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Three dimensional imaging from single element holographic data

Miguel Moscoso∗, Alexei Novikov†, George Papanicolaou‡, Chrysoula Tsogka§

Abstract

We present a holographic imaging approach for the case in which a single source-detector pair is

used to scan a sample. The source-detector pair collects intensity-only data at different frequencies

and positions. By using an appropriate illumination strategy we recover field cross-correlations over

different frequencies for each scan location. The problem is that these field cross-correlations are

asynchronized, so they have to be aligned first in order to image coherently. This is the main result of

the paper: a simple algorithm to synchronize field cross-correlations at different locations. Thus, one

can recover full field data up to a global phase that is common to all scan locations. The recovered

data are, then, coherent over space and frequency so they can be used to form high-resolution three

dimensional images. Imaging with intensity-only data is therefore as good as coherent imaging with

full data. In addition, we use an `1-norm minimization algorithm that promotes the low dimensional

structure of the images allowing for deep high-resolution imaging.

1 Introduction

Imaging with intensity-only measurements is an important and challenging problem in fields such as

x-ray crystallography, laser optics, or electron microscopy. Only the magnitude squared of the spatial

Fourier transform of the image can be measured while the phase is lost. This raises the well-known phase

retrieval problem, which attempts to reconstruct the missing phases. Loss of phase information occurs in

optics as well because optical sensors such as CCD cameras cannot record phases. Phase retrieval is also

important in applications where the sampled phase information is polluted by unavoidable phase errors.

Two well known approaches to the phase retrieval problem in optics are holography [1] and coherent

diffraction imaging [2]. In holography, the reconstruction of the missing phases is done with a controlled

reference beam that creates interference fringes within the diffraction pattern that are proportional to the

modulus of the Fourier transform of the object to be imaged. The fringes are related in a known way to

the unrecorded phases. Coherent diffraction imaging, however, does not use a reference beam to recover

the missing phase information. The images are formed using only intensity patterns. Yet, since wave

propagation is coherent, the phases are encoded in these patterns and can be, in principle, recovered using

iterative phase-retrieval algorithms [3] that exploit redundancies in the data, such as oversampling of the

diffraction patterns. This is also the approach in ptychography that records the patterns from a series

of partially overlapping regions, giving rise to data redundancies [4]. Because these imaging modalities

generate two-dimensional diffraction patterns, depth-resolved images are formed by assembling these

patterns using tomographic methods. This, for example, allows for non-invasive, free-label cell imaging

in biomedical research that requires minimal cell manipulation [6, 5].

On the other hand, optically sectioning of a sample often requires its mechanical movement rotating

it around a fixed axis to acquire a full set of projections. Such acquisition procedure may introduce
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unwanted artifacts in the reconstructions due to translational and rotational misalignments that degrade

the quality of the resulting images [7]. To reduce this problem, we propose to produce holographic data

from intensity measurements. Since these data are inherently centered, this approach has the advantage

of being fully alignment-free allowing for reconstructions even in the presence of constant drifts or random

vibrations due to mechanical rotations of the sample during the registration process. The method, though,

requires a careful control of the source signals including the ability to create narrowband illuminations.

It is a direct method and, therefore, iterative phase-retrieval algorithms are avoided, so there are no

convergence issues. It does not require oversampling neither, as it is often the case in coherent diffraction

imaging or ptychography.

In addition, we also propose to use an `1-norm minimization method that allows for high-resolution

imaging. The basic idea is that, often, the images have a low dimensional structure, so they admit a sparse

representation in certain bases, and this knowledge makes possible to recover the fine scale information

lost in the data when we promote it with these methods [8, 9, 10].

We consider here a moving source-detector pair that scans a sample. For example, the source-detector

pair may rotate around a circle acquiring the reflected data from the sample at different angles and

frequencies. Alternatively, the sample is rotated around its center of symmetry while the source-detector

pair remains fixed. The sample is far from the source-detector pair so the illumination is a plane wave.

Under these conditions, we solve a phase retrieval problem for one dimensional Fourier data for each

source-detector position. Different acquisition schemes maybe considered. The position of the detector

with respect to the source maybe fixed throughout the dataset acquisition process or the source location

could be fixed and only the detector maybe moving. Source and detector can be placed on the same

side of the sample (reflection mode), or on the other side (transmission mode). Thus, light signals from

the sample can be recorded from both the upper surface or transmitted through it, as it is typical in

tomographic reconstructions.

To fix ideas, let us consider M point-like reflectors with reflectivities ρj , j = 1, . . . ,M . They are

within a size a small box referred to as the imaging window (IW), which is discretized using K grid

points yk, k = 1, . . . ,K. Let us denote by xr the photodetector location and by xs the source location.

Then, when we illuminate the IW with a multifrequency vector e = (e1, e2, . . . , eS), the collected intensity

by the photodetector is given by

|bp(e)|2 = C

∣∣∣∣∣
S∑
l=1

K∑
k=1

ρkele
i

ωl
c dp(yk)

∣∣∣∣∣
2

, (1)

where C is a geometric factor, i =
√
−1 and dp(yk) = |xr−yk|+ |xs−yk| denotes the total distance from

the source to the point yk and from to the point yk to the receiver. We use the notation p = p(xs,xr) to

indicate the dependance of the measurements (and the distance) on the position of the source-detector

pair. In (1), we ascribe the reflectivity ρj to the grid point that contains an object with that reflectivity.

Otherwise, a grid point has reflectivity zero. A basic example of an illumination vector is el, the vector

with 1 in the l-th coordinate and 0’s elsewhere. It represents an illumination with amplitude 1 and phase

0 at frequency ωl.

Moreover, we assume that the reflectivity vector ρ = [ρ1, ρ2, . . . , ρK ] is M -sparse with M � K. This

is often true in applications where the reflectivity to be imaged does not occupy the entire scene but

rather a small part of the IW. For example, gold nanoparticles 50200 nm in diameter are particularly

convenient for imaging in vivo since their high scattering cross section makes them very bright compared

to the surrounding medium [11, 12, 13]. These particles scatter light nearly equally in all directions, so

we assume isotropic scattering.

We stress that in this work we assume that the solution is sparse in its canonical basis for clarity of
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exposition only. If ρ is not sparse in the physical space, we can apply a sparsifying transform Λ, such

as ρ = Λx, where x is a sparse vector, and solve for x instead [14, 15]. In this new basis, simplicity or

structure shows up as sparsity in x.

The most difficult task is to determine the support of this vector, i.e., the values of yk such that

ρk 6= 0. This is the combinatorial part of the imaging problem which is NP-hard [16]. Once the support

is known, it is straightforward to estimate the values of the reflectivities by restricting the inversion

to the support. Note that if the detectors can record the phases it would be trivial to determine the

distances |xr − yk|+ |xs − yk| by a simple inverse Fourier transform of bp = [bp(e1), bp(e2), . . . , bp(eS)]
t

for each source-detector position pair (xs,xr). Then, the locations yk of the objects would be obtained

by well-established imaging methods.

When phases are missing from the measurements, as in (1), we cannot determine the distances |xr −
yk|+ |xs − yk| directly by an inverse Fourier transform. We can determine, however, pairwise distances

between the targets locations. Still, the problem is that the pairwise distances for each source-detector

position are not referred to the same point and, thus, we have to refer them to a common one if we want

to image coherently.

The method has two stages. First, from the intensity data at each source-detector position, we

recover field cross-correlations corresponding to coherent sources of different frequencies. These cross-

correlations are the same as the ones obtained from full data, up to a global phase that is different for

each source-detector position. Hence, the field cross-correlations obtained from intensity data cannot

be used coherently to determine the locations yk of the targets. To use them coherently over all scan

positions they need to be synchronized or aligned first. To do so, we refer the unknown global phases to

the total reflectivity, which is a common quantity to all scan positions. This is the second stage of the

imaging method introduced in [17]. With this strategy, we show that imaging with intensity-only data is

as good as imaging with full data.

We stress that, for this method to work, one has to have good control of the light sources. Any

acquisition geometry is allowed either in reflection or in transmission mode. We have observed, however,

that source-detector configurations which enable greater phase diversity in the data are more robust and

provide more accurate reconstructions. In particular our simulations suggest that when the source and

the detector are moving on a circle and are diametrically opposed one to another, forming angles close

to 180◦, the inversion is more unstable and sensitive to noise in the data.

2 Cross correlation-based strategy

We can recover field cross-correlated data [19, 18, 20]

mp
ll′ = bp(el)bp(el′), l, l′ = 1, . . . , S, (2)

from intensity measurements using the polarization identities

Re(mp
ll′) =

1

2

(
|bp(el + el′)|2 − |bp(el)|2 − |bp(el′)|2

)
, (3)

Im(mp
ll′) =

1

2

(
|bp(el − i el′)|2 − |bp(el)|2 − |bp(el′)|2

)
, (4)

where Re(·) and Im(·) denote the real and imaginary parts of a complex number, respectively. Naturally,

|bp(el + el′)|2 represents the intensity measured when the detector is positioned at xr and two signals

of frequencies ωl and ωl′ are sent simultaneously from xs, and |bp(el − i el′)|2 represents the intensity

measured when the signal of frequency ωl′ has a phase shift of π/2 rad with respect to the signal of

frequency ωl. This can be easily accomplished by using a quarter-wave plate.
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Equations (3)-(4) show that we can recover the field cross-correlations (2) using an appropriate pro-

tocol of illuminations, even when phases are not recorded. These cross-correlations mp
ll′ are obtained

through quadratic quantities and, hence, there is a global phase that cannot be determined for each

position of the source-detector pair. To sum up, when only intensities are measured we can recover field

cross-correlations up to a global phase that is independent of frequency but that depends on the the

source-detector pair position. These global phases are essential if we want to superpose images coher-

ently for all measurements locations. Indeed, the unknown phase for each location means that we can

only determine pairwise differences of the targets locations. This is the main difficulty that needs to be

overcome when the data acquisition system, or the sample, is moved to acquire information for imaging.

Recovery of the cross-correlations (2) up to a global phase amounts to recovering the full data up to

a global phase as well. Indeed, setting the phase of bp(e1) equal to zero, we can form the vector βp with

components βp1 =
√
mp

11 and βpl = mp
1l/
√
mp

11, l = 2, . . . , S, that only differs from the full data vector

bp in a global phase factor eiθp , i.e., βp = bp e
iθp .

Thus, by using (1) we can find the locations of the targets associated to each source photodetector

position, up to a reference point, by solving the system

Apρdp = βp (5)

for the reflectivity vector ρdp , where

Ap =


ei

ω1
c dp(y1) ei

ω1
c dp(y2) · · · ei

ω1
c dp(yk)

ei
ω2
c dp(y1) ei

ω1
c dp(y2) · · · ei

ω2
c dp(yK)

...
...

...

ei
ωS
c dp(y1) ei

ωS
c dp(y2) · · · ei

ωS
c dp(yK)

 . (6)

The subscript r is used to emphasize that (5) uses data recovered from one source photodetector posi-

tion only. The vector ρdp does not represent the true reflectivity vector, but the sum of the reflectivities

located at the same distance dp(yk) = |xr−yk|+ |xs−yk| from the source-detector. In model (5)-(6) we

have assumed that the medium between the source-detector pair is homogeneous. If the measurements

are taken from outside the sample and the boundaries are index mismatched, we would have to model it

in (6).

For a sparse reflectivity vector, the solution ρdp can be found by using `1-optimization algorithms. In

the simulations shown below, we use a generalized Lagrangian multiplier algorithm (GeLMA) [21]. For

noise-free data, exact recovery is guaranteed under the assumption that the mutual coherence of each

matrix Ap is smaller than 1/(2Mp), Mp being the number of non zero components of ρdp . We recall that

the mutual coherence of a matrix A is defined as

µ = max
i6=j
|〈ai,aj〉| , (7)

where ai ∈ CN are the columns of A normalized to one. A measurement matrix is incoherent if µ is

small. The value of µ depends on the properties of the imaging set-up, such as the (synthetic) aperture

of the optical array or the sought image resolution. As a rule of thumb, the larger the optical aperture,

the smaller µ, and the higher the resolution, i.e., the more image details we want to resolve, the larger µ

is.

Once the solution vector ρdp= [ρp1, ρp2, . . . , ρpK ] has been found for each source-detector position

(parametrized here by p = 1, . . . , N), we compute the total reflectivities
∑K
k=1 ρrk seen by each source-

photodetector, which is a common quantity for all of them that only differs in the unknown phase factors
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eiθp . This motivates the key observation that we can refer all recovered quantities to the same global

phase. To this end, we define

cp =

∑K
k=1 ρpk∑K
k=1 ρ1k

= ei (θp−θ1), p = 1, . . . , N. (8)

The choice of p = 1 in the denominator is, of course, arbitrary. With this choice, c1 = 1. Multiplying the

recovered data vector βp by the complex conjugate of (8), we get cpβpl = bp(el)e
i θ1 , ∀ p = 2, . . . , N , and

l = 1, . . . , S. This second step defines the holographically recovered data

bh1 (el) = β1l, ∀ l = 1, . . . , S.

bhp(el) = cpβpl, ∀ p = 2, . . . , N and l = 1, . . . , S,
(9)

whose phases are now coherent over different scan positions and frequencies. Thus, the images can be

formed as if data with phases were recorded.

Indeed, once the data (9) are obtained, we can use any imaging method to determine the positions

of the scatterers. Here we show results obtained with the traditional Kirchhoff migration (KM) imaging

method and the `1-optimization approach. KM is a direct imaging `2-method [22] which can be written

as

ρKM (yk) =

N∑
p=1

S∑
l=1

e−i
ωl
c dp(yk) bhp(el). (10)

However, when the scene is sparse, meaning that only a few M components of ρ are different than zero

so M � K, `1-optimization algorithms that solve [14, 16]

min ‖ρ‖`1 , subject to Aρ = bh, (11)

can recover the true scene efficiently, even when the data are scarse so N � K. These methods provide

better resolution than `2-methods but they are more sensitive to noise in the data, in general. In (11),

we form A and bh by stacking Ap and bhp= cp[βp1, βp1, . . . , βpS ], respectively, so

A =


A1

A2

...

AN

 , and bh =


bh1
bh2
...

bhN

 . (12)

In the noiseless case, `1 minimization (11) provides the exact support of ρ when the mutual coherence µ

defined in (7) is smaller than 1/(2M). For a general matrix A of size N ×K, with N < K, µ ≥ 1/
√
N .

This implies that number of non zero components of ρ must satisfy M <
√
N/2. This is true regardless

the resolution of the image one wants to form.

Obviously, things get more complicated when the data is noisy. In this case, the resolution is limited

by the noise and, hence, it cannot be made arbitrarily small. Nevertheless, resolution can be enhanced

in the presence of noise by using a so called Noise Collector that absorbs the unwanted signals efficiently

[23]. With the Noise Collector, exact support is guarantee for Noise to Signal Ratios smaller than√
N/
√
M lnN , when the reflectors are well separated. When we solve for ρdp in (5), N is the number of

frequencies. Once the data are aligned, so we can use it all coherently for the final reconstruction, N is

the number of frequencies multiplied by the number of spatial measurements locations.

If the reflectors are not well separated, then it can be shown that the coherent part of the solution

is supported inside the vicinities of the true solution, and the incoherent part, whose support is outside

them, is small [24]. The vicinities are defined as the set of pixels whose corresponding columns in A are

almost parallel to the columns corresponding to the true support. The size of a vicinity is of the order of

the Rayleigh resolution limits.
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3 Numerical experiments

We consider a reflection imaging setup in optics: A single source illuminates the imaging window (IW)

and a single photodetector is used to collect the reflected intensity. Then by moving the source-detector

(or the sample) we obtain measurements corresponding to N locations xr on a plane at distance R = 1

cm from the center of the IW.

The scanning setups used in the numerical simulations are illustrated in Figure 1: a single source-

detector either moves on a circle (left) or on a two dimensional grid (right). The first scanning configu-

ration is equivalent to the situation in which the object to be imaged is rotated at a known angles. In

the results shown here we assumed that the source and the photodetector are collocated, i.e. xs = xr.

This is not a requirement of the method. Similar reconstruction results have been obtained for other

configurations, with either the distance between the source and the detector being fixed, or the source

being at a fixed location and the receiver moving to collect the measurements.

Using an appropriate illumination protocol, we recover the phase cross-correlations mp
ll′ , l, l

′ =

1, . . . , S, from intensity measurements at each of the N source-detector locations for p = 1, . . . , N . We

use N = 16 for both measurement configurations shown in Figure 1. We use S = 30 stepped frequencies

ωl = ω0 + (l− 1)∆ω, l = 1, . . . , S, with ω0

2π = 400 THz and ∆ω
2π = 5 THz, covering the spectrum of visible

light [400, 600] THz.

For simplicity, the medium between the source-detector and the reflectors is homogeneous. Thus, we

do not consider interfaces with refractive index mismatch in the numerical experiments. However, the

proposed method extends readily for the case in which the boundaries of the sample are index mismatched.

The size of the IW is 36µm × 36µm × 36µm, and the pixel size is 1.2µm × 1.2µm × 1.2µm. Thus, the

number of unknowns is 313 = 29791, while the total number of measurements is 30 × 16 = 480 and,

therefore, the linear systems in Eq. (5) are underdetermined and infinitely many solutions ρdp can fit

the data. However, only M = 10 grid point locations in the IW have a non zero reflectivity, so an

`1-minimization algorithm should be able to find their unique sparse solution.

Once these solutions ρdp have been found, we retrieve the holographic data bhp(el), l = 1 . . . , S,

p = 1, . . . , N , following the methodology proposed in Section 2 (see (9)). These data have phases that are

now coherent over frequencies and scan locations and can be used for imaging the unknown reflectivity.

The corresponding imaging results are shown in Figure 2. In this numerical experiment, the single source-

detector rotates around the IW on a circle, as shown in the top left image of Figure 1. The top panel in

Figure 2 shows the true reflectivity we seek to find. The bottom left panel is the `2-image (10), shown

here for comparison purposes only. The bottom right panel in Figure 2 is the `1-image obtained by

solving (11). In Figure 2, we plot the absolute value of the reflectivity normalized by its maximal value.

The `1-method recovers exactly the location of the reflectors, allowing for deep tissue high-resolution

imaging, while the `2-image has non-zero values at many other pixels (here we plot the thresholded KM

image showing only the values above 0.3). These results illustrate that imaging with intensity-only data

is as good as imaging with full data when the proposed methodology is used. Similar results are obtained

when the single source-detector moves on a two dimensional grid, as shown in the top right image of

Figure 1.

If, in addition to the support, one is interested in recovering the value of the reflectivity as well, then

it is trivial to apply an `2-method but restricted to the found support only, which makes the problem

overdetermined and simple to solve. The values of the reflectivity at the locations of the reflectors

obtained this way are given in Table 1. We show the values at the scatterers location divided by the total

reflectivity. We see from the results in Table 1 that the scanning configuration in which a source-detector

moves on a two-dimensional grid provides a better quantitative reconstruction of the reflectivity. This

has been observed consistently with other simulations not shown here. We think that this improved
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Figure 1: The scanning setups used in the numerical simulations. A single source-detector pair is con-

ducting measurements on a plane located at a distance of 1cm from the center of the IW (green stars)

and measures the reflected intensity. Two measurement configurations are considered in which the single

source-detector pair either moves on a circle (left) or on a two dimensional grid (right). The measure-

ments can be obtained by either moving the source-detector or the sample. The blue area depicts the

imaging window IW. A zoom of the IW is shown on the bottom plot.
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Figure 2: Top panel: the true reflectivity. Bottom left: ρKM obtained from (10). Bottom rightl: image

ρ`1 computed by solving problem (11). In all images we plot the amplitude of the complex valued

reflectivity |ρ|. SNR = 10 dB.

performance is due to the increased phase diversity of the data in this setup. Indeed, when the source-

detector is moving on a circle the distance from each location to the IW is less diverse.

4 Conclusions

We presented in this paper a computational imaging methodology that allows us to obtain three dimen-

sional images from intensity only data acquired with a single source-detector element. The method has

two steps. In the first step we use frequency diverse illuminations and the polarization identities to re-

cover full cross-correlated data. These data are known up to a phase eiθp which is frequency independent

but depends on the source-photodetector measurement location. The second step of the method aims to

referring all the cross-correlated data to the same global phase eiθ1 . This second step recovers holographic

data whose phases are coherent over different source-detector positions and frequencies. In other words,

the second step synchronizes, or aligns, the data to image coherently so depth can be resolved. This

is achieved by exploiting the fact that the total reflectivity must be independent of the measurement

location. A key element of the method is the exact recovery of M -sparse reflectivity vectors under the

usual assumption that the mutual coherence of the sensing matrix is smaller then 1/(2M). The proposed

approach is non-iterative, in contrast with most of the algorithms used for imaging with intensities-only,

and allows for exact phase recovery without any constraint on the reflectivity except the sparsity. As
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Circular 2d Grid True |ρtrue − ρcirc| |ρtrue − ρgrid|
0.1109− 0.0253i 0.1034− 0.0270i 0.1014− 0.0260i 0.0095 0.0022

0.0735− 0.0009i 0.0860− 0.0111i 0.0862− 0.0128i 0.0174 0.0017

0.0970− 0.0014i 0.0938− 0.0022i 0.0906− 0.0078i 0.0091 0.0064

0.0513 + 0.0018i 0.0681 + 0.0115i 0.0704 + 0.0097i 0.0207 0.0029

0.1121 + 0.0428i 0.1092 + 0.0382i 0.1061 + 0.0407i 0.0064 0.0040

0.1225 + 0.0403i 0.1081 + 0.0392i 0.1112 + 0.0363i 0.012 0.0042

0.0964 + 0.0260i 0.1060 + 0.0269i 0.1068 + 0.0313i 0.0117 0.0045

0.1280− 0.0142i 0.1319 + 0.0019i 0.1327− 0.0000i 0.0150 0.0021

0.0973− 0.0304i 0.0905− 0.0351i 0.0926− 0.0361i 0.0074 0.0023

0.1109− 0.0387i 0.1029− 0.0422i 0.1020− 0.0354i 0.0095 0.0069

Table 1: True and recovered values of the reflectivity at the location of the scatterers. We give the values

at the reflector locations divided by the total reflectivity. We also give the absolute value of difference

between the true and the recovered reflectivity.

usually in compressive sensing this implies that the solution of highly underdetermined problems can be

obtained, meaning that the number of data can be much smaller than the number of unknowns so the

images can be resolved with high accuracy.
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