALl T A AD
16B < ¢ s
whils
2
Ac * As B sinz JBT (Kz . Kz}
2 - 2 1 Tz
2 2 sin” JBT P 2
4 4 K
(ACZ + 432) ) (%1 & sz
? {V-59:h)
2
-sin~ /BT
- A FOR A S
A Beo s Aoz 4 ) By ¥ Hy K
2A - A A = E'Q - £in 2 /Bm (K. sin /Bm + ¥ JE—92
se c s = ) 3 5 1 1 ¢ BT + 9 CO=8 [
sin 2 /Bu , cos 2 JBT g
2 1 2 2
where
fi a /B
Y .
K, = ;
1 Lo 2
B~m
m=1
&=
— mbm
K el i
2 i 2z
Bem
m=1
& fea
i — >,
H1 = / { 12 3 I amb + bman) + - 1 55 men_b ap)]
~ (/B-m) “-n JB-m S B} -n® /Bem ¢ ooa
m=1 n=1
fos) =
N 1 n 1 n
H_ = - ); [ <a - b b ) o ——— (a 8 + b b T@
- / 2 - 2
2 i ;il (/gﬁm)zmn mn ;B m mn (/Bem) mn2 m n Bim mn

{V-59:0)
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o juel
Ql S ;(11 + Tz) a b + (T4 - TB) bm &
m=1 n=1
(s ~) o
92 =/ /L [{T2 - ?1) b b - {TB + T, a3
m=1 n=1
o {V~39:0)
Q. = = {32 + b2)
3 Lt je1h
Be-m
m=1}

n
T. =
. (/B+m) [(2 JB+m)2 mngj
Ty = - z 2
(/B-my [(2 /B-m)" -n" ]
2 J/Bem
Ty = 2 z.
T (WBem) [(2 /BimT - 17
2 /B-m
T, = Z

(/B-m) [(2 /Bnm)z “n ]

The inequalities (V-58) and (V-59) define the stability zones. To

define the boundaries of these zones one should first find the roots of

2 3 4
C1 + c2 W+ c3 B+ C4 b =0 , {V-60)

and then pick the one which satisfies the inequality {V-59). If more than
one root sstisfies the inequality (V-59), one should pick the root with
the lesst asbsolute value. If (V-60) does not heve zny real root or if none
of its Toots satisfies the inequality (V-539), then consider (V-59) as an

eguality, that is

5. B+ B &2 (V-61)

1
o
i
T
#
i
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Now consider this w if it satisfies the inequality (V-58).

Remark (V-1): To obtasin the complete stability region in {u,B) space,

one should replace W by -~ 1in equation (V-13. This yields the

following inequalities:

2 3 4
; : : - = -
C1 + C2 i CB RN C4 58 o (V-62)
- 5 + g 2 < 0 (V-83)
=N W< 5 noo=
instead of inequalities (V-58) and (V-59) respectively. The same pro-

cedure as explained in the previcus paragrasph should be applied, using the
above inequalities rather than inegualities (V-58) and {V-59) as the basis
to ebtain the rest of the boundary curves. This means that one should

consider the polynomial

4
Cc. + Cr pz - C 93 + O N =0 {V-64)

1 3 4

in conjunction with inequality €V-83). It is obvious that for a given

set of coefficients, a root of (V-64) satisfying the ineguality (V-63) is
the same, in magnitude, as its corresponding one obtained from (V-50) except
for a change in sign. This means that the stability zones are symmefric
ebout the B axis, This fact leads one to follow a simpier procedurs;
namely, for different values of B , find the roots of (V-80) which satisiy
the inequality (V~59), and then take their absolute values. This vields

the stability regions on the upper half of u.,B space. The wmirror image

of it on the lower half of u,B space completes the stability =zones.
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¥Vi. COMPARISON AND APPLICATIONS

In this section, first the general approximate results obtained in
section V will be compared with some of the few exact results, which are
known, and then Equation {I-1) and its special ceses will be applied to
a study of the problem of stability of z lumped parameter model of a

column.

A:a, Comparison of First Approximation with the Exsct Besults for the

Mathieu Equation

The Mathieu equation is
X+ [B~Wweos 2 t] x =20 . (VI-1)

Therefore it is seen that

w(t) = ¢cos 2 t {(Vi-2)
Comparison of (VI-2) with relation (V-2} vields:
Tt
2 2

al == j cos 2 t dt = 1

e (VI-3)
b, =2 =b =0 ] m=2, 3

i i} m

Substitution of (VI-3) in {V-53) yields

| w | <2VE-n? (VI-4)

{(VI-4) 1is plotted in {(Fig. 2) where the exact boundaries of stability zones
are glso plotted by using Ince’s tasble of the elliptic~cylinder functions

[24],[25)



A:b. Comparison of Second Approximations with the Exact Results for the

Mathieu Egquation

Again @(t) = cos 2t and a, = 1, bl = bm =8 = G ,m=2, 3,
Now the coefficients Cl’ Cz} CB’ Cq, Sl and 82 nf the inequalities
(v~58j and (V-59) will be caelculated., Substituting a, = 1 and
b1 = = bm =0 for m= 2, 3, ... in rsiations {(V-59:¢}, one obtains
1
/B
KL " 81 Ky = 0
B /B
Q =0 Q = - Q. =
H 2 ¥ -
1 2 (B-1) 37 B-l
2
fy =9 ' By, =83

2
Ac A B sin2 BT
2 - 2
2(B-1)
2
2 gin” /BT
a4 a7, Aiz) - ﬁi‘lm%f
(B-4)
/B sin’ /BT
A A - A A e e
¢ 82 s 2 2{B-13(B~4)
o4 - A & . /B _ B sin /BT

sC B 4{B-1} 4(Bn1)2

Substitution of these in expressions (V-5B:a3) and (V-39:2) vields the

following:

2
C1 = Sin jhﬂ

C = - T sin 2/Bn
2 - }.6\8(8"‘1)
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c = Sin2 y/’BTT
3 4B{(B-1){(B-¢)
o ( sin /B T cos /BT “ sinz JBT
- " v - T Ty T e
4 g(p-n° 16 VBEE-D 168° (B-4)
T ﬁinz .fBT‘;
1 4B {(B-1}(B-4)
1 J 2 - 1 1 T gin /BT " 1
82 = 1—'6— 5 sin /BT ) o 5 5 - 3 -+ 5
4¢8-1)"  B8°(8-0 8 /B(B-1) 16B(B-1) J
Now according to Eguation (V-8G) the polynomial
cinlpn  Dsin 2/B7 2 sin® /BT R FEEE: /BT T cos /BT ) 2
v [ iy v - —
B(B- 4 B(B= - 2
16/B(B-1} B(B~1) (B~4) 8(B-1) 16/B(B-1)
81 B 4
- -3%wﬁ;—-§ L =0 (Vi-5)
168" (B-4)

in conjunction with the inequalitiy

. 2 s .
v A it T
sin” /BT 1 SlnEJBTr[ 1 1 ], sin 2/B

- Mo+ o -
B (Bd) 16 a-1? BPe-o? ] 8 Be-D®
{(Vi~6}

2 \
R N O P :

168(B~1)2j

yields the boundaries between stable and unstable zones,

The roots of the polynomial{(VI-5) were calculated for -2 £ B = 10
in 0.1 steps on a CI 6400 digital computer. In each step the root which
satisfied the ineguality {VI~&) was selected. 1In cases where more than
one root satisfied the insguslity, the one with the least zbsolute valus
was considered. In cases where the polynomial did not have any resl root

or if none of its root satisfied the ineguslity (VI-6}, then the inequality
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{(Vi-6) was considered as an equality and its root was chosen if it satis-
fied the ipeguality (V-58), After the u was obtained in this way, then
its absclute value lu‘ (see Remark (V-1)) was taken. The results of the

second approximation are plated in Tigure 2,

Arc. Compsrison of First Approximstion with an Exact Result for the

Hill-3-Term Equsation

Klotter and Kotowski [20] have given stability charts for the

following equation:

y o+ (A + Y, cos T+ Y, cos 2 Ty =0 (VI~-T}

for the special cases of Y2 = 4+ .5 and Yz == B
Let 7T = 2t in (VI-7) fo obtgzin

¥ o+ (4% + 4V, cos 2t + 4Y, cos 4t) y = 0 (VI-8)
ar
. Y,
v+ [A - Vl (~cos 2t - == cos 4t)] ¥ = O {VIi-9)
Yl
where
o= o4h vl =4y Y, = 4Y, (Vi-10)
Comparison of Equation (VI-9) with Equation (V-1) yields:
B = ) {VI-11)
o= ?1 (Vi-12)
T{2
P(t) = - cos 2t =~ — c0s 41 _ (VI-13)
5 ,

i
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Compsring Equation (VI-13) with (V-2) one obtains

wit) = a, cos 2t + a, cos 41 (Vi-i14)
§2
where al = = 1, 82 = o bl = b2 = Dm =8 = O, m=3, 4,
Y1

Now substituticon of (VI-I13) in (V-532) vields

2$1<B~1) (B-4)
le] < - — (VI-15)
¥1(B—4) + YQ(B—l}

To compare with Klotter and Kotowski's result for the case Y. = .5

let ?2 e 4Y2 = 2 in {(VI-15} to obtain:

2?1(8—1) (B-4)
l#! R (Vi-186)
Y, (B-4) + 2(B-1)

It is not possible to make g plot of the stability zones in w-B
gpace by using (VI-16) because of the pPresence of ?l . This means thsat
an independent L-B plot for the purpose of comparison is not possible,

however, one can do a kind of mathemstical comparison as follows:

Assume a A = AT and read the value of ;1 = Q; from Klotter and

.{-
Kotowski's plot( ). Now according to (VIi-12)
T ?; . (Vi-17)
. o 3 -
Substitution of X for B and v, for Y, in (VI-16) yields a u*
which may be compared with B as given by {VI-17). ‘This process is

repested for different vazlues of h » to obtain & plot of W wversus R
This plot is superimposed on Klotter and Kotowski’'s plot in Figure 3 for

the purpose of comparison. In exactly the ssme way another plot is

- = =
() If for A = 3* there gre two values for Y

1 read them both and treat
them separately.




46

cbtained for the case ¥2 = = ,% . This plot is superimposed on the

corresponding Kilotter and Kotowski's plot in Figure 4.

Remark {(Vi-1): Application of the second spproximation to the Hill=-3-term

avoided because of its

in

equation, of the form treated hers, i

laboriousness.

B, Applicstions

Equations (I-1) and its special csses have many applications (8], f117,
[26] which will not be enumerated here. The main motivstion of this work
has been the problem of stability of a lumped parameter model of 2 column.
In the following this problem will be discussed,

Stability of a Lumped Parameter Model of a Column

Consider a2 colwm which is idealized in such » manner that its mass
is concentrated at its top and its material properties concentrated at its
bottom (see Figure 5)., The loading on the column is composed of an axial
time varying load and sn axial time varying base acceleration, plus a
lateral time varying force snd base acceleration. The motion of such =

column is governed by the following differentisl equation:

. e - v (t)
¥ o4 T(g) + ﬂ(z,x}x - | me x P(E) R } sin x
md mi L mné £
(VI-18}
- KO ub(t) cos X
Y £
where
T(x) = The elastic restoring moment

ﬂ(x,%)x = The retarding moment {(damping)

m = The mass of the column
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4 = The length of the column

{1} = The axizl load on the column
F{t) = The lateral force on the column
¥b(t} =~ Verticsl base accelerstion
ﬁb{t) = Horizontzl base acceleration

£ = 1
mi

qix 3 = L2E

mé

, v (1)
g(ty = ngmz PLY) + 2 , axial effect
a, (1)
- F(u) b

h(t) = sy ey , lateral effect

Substitution of these into (VI-18) yields
¥ s f(x) + q(x,X)% - g(t) sin x = h{t) cos x (Vi-19)
The following special cases of {Vi-19) will be considered:
t

(1) g(x,%X) = 0 , h(t) =0 , lim J letnldr=n < =

oo
8]

xf({x) 0 for x % O snd f{o) = O
Therefore equation {VI-18) reduces to
¥+ F(x) - g(t) sin x = O (VI-20)

Comparison of this eguation with Equation {I11-4) vields r{x} = sin x.

Therefore, if there exists 3 reglon about x = 0 in which



2 i i
position of the column is

{2} g(t) is pericdic of period T

hi{t) =0

fix}
sin x and substituting the

portion only one obitains:

g{x,%) are representable by relstions (IV-3).
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then according to Theorem (I1I-1) the verticsil

8 stable equilibrium position,

Expanding

series into (Vi-19) and considering the lineszr

¥+ kx + A - g{tx = 0 (VI-21)
7
Let g(t) =G + pp(ty such that f p{t)dt = 0 and also define
o

B* =k -G then {VI-21) reduces to

¥+ IB® - ppltd)]x + £k =0 (Vi-22)
This is the differential equsticn {IV-11). Using the substitution
{IV-12) and {(IV-14} ohe obtains:

¥+ [B - uwplt)]x =0 (VI-23)

How if the trivial solution of (VI-Z3} is stable,

then sccording to

{IV-12) the solution of (VIi-22} is exponentially asymptotically stable

and according to Remark (I1-1),

¥ o+ f{x) + g{x,%x)x - g{t) sin x =

is exponentizlly asymptoticelly stable.

{3)
assumed that =it}

Comparison of (Vi-19) with (IV-1) vields

Consider the same problem as in {2}, except that h{t) % 0O

the trivizl solution of the equation

{VIi-24)

It is

is bounded inh the mean in the sense of definition {II-B).
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5(x;t} = h{t) cos x (VI-25)

Hence, if h(t) is bounded in the mean, 8o is  S(x:t}, because
COB X Eé 1 . Therefore, according to Thecrem (I1-4) zsnd Remark {11-3),
the null solution of the homogenous part of {(Vi-183, thst is the null

solution of (VI-24), is stable in the presence of the persistent distur-

bance h{(t} cos x

C. Concluding Remarks

In section III 2 sufficiency region of stability (E was consitructed
through the use of a Liavunov function, It should be noted that if the
initial perturbstions do not belong to (% » the null solution is not
necessarily unstable. The Liaspunov stability theorenms provide us only :
with sufficient conditions for stability. Thsat is, if the initiasl per-
turbations belong to the region f% , then the null solution of the
system is stable. However, this does not imply that if the initiasl per-
turbations do not beleng to QI then the null solution is unstahle, For
that matter, one may construct instability region using instability theorems
[1],[8].

Another important point to note is the merit of the Liapunov Direct
Method. Given the differential equation of a system with its initial con -
ditions, one can decide on the Stabllity of the solution without solving
the differential eguation. Of course, the method has its shortcoming. It
is not always easy to construct a Liapunov function.

In sectionsIV and V, = method completely different than the Liapunov
method was used to study stability. In these sections, previous knowledge
of the solution of.the linearized differential equation was indispensable

to the study of stability. One should also note that the stability regions
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obtsined by the first and second spproximations are regions in the Space
0of the parameters of the system -~ B,u . It turns out this way because
wWe are essentially obtaining our conclusions from a study of 2 linear
System,

As is seen from Figures 3 and 4, the first 8pproximation as applied
to the Hill-3~Term eguation gives results which compare relatively well
with the exact solution., It should be noted, however, that this comparison
is not an independent ome. That is, the boundary curves in Figures 3 and 4
are not a &irect result of first approximstion. A direct application of

the first approximation is not possible becsuse Klotter and Kotowski used

three independent parsmeters while here the first spproximation is in terms
of two independent parameters | and R

When applied to the Mathieu equation, it is seen from Figure 2 that
the results of second approximation are quite satisfactory.

The merit of these approximations is that they are very simple toc use,
and may be applied to quite genersl systems. The first approximation is

especially very easy to apply, and in practice one is usuzally satisfied

with the results of such an approximation,
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¥First Approximstion & Determination of Al

APPENDIX A

and

A

2

The squetions to be sclived sre

O

i

with initial conditions

3(0){0) _
where

X(o) = [x

N

Q= [q{},ﬁ} =

s g

E2%(0}
Q 5{1} . EFI) zfo)
i 3 x(l)(o) _
(o}
oB y
(1),
B .

O I

-5 Q
(1, 0 )
B =

ety 0O

Now the solution of (1) with initial condition (3) is

Clt) =

£(

1)22(0)

Substitution of (9) in (2) yields

(1)

X

=X

(1

_ E(l)egt L

+ C(t)

52

(1)

(2

(3}

(6)

(7

(8)

()

(10)



The solutiocn of {10) is

gfl) _ eQ_(t>£(1)(g} . f eg(t—s)

J

o]

C(s)ds {11

Because of initial condition (3), the first term in {11} is zero.

Therefeore,

t
r £ \
Eﬁl) - ] o2 S),g(ﬁ)ds (12
S
Hence the first approximate solution is
X - 35{0) - ?5,(1) (13)
It is easy to show that
cos /Bt 51nBJBt
2oty o Rt (14)

~/B sin /Bt cos /Bt

therefore

£ e L (15}

P(t)cos /Bt E&Eﬁ;%ﬁmﬂgg

Substituting (15) in (12>

t /B cos /Bs sin /B(t-s5) s$in /Bs sin /B(t-s}

(1)
3§§lﬁs
B
o B cos VBs cos /B(t~s} /B sin /Bs cos JB(t~s5)

(16)

i
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Now according to (V-10}
; RO (o) (1) (]
%1 = - lel(ﬁ) + XEB( Y o= {( 11 {(m + %, (T)) + 4( (M + x,n (Tﬂjj
an
Substitution of (14) and (16) itno (17) vields
i
i v/’BTT
A, = -2 cos /B~ ;S.l_?g_w J @(s)ds (18)
o
i
But E w(g)ds = 0 . Therefore,
A, = -2 cos /BT (19)
Substitution of (13) into (V-11) vields
_ o (o) (o) a:o) (o) (1
Ay = [Xu (M xpp (W = %y ,7 (M (r)} * “'{Xll (M 2y, (M
(o) £€1) (o) (1) (1) (o)
+ X, (™ %11 (1 - L {1m %51 {m} { 17} X, {ﬂi
R (1) (1) ey {1)
bR [xll (m L (m X0 () (ﬁ)} . (20)
From (14) it is sesn that
0 m 2T - P 2 Pma1 (21)
From (16} and (14) it can be shown thst
”‘S)(ﬂ) mcm + x;g)(ﬂ) m(n} - xig)(ﬁ) m(n} - xi;%m (O)m =0
(22>

From (18) it can be shown thsat
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T 2
(1, (1 (1) ay,. . 1 -
%1 {m Koo 1) I % g () %4y {7} = - T5 {‘g P{s)cos &/Bsds}
11 21
+ {JE‘ @w(s}sin &/Bads} {233
: |
Substitution of {(21), (22} and (23} in (20) yields
J kst P T 2
i.2 1
A2 =1 = %\ { J wls)cos 2/8Bs ds} + { f $(s)sin 2/Bs dsJ (243
o o
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Second Approximstion

The equations to be solved are

é{o) _ %’§(o) (1)
é}l) - Q<§(1} . gfl) 3(0) (2)
2 %,ﬁ{g) +‘£(l)'§(l) (3)
with initial conditiams
EfO}(O) -1, 2{;(1)‘(0) N Eﬁz)(g) -0 (4)

whers fﬁl) and @ are given by {(V-30) and (V-28).

The solutions of above systems with initial condition (4) are as

follows:
20 = (5
%
P = [ Qo e %)
o
t 1 Q(s,-s.)
Qit-s ) (1) - L 2 Qs
E(z)(t) = I I g - e (Sl)e P(l)(sz)e ds dsl, {7)
c O
Substituting for q and g(l) and carrying out the matrix operations,

one obtains:

(o) 1 /B cos /Bt sin /Bt 1
{8}

XY =
/B -~ sin /Bt /B cos /Bt
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t{ /B cos /B

{d

oo |
O

B cos /Bs

-

ot

S
H

| -
t %1 /BsinJé(tmsl)sinfh(slwsz)cosJBsE sin/h(twsl)sin/ﬁislwsz)sinfhs

Il

s sin /B(t-s) sin /Bs sin /B{t-5)

wQS} ds
cos JB{t-5) /B sin /Bs cos /B{t-%)

(2)

2

/Bt-s )sin/B(s - - - - ; '
Bcgsvﬁ(t a1)51nyB(s1 sz)cos/hsz JBeos,/B(t 51)31n/é(51 $2)51n/h52

@(sl}w(sz)
ds_ ds
é;B 2z i

(10)

where ©(s) is given by (V-2).

Setting t = 7 in (8), (9) and (10) and using {V-55), one obtains a

second approximate sclution for the instsnt t = 7 , hamely:

X(m = 5‘0)(ﬁ) + p‘g(l)(ﬂ) + uz 5&2)(TD (11)
Mow
AL = - [xll(Tﬂ + xzz(fﬂl (12)
and
By = x (M %, (M - X, (M x, (M (13)
Substitution of (11) into (12) and (13) yields:
A = - {{X?l(ﬂ) + x;‘z’)(m] + },L[xii)(ﬂ) + xé;}('ﬁ)} + uz[xg}(ﬂ) + xg)(ﬂ)}}

{14)



Before proceeding further,
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(o) () (o) (o) - (1) (o)
= [x x5 (1 Xp (T - (™ X1 (m] + u ixll {1 Xoq (m
LI L I S e x2) (M xS (]
2 1 1 1
+ 2% {[x iljiﬂ x;;(ﬁ) - X}EE){W) {1}(17)}
(o) {2) Lo (2} (o) (2) L(o) (2)
+ [x 7 (m (M + %7 (W (M - x, 7 (W Xop (D = % " (M (M 1]
3 (D) (2) (1) (2) (D (2 (1) (2)
+ 7 Ix X7 {(m %50 (m + X5g (m x 7 {(m LN (™ %5y (M - %, (W {m ]
4 (2 <2) (2) (2)
+ W {x 11 () (M - x5 (m {my ]
(15)

sake of convenience:

cl

c2

LH

w(s)cos 2/Bs ds

r
J

=, ®(s)sin 2/Bs ds
2
m 1
P
= j J w(sl) @{52) COs ZJEsl ds2 dsl
oo
ki Sl
_Ir 2(s.) ©(s.) /B s, ds_ g
=] P80 @ s,) cos 5 ds, ds
o o

1

= j j m(sl) @(52) sin 2/B Sy d32 ds

0 0

1

1

let us introduce the following notetions for the




5
Tl
=0 j P(s_ ) w(s_} sin 2/Bs_ ds_ ds
sz R R Tz Tz T
oo
i1 S}
= i 2 /1
5 o J J $(s)) 9(s) cos /B s, cos 2/B s, ds_ ds,
o o

%1
A I J (s.) wi(s)) sin 2/B in 2/B d
ss_J @\_1 pls,) sin 2/ s, sin 5, d52 51
LS TR &)

%y
Acs = J J @(sl) @(52) cOS 2]@51 sin 2/@52 ds, dsl
oo

it s}_
4 = r J w(s.) 9(s.) sin 2/Bs. cos 2/Bs_ ds_ ds
Tsc J 1 2 1 2 2 1
c o
(18)

It can be shown, by the use of integration by parts, that

A1 7 T A

A = -

sl ASZ
A = 8 A - A an
5C c s Cs
2
——— A = ==

Acc 2 ! 58 2

Now from the results of first spproximation {(Appendix &) one has
(c) (o)
T ™ =
LI (m + 50 (M = 2 cos /Bt (18)
{1 (1
L1 ™ =

x50 () + Xon {m 0 (19}
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(o) e} (o)

(o) .
Xyp (0 x5, (M =, 7 (0 %, 7 (M = 1 {20)
(1) o) . (o) (1), (1) (o), _ (1) o), .
Kpg (7 3y (4 ) 7AW %) (=, 7 %y (D = %, () %y, 7 (M) =
9 5 {213
(1) (1) (D (1) Aot A
%y {17} %55 (1} - x12 (1T} le (m = - —EE {22)
Setting t = 7 in {8), (8; and (10) and using notation {18} and relatiocns

{17} . it can be shown that
2 2
A+ A
{2) RS2 sin /B™ cos /BT ¢ 5
Xy (T x xgp (T) = =5 (2 A AR+ — ) (23
(o) {2) (o) (23 {) (2) (o) {2)
x5 (T %00 {(m + %50 {m x5 (m - LI () L {(m - %y1 () x5 (T
A2 . A2 {24)
e s
T 4B
(1) {(2) (1} (2) (1) {2) {1 {23
X131 1) %o (1) + LI () Xll (M - X5 {1 %50 (m - le (1M x12 ()
1 {25}
=35 78 Phsz T Al
2
2 z
2 AT + A
(2) (2) (2) (2) _ (5_\ [( c s 2 2
X1y (W g (M - %, ,7 (M x5 7 = g5 3 ) s A, s AL
P (26)
+ {2 Asc - ACAS) J
Substituting the sbove relations into (14) and (18), one cbhtsins
‘ 2
Al 2 2 Ai + Aiq
. - /3 i § - 7 —_—
(2 ) = { cos JBI 4+ o [szn JBT (2 Asc ACAS) + cos /B 5 J }
(27}
Z
2 2
3 4 A+ A
. K - PR s 2 2
B = L+ o7p (BA 8 i L( 3 ) A v B
(28)



Substituting for ®(t) its Fourier series representation {V-2) and usi

relations (i6), one obtains

2
) -+ A 2 /7
s sin” /BT , 2 2
= K
5 = (K, + 2) (29)
2 2 sin2 B2 2
- o YT H
4(A°, Agz) ’ (H] + Hz} (30)
A A - A A =220 /BT g Kk o+ H_EL (31)
c s s c2 12 21
293 - A A = i 0. - EiﬁmEiEEF{K sin /BT + K, cos /Bq)g w(iigﬁgﬁéﬁ 0
Tse s 4 73 2 L 1 Y 2 ‘ 2 1

eos Z/BT 00 ] (32)
L Les /B0

5 %)
where Klg Kz, Hl’ HE’ Ql, Q2 and QS are given by relations (V-59:¢)

Substituting the above relations into Egquztions (27) and (28} and then

using the inequalities (V-48) and (V-49), one obtains

2 3 4
+ ! C C >
Cl c2 P i 0 £33)

s, 6+ S, W2 os0 (34)

where Cl’ C2, CS’ 64’ Sl and 52 are given by relations {(V~58:a}) and

(V-59:a) .
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Stability chart for Mathieu eguation: first approxi-
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VE = 0.5 , first epproximation and exact result
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& lumped parameter model of a column
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