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GENERALIZABLE MACHINE LEARNING METHODS 

FOR NETWORK INFERENCE IN SYSTEMS 

BIOLOGY 

Gabrielle Rabadam 

ABSTRACT 

Tissues comprise a multiplicity of specialized cell types that must coordinate state 

changes in order to function collectively. These state changes are orchestrated by 

coordinated direct cellular interactions and indirect responses to microenvironmental and 

systemic cues. Consequently, chronic perturbations to this collective behavior can result 

in disease states that are difficult to reprogram such as autoimmunity and cancer. As 

such, studying the self-reinforced dynamics of tissue function can benefit from a systems 

biology approach where the aim is to understand how individual components of biological 

systems interact to give rise to emergent properties.  

The recent growth in the availability of single-cell resolution genomics platforms has 

further expanded biologists’ ability to do this kind of unbiased inquiry. However, despite 

the increasing ease of generating these high-dimensional datasets, analyzing these data 

still presents significant computational challenges because of their noise and sparsity, 

which are further exacerbated on the level of individual cells and genes. As such, there is 

a need to develop computational methods that enable scientists to extract systems-level 

biological insight from noisy high dimensional data.  

This dissertation introduces DECIPHER, a machine learning framework tailored for 

network inference in systems biology, with a focus on applications to single-cell RNA 
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sequencing data. Chapter 2 details the DECIPHER algorithm and its implementation for 

the R computing environment, deciphR, that is designed to reconstruct cell state networks 

from high-dimensional molecular profiles. Chapter 3 applies DECIPHER to unveil cell-cell 

interaction networks in the human breast, elucidating how state changes on the cell-level 

propagate throughout tissue in response to hormonal fluctuations. Chapter 4 extends 

DECIPHER's application to investigate peripheral immune dysregulation in a rare 

pediatric autoimmune disease, revealing underlying immune imbalances that persist even 

in disease remission and potential therapeutic targets. Overall, this dissertation presents 

a generalizable approach to network inference for systems biology and demonstrates its 

utility in multiple biological contexts for unravelling cellular coordination in tissue 

homeostasis and disease. 
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CHAPTER 1 PREFACE 
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Introduction 

As dynamic living systems with multiple levels of hierarchical organization, tissues 

must coordinate state changes in order to perform their biological functions. These state 

changes occur directly through local cell-to-cell signaling, or indirectly through response 

to a common microenvironment or systemic signals like hormones. Systems biology, an 

approach that integrates experimental data, computational analysis, and mathematical 

modeling, offers a comprehensive framework for studying these complex dynamics of 

living tissues.1,2 At its core, a systems approach aims to elucidate how individual 

components of biological systems interact to give rise to emergent properties, such as 

cellular coordination, signaling cascades, and homeostasis despite perturbations. 

 For example, in the human breast, hormonal fluctuations control cell growth, 

differentiation, and tissue structure. However, only a small portion of epithelial cells 

express estrogen and progesterone receptors.3 As such, hormone-induced changes are 

primarily mediated through a cascade of paracrine signaling from hormone-responsive 

cells (HR+) to others in the breast. The impact of these changes is profound: cumulative 

lifetime exposure to cycling hormones is a major modifier of breast cancer risk4, and the 

majority of breast tumors are estrogen-dependent. Thus, cell-cell interactions between 

HR+ cells and other cell types are key to normal breast morphogenesis 

Similarly in the immune system, the dynamic exchange of cellular information 

between the dispersed network of localized tissue-resident immune microenvironments 

and central lymphoid organs is critical for mounting an effective immune response and 

maintaining immune tolerance.5,6 For example, during an inflammatory response, a small 

proportion of cells first respond to stimuli and then drive the widespread signal 
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propagation to trigger a population-level response.7,8 In complex juvenile autoimmune 

diseases like childhood systemic lupus erythematosus (cSLE) and juvenile 

dermatomyositis (JDM), multiple immune populations are disrupted resulting in an 

inflammatory signature and disease-specific autoantibodies.9–12 In contrast to monogenic 

autoinflammatory diseases13—which are characterized by innate immune dysregulation 

and etiologies rooted in individual aberrant pathways—complex juvenile autoimmune 

diseases are distinguished by the involvement of multiple components of the immune 

system. However, how these clinically observable disease phenotypes are rooted in 

immunopathology remains insufficiently understood. Systems-level studies based on 

single-cell measurements are required to reveal how dysregulated cell populations 

produce the observed disease signatures. 

Single-cell genomics has emerged as a transformative tool14,15 for dissecting 

cellular heterogeneity and uncovering the molecular underpinnings of various biological 

processes.16–18 By profiling individual cells at the transcriptomic,8,19 proteomic,20,21 and 

epigenomic levels,22,23 single-cell genomics enables researchers to unravel the 

complexity inherent in biological systems and gain insights into cellular states, transitions, 

and interactions.24–26 Despite these advantages, the analysis of single-cell genomics data 

presents significant computational challenges due to its high dimensionality, sparsity, and 

noise.27,28 Traditional analytical methods that focus on individual genes often struggle to 

extract meaningful biological information from such complex datasets.29  

As such, there is a need to develop computational methods that both enable 

scientists to extract biological insight from high dimensional data and address technical 

challenges of data integration and normalization. Machine learning (ML) techniques, with 
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their ability to uncover hidden patterns and relationships within large-scale data, have 

become valuable tools for analyzing and interpreting single-cell genomics data.30,31 Even 

before the advent of next generation sequencing technologies, it has long been 

appreciated that biology is rife with questions amenable to formulations as classical ML, 

or more broadly, computing problems. Historical examples range from the immune 

system’s effective pathogen response as a distributed autonomous system in the 

language of control theory32–34 to the question of sensory processing in visual neurons as 

a sparse coding problem when borrowing concepts from information theory.35–37 Across 

learning tasks, dimensionality reduction approaches, where the data is decomposed into 

its relevant basis factors that minimally reconstruct the core features of the data, are 

central to deriving meaningful insight and reducing computational load. 

In this dissertation, I present DECIPHER, a dimensionality reduction framework 

developed for network inference in systems biology, with a specific focus on inferring 

cellular coordination and interaction networks from single-cell genomics data: 

Deconstructing Cell-cell Interactions using Phenotypic Heterogeneity in single-cell RNA 

sequencing data. The remainder of this introductory chapter is devoted to a brief review 

on foundational concepts in the fields of Artificial Intelligence (AI) and ML and their utility 

for dealing with uncertainty in biology, particularly genomics. Specifically, I discuss the 

intuition behind mathematical formalisms central to the DECIPHER method: matrix 

factorization, parts-based learning, and graphical representations of Bayesian networks. 

Chapter 2 introduces the DECIPHER algorithm and its package implementation 

deciphR. By leveraging feature extraction and network inference techniques, deciphR 

facilitates the reconstruction of cell state networks, enabling researchers to infer latent 



 5 

biological programs from high-dimensional molecular profiles and gain insights into 

cellular coordination and function. Building upon this foundation, Chapter 3 applies the 

DECIPHER method to uncover cell-cell interaction networks within the human breast 

tissue. Using this approach, we explore the dynamic interplay between different cell types 

within the mammary gland microenvironment in response to cycling hormone levels. In 

Chapter 4, I present the application of DECIPHER to investigate coordinated immune 

dysregulation in  a rare autoimmune disease, Juvenile Dermatomyositis. By integrating 

immunophenotyping data and high-dimensional transcriptomic profiling, this chapter 

reveals the functional immune imbalance underpinning JDM, offering insights into 

potential therapeutic targets and personalized treatment strategies. Finally, in Chapter 5, 

I summarize and reflect on the body of work produced throughout my PhD, discuss the 

limitations and underlying assumptions of the computational methods I have developed, 

and propose future investigations to further the impact and scope of this work. Overall, 

this dissertation presents a generalizable approach to network inference in biological 

systems, leveraging machine learning methods to parse the networks of cellular 

coordination governing tissue homeostasis and disease. The findings presented herein 

hold promise for advancing our understanding of self-organization in living tissues, 

signaling dynamics, and disease pathogenesis, with potential implications for 

personalized medicine, biomarker discovery, and therapeutic intervention. 
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Review 

“…[W]hat casts the pall over our victory celebration? It is the curse of 

dimensionality, the malediction that has plagued the scientist from earliest days”  

– Richard Bellman 

 

For next generation sequencing genomics data, dimensionality reduction is a 

standard component of single-cell data processing workflows,38–40 although its roots as 

an ML task are often glossed over in biological applications. As one would infer, 

dimensionality reduction techniques are used to decrease the complexity of high-

dimensional datasets by identifying relevant features. For some applications, 

dimensionality reduction is sufficient as a ‘feature engineering’41 step, where it is deployed 

to reduce the computational load or improve the performance of downstream 

classification algorithms.42–44 However, dimensionality reduction techniques also have 

been successfully applied as insight-generating methods in biology.29,45,46 Matrix 

factorization, also referred to as matrix decomposition, refers to a broad class of 

dimensionality reduction techniques where the objective is to learn the basis vectors that 

recreate the original structure of the data. When matrix factorization is effectively done, 

i.e. arriving at ‘inherent dimensionality’, these basis vectors capture the relevant features 

while minimizing technical noise.  

Principal component analysis (PCA), one of the pioneering dimensionality 

reduction techniques, collapses the data into linear components or features ordered by 

their contributed variation.47 Because PCA has a unique convex solution, it has been 

shown to reconstruct data that can best be parametrized by linear combinations. 
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However, because PCA optimizes components based on maximum contributed variation, 

the output basis vectors do not always represent interpretable features of the original 

data.46 For example, Lee and Seung demonstrated that when PCA is used to extract 

components from a training set of facial images, the basis images are holistic 

‘eigenfaces’48 that resemble highly distorted transformations of entire faces. Because the 

statistical properties of PCA encodings require each input image to be represented by a 

linear combination of all basis features, the individual eigenfaces are combined via a 

convoluted set of positive and negative coefficients, thereby obscuring the underlying 

meaning of many basis features. In contrast, when trained on the same set of facial 

images, non-negative matrix factorization (NMF) learned basis images that represent 

localized facial features.46 Because of NMF’s non-negativity constraint, where basis 

vectors can only be additively combined rather than combined with arbitrary signs, the 

algorithm is able to extract features that intuitively represent parts of the input data it was 

trained on.  

Learning these intuitively representative parts is referred to as ‘parts-based 

learning.’ In addition to the physiologically and cognitively representative advantages of 

parts-based learning,49–51 matrix factorization that emulates parts-based learning is 

advantageous for analysis of biological signals because the basis features are sparsely 

encoded.52–54 Examples of sparse biological signals amenable to parts-based learning 

include perturbations to epigenetic activity in cancer54 and abnormal signals indicative of 

sleep disturbances.52 For genomics, sparse coding is reflected in the co-regulation of 

multiple pathways simultaneously, or the inherent low-dimensionality of gene regulation.55 

This low-dimensionality has been exploited at both the bulk and single-cell genomics level 
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to do module-level analysis that focuses on cellular processes rather than individual 

genes.56–58  

 Naturally, module-level analysis lends itself to graph theory whereby hierarchical 

relationships can be represented and studied through network structure. Portraying these 

relationships between components as graphs allows us to bypass the limitations of 

numerical representations of probability which dictate that in order to make any inference, 

we must define a joint distribution of all combinations of probabilities.59 In his seminal 

work Probabilistic Reasoning in Intelligent Systems, Judea Pearl highlights the 

inadequacies of formalizing human reasoning in this way:  

Human performance shows the opposite pattern of complexity: probabilistic 
judgments on a small number of propositions…are issued swiftly and reliably, while 
judging the likelihood of a conjunction of propositions entails much difficulty and 
hesitancy. This suggests that the elementary building blocks of human knowledge 
are not entries of a joint-distribution table. Rather, they are low-order marginal and 
conditional probabilities defined over small clusters of propositions.60 

 

This observation asserts that we make sense of uncertainty in conjunction with empirical 

observations by processing low-dimensional blocks of knowledge, i.e. modules of 

relevant conditional properties. This reflects scientists’ observation of functional co-

regulation of biological processes, whereby dynamic function in living systems can be 

described by clusters of coordinated processes rather than individual pathways.29,54,58  

Beyond the psychologically meaningful representations networks allow, marrying 

probability to graph theory, herein referred to as Bayesian networks, has allowed 

researchers to parametrize inferred relationships by encoding uncertainty in the structure 

of networks themselves.61 Furthermore, by providing researchers the mathematical 

language with which they can model inferential reasoning, Bayesian networks also enable 
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scientists to map how new information propagates through the network as a property of 

the network’s topology.62 This property of Bayesian networks—now termed ‘belief 

propagation’ describing the computational problem of quantifying dynamic inference 

updates as a linkage parameter of networks—has allowed them to revolutionize the field 

of ‘modern AI.’61,63,64 Within the realm of biology and thus at the core of the DECIPHER 

method, Bayesian networks provide both a conceptual syntax and quantitative calculus 

to describe how biological functions are dynamically coordinated across lower-

dimensional modules of activity.57,65,66  
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CHAPTER 2 DECIPHR: A DIMENSIONALITY 
REDUCTION FRAMEWORK FOR INFERRING 

NETWORKS OF CELLULAR COORDINATION IN 
SINGLE-CELL GENOMICS DATA 
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Abstract 

Single-cell genomics technologies have revolutionized our ability to dissect the 

heterogeneity and dynamics of cellular populations, providing unprecedented insights into 

biological processes at the individual cell level. However, the analysis of these data poses 

significant computational challenges due to their high dimensionality and sparsity. In this 

chapter, we introduce DECIPHER, a dimensionality reduction framework tailored for 

inferring networks of cellular coordination from single-cell genomics data.  This approach, 

implemented as an R package deciphR, serves as a versatile and interpretable tool for 

biologists seeking to integrate and gain biological insight into coordinated cell states from 

high dimensional genomics data. 

 

  



 12 

Introduction 

Tissues comprise a multiplicity of specialized cell types that must coordinate state 

changes in order to function collectively. State changes occur directly through local cell-

to-cell signaling, or indirectly through response to a common microenvironment or 

systemic signals like hormones. We reasoned that coordinated changes in cell state could 

be detected as covarying gene expression programs between cell types and across large 

cohorts of heterogeneous single cell RNA sequencing data. When heterogeneity in the 

cohort arises from biological variation such as age, disease progression, or 

developmental time, we hypothesized that these correlations encode information about 

the biological processes coordinated across cells that drive tissue homeostasis and 

change. 

 However, detecting correlations between individual genes in RNA expression data 

is a statistical problem with high type I error, i.e. a high rate of false positives that only 

increases as the number of pairwise comparisons scales.67–69 There is a known tradeoff 

between minimizing the rate of Type I errors and decreased statistical power,70 which is 

further exacerbated by multiple testing.71,72 Thus, the goal of identifying biological 

coordination in high dimensional gene expression data can be formulated as a multiple 

hypothesis testing problem. While methods to correct for the influence of multiple testing 

comparisons is an active area of statistical research,68,73–75 we instead sought to reduce 

the number of statistical comparisons made overall. To do this, we use a matrix 

factorization approach to reduce the dimensionality of the data from the order of individual 

genes to the order of co-varying gene sets. 
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 This dimensionality reduction approach takes advantage of two key principles: 1) 

the previously outlined inverse relationship between Type I error and number of 

hypotheses tested and 2) the inherent low-dimensionality of eukaryotic gene expression. 

The latter has long been appreciated as a feature of the human genome58,76 whereby 

multiple genes are coordinated  such that functional programming of biological processes 

can be observed as patterns in up- and down-regulated gene expression. With the advent 

of next generation sequencing, this low dimensionality has been shown to enable the 

detection of robust biological programs in noisy single-cell RNA expression data even 

when samples are sequenced at a shallow read depth.55 

Given this, we developed the DECIPHER algorithm to detect correlated changes in 

the expression of ‘biological activity programs,’ or activity programs, with the hypothesis 

that in this lower dimensional space, a subset of these correlations represent biologically 

meaningful coordinated cell states that underly tissue homeostasis in dynamic living 

systems. After learning these activity programs in an unsupervised manner from the data, 

we then apply network analysis to aid in the biological annotation and interpretation of the 

dimensionality reduction results. The end output reveals a graph representation that maps 

how biological processes are coupled in tissue and cooperatively change according to 

heterogeneous conditions across the cohort such as age, disease progression, or 

developmental time. We present deciphR, a user-friendly package implementing the 

DECIPHER algorithm in R with integrated visualization functionalities and interoperability 

with Seurat, a popular single-cell analysis pipeline.39  
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System and methods 

 An overview of the DECIPHER algorithm, can be seen in Figure 2.1 below. Briefly, 

the workflow consists of two phases. First, the method extracts activity programs from the 

single-cell expression data using a consensus matrix decomposition. Next, the method 

applies network analysis to annotate and identify biologically relevant hubs, or ‘modules’, 

of activity programs. The code for the deciphR package will be available on Github at 

‘GartnerLab/deciphR’ upon preprint release of this chapter’s corresponding manuscript. 

 
Figure 2.1 Overview of DECIPHER method.  
Activity programs, or GEPs as we also refer to them, are identified through consensus NMF. Briefly, a k-sweep of 
iNMF is run on expression data subset by major cell type and batch, if any, for R replicates (20 by default). Results 
at each rank k are aggregated across replicates such that consensus matrices are output for gene loadings (W), 
batch-specific expression loadings (V), and shared cell loadings (H). The optimal rank is selected using the DEW 
metric calculated from the phylogenetic trees constructed from consensus gene loadings W across the k-sweep. 
Next, network of correlated cell states is constructed from significantly correlated activity programs from NMF results 
at optimal kDEW.  
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Feature extraction of biological activity programs via 

coinMF 

 We apply non-negative matrix factorization (NMF) to reduce the dimensionality of 

the single cell data at a resolution appropriate for identifying activity programs.46 In this 

implementation, NMF seeks to decompose the input matrix of data into two sets of 

orthogonal vectors: one set of gene loading vectors, #, comprised of weights that quantify 

how much a given gene contributes to that feature or activity program, and a second set 

of cell loading vectors, %, comprised of weights that represent how strongly that activity 

program is expressed in a given cell. As a dimensionality reduction technique, NMF is 

distinct from principal component analysis in that there is no single solution for the number 

of patterns or components into which the data is segmented. As such, it is necessary to 

optimize the parameter ‘rank k’ via a ‘k-sweep’ such that the NMF results capture the 

relevant biology at an appropriate granularity.  

At each rank k, we deploy a consensus NMF approach first described by Kotliar et 

al. to ensure that the downstream matrix factorization results are robust to multiple 

random initializations of the algorithm.77 We combine this consensus approach with 

integrative NMF (iNMF)78 that takes advantage of online learning79 to decompose both 

batch-specific latent factors and shared latent factors across samples and batches. 

Hereafter, we refer to this consensus online iNMF approach as ‘coinMF.’ We chose to 

take advantage of an implementation of NMF that uses online learning for two reasons: 

first, improved computational performance over batch learning algorithms by segmenting 

the learning task into ‘mini-batches’ and second, the possibility of updating the learned 



 16 

latent factors as new data is added rather than re-running the NMF procedure on the 

expanded dataset.79  

 To optimize the choice of rank, we propose a novel metric for parametrizing the 

matrix decomposition, which we call the Depth Encompassing Weight or ‘DEW.’  First, the 

consensus gene loadings across all decompositions from the k-sweep are clustered 

phylogenetically.80,81 We then compute the number of phylogenetic subtrees captured at 

a given rank k, weighted by the depth of the subtrees. We proposed this metric based on 

two principled assumptions about the optimal rank K: first, that the optimal rank captures 

the appropriate breadth of biological activity programs, represented as phylogenetic 

subtrees; second, that meaningful biological features are robust across several ranks k, 

represented as the depth of these subtrees. Thus, the optimal decomposition of the data 

extracts features at an appropriate coverage and depth as parametrized by the metric 

DEW:    

!"#	 = 	 (!"#$%)&'!("
 

Previously we reported selection of rank k according to this procedure as simply 

the saturation of this depth-weighted subtree metric, identifiable as the inflection point on 

the curve such as below.65 However, depending on the underlying structure of the input 

data, it became evident that plotting this metric often results in ‘jittery’ curves characteristic 

of discrete data rather than continuous curves, leading to ambiguous manual selection of 

kDEW. The deciphR package release further advances the original method by 

implementing an automated k-selection procedure based on the kneedle algorithm for 

identifying inflection points in discrete data.82 We later demonstrate that the optimized 

kneed-based k selection procedure identified the appropriate rank k in a real dataset from 
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a highly heterogeneous patient cohort, in Chapter 4, while still allowing for a range of 

multiple appropriate factorization ranks as with the original method.  

 

Unsupervised network inference of coordinated 

biological processes  

 Using the decomposition at the selected kDEW, we calculate the pseudo-bulk 

average expression of each program, i.e. the per-sample expression of each activity 

program, Η. Then, the method constructs a correlation matrix from all pair-wise 

combinations of the filtered activity program matrix of expression, Η, with significance 

determined by a bootstrapping procedure for re-sampling pairs of programs.83  

An adjacency matrix is constructed from the statistically significant correlations, 

and transformed into a force-directed network, where activity programs are represented 

by nodes and correlations are represented by edges, with only positive significant 

correlations shown in visualizations for clarity. However, both the sign and magnitude of 

significant correlations are accounted for in the final structure of the network, such that 

positively correlated programs are ‘pushed’ closer together and negatively correlated 

programs are ‘pulled’ further.  

To reflect the fundamental observation that biology consists of higher-order 

organized processes than simple pairs of interacting pathways, we implement a 

community detection algorithm based on a Constant Potts’ model of modularity84 and 

quantify each node’s connectivity to the rest of the metric,  as parametrized by weighted 

topological overlap (wTO).85 A parameter sweep of modularity is performed to optimize 
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the community detection resolution using the ‘leidenalg’ package.86 The choice of a 

module formulation for further analysis was based on the assumption that biologically 

meaningful programs are tightly coupled to other programs and conversely, less relevant 

programs are isolated and poorly connected to the rest of the network. For applications 

where one is interested in biological activity programs that appear to turn on and off in 

isolation, perhaps representing putatively rare phenotypes, DECIPHER is likely not the 

appropriate tool.  

Once the structure of the network and its modules are determined, the network 

can be annotated on both the gene loading and cell loading level. Marker scores that 

quantify the strength of contribution of an individual gene to a given activity program can 

be calculated as the ordinary least squares regression coefficient between each gene’s 

z-scored expression and the expression score of that program in the given cell type.77 

This enables comparison of each gene’s contributions across activity programs, which 

could not be done with the raw gene loadings due to the non-negativity constraint of the 

matrix decomposition.46 Gene lists of these ranked marker scores can then be used as 

input to standard gene set enrichment analysis pipelines for biological annotation.  

The DECIPHER algorithm builds on these gene set enrichment results by then 

incorporating the network’s module structure to inform data-driven and unsupervised 

annotation of the network. We quantify the uniqueness of a given gene set to a module, 

or module enrichment as we call it, as the likelihood + of that gene set being enriched, ,, 

in as many or more neighboring nodes than it currently is within that module, -, if module 

membership were randomly assigned, ., from the whole network with / nodes:  

+(, ≥ -)	)ℎ45	 6/.7	 
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Thus, the module enrichment metric can then be used to assign biological processes to 

each of the network’s modules in a principled manner that takes advantage of both the 

wealth of curated gene annotation databases available87,88 and the inherent network 

structure of the dataset. 

 Similarly, the metadata describing biological conditions of the samples, such as 

spatial location or disease activity can be associated specific nodes or modules within the 

network. Depending on the kind of biological variable, i.e. categorical, discrete numerical, 

continuous, etc. and the sample distribution in the dataset, various statistical tests can be 

deployed to quantify the association between a biological condition and program 

expression. For example, to associate hormone receptor signaling status with 

components of the network derived from reduction mammoplasty tissue, we tested the 

association between individual’s oral contraceptive use and expression of each activity 

program in the network.65 The deciphR package includes several built-in functions to run 

this biological meta-analysis of the network.  
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Algorithm 

 
Figure 2.2 Flowchart depicting algorithm for  the dimensionality reduction part of the DECIPHER workflow. 
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coinMF Algorithm  

1. Input data: raw counts 89 
2. If batches, split by batch. 

3. Normalize and scale counts.  

4. For each $ = $ ∈ {2, 3, . . . , @}: 
a. At each initialization B ∈ C replicates of iNMF: 

 
5. Compile consensus gene loadings # and D, if batches, at each rank $ ∈ @: 

a. 

 
  
b. 

 
  
c. 
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d. 

 
 

6. Solve for consensus cell loadings %, at each rank $ ∈ @: 
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Figure 2.3 Flowchart depicting the algorithm for network construction and annotation within the DECIPHER 
workflow. 
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Discussion 

Here, we present a method DECIPHER for inferring networks of cellular 

coordination in single-cell sequencing data. DECIPHER is a method based on 

dimensionality reduction that takes advantage of fundamental properties of the data: first, 

the low dimensionality of gene expression owing to patterns of covariation indicative of 

co-regulated pathways and second, the decreased rate of false positives when the 

number of statistical comparisons is decreased. We deploy a novel metric, the Depth 

Encompassing Weight, for optimizing the dimensionality reduction of the data and 

implement an algorithm to automatically suggest the proper dimensionality parameter. 

Finally, we show in simulated data that biological activity can be detected via NMF as 

parametrized by the rank selected according to the DEW metric. Overall, this method 

provides an interpretable approach to nominating hypotheses from high-dimensional data 

in a principled manner, thereby addressing a key need in the field for methods that allow 

researchers to go from big data to biological insight. 
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CHAPTER 3 DECIPHER UNCOVERS CELL-CELL 
INTERACTION NETWORKS IN THE HUMAN 
BREAST 
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Abstract 

The rise and fall of estrogen and progesterone levels across menstrual cycles and 

during pregnancy regulates postpubertal breast development and modifies cancer risk. 

How these hormones uniquely impact each cell type in the breast is not well understood, 

because many of their effects are indirect–acting through paracrine interaction networks. 

Here, we apply DECIPHER, a computational approach that leverages inter-sample 

heterogeneity in scRNA-seq data to identify sets of cellular activity programs in multiple 

cell types that co-occur across samples. Applied to a dataset of 28 healthy reduction 

mammoplasty tissue samples, DECIPHER identifies a network of correlated activity 

programs that represent the dynamic tissue-level response of the human breast to 

changing hormone levels.  
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Introduction 

Coordinated interactions between cells are essential for the development and 

maintenance of normal tissue function, and dysregulation of cell-cell interactions is a key 

driver of disease. In the human breast, fluctuations in the levels of estrogen and 

progesterone with each menstrual cycle and during pregnancy control cell growth, 

survival, differentiation, and tissue morphology. The impact of these changes is profound: 

cumulative lifetime exposure to cycling hormones is a major modifier of breast cancer 

risk4, and the majority of breast tumors are estrogen-dependent. However, many of the 

effects of ovarian hormones within the breast are indirect. The estrogen and progesterone 

receptors (ER/PR) are expressed in only 10-15% of cells within the epithelium 3, and most 

of the changes that occur in response to hormone receptor activation are mediated by a 

complex cascade of paracrine signaling from hormone-responsive (HR+) cells to other 

cell types in the breast. Accordingly, cell-cell interactions between HR+ cells and other 

cell types are key to normal breast morphogenesis. However, a systems-level 

understanding of how different cell populations in the breast respond to cycling hormone 

levels remains unclear.  

 A key challenge is that the human breast is both heterogeneous across individuals 

and characterized by a highly dynamic microenvironment. There is a high degree of 

variability between individuals in terms of epithelial architecture,89 cell composition,90,91 

and hormone-responsiveness,92–94 and these differences likely impact both normal breast 

function and breast cancer susceptibility. Within individuals, the menstrual cycle and 

pregnancy/lactation/involution cycle are major drivers of epithelial remodeling, 

characterized by alternating periods of epithelial expansion and regression in response 
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to changing hormone levels.89,95–97 Histological analyses of paraffin-embedded human 

tissue sections have also identified cyclical alterations in epithelial architecture and 

stromal organization across the menstrual cycle98,99 and broad remodeling following 

weaning.100,101 However, little is known about how this underlying heterogeneity impacts 

cell state and the intercellular signaling networks that control tissue morphogenesis. As it 

enables unbiased analysis of cell types within the human mammary gland at single-cell 

resolution, scRNA-seq is particularly well-suited to investigate this problem. 

To provide insight into the cellular interactions that regulate breast tissue 

homeostasis, we applied DECIPHER, a computational approach that leverages inter-

sample transcriptional heterogeneity to identify coordinated interaction networks across 

cell types in scRNA-seq datasets. We applied DECIPHER to a dataset consisting of 

twenty-eight premenopausal reduction mammoplasty tissue specimens. Based on this 

approach, we identified a network of coordinated gene activity programs in HR+ cells and 

other cell types that represent the dynamic tissue-level response of the human breast to 

changing hormone levels. Using differences in cell-type proportions across samples, we 

infer a subset of activity programs that depend on direct cell-to-cell signaling and find that 

these direct interactions primarily comprise signaling from HR+ cells to other cell types. 

Second, we use DECIPHER to generate new hypotheses about how person-to-person 

variation at the tissue level is linked to specific biological mechanisms at the cellular level. 

Overall, these results provide a comprehensive map of the cycling human breast and the 

dynamic cell-cell interactions that underlie normal breast function and breast cancer risk. 
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Results 

Person-to-person variability in transcriptional cell 

state in the human breast 

To identify inter-individual differences in transcriptional cell state in the human 

breast, we performed scRNA-seq analysis on 86,136 cells collected from 28 healthy 

premenopausal donors who underwent reduction mammoplasty surgery (Figure 3.1, 

Supplemental Tables 3.1, 3.2). To obtain an unbiased snapshot of the epithelium and 

stroma, we collected live (DAPI negative) singlet cells from all samples by fluorescence 

activated cell sorting (FACS). For a subset of samples, we also collected purified epithelial 

cells or purified luminal and basal/myoepithelial cells. We used MULTI-seq barcoding and 

in silico genotyping for sample multiplexing to minimize technical variability between 

samples (Chapter 3, Methods).19,102 

 
Figure 3.1 Single-cell transcriptional analysis links biological variables with person-to-person heterogeneity in 
transcriptional cell state in the premenopausal human breast. 
Overview of scRNA-seq workflow: Reduction mammoplasty samples were processed to epithelial-enriched tissue 
fragments, then to single cells, followed by MULTI-seq sample barcoding, library preparation using the 10X 
Chromium system, and sequencing. 

Sorted basal and luminal cell populations were well-resolved by UMAP. 

Unsupervised clustering identified one basal/myoepithelial cluster, two luminal clusters, 

and six stromal clusters (Figure 3.2). Based on the expression of known markers, the two 
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luminal clusters were annotated as hormone-responsive (HR+) and secretory luminal 

cells, and the six stromal clusters were annotated as fibroblasts, vascular endothelial 

cells, lymphatic endothelial cells (“lymphatic”), smooth muscle cells/pericytes (“vascular 

accessory”), lymphocytes, and macrophages (Figure 3.2).  

 
Figure 3.2 UMAP constructed from RNA expression of single cells isolated from breast tissue, colored by major 
epithelial or stromal cell type. 

The luminal populations described here closely match those identified as 

“hormone-responsive/mature luminal” and “secretory/luminal progenitor” in previous 

scRNA-seq analyses of the human.103,104 Here, we use the nomenclature “hormone-

responsive/ HR+” and “secretory” to refer to these two luminal cell types. The HR+ cluster 

was enriched for the hormone receptors ESR1 and PGR, and other known markers such 

as ANKRD30A.104 Consistent with previous studies demonstrating variable hormone 

receptor expression across the menstrual cycle,105 expression of ESR1 and PGR 

transcripts were sporadic and often non-overlapping. Within the HR+ luminal cluster, 22% 

of the cells had detectable levels of ESR1 or PGR, with only 2% of hormone-responsive 

cells expressing both transcripts.  
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Inferring shared transcriptional responses and direct 

cell-to-cell signaling interactions in the human breast  

Since estrogen and progesterone are master regulators of breast development, 

and the levels of these hormones fluctuate across the menstrual cycle, we predicted that 

ER/PR signaling and the downstream paracrine response would be a major source of 

transcriptional heterogeneity across samples in our dataset (Figure 3.3). Based on 

random sampling across the menstrual cycle and differences in hormonal contraceptive 

use, we would expect to identify samples with varying levels of ER/PR activation in 

hormone-responsive (HR+) luminal cells. If these hormone-responsive cells are signaling 

to cell types, such as basal cells, we would further expect to see a second activity program 

in those cells representing the downstream paracrine response. Finally, this “paracrine 

response” activity program should co-vary with the level of ER/PR activation across 

different samples (Figure 3.3). Thus, we developed DECIPHER based on the hypothesis 

that inter-sample transcriptional variation contains meaningful information about how the 

behaviors of different cell types are coordinated at the tissue level, and that transcriptional 

signatures (“activity programs”) representing interactions between two cell types should 

correlate across samples.  
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Figure 3.3 Conceptual overview of analysis approach for human breast dataset using DECIPHER.  
We hypothesized that hormone receptor activation in hormone-responsive (HR+) luminal cells would correlate with 
transcriptional changes in other cell types, representing the downstream paracrine response. Based on differences 
in hormone levels due to menstrual cycling (depicted, left) or hormonal contraceptive use, we predicted that gene 
expression programs representing ER/PR signaling in HR+ luminal cells and the downstream signaling response in 
other cell types would co-vary across samples. 

DECIPHER identifies activity programs within cell types in scRNA-seq data and 

uses individual pairwise correlations between activity programs to build a higher-order 

map of coordinated cell-state changes (Figure 3.4). Using this network view, DECIPHER 

identifies modules of activity programs representing transcriptional states that co-occur 

across the same sets of samples. In downstream analyses, we infer modules that are 

enriched for direct cell-cell signaling interactions (i.e. modules containing links that 

depend on the proportion of one cell type across samples), or driven by non-cell-type 

specific responses to shared microenvironmental signals (i.e. modules containing 

transcriptionally similar activity programs) (Figure 3.4). We define individual activity 

programs and modules by performing gene set enrichment analysis, which allows us to 

infer higher-order functional interactions between multiple cell types. Finally, we uncover 

associations between annotated metadata features and sets of activity programs to infer 

potential sources of biological variation (Figure 3.4). 
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Figure 3.4 Using individual pairwise correlations between cell activities, DECIPHER builds a tissue-level map of the 
cell-cell interactions present in the healthy human breast and identifies modules of transcriptional states that co-
occur across the same sets of samples.  
In downstream analyses, we uncover modules driven by non-cell-type specific responses to shared signals, or 
enriched for putative direct cell-cell signaling interactions. We define activity programs using gene set enrichment 
analysis, identify common pathways enriched across activity programs in a module, and uncover potential sources 
of biological variation by testing association with annotated metadata features. 

To identify activity programs within cell types in the premenopausal breast, we 

performed non-negative matrix factorization (NMF) on each of the major cell type clusters 

represented in our dataset.77,78,106 To account for batch differences in our dataset, we 

used integrative NMF,78,106 and performed subsequent gene set enrichment analyses on 

the shared—rather than batch-specific—components of each activity program. This 

approach successfully corrected for batch differences while retaining sample-to-sample 

transcriptional variability. As solutions to NMF are non-unique, we adapted a consensus 

matrix factorization approach77 to identify activity programs that were consistent across 

replicates  (Figure 2.1, Chapter 3 Methods). A key parameter in matrix factorization is 

number of activity programs found for each cell type (rank, $). None of the three 

commonly used heuristics for guiding the choice of K identified an obvious “elbow” in our 

dataset (Supplemental Figure 3.11). We therefore deployed a new metric for choosing 

$, the Depth Encompassing Weight (!"#), based on the goal of identifying the greatest 

number of robust (i.e. consistent across values of k) and unique (i.e. distinct from other 
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programs at the same $) activity programs. We perform consensus iNMF over a range of 

ranks, build a phylogenetic tree based on the correlation matrix of gene loadings across 

all ranks, and partition the phylogenetic tree into subtrees to define distinct sets of 

programs (Figures 2.1, Supplemental Figure 3.12, Chapter 3 Methods).81 After filtering 

“outlier” activity programs that are expressed in only rare contaminating cells (Chapter 3 

Methods), we choose the optimum $	according to the !"# ($)*+) as the point at which 

increasing the granularity of matrix factorization does not identify activity programs that 

comprise major new subtrees (Supplemental Figures 3.11, 3.13, Chapter 3 Methods).  

Finally, to build a network map of cell-cell interactions, we quantified the average 

expression of each cell type-specific activity program for each sample and constructed a 

weighted network of coordinated activity programs based on the pair-wise Pearson 

correlation (Figure 2.1). To remove spurious correlations driven by outlier samples, we 

used bootstrap resampling to estimate confidence intervals associated with each 

correlation coefficient and transformed the resulting Pearson correlation matrix into a 

signed weighted adjacency matrix by setting all Pearson correlation coefficients with p-

values greater than 0.05 to zero. We identified modules of highly correlated gene 

expression programs using a community detection algorithm for signed graphs.84  

This approach identified eight major modules comprising highly correlated 

transcriptional states across cell types in the breast (Figure 3.5). Consistent with our goal 

of choosing the rank $ for each cell type that captured the greatest number of unique 

activity programs (Supplemental Figure 3.13), the overall organization of modules into 

cell-cell interaction networks remained highly robust to the choice of rank at values of $ ≥
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$)*+, whereas the network structure at $ ≤ $)*+ had much sparser connections between 

modules (Supplemental Figure 3.14).  

 

 

Figure 3.5 DECIPHER identifies cell-cell interaction networks across cell types in the human breast.  
(Figure caption continued on next page) 
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(Figure caption continued from previous page) 
Top: Heatmap depicting Pearson correlation coefficients between activity programs in the eight major modules 
identified by DECIPHER. Bottom: Network graphs of correlated activity programs in the human breast. Nodes 
represent distinct activity programs in the indicated cell types, and edges connect significantly correlated programs 
(Pearson correlation coefficient > 0, p < 0.05). Modules of correlated programs were identified using a Constant 
Potts Model for community detection. 

To interpret this network, we reasoned that the activities of two cell types can be 

coordinated in a tissue in multiple ways. First, cells can respond to the same 

microenvironmental cues (or the loss of cues), leading to either cell-type specific or non-

cell-type specific transcriptional responses in each cell. Second, cells can engage in direct 

cell-to-cell signaling, where a transcriptional response in one cell type leads to a change 

in a second cell type. In the premenopausal breast, fluctuating levels of estrogen and 

progesterone with each menstrual cycle control cell growth, survival, differentiation, and 

tissue morphology. As only a subset of cells expresses ER and/or PR, most of these 

changes are mediated by a complex cascade of paracrine signaling originating in HR+ 

cells that goes onto affect other cell types. Therefore, we expect the tissue-level response 

to hormones to lead to at least two types of coordinated interactions in the breast: direct 

cell-to-cell signaling interactions between HR+ cells and other cell types, and more 

complex downstream interactions involving cell-type-specific responses to a shared 

microenvironment—which we predict would involve transcriptionally unique (e.g. cell-

type-specific) activity programs that may be enriched for similar biological processes.  

To identify non-cell-type specific transcriptional responses—that are unlikely to be 

directly related to hormone signaling in the breast—we identified modules made up of 

activity programs with similar gene loadings (Figure 3.4). We found that Modules 7 and 

8 were highly enriched for activity programs with correlated gene loadings (Figure 3.6). 

Programs in Module 7 primarily consisted of ribosomal transcripts and genes involved in 

cellular respiration, whereas programs in Module 8 consisted of stress response genes 
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such as heat shock and chaperone proteins (Figure 3.6). We speculate that Module 8 

represents an artifact of tissue processing rather than biologically meaningful 

transcriptional variation, as prior studies have identified a similar signature in dissociated 

solid tissues.107 Notably, as DECIPHER describes cells as a combination of activity 

programs rather than forcing cells into distinct clusters, samples with high expression of 

“dissociation-related” activity programs may also contain biologically meaningful signals 

from other programs.  

 

 

Figure 3.6 Inferring non-cell-type-specific transcriptional responses in the human breast.  
(A) Left: Violin plot of the mean Pearson correlation between gene loadings for each activity program and all other 
activity programs in the same module (“gene loading similarity”). The horizontal dashed line represents the 99% 
confidence interval for permuted module labels. Right: Network graph of activity programs in the human breast, 
colored by the p-value for gene loading similarity for each program (log scale). P-values were calculated by 
permutation testing. (Figure caption continued on next page) 
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(Figure caption continued from previous page) 
(B) Heatmap depicting Pearson correlation coefficients between gene loadings for the indicated activity programs. 
The colored boxes list the top-loading genes shared by all programs in the indicated modules. 

Next, we inferred modules enriched for putative direct cell-cell signaling 

interactions, by identifying links between two nodes that depended on both the magnitude 

of activity program expression in a “sender” cell type and the proportion of that sender 

cell type in the tissue (Figure 3.4, Figure 3.7). We reasoned that if one cell type was 

signaling to another, the activity program representing the transcriptional response in the 

“receiver” cell type should be sensitive to the proportion of sender cells in the tissue, 

particularly for direct interactions involving short-range signaling molecules. As the 

proportion of epithelial versus stromal cells in our samples may be influenced by tissue 

dissociation, we restricted this analysis to links between epithelial cell types as "sender” 

cells (HR+ luminal, secretory luminal, or basal cells) and all other cell types as “receivers”. 

We modeled each pairwise interaction as a linear response to three variables: signaling 

from a sender cell type (i.e. the mean expression score of an activity program in that cell 

type), the proportion of the sender cell type in the epithelium, and an interaction term 

representing the combined effects of signaling and cell proportions (Figure 3.7).  
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Figure 3.7 DECIPHER infers direct cell-to-cell signaling interactions in the human breast.  
(A) Network graph of activity programs in the human breast, with arrows highlighting inferred direct cell-cell 
interactions. We modeled each pairwise combination of activity programs as a linear response to the mean 
expression score of an activity program in a “sender” cell type (!!"), the proportion of the “sender” cell type in the 
epithelium (!"##$%&$'), and an interaction term representing the combined effect of both terms (!(##$%&$'").  Arrows 
highlight pairs where only the interaction term is significant, the model describes over 60% of the variation in the 
response variable, and the FDR-corrected p-value for the overall model is less than 0.01.  
(B) Results from multiple linear regression analysis, depicting the four most significant (FDR < 0.01) inferred direct 
cell-cell interactions. For each pairwise combination, the response variable was modeled in response to three 
predictors: the expression score in a “sender” cell type (signaling), the proportion of the “sender” cell type, and an 
interaction term between both predictors. 

While this simplified model does not consider the effects of signal amplification, 

cooperation between signaling pathways, or higher-order interactions between more than 

two cell types, it identifies a subset of “high-confidence” direct cell-cell interactions that 

meet a series of simple criteria. We annotated putative direct cell-cell signaling 

interactions as those where the combined effects of signaling from a sender cell type and 

the proportion of the sender cell type in a tissue described over 50% of the variation in 

activity program expression in a second cell type (Figure 3.7). Consistent with our 

prediction about the nature of hormone signaling in the breast, four out of the five of the 



 40 

high-confidence inferred direct cell-cell interactions (FDR < 0.01) were part of the same 

module (Module 3), and consisted of a link between HR+ luminal cells as the “sender” 

cell type and a second “receiver” cell type (Figure 3.7). 

 

ER/PR signaling and the downstream response 

We next performed gene set enrichment analysis to define activity programs within 

each module and identify common pathways upregulated across multiple activity 

programs in a module (Chapter 3 Methods, Supplemental Data). We first focused on 

Module 3 (Figure 3.8), as our previous analysis demonstrated that this module was highly 

enriched for putative direct cell-cell signaling interactions. Since estrogen and 

progesterone are master regulators of breast development that act via paracrine signaling 

from HR+ luminal cells to other cell types, we predicted that ER/PR signaling and the 

paracrine response would represent a major source of direct cell-cell signaling signatures 

present in our dataset.  



 41 

 

 

Figure 3.8 ER/PR signaling in the human breast.  
(A) Diagram highlighting activity programs in the “ER/PR response” module. 
(B) Left: Gene set enrichment analysis of the indicated activity programs in the “ER/PR response” module, showing 
enrichment of genes upregulated during the luteal phase of the menstrual (Pardo et al., 2014). The top five leading 
edge genes for each activity program are listed. Right: Network graph of activity programs, colored by the FDR for 
gene set enrichment of genes upregulated during the luteal phase of the menstrual (Pardo et al., 2014). Overall 
enrichment of this gene set in the “ER/PR response” module was determined by permutation analysis. 
 

Consistent with this hypothesis, activity programs in Module 3—here annotated as 

the “ER/PR response” module—were highly enriched for genes previously found to be 

upregulated during the luteal phase of the menstrual cycle in a bulk RNA sequencing 

analysis (module enrichment p < 0.01; Figure 3.8).108 Notably, activity program 1 in HR+ 

luminal cells (“ER/PR signaling”) was associated with high expression of the essential PR 

target genes WNT4 and TNFSF11 (RANKL),94,109 and enriched for transcripts in the 

Molecular Signatures Database Hallmark “early estrogen response” (p<0.001) and “late 

estrogen response” (p < 0.01) gene sets (Figure 3.8).87 Additional canonical hormone-

responsive genes including TFF1, AREG, PGR, and VEGFA were highly expressed 
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across multiple activity programs in this module.110–113 Consistent with previous work 

demonstrating that STAT5 acts as a cofactor to mediate signaling downstream of PR 

activation in the breast, the ER/PR response module was also enriched for genes 

involved in IL-2/STAT5 signaling (module enrichment p < 1e-4). Finally, gene set 

enrichment analysis identified a subpopulation of proliferative secretory luminal cells 

within the ER/PR response module (Figure 3.8). This “proliferation” activity program 

(Secretory program 16) was highly enriched for cell-cycle related genes previously found 

to be upregulated during the luteal phase of the menstrual cycle (Figure 3.8).108  

Notably, our analysis also revealed that high levels of ER/PR signaling in HR+ cells 

(HR+ 1) coincided with the emergence of a second transcriptional state in a distinct 

subpopulation of HR+ luminal cells (HR+ 18) (Figure 3.9). Marker analysis and gene set 

enrichment analysis demonstrated that HR+ program 18 was characterized by 

upregulation of a hypoxia gene signature and pro-angiogenic factors such as VEGFA and 

ANGPTL4 . The identification of this “hypoxia” gene signature is consistent with a previous 

study using microdialysis of healthy human breast tissue which found that VEGF levels 

increased in the luteal phase of the menstrual cycle.114 As estrogen response elements 

have been identified in the untranslated regions of VEGFA,111 our results suggest that this 

increased expression may be, in part, a direct effect of hormone signaling to a 

subpopulation of HR+ cells. 
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Figure 3.9 ER/PR signaling and the coordinated downstream response confirmed in vivo. 
(A) Heatmap of the top 10 marker genes for HR+ 1 and HR+ 18. Results depict the Pearson correlation between the 
expression score of the indicated activity programs and the normalized expression of the indicated genes across 
cells.  
(B) Immunostaining for LRRC26, P4HA1, and KRT7 and quantification of the relative intensity of P4HA1 signal in 
LRRC26-/KRT7+ and LRRC26+/KRT7+ regions of interest. Scale bars 20 μm. 
 

To confirm these results in vivo, we performed marker analysis to identify genes 

specific to each cluster that could be used for immunohistochemical staining (Figure 3.9). 

We identified LRRC26 as a marker of the ER/PR signaling activity program HR+ 1 and 

P4HA1 as a marker of the hypoxia/pro-angiogenic activity program HR+ 18 (Figure 3.9). 

In intact human tissue sections, we found that LRRC26 staining marked a distinct set of 

luminal cells from P4HA1 (Figure 3.9). Moreover, these two subpopulations co-occurred 

within the same regions of the breast, demonstrating that they are unlikely to be an artifact 

of sample processing. Together, these results identify at least two diverging transcriptional 

states in HR+ cells in samples with high ER/PR signaling, one associated with signaling 

via RANK ligand and WNT4 to the surrounding epithelium and a second associated with 

a hypoxia-related/pro-angiogenic transcriptional signature (Figure 3.9). 

We next expanded our analysis of gene activity programs to other epithelial 

lineages and stromal cell types in the “ER/PR response” module. Similar to program 18 

in HR+ cells, multiple activity programs across other cell types in this module were 

enriched for transcripts involved in hypoxia and blood vessel remodeling including VEGFA 

and ANGPTL4 (Figure 3.10). The ER/PR response module was also enriched for genes 
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involved in tissue remodeling, cell migration, and extra-cellular matrix (ECM) organization 

(Figure 3.10), consistent with previously reported morphological changes observed in the 

breast epithelium98 and alterations in stromal organization and ECM composition115,116 

across the menstrual cycle. 

 

 

Figure 3.10 Activity programs in other epithelial lineages and stromal cell types within the ‘ER/PR response’ module.  
Network graph of activity programs, colored by the FDR for enrichment of the indicated gene sets in each activity 
program (log scale). Overall enrichment of gene sets within module 1 was determined by permutation analysis. 

Stromal cell types in this module were characterized by upregulation of ECM remodeling 

proteins including collagens (COL3A1, COL1A2), the crosslinking enzyme LOXL2, and 

the cytokine TGFB3. Together, these results demonstrate that DECIPHER-seq identified 

distinct transcriptional signatures for ER/PR activation in HR+ luminal cells and the 

downstream paracrine response in other cell types.  
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Discussion 

In this study, we combine single-cell analyses, immunostaining, and computational 

analysis to deconstruct the major sources of sample-to-sample heterogeneity in the 

human breast. We apply DECIPHER, a computational pipeline that leverages the inter-

sample transcriptional heterogeneity in our dataset to identify coordinated “tissue states” 

made up of modules of correlated transcriptional programs. A key insight of this approach 

is that a subset of “high confidence” direct cell-cell interactions can be identified based on 

their dependence on the proportion of one cell type in the tissue. Because DECIPHER 

corrects for batch effects while maintaining meaningful biological variation and optimizes 

both the granularity and robustness of identified activity programs, it has the potential to 

be flexibly applied to a broad range of preexisting single-cell datasets, or across datasets 

from multiple sources. While we focus on single-cell transcriptional data in this study, the 

integrative NMF backbone that underpins activity program identification in DECIPHER 

has also been applied to multi-omic datasets containing spatial or epigenetic data 

together with transcriptional information.78,106  

Using DECIPHER, we identify a set of highly correlated activity programs 

representing the in situ response to hormone receptor activation in HR+ cells and the 

effects of downstream paracrine signaling in other cell types, as well other coordinated 

programs representing the dynamic response to changing hormone levels (e.g. 

“involution-like”). By providing a systematic approach to explore scRNA-seq datasets at 

the tissue level, and organizing individual cell types’ transcriptional signatures into higher 

order modules of cell-cell interactions, we anticipate that DECIPHER will be broadly 

useful in other contexts. In this study, we used variation across individuals to identify cell-
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cell interaction networks in the healthy human breast, but the same approach could be 

used to study variation across individuals in disease states or in response to drug 

treatment, to identify spatial variation across different regions or cellular neighborhoods 

in a tissue, to uncover coordinated transcriptional responses in large-scale drug or genetic 

perturbation screens, or to understand coordinated changes in cell-cell interactions over 

time during developmental or disease processes.   

Cumulative lifetime hormone exposure is a major determinant of breast cancer 

risk.4 Using DECIPHER, we mapped the coordinated changes in cell state that occur in 

response to paracrine signaling from HR+ luminal cells. Strikingly, many of these changes 

closely mimic those seen during the pregnancy/involution cycle that have been linked to 

a transient increased breast cancer risk following pregnancy.100,101,117 First, we identify a 

proliferative gene signature in secretory luminal cells that is highly correlated with 

hormone signaling in HR+ luminal cells, consistent with previous studies demonstrating 

that TNFSF11 (RANKL) and WNT control progesterone-mediated epithelial 

proliferation.118 Second, we also observe upregulation of hypoxic gene signatures in 

multiple epithelial and stromal cell types that are highly correlated with hormone signaling 

in HR+ cells. A previous study identified these same pathways as highly enriched 

following post-lactational involution in the mouse. More importantly from the perspective 

of breast cancer risk, this “hypoxia/pro-angiogenic” signature identified breast cancers 

with increased metastatic activity,119 suggesting that these pathways can be co-opted by 

cancer cells to support a permissive tumor microenvironment. Thus, we speculate that 

many of the same mechanisms underlie both the short-term increased breast cancer risk 
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following pregnancy and the lifetime increased risk due to total number of menstrual 

cycles. 

In summary, by applying DECIPHER to scRNA-seq data from a unique cohort of 

28 healthy premenopausal women, we provide a comprehensive, systems-level view of 

the cellular and transcriptional variation within the human breast, which profoundly affects 

the response to hormones and may impact breast cancer risk. As the human breast is 

one of the only human organs that undergoes repeated cycles of morphogenesis and 

involution, this study serves as a roadmap for deeper interrogation of the cell state 

changes associated with hormone dynamics. Finally, it provides a foundation for future 

systems-level studies dissecting how the paracrine communication networks downstream 

of hormone signaling are altered during ER+/PR+ breast cancer progression. 
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Methods 

Tissue samples and preparation 

Reduction mammoplasty tissue samples were obtained from the Cooperative Human 

Tissue Network (CHTN, Vanderbilt University Medical Center, Nashville, TN) and Kaiser 

Permanente Northern California (KPNC, Oakland, CA). Tissues were obtained as de-

identified samples and all subjects provided written informed consent. When possible, 

medical reports or other patient data were obtained with personally identifiable 

information redacted. Use of breast tissue specimens to conduct the studies described 

above were approved by the UCSF Committee on Human Research under Institutional 

Review Board protocols 16-18865 and 10-01532. A portion of each sample was fixed in 

formalin and paraffin-embedded using standard procedures. The remainder was 

dissociated mechanically and enzymatically to obtain epithelial-enriched tissue 

fragments. Tissue was minced, followed by enzymatic dissociation with 200 U/mL 

collagenase type III (Worthington CLS-3, samples RM108 - RM203) or collagenase type 

II (Worthington CLS-2, samples RM216 - RM314) and 100 U/mL hyaluronidase (Sigma 

H3506) in RPMI 1640 with HEPES (Corning 10-041-CV) plus 10% (v/v) dialyzed FBS, 

penicillin, streptomycin, amphotericin B (Lonza 17-836E), and gentamicin (Lonza 17-518) 

at 37 °C for 16 h. For reduction mammoplasty samples, the cell suspension was 

centrifuged at 400 x g for 10 min and resuspended in RPMI 1640 plus 10% FBS. Digested 

tissue fragments enriched for epithelial cells and closely-associated stroma were 

collected after serial filtration through 150 µm and 40 µm nylon mesh strainers. Following 
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centrifugation, tissue fragments and filtrate were frozen and maintained at -180 °C until 

use. 

 

Dissociation to single cells 

The day of sorting, epithelial-enriched tissue fragments from the 150 µm fraction, or total 

banked material for the KTB samples, were thawed and digested to single cells by 

trituration in 0.05% trypsin for 2 min, followed by trituration in 5 U/mL dispase (Stem Cell 

Technologies 07913) plus 1 mg/mL DNase I (Stem Cell Technologies 07900) for 2 min. 

Single-cell suspensions were resuspended in HBSS supplemented with 2% FBS, filtered 

through a 40 µm cell strainer, and pelleted at 400 x g for 5 min. The pellets were 

resuspended in 10 mL of complete mammary epithelial growth medium with 2% v/v FBS 

without GA-1000 (MEGM; Lonza CC-3150). Cells were incubated at 37 °C for 1 h, rotating 

on a hula mixer, to regenerate surface antigens.  

 

MULTI-seq sample barcoding (Batches 3 and 4) 

Single-cell suspensions were pelleted at 400 x g for 5 min and washed once with 10 mL 

mammary epithelial basal medium (MEBM; Lonza CC-3151). For each sample, one 

million cells were aliquoted, washed a second time with 200 μL MEBM, and resuspended 

in 90 μL of a 200 nM solution containing equimolar amounts of anchor lipid-modified 

oligonucleotides (LMOs) and sample barcode oligonucleotides in phosphate buffered 

saline (PBS). Following a 5-minute incubation on ice with anchor-LMO/barcode, 10 uL of 

2 μM co-anchor LMO in PBS was added to each sample (for a final concentration of 200 
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nM), and wells were mixed by gentle pipetting and incubated for an additional 5 min on 

ice. Following incubation, cells were washed twice in 200 μL PBS with 1% BSA and 

pooled together into a single 15 mL conical tube containing 10 mL PBS/1% BSA. All 

subsequent steps were performed on ice. 

 

Sorting for scRNA-seq 

Cells were pelleted at 400 x g for 5 min and resuspended in PBS/1% BSA at a 

concentration of 1 million cells per 100 μL, and incubated with primary antibodies. Cells 

were stained with Alexa 488-conjugated anti-CD49f to isolate basal/myoepithelial cells, 

PE-conjugated anti-EpCAM to isolate luminal epithelial cells, and biotinylated antibodies 

for lineage markers CD2, CD3, CD16, CD64, CD31, and CD45 to remove hematopoietic 

(CD16/CD64-positive), endothelial (CD31-positive), and leukocytic (CD2/CD3/CD45-

positive) lineages by negative selection (Lin-). Sequential incubation with primary 

antibodies was performed for 30 min on ice in PBS/1% BSA, and cells were washed with 

cold PBS/1% BSA. Biotinylated primary antibodies were detected with a streptavidin-

Brilliant Violet 785 conjugate. After incubation, cells were washed once and resuspended 

in PBS/1% BSA plus 1 ug/mL DAPI for live/dead discrimination. Cell sorting was 

performed on a FACSAria II cell sorter. Live/singlet (DAPI-), luminal (DAPI-/Lin-/CD49f-

/EpCAM+), basal/myoepithelial (DAPI-/Lin-/CD49f+/EpCAM-), or total epithelial (pooled 

luminal and basal/myoepithelial) cells were collected for each sample as specified in 

Supplemental Table 3.2 and resuspended in PBS/1% BSA at a concentration of 1000 

cells/µL. For Batch 4, an aliquot of MULTI-seq barcoded cells were separately stained 

with biotinylated-CD45/streptavidin-Brilliant Violet 785 to enrich for immune cells, and 
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sorted CD45+ cells were pooled with the Live/singlet fraction as specified in 

Supplemental Table 3.2. Antibodies and dilutions used (µL/million cells) were as follows: 

FITC-EpCAM (1.5 µL; BD 550257, clone AD2), APC-CD49f (4 µL; Stem Cell Technologies 

10109, clone VU1D9), Biotin-CD2 (8 µL; BioLegend 313636, clone GoH3), Biotin-CD3 (8 

µL; BD 55325, clone RPA-2.10), Biotin-CD16 (8 µL; BD 55338, clone HIT3a), Biotin-CD64 

(8 µL; BD 555526, clone 10.1), Biotin-CD31 (4 µL; Invitrogen MHCD31154, clone 

MBC78.2), Biotin-CD45 (1 µL; BioLegend 304004, clone HI30), BV785-Streptavidin (1 

µL; BioLegend 405249). 

 

scRNA-seq library preparation 

cDNA libraries were prepared using the 10X Genomics Single Cell V2 (CG00052 Single 

Cell 3’ Reagent Kit v2: User Guide Rev B) or Single Cell V3 (CG000183 Single Cell 3’ 

Reagent Kit v3: User Guide Rev B) standard workflows as specified in Supplemental 

Table 3.2. Library concentrations were quantified using high sensitivity DNA Bioanalyzer 

chips (Agilent, 5067-4626) and Qubit dsDNA HS Assay Kit (Thermo Fisher Q32851). 

Individual libraries were sequenced on a lane of a HiSeq4500 or NovaSeq, as specified 

in Supplemental Table 3.2, for an average of ~150,000 reads/cell. 

 

Expression library pre-processing 

Cell Ranger (10x Genomics) was used to align sequences, filter data and count unique 

molecular identifiers (UMIs). Data were mapped to the human reference genome 

GRCh37 (hg19). The resulting sequencing statistics are summarized in Table S2. For 
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samples run across multiple 10X lanes, the cellranger aggr pipeline (10X Genomics) was 

used to normalize read depth across droplet microfluidic lanes (see “sort gate” information 

in Supplemental Table 3.2). 

 

Cell calling 

For V2 experiments, cell-associated barcodes were defined using Cell Ranger. For 

V3/MULTI-seq experiments, cells were defined as barcodes associated with ≥600 total 

RNA UMIs and ≤20% of reads mapping to mitochondrial genes. We manually selected 

600 RNA UMIs and 20% mitochondrial genes to exclude low-quality cell barcodes. 

 

MULTI-seq barcode library pre-processing 

Raw barcode FASTQs were converted to barcode UMI count matrices as described 

previously.19 Briefly, FASTQs were parsed to discard reads where: 1) the first 16 bases of 

read 1 did not match a list of cell barcodes generated as described above, and 2) the first 

8 bases of read 2 did not align with any reference barcode with less than 1 mismatch. 

Duplicated UMIs, defined as reads with the same cell barcode where bases 17-28 (V3 

chemistry) of read 2 exactly matched, were removed to produce a final barcode UMI count 

matrix. 
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Sample demultiplexing 

Barcode UMI count matrices were used to classify cells using the MULTI-seq 

classification suite.19 In Batch 3, sample RM192 was poorly labeled for the lane of cells 

from the epithelial cell sort gate. Therefore, to reduce spurious doublet calls in this 

dataset, we manually set UMI counts which were <10 for this barcode to zero. For all 

experiments, raw barcode reads were log2-transformed and mean-centered, the top and 

bottom 0.1% of values for each barcode were excluded, and a probability density function 

(PDF) was constructed for each barcode. Next, all local maxima were computed for each 

PDF, and the negative and positive maxima were selected. To define a threshold between 

these two maxima, we iterated across 0.02-quantile increments and chose the quantile 

maximizing the number of singlet classifications, defined as cells surpassing the threshold 

for a single barcode. Multiplets were defined as cells surpassing two or more thresholds, 

and unlabeled cells were defined as cells surpassing zero thresholds. Unclassified cells 

were removed and the procedure was repeated until all remaining cells were classified.  

To classify cells that were identified as unlabeled by MULTI-seq, we used the 

SoupOrCell pipeline102 to assign cells to different individuals based on single nucleotide 

polymorphisms (SNPs). For each dataset, we set the number of clusters (k) to the total 

number of samples in that experiment. To avoid local minima, SoupOrCell restarts 

clustering multiple times and takes the solution that minimizes the loss function. For Batch 

3, we chose the number of restarts that produced less than a 1.5% misclassification rate 

between MULTI-seq and SoupOrCell singlet sample classifications (Live/singlet: 30 

restarts/1.2% mismatch rate; Epithelial: 75 restarts/1.5% mismatch rate). SoupOrCell 

classification performed more poorly across parameters for Batch 4 (Live/singlet plus 



 54 

CD45+: 50 restarts/8.1% mismatch rate, 75 restarts/4.8% mismatch rate; Epithelial: 50 

restarts/8.6% mismatch rate, 75 restarts/14.9% mismatch rate, 100 restarts/4.1% 

mismatch rate). Therefore, for these datasets we used sample classifications that were 

consistent across two restarts (Live/singlet plus CD45+: consistent calls across 50 and 

75 restarts/0.4% overall mismatch rate; Epithelial: consistent calls across 50 and 100 

restarts/1% overall mismatch rate) to identify high-confidence singlets.  

 

Quality control, dataset integration, and cell type 

identification using Seurat 

Cell type identification was performed using the Seurat package (version 3.1.5) in 

R.40 To identify and remove doublets formed from cells from the same sample that would 

not be identified by MULTI-seq or SoupOrCell, we filtered each lane to remove cells with 

greater than 20% of reads mapping to mitochondrial genes and ran DoubletFinder 

(version 2.0) on each data subset,120 using parameters identified by the ‘paramSweep_v3’ 

function. Aggregated data for singlet cells for each batch was filtered to remove cells that 

had fewer than 200 genes and genes that appeared in fewer than 3 cells. Cells with a Z 

score of 4 or greater for the total number of genes expressed were presumed to be 

doublets and removed from analysis. The remaining cells were log transformed and 

scaled to a total of 1e4 molecules per cell, and the top 2000 most variable genes based 

on variance stabilizing transformation were identified for each batch.38 Data from all four 

batches were integrated using the standard workflow and default parameters from Seurat 

v3.40 This data integration workflow identifies pairwise correspondences between cells 
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across datasets and uses these anchors to transform datasets into a shared expression 

space. Following dataset integration, the resulting batch-corrected expression matrix was 

scaled, and PCA was performed using the identified integration genes. The top 28 

statistically significant PCs as determined by visual inspection of elbow plots were used 

as an input for UMAP visualization and k-nearest neighbor (KNN) modularity optimization-

based clustering using Seurat’s ‘FindNeighbors’ and ‘FindClusters’ functions.  

 

Quantification of sample-to-sample heterogeneity: 

cluster entropy and similarity scores/alignment 

Cluster entropy: To measure how well-mixed cells from different samples were across cell 

type clusters, we quantified the normalized relative cluster entropy for our dataset, 

weighted by cluster size.121 A cluster entropy value of 1 represents complete intermixing 

of samples across clusters.  

Similarity scores/alignment: To measure transcriptional variation in cell state within cell 

types between cells from the same versus different batches and/or samples, we 

measured the pairwise alignment between each sample/batch,39 where batches 

consisted of sets of samples processed on the same day (Supplemental Table 3.2). This 

“similarity score” examines the local neighborhood of each cell in a particular 

sample/batch, asks how many of its k nearest neighbors (in PC or iNMF space) belong 

to a second sample/batch, and averages this over all cells. We chose k to be 1% of the 

total number of cells within a cluster. The result was normalized by the expected number 

of cells from each sample/batch. Notably, for repeat measurements, samples run across 
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multiple batches were highly similar. We calculated the pairwise similarity score between 

each sample/batch using the first 14 principal components for each cell type. We 

calculated the pairwise similarity score between each sample/batch using all iNMF 

components for each cell type (at $)*+, see text below for optimization of $).  

 

PCA of individual cell types 

To perform principal component analysis on individual cell types, we subset out 

each cluster from the integrated dataset and repeated the standard workflow from Seurat 

v3 to identify integration genes specific to this cell type. The resulting batch-corrected 

expression matrices were scaled, and PCA  was performed using the identified integration 

genes.  

 

Activity program identification in each cell type 

(consensus iNMF) 

To identify gene expression signatures, or “activity programs”, within individual cell 

types, we subset raw counts data from each of the five most abundant cell type clusters 

(HR+ luminal cells, secretory luminal cells, basal/myoepithelial cells, fibroblasts, and 

endothelial cells) and performed matrix factorization. We chose to perform matrix 

factorization independently on each cell type rather than on the combined dataset, as 

preliminary analyses demonstrated that the number of gene programs identified for each 

cell type was highly dependent on the relative sizes of each cluster in the combined 
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dataset. To correct for batch differences between samples run on different days, we used 

the LIGER package in R to perform integrative NMF (iNMF),78,106 and performed 

subsequent gene set enrichment analyses on shared, rather than batch-specific, gene 

loadings for each activity program. Importantly, activity program expression in cells from 

the same sample run across different batches was more similar than program expression 

in cells from different samples processed in the same batch, demonstrating that this 

approach successfully corrected for batch differences while retaining sample-to-sample 

transcriptional variability. To avoid identification of gene signatures dominated by highly-

expressed transcripts, we normalized the raw counts matrix for each cell based on its 

total expression, multiplied by a scale factor of 1e4, and log-transformed and scaled the 

result without centering. The resulting datasets (one for each cell type) were decomposed 

using the ‘online_iNMF’ function from LIGER.78 Online iNMF uses an online learning 

algorithm to iteratively cycle through the data in small mini-batches, greatly increasing 

convergence times for large datasets. We performed 10 complete passes (‘max.epochs’ 

parameter) through each dataset, and chose the mini-batch size (‘miniBatch_size’) by 

rounding down to the nearest 500 from the smallest batch size in that cell type (HR+ 

luminal cells: 1000, Secretory luminal cells: 2000, Basal cells: 500, Fibroblasts: 500, 

Endothelial cells: 500).  

Since solutions to NMF are non-unique, we adapted a consensus matrix 

factorization approach from Kotliar et al. to identify activity programs that were consistent 

across multiple replicates.77 For each cell type, we ran 20 replicates of iNMF on the same 

normalized dataset with the same choice of rank K, starting from different random seeds. 

We row normalized the resulting 20 shared gene loading matrices (W, each of dimension 
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Kprograms X Ngenes) to have an L2 norm of one. Following normalization, we combined the 

shared gene loading matrices from each matrix into a 20Kprograms X Ngenes dimensional 

matrix, where each row represents the gene loading from one activity program in one 

replicate. Next, we filtered out programs with a high mean Euclidean distance from their 

6 nearest neighbors (30% of replicates), using the third quartile plus 1.5 times the 

interquartile range (q0.75 + 1.5⋅IQR) as an outlier threshold. After filtering outlier programs, 

we grouped the rows of the resulting matrix using k-means clustering, with the number of 

clusters set to the chosen iNMF rank K. Next, we collapsed each group of shared gene 

loadings to a single consensus vector by taking the median value for each gene across 

activity programs in that cluster, to produce a final Kprograms X Ncells consensus program 

matrix, W. We performed the same row normalization on the batch-specific gene loading 

matrices, filtered programs identified as outliers in the shared gene loading matrix, and 

collapsed groups of batch gene loadings into a consensus vector by taking the median 

value for each gene across programs in that cluster to produce consensus batch matrices 

Vbatch, each of dimension Kprograms X Ngenes. Finally, we solve for the consensus cell 

expression score matrix H (Xcells X Kprograms), by using non-negative least squares 

initialized with the consensus shared (W) and batch-specific (Vbatch) gene loading 

matrices. 

A key parameter in matrix factorization is the choice of rank K. This parameter 

determines the granularity of identified activity programs. Three commonly used 

heuristics for guiding the optimum choice of K are: 1) minimizing the Frobenius 

reconstruction error of the final solution,77 2) maximizing the median Kullback-Leibler (KL) 

divergence of activity program loadings across cells relative to a uniform distribution,106 
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and 3) estimating the “dimensionality” of the dataset via elbow plot of the proportion of 

variance explained across principal components.77 We propose a new metric for choosing 

an optimum K, based on the goal of identifying the greatest number of activity programs 

that are robust (i.e. consistent across multiple choices of K) and unique (i.e. distinct from 

other programs at a particular choice of K). First, we perform consensus iNMF as 

described above over a range of ranks, with the sweep range guided by the heuristics 

described above. Here, we chose a range of 2 to 40 for all cell types. Next, we use the 

‘fastme.bal’ function in the ‘ape’ R package to build a balanced minimum evolution 

phylogenetic tree based on the correlation matrix of the gene loadings for activity 

programs across all ranks.80 For each cell type, we partitioned the resulting phylogenetic 

tree into clusters using an empirical distance threshold to define distinct groups of activity 

programs.81 To identify partitions, we first artificially rooted each tree by taking the median 

of the activity programs at K = 2. Next, we identified clusters by performing a depth-first 

search starting from this artificial root, stopping at sub-trees where the median value of 

the pairwise patristic distance between all programs in that sub-tree was below an 

empirically determined threshold of 0.3. To filter out “outlier” activity programs that 

represent rare contaminating cells (e.g. a “fibroblast-like” gene signature in HR+ luminal 

cells), we calculated the maximum expression score for each activity program divided by 

the mean expression score for the next 50 highest-scoring cells, and removed programs 

where this ratio was greater than 5. We also removed subtrees with fewer than 5 total 

activity programs. Finally, we plotted the number of subtrees identified at each K 

(excluding outlier programs), weighted by the total number of programs in each subtree. 

We choose the optimum K (Kopt) as the saturation point in this curve, representing the 
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point at which increasing the granularity of matrix factorization does not identify activity 

programs that comprise major new subtrees. 

 

Network clustering of correlated activity programs 

To identify sets of activity programs that co-varied across samples, we first 

decomposed each cell type into a set of distinct gene expression signatures, or “activity 

programs”, using consensus iNMF with $)*+ chosen for each cell type as described 

above. We then quantified the average expression of each gene program in each sample 

and constructed a weighted network of coordinated gene expression programs based on 

the pair-wise Pearson correlations between gene programs. To account for correlations 

driven by outlier samples, we used bias-corrected and accelerated bootstrap resampling 

to estimate confidence intervals associated with each correlation coefficient. The resulting 

Pearson correlation matrix was transformed into a weighted adjacency matrix by setting 

all Pearson correlation coefficients with p-values greater than 0.05 (based on the null 

hypothesis r = 0) to zero. We identified modules of highly correlated gene expression 

programs using a Constant Potts Model for community detection in signed graphs in the 

‘leidenalg’ package in python.84 We ran this algorithm at a range of resolutions from 0.001 

to 0.4 and chose the resolution that maximized overall modularity. To filter out isolated 

links and modules, we calculated the signed weighted topological overlap (wTO) between 

activity programs in each module85 and filtered nodes with low wTO and modules 

containing fewer than four nodes. In contrast to Pearson correlation values which 

consider each pair of nodes in isolation, wTO is based on the similarity of two activity 

programs’ correlation values with all other programs in the network. We calculated the 
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mean wTO between each node and all other nodes in the same module, and compared 

this to the value calculated for nodes in randomly selected modules of equal size. We 

determined p-values for each node’s mean wTO by determining the fraction of 

permutation trials where the mean wTO of nodes from “random” modules was greater 

than the mean wTO of nodes from tested modules, and removed nodes where p > 0.01. 

Community detection results remained unchanged after this filtering step. For 

visualization, we use positive edges to create a force-directed layout. 

 

Identification of similar gene loadings across activity 

programs 

To identify transcriptionally similar activity programs representing non-cell-type 

specific responses, we calculated the Pearson correlation of gene loadings between 

activity programs using pairwise complete observations (i.e. excluding genes that are not 

expressed in either cell type). We defined each node’s “mean gene loading similarity” as 

the mean correlation between the tested node and all other nodes in the same module. 

To determine p-values for each node’s gene loading similarity, we compared this value to 

that calculated for nodes in randomly selected modules of equal size. The reported p-

values represent the fraction of permutation trials where the mean gene loading similarity 

for nodes from “random” modules was greater than the mean gene loading similarity for 

nodes in tested modules. 
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Inferring direct cell-cell interactions 

To infer modules enriched for putative direct cell-cell signaling interactions, we 

identified links between nodes that depended on both the magnitude of activity program 

expression in a “sender” cell type and the proportion of that “sender” cell type in the tissue. 

Since the proportion of epithelial versus stromal cells in our samples was highly 

dependent on tissue dissociation conditions, we restricted this analysis to links between 

epithelial cell types as "sender” cells (HR+ luminal, secretory luminal, or basal cells) and 

other cell types as “receivers”. We modeled activity program expression in the “receiver” 

cell type as a linear response to three predictors: activity program expression Y in the 

“sender” cell type (i.e. “signaling” from that cell type), the proportion Psender of the “sender” 

cell type in the epithelium, and an interaction term representing the combined effects of 

signaling and cell proportions (Signaling × Proportions). For links between two epithelial 

cell types, we tested both directions as “sender” versus “receiver” nodes. To infer high-

confidence direct cell-cell signaling interactions, we identified pairwise combinations of 

activity programs where a) the individual effects of Y and Psender were not significant (p > 

0.05), b) there was a positive interaction effect between Y and Psender (Signaling x 

Proportions; p < 0.01 and β > 0), c) the adjusted R-squared for the overall model was at 

least 0.5, and d) the false discovery rate-corrected p-value for the overall model was less 

than 0.05.  
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Gene set enrichment analysis 

To identify marker genes statistically associated with each gene program, we used 

ordinary least squares regression of each gene’s normalized (z-scored) expression 

against the activity program expression score for each program in each cell type, after 

filtering genes not expressed in that cell type.77 This results in a vector of regression 

coefficients representing the strength of the relationship between a cell’s expression 

score for a particular activity program and its scaled expression of each gene. The 

resulting ranked gene lists (Supplemental Data) were analyzed by gene set enrichment 

analysis, using the ‘fgsea’ package in R.122  

 

Enrichment of gene sets within modules 

To identify gene sets enriched across activity programs in a module, we first 

calculated the false discovery rate (FDR) for each gene set in each node. We performed 

false discovery rate correction for Hallmark and GO Biological Process gene sets 

separately, as many of the pathways in each database are highly related. For all gene 

sets enriched across at least 5 activity programs in our network, we calculated the number 

of activity programs in each module that were significantly enriched for each gene set 

(FDR < 0.01), and compared this value to randomly selected modules of equal size. We 

determined p-values for enrichment of gene sets in each module by determining the 

fraction of permutation trials where the number of significantly enriched nodes from 

“random” modules was greater than number of significantly enriched nodes from tested 

modules.  
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Fluorescent Immunohistochemistry 

For immunofluorescent staining, formalin-fixed paraffin-embedded tissue sections 

were deparaffinized and rehydrated using standard methods. Endogenous peroxides 

were blocked using 3% hydrogen peroxide in PBS, and antigen retrieval was performed 

in 0.1 M citrate buffer pH 6.0. Sections were blocked for 5 min at room temperature using 

Lab Vision Ultra-V block (Thermo TA-125-UB) and rinsed with TNT wash buffer (1X Tris-

buffered saline with 5 mM Tris-HCl and 0.5% TWEEN-20). Primary antibody incubations 

were performed for 1 hour at room temperature or overnight at 4°C. Sections were 

washed three times for 5 min each with TNT wash buffer, incubated with Lab Vision 

UltraVision LP Detection System HRP Polymer (Thermo Fisher TL-060-HL) for 15 min at 

room temperature, washed, and incubated with one of three colors of tyramide signal 

amplification amplification (TSA) reagent at a 1:50 dilution. After TSA, antibody 

complexes were removed by boiling in citrate buffer, followed by blocking and incubation 

with additional primary antibodies as above. Finally, sections were rinsed with deionized 

water and mounted using Vectashield HardSet Mounting Media with DAPI (Vector H-

1400). Immunofluorescence was analyzed by spinning disk confocal microscopy using a 

Zeiss Cell Observer Z1 equipped with a Yokagawa spinning disk and running Zeiss Zen 

Software. 

Antibodies, TSA reagents, and dilutions used are as follows: p63 (1:2000; CST 

13109, clone D2K8X), KRT7 (1:4000; Abcam AB68459, clone EPR1619Y), KRT23 

(1:2000; Abcam AB156569, clone EPR10943), ER (1:4000; Thermo Scientific RMM-

9101-S, clone SP1), PR (1:3000; CST 8757, clone D8Q2J), TCF7 (1:2000; CST 2203, 
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clone C63D9), P4HA1 (1:9000; Thermo PA5-55353), LRRC26 (1:2000; Thermo PA5-

63285), FITC-TSA (2 min; Perkin Elmer NEL701A001KT), Cy3-TSA (3 min; Perkin Elmer 

NEL744001KT), Cy5-TSA (7 min; Perkin Elmer NEL745E001KT). 

 

Data and code availability 

Single-cell RNAseq data have been deposited at the Gene Expression Omnibus 

(GEO: GSE198732). Processed data and code is available at 

https://github.com/lmurrow/DECIPHER-seq. Any additional information required to 

reanalyze the data or reproduce the figures in this study is available from the 

corresponding authors upon request. 
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Supplement 

Supplemental Table 3.1 Sample information for breast tissue samples from reduction mammoplasties of 28 
individuals. 

Sample information 
Sample ID Source Age BMI Parity HC use 
RM142 KPNC 26 unknown 0 none 
RM166 CHTN 24 33 unknown none 
RM169 CHTN 22 unknown unknown combined 
RM172 CHTN 20 37.5 1 progestin 
RM176 KPNC 21 unknown 1 none 
RM181 CHTN 19 unknown unknown combined 
RM183 CHTN 20 unknown unknown none 
RM192 KPNC 27 unknown 1 none 
RM193 KPNC 27 unknown 1 none 
RM198 KPNC 23 unknown 0 none 
RM203 KPNC 35 unknown 1 none 
RM216 CHTN 22 23.7 0 none 
RM222 KPNC 19 unknown 0 progestin 
RM231 CHTN 22 23.5 0 combined 
RM234 CHTN 32 38.6 0 none 
RM248 CHTN 19 25.5 0 combined 
RM249 CHTN 23 41 1 progestin 
RM253 CHTN 39 35.1 1 none 
RM261 CHTN 32 39.7 2 combined 
RM263 CHTN 24 27.3 0 none 
RM264 CHTN 37 31.5 3 none 
RM272 CHTN 23 26 0 none 
RM273 CHTN 24 26.2 0 none 
RM274 CHTN 22 unknown 3 combined 
RM278 CHTN 19 31.8 0 combined 
RM282 CHTN 36 44.3 2 none 
RM288 CHTN 24 42.4 unknown combined 
RM307 CHTN 19 unknown unknown combined 
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Supplemental Table 3.2 Sequencing batch info for each sample. 

Sample 
ID 

Sort 
gate 

10X 
chemistry Batch Seq # reads % reads 

mapped 

Median 
genes 

per cell 

# cells 
post 
QC 

RM264 

Live 
singlet 

V2 1 HiSeq 
4000 

665,013,964 58.1% 1,552 4,190 

Luminal 343,078,479 63.2% 1,207 2,200 
Basal 332,878,058 62.0% 1,469 2,747 

RM272 

Live 
singlet 

V2 1 HiSeq 
4000 

656,991,798 54.6% 1,319 3,502 

Luminal 337,334,049 55.2% 1,351 4,205 
Basal 337,758,232 54.8% 601 5,003 

RM273 

Live 
singlet 

V2 1 HiSeq 
4000 

338,792,766 65.8% 2,590 1,783 

Luminal 353,798,722 66.2% 2,772 2,482 
Basal 335,833,078 62.6% 1,891 5,126 

RM282 

Live 
singlet 

V2 1 HiSeq 
4000 

314,274,078 53.6% 2,359 2,923 

Luminal 330,627,133 54.7% 2,888 2,744 
Basal 317,563,455 51.0% 2,095 3,101 

RM263 Live 
singlet V2 1 HiSeq 

4000 331,865,524 60.7% 2,765 2,653 

RM222 Live 
singlet V2 2 HiSeq 

4000 346,749,732 61.5% 2,914 802 

RM234 Live 
singlet V2 2 HiSeq 

4000 335,184,746 61.2% 2,188 2,109 

RM248 Live 
singlet V2 2 HiSeq 

4000 333,160,029 59.8% 2,602 2,004 

RM249 Live 
singlet V2 2 HiSeq 

4000 329,434,014 63.3% 3,036 1,547 

RM142 

Live 
singlet 

V3/MULTI
-seq 3 Nova

Seq 1,665,766,405 59.6% 2,882 

1,350 
RM166 481 
RM176 180 
RM183 510 
RM192 867 
RM193 768 
RM198 1,317 
RM203 1,166 
RM216 741 
RM253 698 
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Sample 
ID 

Sort 
gate 

10X 
chemistry Batch Seq # reads % reads 

mapped 

Median 
genes 

per cell 

# cells 
post 
QC 

RM272 1,563 
         

RM142 

Epithelial V3/MULTI
-seq 3 Nova

Seq 1,553,893,597 59.6% 3,223 

1,665 
RM166 175 
RM176 81 
RM183 507 
RM192 831 
RM193 645 
RM198 824 
RM203 532 
RM216 723 
RM253 408 
RM272 1,249 
RM169 

Pooled: 
Live 

singlet 
(90%) / 
CD45+ 
immune 
(10%) 

V3/MULTI
-seq 4 Nova

Seq 1,553,430,309 53.6% 2,513 

488 
RM172 119 
RM181 1,192 
RM198 1,377 
RM231 1,477 
RM261 854 
RM263 1,704 
RM272 1,596 
RM273 793 
RM274 828 
RM278 837 
RM282 2,202 
RM288 1,505 
RM307 795 
RM169 

Epithelial V3/MULTI
-seq  

4 Nova
Seq 1,591,437,578 55.0% 2,934 

617 
RM172 72 
RM181 322 
RM198 1,008 
RM231 678 
RM261 336 
RM263 822 
RM272 1,554 
RM273 827 
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Sample 
ID 

Sort 
gate 

10X 
chemistry Batch Seq # reads % reads 

mapped 

Median 
genes 

per cell 

# cells 
post 
QC 

RM274 287 
RM278 1,147 
RM282 

Epithelial V3/MULTI
-seq 4 Nova

Seq 1,591,437,578 55.0% 2,934 
3,055 

RM288 1,092 
RM307 657 
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Supplemental Figure 3.11 Elbow and knee plots showing standard rank selection metrics calculated for rank sweep 
of coinMF (left) and PCA (right) run on each major breast cell type in dataset. 

 

  



 72 

 

Supplemental Figure 3.12 Phylogenetic trees of coinMF rank sweep showing final rank selection according to $%& 
metric. 
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Supplemental Figure 3.13 $%& metric across coinMF rank sweep with final ')*+ selection for each cell type. 

  



 74 

 
Supplemental Figure 3.14 Network structure at ranks above and below ')*+ for each cell type.  
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CHAPTER 4 COORDINATED IMMUNE 
DYSREGULATION IN JUVENILE 

DERMATOMYOSITIS REVEALED BY SINGLE-
CELL GENOMICS 
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Abstract 

Juvenile Dermatomyositis (JDM) is one of several childhood-onset autoimmune 

disorders characterized by a type I interferon response and autoantibodies.  Treatment 

options are limited due to incomplete understanding of how the disease emerges from 

dysregulated cell states across the immune system. We therefore investigated the blood 

of JDM patients at different stages of disease activity using single-cell transcriptomics 

paired with surface protein expression. By immunophenotyping peripheral blood 

mononuclear cells, we observed skewing of the B cell compartment towards an immature 

naive state as a hallmark of JDM at diagnosis. Furthermore, we find that these changes 

in B cells are paralleled by T cell signatures suggestive of Th2-mediated inflammation 

that persist despite disease quiescence. We applied network analysis to reveal that 

hyperactivation of the type I interferon response in all immune populations is coordinated 

with previously masked cell states including dysfunctional protein processing in CD4+ T 

cells and regulation of cell death programming in NK, CD8+ T cells and gdT cells. 

Together, these findings unveil the coordinated immune dysregulation underpinning JDM 

and provide novel insight into strategies for restoring balance in immune function. 
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Introduction 

Juvenile Dermatomyositis (JDM) is part of a broad group of childhood-onset 

autoimmune conditions characterized by a type I interferon (IFN) gene signature and 

specific autoantibodies ranging from related systemic conditions such as systemic lupus 

erythematosus (SLE) to endocrine-specific disorders such as type I diabetes.9–12 Despite 

a shared IFN signature, JDM is associated with pathognomonic rashes and proximal 

muscle weakness resulting in distinct clinical phenotypes. The etiology of JDM is not fully 

understood but studies have shown that JDM is autoimmune-mediated and associated 

with a combination of genetic and environmental risk factors.123 While mortality is low with 

corticosteroid treatment, long-term patient follow-up studies have reported that 60-70% 

of patients have cumulative tissue damage124,125 with the risk of damage increasing 

almost linearly for each year after diagnosis.126 This finding highlights the importance of 

early disease intervention and the need for a personalized approach to disease 

management to improve upon these outcomes. 

Clinical management of JDM currently relies on compiled empirical metrics such 

as physician global visual analog scale (VAS) of disease activity and muscle strength 

quantified via the childhood myositis assessment scale (CMAS) or manual muscle testing 

(MMT).127 However, how these clinically observable phenotypes are rooted in disease 

immunopathology remains insufficiently understood. The presence of myositis-specific 

antibodies (MSA) that correspond to distinct clinical phenotypes and recent work showing 

that MSAs may be pathogenic128,129  suggest the involvement of B cells.130 The expansion 

of naïve B cells in JDM has been highlighted by three independent studies using flow 

cytometry, mass cytometry, and single-cell RNA sequencing, respectively.131–133 The 
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adaptive arm of the immune system is further implicated in disease pathogenesis by 

several large immunophenotyping studies that demonstrated the expansion of extra-

follicular Th2 memory cells and central memory B cells.134,135 Additionally, the innate 

immune system has emerged as a contributor in JDM. Inflamed muscles of JDM patients 

exhibited the presence of plasmacytoid dendritic cells and macrophage-secreted 

proteins,136,137 while similarly, biopsies of JDM and adult DM skin lesions showed an 

increase in CD14+ and CD68+ macrophages.138,139 In peripheral blood, NK cells were 

found to be both dysfunctional and hyperproliferative in JDM.132,140 Together, these 

findings highlight the involvement of both the adaptive and innate immune compartments 

in JDM in blood and disease-affected tissues. However, it also raises the question of 

whether the cause of JDM lies in a single cell type or is a manifestation of broadly 

dysregulated cellular interactions across the immune system.  

Systems-level studies based on single-cell measurements are required to reveal 

how dysregulated cell populations act individually or cooperatively to produce the 

observed inflammation. Accordingly, several groups have turned to next generation 

sequencing as it enables unbiased profiling of tissues at single-cell resolution. In the first 

single-cell study of peripheral blood of JDM patients, we previously described a pan-cell-

type IFN gene signature over-expressed in treatment-naive JDM that was most strongly 

correlated with disease activity in cytotoxic cell types.133 This signature has since been 

independently identified in the peripheral blood of treatment-naive patients.141 However, 

these studies have utilized small cohorts and lack pediatric controls, in part due to the 

rarity of JDM in the human population. Thus, it has been challenging to determine which 

of these cell populations are specific to JDM compared to healthy children, how these 
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disease-specific dysregulated cell states are coordinated with one another, and which of 

these states cooperatively change in response to treatment. 

In this study, we addressed this challenge by profiling JDM across several stages 

of disease activity using multiplexed Cellular Indexing of Transcriptomes and Epitopes by 

sequencing (CITEseq)20 of peripheral blood mononuclear cells (PBMCs) from 15 JDM 

patients, totaling 22 samples, and 5 healthy controls (HC). Compositional analysis of 

immune populations identified a disease activity-associated imbalance of naive and 

mature lymphocytes, corroborated by distinct immunophenotypes in treatment-naive 

disease. To move beyond the identification of disease-associated cell populations and 

towards an understanding of immune-scale dysregulation in JDM, we applied a recently 

developed computational method DECIPHER65 to  infer networks of coordinated cell 

states from large cohorts of single-cell data. Importantly, this unsupervised method takes 

advantage of the biological heterogeneity in the entire dataset, improving upon previous 

work that relied on pairwise comparisons of subsetted disease groups. Among other 

signatures previously masked by traditional single-cell analysis, this approach revealed 

specific co-occurring cell states in CD4+ T and B cell populations suggestive of extra-

follicular responses. A subset of these CD4+ T signatures implicate disruption of protein 

targeting and immune tolerance processes; notably, these cell states persist even in 

patients in remission off medication. Furthermore, we show that the ubiquitously 

hyperactive type I IFN response in disease is paralleled by impaired cell death processes 

in cytotoxic immune cells, highlighting the functional imbalance across immune 

compartments that typifies this complex autoimmune disease. Translationally, this 



 80 

broadened understanding of the underlying immune dysregulation in disease can inform 

precision treatment strategies for JDM. 
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Results 

JDM is associated with immunophenotypic 

differences in B and CD4+ T cell compartments 

 
Figure 4.1 Study design for profiling PBMCs from 27 samples (n=22 JDM, n=5 HC), with an overview of clinical 
characteristics of study cohort. 
Individuals are labelled by the donor ID used throughout the paper (JDM 1-15, HC 16-20). Longitudinal samples 
were collected from the following donors: JDM1, JDM2, JDM4, JDM8, JDM13, and JDM15. Icon shapes denote 
disease activity group and shades of blue denote medication regimen. 

To gather a dataset with appropriate controls and limited confounding, patients 

were selected according to disease activity and medication status (Figure 4.1, 

Supplemental Table 4.1). Of the JDM patients, serial samples were collected from 5 

individuals totaling 22 samples from 15 patients. To minimize confounding by immune 

suppression, the study included 9 treatment-naive samples as well as 6 samples from 

patients with inactive disease off medication. CITEseq was performed on PBMCs to 

generate single-cell libraries (Figure 4.2). Surface protein expression was measured 

using antibody-derived tags (ADT).  
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Figure 4.2 Analysis strategy for CITEseq data from PBMCs. 

Following pre-processing steps, we identified 29 clusters, which comprised 21 

distinct immune cell populations across 105,827 cells (Figure 4.3). Clusters were 

annotated using canonical RNA (Figure 4.3) and protein markers (Supplemental Figure 

4.14) within all major mononuclear immune cell compartments.  
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Figure 4.3 Cell types in peripheral blood from patients with JDM and HCs. 
(A) UMAP constructed using weighted-nearest neighbors (wnn) clustering colored by cell type.  pDCs=plasmacytoid 
dendritic cells, cDCs=classical dendritic cells, PBs=plasmablasts. B_mem = memory B cells.   
(B) Heatmap with top 2 markers per cluster.  
 

We first characterized global changes to cell composition across disease states 

comparing treatment-naive JDM, inactive JDM and HC (Figure 4.4). We quantified the 

differences in cell type proportion between disease states and the correlation to disease 

activity measures for physician global (PGA), cutaneous, and muscle VAS scores. Within 

the T cell compartment, the proportion of regulatory T cells (Tregs) (CD45RO+, IL2R+, 

FOXP3+) was increased in patients with treatment-naive JDM (p = 0.02) consistent with 

previous findings.133  CD4+ effector T cells (CD45RO+) and gdT cluster 2 (TRDC,TRGC) 

were significantly increased in patients with inactive JDM and the proportion of cells from 

these populations negatively correlated with disease activity measures (p ≤ 0.05, 

Spearman).  There was an overall decrease in innate populations, including CD56bright 

and CD56dim NK cells and classical dendritic cells (cDCs) in treatment-naive JDM 

compared to HC and inactive JDM, and the proportion of these cell types also correlated 

negatively with disease activity (p < 0.05, Spearman). 
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Figure 4.4 Immunophenotypes in peripheral blood associated with JDM. 
(A) Boxplot shows cell type proportion by disease group, using Kruskal-Wallis test with Dunn’s post hoc test 
comparing TNJDM to HC, TNJDM to inactive JDM, and inactive to HC (Holm p.adj < 0.05). The dotplot above shows 
the Spearman correlation between corresponding cell type proportion in boxplot and Physician Global VAS, where 
the size of the dot indicates the correlation, the color indicates the direction of the correlation, and the border weight 
indicates significance (p.adj < 0.05).  
(B) Heatmap with selected ADT protein markers. Asterisks mark significant comparisons between TNJDM and HC 
per cell type with an absolute LFC>0.5 and p.adj < 0.05. 

 

Compared to healthy controls and patients with inactive disease, treatment-naive 

patients had higher proportions of multiple naive B cell populations, including B_naive1 

(IgM+IgD+CD38+CD24+CD10+) corresponding to an immature naive B population, 

B_naive2 (IgM,+IgD+CD38loCD24lo), and B_naive3 (IgM+IgD+CD38+CD24+), and the 

proportion of these populations positively correlated with multiple disease activity 

measures (p < 0.05, Spearman) (Figure 4.4, Supplemental Figure 4.15). The proportion 

of B_mem cells, characterized by TNFRSF13B (encoding TACI) expression, negatively 

correlated with the muscle VAS score (p < 0.05, Spearman). The immature naive B 

population had higher expression of CD38 (both RNA and protein) and MZB1, two genes 

essential for plasma cell differentiation, than all other B cell clusters.142,143   

Given the observed imbalance of lymphocytes in treatment-naive JDM, we next 

sought to immunophenotype B cell and CD4+ T cell subsets in JDM at the proteomic level 

to gain molecular insight into cell states (Figure 4.4). Differential protein analysis of 



 85 

immature naive B cells comparing treatment-naive JDM to HC identified increased 

expression of MICA-MICB and decreased expression of CD1C, BAFF-R and PD-L1 

(Figure 4.4).  Within the CD4+ T compartment, CD4+Tregs from TNJDM  had higher 

expression of Tim-3, ICOS, CD164 and CD38 and down-regulation of CD101 a molecule 

which decreases pro-inflammatory T cell responses.144 CD4+Teff in patients with 

treatment-naive JDM had higher surface expression of CD164 and PD-1 and down 

regulation of KLRG1, an inhibitory molecule (Figure 4.4). The over-expression of PD-1 

on the cell surface suggested that peripheral T helper cells might be present in JDM.145,146 

However, while ICOS expression was higher (Benjamini-Hochberg (BH) p < 0.05), no 

difference was found in surface expression of CXCR5 between CD45ROhiPD-1hiCD4+ T 

cells and CD45ROloPD-1loCD4+ T cells, and these cells were not significantly expanded 

in JDM (Figure 4.4). Taken together, these compositional and immunophenotyping 

observations add to the growing body of work showing that JDM in the treatment-naive 

state is characterized by relative imbalances of peripheral naive and mature lymphocyte 

states,133,141 reduced innate immune populations (22) and distinct CD4+ T and B cell 

immunophenotypes.134,135 

 

SIGLEC-1 expression is a composite measure of the 

IFN gene signature in JDM 

We next compared gene and protein expression between treatment-naive JDM 

and HC samples in all cell types based on the hypothesis that certain cell types may not 

be altered in composition but may be functionally altered at the molecular level. 
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Monocytes displayed the highest number of differentially expressed genes (n = 211) and 

proteins (n = 19) in this pairwise analysis including CD169 (SIGLEC-1), CD107a (LAMP-

1), and CD164 (Supplemental Figure 4.16). SIGLEC-1 is a monocyte-restricted IFN-

induced protein that was recently identified as a potential biomarker in JDM.147  Both 

CD107a and CD164 are cell adhesion molecules involved in trafficking of activated 

mononuclear cells and adhesion to vascular endothelium.148 

A common finding across all cell types when comparing treatment-naive JDM and 

HC samples was overexpression of genes enriched in Type I IFN processes, which was 

previously reported in bulk expression data149,150 and confirmed in single-cell studies 

(Supplemental Figure 4.17).133,141 Using an IFN gene score derived from the 

transcriptional data (Supplemental Figure 4.18), we plotted the average score  per 

patient per cell type and applied hierarchical clustering and observed variation among 

individuals and cell types (Figure 4.5).  This approach did not detect IFN gene expression 

to persist beyond the treatment-naïve state and two patients within the treatment-naïve 

group had negligible IFN gene signature as quantified by this method. This heterogeneity 

of the IFN gene signature was, in part, explained by disease activity level (Figure 4.5), 

as a bulk IFN gene score significantly correlated with disease activity (R=0.69, 

Spearman). However, the remaining unexplained heterogeneity of this IFN score 

suggests additional biological sources of disease activity in patients with JDM and 

exemplifies a limitation of utilizing gene scores identified through pairwise comparisons 

between subsets of the data.    
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Figure 4.5 Type I IFN-induced gene and protein expression is associated with disease activity in JDM in CD14+ 
monocytes.  
(A) Heatmap of average IFN score per cell type and sample. Hierarchical  clustering was performed using Euclidean 
distance and the complete clustering method. IFN score was calculated based on average expression of IFN module 
across all cells per sample.  
(B) Spearman correlation between IFN score and Physician Global VAS colored by disease group.  
(C) Scatter plot showing Spearman correlation between CD169 (SIGLEC-1) expression in CD14+ monocytes and 
Physician Global VAS.  
(D) Scatter plot showing Spearman correlation between IFN score and Physician Global VAS. (E) Scatter plot 
showing Spearman correlation between CD169 expression and IFN score  in CD14+ monocytes.  

Given that SIGLEC-1 is a type I IFN-induced protein, we next wanted to determine 

if patterns of type I IFN stimulated gene expression were reflected at the protein level, as 

protein biomarkers are more amenable for clinical lab-based testing.  SIGLEC-1 

expression in CD14+ monocytes correlated with disease activity to a similar degree as the 

IFN gene signature (Figure 4.5), and SIGLEC-1 expression was itself highly correlated 

with the IFN gene signature in monocytes (Figure 4.5).  This suggests that SIGLEC-1 

expression in CD14+ monocytes is a representative composite measure of the IFN gene 

signature in JDM. These results underscore the potential of SIGLEC-1 as a biomarker of 
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IFN responses in JDM that may be useful for stratifying disease severity and tracking 

disease activity. 

 

Unsupervised network analysis reveals coordinated 

immune cell states in JDM 

We next turned to a systems level approach to better understand the coordination 

of immune cell gene programs in JDM relative to healthy controls and in relation to 

disease activity level. This approach also overcomes limitations of differential expression 

analysis which relies on pairwise comparisons of subsets of data. We applied an 

unsupervised network inference method, DECIPHER, to the 6 major cell types annotated 

in the dataset: B cells, CD4T, CD8T, NK cells, gdT cells, and myeloid cells (Figure 4.6). 

DECIPHER relies on non-negative matrix factorization (NMF)46,77,106 to first break the 

dataset down into gene sets that represent distinct states of biological activity, or ‘activity 

programs’, and then constructs a network of gene expression programs (GEPs) based 

on how expression of the programs covaries across patient samples (Figure 4.6). After 

outlier filtering, NMF identified 76 activity programs (Figure 4.6). 
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Figure 4.6 DECIPHER learns coordinated biological activity programs through dimensionality reduction. 
(A) Overview of the DECIPHER workflow.  
(B) Heatmap showing 6 major clusters of GEPs identified by DECIPHER (Pearson). GEPs are clustered into 
modules, with isolated GEPs filtered out (greyscale). 
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Next, a force-directed network graph from the correlation matrix of activity 

programs was constructed where each node represents a program, and each edge 

represents a statistically significant positive correlation between two nodes. Correlations 

between programs are accounted for in the network visualization such that further apart 

nodes can be interpreted as being negatively correlated and closer nodes can be 

interpreted as being positively correlated programs (Figure 4.7). Using DECIPHER’s 

community detection algorithm, we identified 6 hubs of inter-connected activity programs 

or ‘modules.’ All modules contained multiple cell types, highlighting that many biological 

processes in JDM are coordinated across several immune cell types (Figure 4.6, Figure 

4.7). We annotated each node using gene set enrichment analysis151,152 of gene ontology 

terms (GO)88 on each program’s ranked marker gene list (Supplemental Figures 4.19-

24).  
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Figure 4.7 DECIPHER reveals network of coordinated biological activity from scRNA-seq data in JDM. 
(Figure caption continued on next page) 
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(Figure caption continued from previous page) 
(A) Force-directed network constructed from correlated GEPs in PBMCs from JDM patients and healthy controls. 
Nodes represent programs in the given cell types and edges represent positive significant correlations (Pearson, 
p<0.05). (B) Dotplot showing selected gene sets found to be enriched within specific modules compared to the rest 
of the network. Color corresponds to module enrichment p value and size corresponds to a set’s rank in list of 
significantly enriched gene sets for that given module ordered by ascending module enrichment p-value. All gene 
sets shown fall in the top 10 terms for their respective modules (total gene sets: 626). 

DECIPHER’s module enrichment analysis identified consensus biological themes 

for each module in an unsupervised manner (Figure 4.7). Module 1 was enriched for 

Type I IFN response programs including gene sets such as ‘Response to Virus’. Module 

2 consisted of programs enriched for protein assembly genes used in ribosomal 

processes including ‘Translational Initiation’. Module 3 was comprised of mostly 

lymphocyte programs and was significantly enriched for gene sets related to cell adhesion 

and migration. Module 4 represented cells’ steady state processes as it was enriched for 

gene sets like ‘Circadian Rhythm’. Module 5 was annotated as a Stress Response module 

because it was enriched for ‘Regulation of Cell Death’ and ‘Cellular Response to Chemical 

Stress’. Module 6 contained very few gene sets that were unique to the module, as it 

consisted of programs enriched for programs intrinsic to eukaryotic cells like ‘DNA 

Packaging.’ 
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JDM CD4+T cells and B cells display persistent 

alterations in gene expression in both active disease 

and remission 

 
Figure 4.8 JDM is associated with a central IFN hub and cell specific gene programs in the B and CD4T 
compartments.  
(Figure caption continued on next page) 
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(Figure caption continued from previous page) 
(A) Zoomed in graph of Module 1. GSEA results for Response to Type I IFN GO term shown with each node colored 
according to FDR.  Adjusted p-value of module enrichment is also shown.  
(B) Network graph showing case-control analysis of each program’s expression, with node size scaled according to 
p-value and colored according to strength of the association between disease status and program expression (t-
test). 

Next, we aimed to interpret the annotated network in the context of GEPs 

associated with JDM compared to healthy control patients irrespective of disease activity. 

In the annotated network, we first focused on Module 1, which was enriched in type I IFN 

responses and many programs in this module were increased in TN-JDM, as expected 

(Figure 4.8). All 6 major cell types expressed an IFN gene program which were highly 

correlated to one another, as shown by the closely connected hub at the center of Module 

1 (Figure 4.8).  This IFN hub was associated with JDM as compared to HC patients (t-

test, p<0.05) (Figure 4.8).  IFN modules identified by NMF were highly expressed in all 

treatment-naïve patients as well as some patients with active disease, inactive disease, 

and a healthy control patient (Figure 4.9), in contrast to the signature of IFN gene 

expression previously detected by differential gene expression in Figure 4.5.  This 

highlights the strength of this method to reflect the low-dimensional space of gene 

expression where measurement of many genes working together may be needed to 

detect underlying biological processes more accurately.55,58,76  

We next identified additional coordinated gene programs in Modules 1-3 

expressed more highly in all JDM patients compared to HCs (p<0.05), irrespective of 

disease activity.  These JDM associated programs included B cell (5 and 14) and CD4T 

(1, 10, 17) programs and their expression persisted even in patients with inactive JDM 

who previously achieved remission off medication (Figure 4.9, Supplemental Figure 

4.25). JDM patients more highly expressed two B cell programs: B5 in Module 1 was 

enriched in mRNA metabolic processing, RNA splicing, chromatin organization and 
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modification, and cell cycle regulation, and B14 in Module 3 was enriched in chromatin 

remodeling and cytoskeletal organization (Supplemental Figures 4.19, 4.21). These 

enriched biological processes suggest that a subpopulation of B cells is more 

transcriptionally active and undergoing epigenetic regulation in JDM relative to healthy 

controls.   
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Figure 4.9 Heatmap showing significant differences in expression of selected programs between HC (n=5) and JDM 
patients (n=22), with columns annotated by p-values of case-control (t-test) and disease activity association (4-group 
ANOVA). 

 

In Module 3, correlated to B14, CD4T1 (enriched in cell migration, adhesion, 

activation, and secretion) was expressed more highly in JDM and in the region of the 

UMAP corresponding to CD4+Teff cells (Supplemental Figure 4.26).  This CD4T1 

program expressed by CD4+Teff cells contained genes (GATA3, CCR4, PRDM1) that 

indicate possible skewing towards a Th2 subset while expression of PRDM1 (Blimp-1) 

suggests participation in extra-follicular reactions (Figure 4.9). Th2 CD4+ T cells were 

previously found to be expanded in JDM and associated with extra-follicular B-T cell 

help.134,135 

We observed similar expression of Th2 genes (GATA3, CCR4, PRDM1) in 

CD4T10, a Treg program (FOXP3, IKZF2, IL2RA) expressed more highly in JDM (Figure 

4.9).  CD4T1 and CD4T10 included genes for costimulatory molecules OX40 (TNFRSF4) 

and GITR (TNFRSF18), both of which have been described to promote survival and 

proliferation of CD4+ T effector cells and have been targets of autoimmune disease 

therapeutics.153–157 Notably, CD4T17 (AIM2, ACTB, ACTG1, NCF1, ID3, SOX4) was 

negatively associated with JDM and expression was significantly decreased in nearly all 

patients (Figure 4.9, Supplemental Figure 4.25, 4.27). This program was enriched in 

protein targeting to the membrane and endoplasmic reticulum and included several genes 

important in T cell regulation. NCF1 has been found to be a critical regulator of T cell 

tolerance in a collagen-induced arthritis mouse model158 and co-expression of ID3 and 

SOX4 transcription factors has been identified as a mechanism of CAR-T cell exhaustion 

and dysfunction.159  Together, these results suggest multiple mechanisms by which 
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CD4+T cell dysfunction may occur in JDM including participation in extra-follicular 

reactions, expression of  co-stimulatory molecules, and down-regulation of genes 

important in mediating tolerance and exhaustion. 

Novel cell states are correlated with IFN gene 

expression in treatment-naive JDM 

We next wanted to identify modules and gene programs associated with stages of 

disease activity in JDM (HC, Inactive and Active JDM, and treatment-naive JDM). To do 

so, we performed a 4 group ANOVA on each program in the network and post-hoc 

pairwise analysis using the Tukey test. We identified programs in Module 1, 2 and 5 that 

were significantly associated with disease activity (ANOVA p<0.05) (Figure 4.10).  We 

confirmed that these biological programs moved in the direction expected within most 

patients with longitudinal assessments (Supplemental Figure 4.28).  The IFN gene 

programs were also significantly overexpressed in treatment-naive JDM patients, as 

expected (Figure 4.9).  Notably, expression of the central Module 1 IFN hub GEPs in all 

six major cell types more strongly correlated to the clinically evaluated PGA than the 

pseudobulk IFN gene score derived from pairwise DEG analysis (Supplemental Figure 

4.29), underscoring the utility of a dimensionality reduction approach in uncovering 

clinically relevant gene signatures. 
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Figure 4.10 Disease activity in JDM is associated with central hub of IFN response in network, correlated with novel 
dysregulated cell states.  
Network graph showing results of 4-group ANOVA of each program’s expression, with node size scaled according 
to p-value and colored according to strength of the association between disease status and program expression.  
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By isolating these IFN GEPs in each cell type, we were able to determine disease 

activity-associated programs correlated with the IFN hub, some of which corroborate 

previous findings (Figure 4.10, Figure 4.11). This approach identified B9, an immature 

naive B cell program (CD24, CD38, MME), to be significantly associated with disease 

activity (Figure 4.11). This gene program shared several top markers (TCL1A, SOX4, 

NEIL1) with the immature B cell population that was previously found to be expanded in 

treatment-naive JDM (Supplemental Figure 4.27). 133,141 Notably, expression of this 

activated immature B cell program could be attributed to the B_naive1 cluster that we 

observed to be increased in treatment-naive JDM during the compositional analysis 

(Supplemental Figure 4.30). Similarly correlated with the IFN hub, NK12 was associated 

with treatment-naive JDM compared to active and inactive disease (Figure 4.11, 

Supplemental Figure 4.31). NK12 (MKI67, HIST1H1B) was enriched for gene sets 

related to cell proliferation and epigenetic regulation, confirming findings that a subset of 

NK cells in JDM are highly activated and proliferative.132,140  
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Figure 4.11 Heatmap showing significant differences in expression of selected disease activity associated programs 
between HC (n=5), Inactive JDM (n=6), Active JDM (n=7), and TNJDM patients (n=9).  
Columns are annotated by p-values of case-control t-test and disease activity association (4-group ANOVA).  

We next focused our attention on the other disease activity-associated programs 

that DECIPHER identified as correlated with the Module 1 IFN hub. Importantly, these 

disease activity associations were only revealed in the lower dimensional space of gene 
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sets identified by NMF rather than the noisier space of differential expression of individual 

genes. We annotated CD4T10, also significant in our case control analysis, as a 

proliferative Treg program (FOXP3, IL2RA, MKI67) which expressed genes implicated in 

extra-follicular B-T interactions (PRDM1) and genes associated with Th-2 mediated 

inflammation (GATA3, CCR4, Figure 4.11).160 Notably, CD4T10 included the marker 

CCR4, a chemokine receptor highly expressed in Tregs that are preferentially recruited 

to skin under inflammatory conditions.161 Expression of both CD4T1 and CD4T10 co-

localized with surface protein expression of CCR4 in the UMAP as well (Supplemental 

Figure 4.32), highlighting the advantage of this multi-modal sequencing approach in 

identifying functional markers of transcriptomic signatures.  

This network approach also identified the program gdT4, a cytotoxic Th1 polarized 

gdT program (GZMB, CX3CR1, TBX21) that was correlated with the central IFN hub and 

was significantly increased in treatment-naive patients compared to both active and 

inactive JDM and HC (p<0.05, Tukey, Figure 4.11). High expression of TRGC1 and 

TBX21, encoding the transcription factor T-bet responsible for regulating IFNG 

expression, specifically identified cells expressing this program as Th1-like TCRVd1 gdT 

cells (Figure 4.11).162,163   A similar subpopulation of gdT cells was found to be increased 

in synovial fluid and blood of juvenile idiopathic arthritis patients, which expressed IFNy 

and TNF to the same degree as CD4+ T cells.164 This suggests this subpopulation of gdT 

cells may reflect an important inflammatory cell state specific to treatment-naive disease 

that is potentially up- or downstream of the Type I IFN response broadly upregulated 

across immune cell populations in JDM.  
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Regulatory cell death and protein targeting pathways 

are dysregulated across multiple immune cell 

populations in JDM 

The novel disease activity programs that were highly expressed in treatment-naive 

JDM were components of Module 1 which was enriched for Type I IFN and its associated 

immune processes. The network-wide ANOVA analysis also revealed disease activity-

associated programs in Module 2 and Module 5 (Figure 4.10), which were significantly 

anti-correlated with Module 1 (Supplemental Figure 4.33) and expression was 

decreased in treatment-naive JDM patients compared to healthy controls and other JDM 

patients (Figure 4.11). Module 2 was significantly enriched for gene ontology terms 

‘ribosome assembly’ and ‘translational initiation’ while Module 5 was enriched for terms 

‘regulation of cell death’ and ‘cellular response to chemical stress’ (module enrichment 

p<0.005) (Figure 4.12). The disease-associated programs within these modules were 

expressed significantly lower in treatment-naive JDM, suggesting dysfunction of cellular 

processes that underpin ribosomal activity and cell death regulatory processes at disease 

onset (Figure 4.11, Supplemental Figure 4.31). 
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Figure 4.12 Selected network modules colored by FDR of enrichment for indicated gene ontology set (FDR<0.01) 
or gene loading similarity within Modules 2 and 5.   

 

Notably, disease activity-associated programs CD8T11, NK8 and gdT15 (FOS, 

JUN, DUSP1, NR4A2, GADD45B) in Module 5 share a common gene signature (Figure 

4.11) and are each individually enriched in ‘regulation of cell death’ and ‘regulation of cell 

cycle’ (Figure 4.12, Supplemental Figure 4.23). We quantified the overlap in gene 

expression between activity programs by Fisher’s exact test and confirmed the high gene 

loading similarity between programs in Stress Response Module 5 (Figure 4.12). All three 

of these programs were expressed at lower levels in active and treatment-naive JDM and 

negatively correlated with activated disease-associated cell signatures identified in 

Module 1 (Supplemental Figure 4.31). The gene loading similarity analysis revealed that 

the programs CD4T9 and B10 also share top marker genes (FOS, JUN, DUSP1, NR4A2, 
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GADD45B) (Figure 4.12), however, these two programs were not associated with 

disease activity status. This suggests that regulatory mechanisms of cell death may be 

uniquely disrupted in circulating cytotoxic cell populations in patients with active disease.  

In Module 2, CD4T17 and NK9 were enriched in several gene sets related to 

protein processing such as protein targeting to the ER (Supplemental Figure 4.20). 

Interestingly, the CD4T17 program was also characterized by high expression of several 

genes encoding members of the actin protein family (ACTB, ACTG1). Given the crucial 

role actin filaments play in antigen recognition during the formation of the immune 

synapse, dysfunction in components of that protein machinery could have significant 

effects on the immune system. Among other disease activity-associated programs, 

differential expression of CD4T17 between HCs and JDM patients persisted even in 

patients who achieved remission off medication (Figure 4.11). Taken together, disease 

activity-associated programs in Modules 2 and 5 highlight shared cellular processes that 

may be under-active in JDM, providing new insights into potential cellular mechanisms 

that accompany the known signature of overactive IFN-response in JDM. 

 

JDM-associated signatures identified by DECIPER 

validated in an independent dataset  

We next investigated whether these JDM-associated signatures could be identified 

in an independent set of samples.  Using DECIPHER’s marker quantification method, we 

subset the genes in each JDM-associated GEP that contributed the most to that program. 

With each gene list as input, we calculated a proxy GEP metric that quantified rank-based 
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expression of each program as the enrichment of that subset of genes in each cell.165  

This proxy NMF GEP metric recovered signatures identified by NMF in the original dataset 

(Supplemental Figure 4.34).   

 Using this proxy NMF GEP method, we validated key signatures in an independent 

set of CITEseq data from 5 JDM samples and 2 HC (Figure 4.13).  Importantly, these 

samples were obtained from patients who had active disease and 4 of 5 were being 

treated with medication.  We compared GEP expression between cases and controls (t-

test, p<0.05), which identified significantly higher expression of CD4T1 (CD4+Teff 

program, CCR4, PRDM-1, GATA3) and CD4T10 (Treg program, FOXP3, CCR4, PRDM-

1, GATA3) in JDM and lower expression of CD4T17 (AIM2, ACTB, ACTG1), replicating 

the original results in the initial cohort (Figure 4.13).  In the B cell compartment, B5 and 

B14 trended toward increased expression in patients with JDM. However, a single 

individual had low expression in both programs indicating heterogeneity of expression of 

these B cell signatures (Figure 4.13). 



 106 

 
Figure 4.13 JDM-associated signatures identified by DECIPHER can be validated in independent samples. 
(A) Clinical characteristics of validation cohort. HC18 was included in original cohort but an independent sample was 
collected and analyzed for this dataset. Individuals are labelled by the donor ID used throughout the manuscript. 
Immunosuppressants denoted as ‘+’ for patients JDM22-25 were as follows: (JDM22 - methotrexate), (JDM23 - IVIG, 
cytoxan), (JDM24 - hydroxychloroquine, MMF, IVIG, tofacitinib), (JDM25 - methotrexate, IVIG).  
(B) UMAP of scRNA-seq data from validation cohort PBMC samples, colored by six major cell types corresponding 
to labels used in original cohort.  
(C) Boxplots of case-control comparisons (HC=2, JDM=5) for selected programs queried in validation dataset using 
AUCell (t-test, *p<0.05, **p<0.01).  
(D-E) Scatterplots correlating disease activity (PGA) with AUCell scores for selected IFN programs (D) and selected 
disease activity programs (E) in validation dataset (Spearman). 

To validate disease-activity associated programs, we correlated GEP expression of 

disease activity associated programs with the PGA score.  It was infeasible to validate 

gdT programs due to low cell numbers.  IFN GEPs were most strongly correlated with 
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disease activity in CD4T cells, B cells and NK cells (Figure 4.13) and trended toward a 

positive correlation in myeloid cells, but there was no significant association in CD8T cells 

(Supplemental Figure 4.35).  Additionally, B9 (immature B cell signature, CD38, CD24, 

MME), CD4T10 (Treg program, FOXP3, CCR4, PRDM-1, GATA3), and NK12 

(proliferative activated NK cell program, MKI67, CENPF, HISTH1HB)  strongly correlated 

with disease activity (Figure 4.13).  A subset of the key signatures identified in the original 

cohort with DECIPHER trended with disease activity but did not significantly correlate with 

PGA in the validation cohort (Supplemental Figure 4.35). Together, these results 

demonstrate the robustness of many signatures quantified with a less precise method 

even in an independent dataset with fewer samples.  Cell death regulatory signatures 

previously identified to be negatively correlated with IFN signaling in cytotoxic populations 

may be more strongly associated with a treatment-naïve state or more heterogeneous 

across healthy individuals such that significant differences in expression could not be 

identified in this smaller cohort.   
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Discussion 

Multiple components of the adaptive and innate immune compartments have been 

implicated in the pathogenesis of JDM consistent with its categorization as a complex 

autoimmune condition. However, previous studies have been unable to uncover how 

multiple disease-associated cell states are coordinated to produce inflammation. Here, in 

the largest single-cell study of JDM to date, we provide an unbiased, comprehensive 

picture of immune dysregulation in peripheral blood, including  a subset of aberrant 

signatures that persist despite disease quiescence in individuals off medication.  Through 

traditional analyses, we first show that immune dysregulation in JDM manifests at the 

level of compositional imbalance of immune populations and that these compositional 

changes are correlated to clinical metrics of disease activity. Next, we identify distinct 

disease-associated molecular signatures of lymphocyte and myeloid subsets through 

multi-modal differential analysis and demonstrate that of these markers, surface 

expression of SIGLEC-1 in CD14+ monocytes is a composite metric of disease activity 

and reflects the type I IFN response in JDM.150,166–168 Using DECIPHER to deconvolve 

disease-associated programs beyond the broad type I IFN response, we uncover novel 

CD4+ T cell states that persist in JDM despite disease remission coordinated with down-

regulated cell death processes in cytotoxic immune populations. Together, these findings 

generate new hypotheses for disease etiology. 

Within the B cell compartment, we observe skewing toward an immature state in 

treatment-naïve disease and observe the distinct transcriptomic and proteomic signature 

of immature naive B cells consistent with what we and others previously reported.133,141 

Given that autoantibodies are thought to play a role in disease pathogenesis, this skewing 
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of the B cell compartment would seem counterintuitive.  However, given recent findings 

emphasizing the importance of extra-follicular B cell differentiation pathways through 

which autoreactive “activated naive” B cells are precursors to antibody-secreting cells, we 

hypothesize that this skewing may be suggestive of extra-follicular reactions in 

JDM.145,146,169 In fact, the expanded immature naive population had higher expression of 

CD38 and MZB1, genes important for plasma cell differentiation, than all other B cell 

clusters. The overall low expression of CD27 and CXCR5 across all B cells made it difficult 

for to conclude if this population matches the double negative B cell population associated 

with SLE.169  However, recent immunophenotyping work in a large cohort of JDM patients 

that found simultaneous expansion of CXCR5- central memory B cells and Th2 cells 

provides support for further investigation into extra-follicular B-T cell help in JDM.134  

Alternatively, this skewing could represent more mature B cells homing to tissues as has 

been described in antisynthetase syndrome.170,171 Functional work to support or negate 

the extrafollicular pathway in JDM will be critical to determine if this is a targetable 

pathway therapeutically. 

Accompanying these immunophenotypic changes in B cells, we observe 

complementary dysregulation in the T cell compartment that lends further support to the 

hypothesis of extra-follicular interactions in JDM. In populations of peripheral blood 

FOXP3+ Tregs and CD4+ effector T cells, we identify a shared disease associated 

signature comprised of genes suggestive of Th2 activation (GATA3, CCR4), involved in 

promotion of survival and proliferation (GITR, OX40), and associated with extra-follicular 

T cell responses (PRDM1). Notably, this signature persisted in disease remission in 

patients off medication.  Likewise, we identify a CD4+ T signature, decreased in all JDM 
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patients regardless of medication status and disease activity, containing genes crucial for 

tolerance (NFC1) and regulation (ID3, SOX4). This cell state could represent an 

inflammatory signature or a compensatory mechanism of CD4+ T cells in more long-

standing disease.  These findings are consistent with previous work, which identified 

skewing of CD4+ T cells toward a Th2 phenotype in JDM and showed in vitro that 

peripheral Th2 cells were efficient in helping B cells, including stimulating antibody 

production.135 A previous study also showed that tertiary lymphoid structures are present 

in muscle of new-onset JDM, further supporting a role for extra-follicular reactions in 

JDM.136  Future work using paired blood and tissue with spatial information to 

immunophenotype interacting cells within these structures would further justify 

investigating therapeutic strategies that prevent homing of CD4+ T and B cells to sites of 

inflammation in tissue.   

While other studies have reported that Tregs in JDM have diminished suppressive 

capacity raising the possibility of Treg exhaustion,172 the results in this study show that 

the expanded population of peripheral Tregs in blood are proliferative and activated 

(MKI67, IL2RA, IRF4), taking on an effector phenotype.  Likewise, the shared signature 

with CD4+ Teff cells suggests these Tregs are coopting the transcriptional machinery of 

effector T cells as has been described by others.173–175  In this dataset, JDM Tregs also 

upregulate transcriptomic and proteomic expression of CCR4–paralleled by increased 

expression of CCR4 in CD4+ effector T cells–which is preferentially expressed in Tregs 

recruited to the skin.161 Thus, we speculate that this expanded population of Tregs in JDM 

could represent a peripheral response to site-specific Th2-mediated inflammation in 

disease-affected tissue.  Alternatively, these Tregs could be functioning in a reparative 
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manner at sites of tissue damage. Future functional studies of peripheral blood and 

tissue-specific Tregs, particularly investigation of the influence of type I IFN on Treg 

suppressive capacity in JDM, would provide mechanistic insight on this population’s role 

in disease pathogenesis. The potential translational impact of investigating Treg 

dysfunction is corroborated by active development of multiple therapeutics targeting 

Tregs for autoimmune diseases.176,177  

 More broadly, we show that unsupervised approaches such as DECIPHER can be 

used to consolidate disparate findings into a systems-level understanding of how 

interactions among cell states could manifest in disease. Here, our network analysis 

revealed that a module of hyper-activated IFN response across cell types is coordinated 

with dysfunction in ribosomal biogenesis, protein processing, and the regulation of cell 

death that is also shared across many cell types. This model contextualizes recent work 

that has identified ribosomal dysfunction in NK cells as a disease signature in JDM but 

also raises the possibility that defective translational machinery is not unique to that cell 

population.132,140 Given that Type I IFN directly promotes the activation and proliferation 

of NK cells,178–180 we speculate that NK cells in JDM are unable to properly translate 

cytolytic protein machinery required for effector function in response to IFN signaling, 

potentially perpetuating the IFN response. Similarly, the shared program between CD8T, 

gdT, and NK cells that describes regulation of cell death and cellular stress response 

suggests a common dysfunction across cytotoxic cell populations in JDM. Given the 

importance of cytotoxic cells in clearing cellular debris including autoantigenic neutrophil 

extracellular traps shown to be pathogenic in JDM,129 dysfunctional cytotoxic populations 
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could result in accumulation of such debris thereby triggering an autoimmune response 

mediated by lymphocytes.  

Finally, the observation that type I IFN responses increase with clinical metrics of 

disease activity adds to the growing body of work suggesting that disease activity in JDM 

correlates with this transcriptional signature.133,166,181 However, given the time and cost, it 

remains infeasible to use transcriptomic sequencing as a lab-based clinical diagnostic 

tool. Our data points to surface expression of SIGLEC-1 in monocytes as a composite 

measure of the IFN gene signature in JDM and disease activity. Together with a recent 

independent study of JDM, we provide external validation that SIGLEC-1 is a suitable 

biomarker for disease monitoring to pursue in larger immunophenotyping studies given 

the lower cost and ease of implementing screening by flow cytometry.147  Importantly, we 

show that SIGLEC-1 directly reflects the IFN gene signature using paired gene and 

protein expression measurements, strengthening support for its use as a biomarker. 

Further study of this biomarker, and the role of SIGLEC-1 in disease, is an important step 

toward precision care of JDM. 

 These findings should be interpreted in the context of the study’s limitations. First, 

despite being the largest single-cell study in JDM to date, sample numbers are still limited 

such that the study lacks statistical power to quantify the contribution of MSA status to 

disease heterogeneity.  Furthermore, a majority of patients in the treatment-naïve group 

are TIF1y+, which could introduce a bias to disease-activity related programs, though it 

remains unknown whether MSA status is associated with distinct biological mechanisms.  

Some patients in the “active” disease group had relatively low disease activity, which may 

have prevented us from identifying more associations with disease activity. Additionally, 
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this study lacked data from matched JDM skin and muscle which would have enabled 

insight into how dysregulated cell states in blood might influence local microenvironments 

in disease-affected tissue. Although profiling blood limits the mechanistic insight 

compared to skin or muscle, it is a more suitable sample type for biomarker discovery, 

particularly in a pediatric disease that requires longitudinal monitoring, and future 

comparison to tissue data will enable us to identify populations in peripheral blood with 

tissue correlates.  Lastly, the DECIPHER algorithm relies on a k selection procedure to 

accurately decompose the data. As a dimensionality reduction technique, NMF is distinct 

from principal component analysis in that there is no single solution for the number of 

patterns or components into which the data is segmented. As such, it is necessary to 

optimize the parameter 'rank K' such that the NMF results capture the relevant biology at 

an appropriate granularity. We addressed this limitation of NMF by using the phylogenetic 

clustering-based k-selection method described by Murrow et al. where the authors 

demonstrated that saturation of this metric reflects the appropriate granularity of biological 

programs such that results are robust across multiple choices of rank K.65 

 In summary, using CITEseq to profile compositional and functional imbalance of 

peripheral blood immune cells and the relationship to disease activity, we provide a 

comprehensive map of the coordinated immune dysregulation underlying JDM. We 

identify persistent transcriptional changes in B and CD4+ T cells associated with JDM that 

persist even in patients in remission off medication and reveal novel cell states associated 

with the IFN signature that generate new hypotheses for the role of extra-follicular 

interactions in disease pathogenesis, drawing parallels to other autoimmune diseases. 

Importantly, these findings pose a new paradigm to how we approach JDM treatment. 
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The dysregulation of processes simultaneously with hyperactivation of other cell states 

necessitates that we identify therapeutic strategies that restore balance to the dynamic 

interactions between immune populations rather than simply turning off a set of pathways. 

Taken together, our work sets the stage for improving clinical management of JDM by 

providing a foundation for systems-level inquiry into the cellular basis of this disease. 

More broadly, application of a similar analytical strategy could provide insight into the 

immunologic basis of other childhood-onset autoimmune diseases characterized by a 

type I IFN gene signature. 
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Methods 

Sex as a biological variant 

This study contained samples from human males and females. Sex was not considered 

as a biological variable in downstream analyses. 

Study Cohort & Sample Processing 

Patients were recruited to the Juvenile Myositis Precision Medicine Biorepository between 

2018 and 2021 and underwent informed consent.  The diagnosis of JDM was per clinician 

judgement, however, all patients included in this study met EULAR/ACR classification 

criteria for “definite” juvenile idiopathic inflammatory myopathy based on typical skin 

manifestations of either Gottron’s and or heliotrope rashes.182 This study was approved 

by the UCSF IRB.  Clinical data was collected by study investigators and recorded in a 

secure REDCap database.  Treatment-naive JDM was defined as a new diagnosis of 

JDM as deemed by the treating clinician with no systemic immune suppressant use in the 

prior 4 weeks.  Inactive JDM was defined as normal CK, MMT8≥78 and Physician Global 

VAS score<0.5 to reflect PRINTO clinically inactive disease183 definitions but with some 

modifications based on the data available.  Active disease was defined as Physician 

Global VAS score≥0.5, and all patients in this category were taking immune suppressive 

medications.  Longitudinal samples from n=6 patients with JDM were included separated 

by at least 4 months in time and accompanied by a change in disease activity.  Measures 

of disease activity, including the Cutaneous Disease Area and Severity Index (CDASI) 

were collected at study visits.184 Healthy controls were enrolled who had no prior 
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autoimmunity, no known or suspected genetic disorders, immunodeficiency, active 

cancer, or history of organ or bone marrow transplantation, no infection or antibiotics in 

the prior 4 weeks, no chronic systemic immunomodulatory medication use and no 

vaccinations in the prior 6 weeks.  Peripheral blood samples were collected at each study 

visit and processed by the Pediatric Clinical Research Core Sample Processing Lab. 

PBMCs were collected in SepMate tubes (n=9) using Ficoll separation or CPT tubes 

(n=18), isolated per manufacturer’s guidelines, and cryopreserved in liquid nitrogen.  

 

CITE-seq of human PBMCs 

Our experimental protocol followed protocol from our previous study133 with certain 

modifications to account for confounding time-related and batch effects. Note these 

experiments were carried out using early access kits from BD Genomics before the 

implementation of commercially-available single-cell protein/RNA assays (e.g. Feature 

Barcoding, 10x Genomics; BD Abseq, BD Genomics, Supplemental Table 4.2), and 

researchers are recommended to use those newer solutions for any follow-up studies as 

the techniques and reagents have been refined. PBMCs from 27 distinct samples were 

gently thawed in a 37°C water bath and re-suspended using a pipette set to 1 mL. Cell 

counts and viability were determined using a Cellometer Vision (Nexcelcom) with AOPI 

staining (Nexcelcom cat. CS2-0106-5ML). Cells were multiplexed into four pools: one 

“cross pool” with all samples that consisted of only one time point and three pools 

consisting of longitudinal samples. Longitudinal samples from the same individual were 

assigned to separate pools to enable genetic demultiplexing.  After pooling, cells were 

resuspended in 90 μl of 1% BSA in PBS and Fc blocked with 10 μl Human Trustain FcX 
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(Biolegend cat. 422302) for 10 minutes on ice then stained on ice for 45 minutes with a 

pool of 268 antibodies in 100 μl, for a final staining volume of 200 μl. Antibodies were 

pooled on ice with 2.2 μl per antibody per 1x106 cells (BD Genomics). Cells were 

quenched with 2 ml 1% BSA in PBS and spun at 350xg for 5 minutes and further washed 

two more times with 2 ml of 1% BSA in PBS. After the final wash, cells were resuspended 

in 100 ul and strained through a 40 μM filter (SP Bel-Art cat. H13680-0040). Each 

longitudinal pool was split across two 10X lanes while the “cross pool” was split across 

six 10X lanes (6 wells total, 5x105 cells/well). The 10x Chromium was run and post-GEM 

RT and cleanup were done according to manufacturer’s protocol (10X Genomics 3’ Kit 

V3). Starting at cDNA amplification, modifications to the protocol were made: 1 μl of 2 μM 

additive primer (BD Genomics, beta kit) specific to the antibodies tags was added to the 

amplification mixture. During the 0.6X SPRIselect (Beckman Coulter, B23318) isolation 

of the post-cDNA amplification reaction cleanup, the supernatant fraction was retained for 

ADT library generation. Subsequent library preparation of the cDNA SPRI-select pellet 

was done exactly according to protocol, using unique SI PCR Primers (10X Genomics). 

For the ADT supernatant fraction, a 1.8X SPRI was done to isolate ADTs from other non-

specifically amplified sequences, followed by sample index PCR. Sample index PCR for 

the ADTs was done using the cycling conditions as outlined in the standard protocol (15 

cycles) but using unique SI-PCR Primers such that all libraries could be mixed and 

sequenced together. Subsequent SPRI selection was performed, and all libraries were 

quantified and analyzed via Qubit 2.0 (Fisher) and Bioanalyzer (Agilent), respectively, for 

quality control. We sequenced the libraries on 2 lanes of a NovaSeq S4 (Illumina), aligned 

using CellRanger (10X Genomics) to generate feature barcode matrices. 
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Sequencing data pre-processing and integration  

Data was demultiplexed using genotypes with demuxlet8 and doublets were filtered 

using DoubletFinder.120 Next, the data were filtered to remove genes with < 3 cells. 

Additional filters were applied to the cells, removing cells with greater than 5000 ADT 

counts to avoid antibody aggregates and with >60% ribosomal or >15% mitochondrial 

DNA (mtDNA) reads. For the ADT data, cells were additionally filtered to remove those 

with fewer than 70 antibodies detected, and with any antibody isotype control 

measurements greater than 50. To remove background ambient RNA signal, we ran 

SoupX separately on each of the six RNA libraries and then merged them.185 Aggregated 

data was log-normalized and scaled, regressing out percent mtDNA, percent ribosomal 

DNA, and cell cycle (S, G2M).39 Data was then integrated with Harmony, with 20 max 

iterations and 30 max iterations per cluster.186 

DSB was run on all six ADT libraries individually, using default parameters except 

for more stringent quantile clipping (0.01, 0.99).187 The background distribution of empty 

droplets was defined as suggested in the DSB vignette. Isotype controls were then 

removed from the dataset, and RPCA was used to integrate the DSB-normalized ADT 

data across libraries. Following RPCA, the data was re-scaled and cell cycle scores (S, 

G2M genes) and the number of ADT counts and features were regressed out. The 

harmonized RNA and RPCA corrected ADT were combined using Weighted Nearest 

Neighbors, with default parameters except for prune.SNN = 1/20. Leiden clustering was 

run on the resulting graph (method = igraph), at a 1.4 resolution.86 Two clusters were 

removed with low to no expression of ADT and the object was reclustered with the same 
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parameters. The Seurat function ‘FindAllMarkers’ was used to identify the top 5 markers 

per cluster.  

We removed an additional 3 clusters: 2 were small clusters with a transcriptomic 

profile consistent with doublets (original Leiden clusters 26 and 29, Supplemental Figure 

4.36), and 1 diffusely expressed cluster (original Leiden cluster 19, Supplemental Figure 

4.36). We further sub-clustered 3 clusters that expressed genes representative of more 

than one cell type: original Leiden clusters 16, 17 and 23. Sub-clustering was performed 

using Seurat’s ‘FindSubCluster’ function using the lowest possible resolution to divide the 

population into two clusters. Based on minimal transcriptional differences between them, 

original Leiden clusters 1, 5, 9, 11 and 15 were merged into a single CD4+T naïve 

population, clusters 3 and 10 into a single naive CD8+T population, and cluster 7 and part 

of the subsetted cluster 23 CD56dim NK population. Due to interpersonal heterogeneity in 

monocytes, all CD14+ monocyte clusters were merged into one CD14+ monocyte 

population.188,189 

  While annotating, we discovered that the FOXP3-signature normally attributed to 

Tregs was only present in a subset of the cluster and FindSubCluster did not appropriately 

isolate the FOXP3+ cells. We therefore subsetted the cluster and re-ran 

‘FindVariableFeatures’, ‘ScaleData’, ‘RunPCA’, ‘FindNeighbours’, ‘FindClusters’ with the 

Louvain algorithm and a resolution of 0.8, and ‘RunUMAP’. This enabled us to subset a 

smaller group of cells with a statistically significant expression of FOXP3 compared to 

other clusters using FindAllMarkers, which we hence annotated T regulatory cells. 

Annotation of the remaining clusters was performed using both canonical gene and 

protein markers. One B cell population consisted almost solely of cells from two donors. 
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This was annotated as B_naive4, and was not used in downstream analysis, but included 

in UMAPs. 

 

Cell type proportion analysis 

Cell type proportion was calculated as the proportion of each cell type for each individual 

and was compared for: treatment-naive JDM compared to HC, treatment-naive JDM 

compared to inactive JDM and inactive JDM compared to HC using Kruskal-Wallis test 

with Dunn’s post-test.  To determine the association between cell abundance and disease 

activity, the Spearman correlation coefficient between cell type proportion and physician 

global VAS scores was calculate and p values were adjusted using BH.   

 

Differential gene and protein expression analysis 

The DGE and DPE analysis were completed using DESeq2. Size factors were set using 

the function ‘computeSumFactors’ from the scran package. We used the default settings 

for single cell data, namely test=‘LRT’, useT = T, minmu = 1e-6, fitType = ‘glmGamPoi’, 

and minReplicatesForReplace = Inf in the ‘DESeq’ function. Batch was included as a co-

variate using the ‘reduced’ argument. We filtered genes and proteins that were not 

expressed in at least 5% of cells and analyzed only cell types where there were at least 

100 cells in each group. We used cutoffs of |LFC| ≥ 1 for genes, |LFC| ≥ 0.5 for proteins, 

and BH p < 0.05. Over-representation analysis was performed on up- and downregulated 

genes per cell type using the clusterProfiler package with GOBP as reference and 

adjusted p < 0.05. For the PD1/CD45R0-subanalysis, we compared groups using 
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Seurat’s FindMarkers with test.use = ‘MAST’, latent.vars = ‘well’, |LFC| ≥ 0.5, and BH  

p<0.05. 

 

Identification of global IFN signature  

We created a list of IFN genes by excluding cell types with less than 100 cells in either 

HC or treatment-naive JDM and then collected genes differentially expressed in at least 

2 cell types. The average gene expression was calculated using Seurat’s 

‘AverageExpression’ function. Expression was averaged per sample for each cell type. 

The expression was visualized using dittoSeq’s190 ‘dittoHeatmap’ with default, 

unsupervised clustering settings of both rows and columns, and the dendrograms ordered 

using the dendsort package.191 The clustering organized the genes into 7 distinct 

modules, where Module 1 consisted exclusively of IFN-related genes. Average Module 1 

scores for each cell type were then calculated using Seurat’s ‘AddModuleScore’ with 

default settings. Correlations between disease activity and IFN score was calculated 

using Spearman correlation and visualized using ggplot2.192 

  

Network inference from RNA data using DECIPHER 

We applied NMF to the raw RNA count data as implemented in the DECIPHER method 

with default parameters.65 The main output of NMF is a set of two orthogonal vectors: 

gene loadings that represent how much a given gene contributes to that activity program, 

and cell loadings that represent how strongly that program is expressed in a given cell. 

The NMF rank, k, was chosen using the weighted subtrees metric based on phylogenetic 
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clustering, as described by Murrow et al.65 The final choices of rank k for each cell type 

were kB=17, kCD4T=17, kCD8T=14, kgdT=13, kMyeloid=17, kNK=11 according to the saturation 

point in the elbow plots (Supplemental Figure 4.37). Network clustering was performed 

on the per-sample averaged program scores with default parameters as described by 

Murrow et al. The corresponding gene loading vectors for each GEP were analyzed as 

described by Kotliar et al. to quantify the strength of an individual gene’s contribution to 

that program, referred to as ‘marker gene scores’.77 GSEA was performed on the resultant 

ranked gene lists using the fgsea122 package in R with GO and Hallmark gene sets. 

Module themes were assigned by calculating module enrichment p-values using the 

‘Get_enrichment_pvals’ function in DECIPHER with default parameters. Module and 

gene set enrichment results were visualized using ClusterProfiler.193 

 

Validating signatures in independent data 

We performed CITEseq using the same protocol as described above with PBMCs from 5 

patients with JDM and 2 healthy pediatric controls.  We used the same steps for data 

processing with the exception that we used CellBender rather than SoupX for ambient 

RNA removal and clustered cells using the RNA measurements only.  To derive proxy 

scores for GEP in the independent dataset, we ranked the gene lists comprising each 

program by marker score, which quantifies how strongly a single gene contributes to that 

GEP. Using the top 5% of genes by marker score, that list was used as input for the rank-

based gene subset enrichment method AUCell.194 Pseudobulk proxy GEP scores were 

calculated as the per-patient mean expression in the same way for the original NMF 

programs. Case vs control comparisons were done using t-tests between JDM patients 
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and HCs. Given the patients per group (HC = 2, Active JDM = 4, TN JDM = 1) in this 

validation cohort, we could not repeat the ANOVA comparisons used for disease activity 

association in the original dataset. Instead, proxy GEP scores were correlated to 

physician-assessed scores of disease activity (VAS global) using the Spearman 

correlation. 

Statistics 

All statistical analyses and visualization of results were performed using open-sourced R 

(version 4.2.3). Pairwise comparisons of cell proportions between patient groups were 

performed using a Kruskal-Wallis test with post-hoc Dunn comparison, with p-values 

adjusted for multiple comparisons by Holm correction. Significance of Pearson 

correlations between GEPs used for network construction was calculated using 

bootstrapping as implemented in DECIPHER. Analyses of disease association with GEPs 

was performed using two-tailed unpaired t-test or ANOVA with post-hoc Tukey test. False 

discovery rates for GSEA annotation and module enrichment across programs were 

calculated and corrected at the cutoff FDR < 0.01 as described by Murrow et al. Gene 

loading similarity was calculated as the Pearson correlation between gene loadings for 

each activity program and all other activity programs in the same module with p-values 

calculated by permutation testing. Correlation methods used in specific figures are 

described in the corresponding legends and in Methods, and significance for statistical 

tests was set at the threshold P < 0.05. 
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Study approval  

This study was approved by the UCSF IRB #17-24003. Written informed consent to 

participate in this study was provided by the participant or the participants’ legal guardian 

depending on the age of the participant.  Assent was obtained when appropriate. 

Data availability 

The datasets presented in this study are deposited in the CZ CELLxGENE Discover 

resource as ‘CITEseq of JDM PBMCs’  

(https://cellxgene.cziscience.com/collections/c672834e-c3e3-49cb-81a5-

4c844be4a975). The code used for this analysis will be made publicly available on Github 

at “GartnerLab/jdm_crosslong” upon manuscript acceptance. Values for all data points in 

graphs are reported in the Supporting Data Values file uploaded as part of Supplemental 

Data. 
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Supplement 

Supplemental Table 4.1 Clinical cohort disease characteristics. 
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Supplemental Figure 4.14 RNA and surface protein markers used to annotate cell type clusters in UMAP space. 
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Supplemental Figure 4.15 Analysis of reclustered B cells based on ADT measurements alone. 
This re-clustering was completed on the DSB-corrected ADT assay using the Seurat workflow. FindClusters was 
run using a resolution of 0.4 with the Leiden algorithm. FindUMAP was run using default settings. 
(A) UMAP of subsetted B cells where Clusters 0, 3 and 5 corresponded to naïve B cells, cluster 2 to an immature 
naïve B cell population akin to “B_naive1” in the first analysis, and clusters 1 and 4 to IgM+IgD+ memory and  
IgM-IgD- memory B cells, respectively, defined by TNFRSF13B (TACI) expression. Cluster 6 consisted of 
plasmablasts. Clusters 7 and 8 contained few cells with a high expression of platelet and red blood cell-specific 
genes and were excluded from further analysis. B_naive3 and B_naive4, clusters driven by RNA signatures, did not 
form specific clusters and patient-specific clustering was resolved.  
(B-C) Canonical RNA (B) and ADT (C) markers for reclustered B cells. 
(D) Compositional analysis using these ADT clusters verified an increase in the proportion of immature naïve B cells 
(IgM+IgD+CD24+CD38+CD10+) from cluster 2 in TNJDM as compared to HC. This analysis also found a significant 
decrease in proportion of memory B clusters 1 and 4, in TNJDM as well as an increase in the proportion of IgM-IgD- 
memory B cells (cluster 4) in inactive JDM. 
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Supplemental Figure 4.16 Multi-modal differential analysis for TNJDM and HCs.  
(A) Differential analysis between treatment-naive JDM and HCs for each cell type.  
(B) Differential analysis (TNJDM vs HC) of surface protein expression for monocytes. Asterisks indicate significant 
differential expression (BH-adjusted p<0.05). 
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Supplemental Figure 4.17 Heatmap of top five enriched GO terms per cell type with FDR<0.01. 
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Supplemental Figure 4.18 Heatmap of differentially expressed genes between TNJDM and HC from all cell types 
clustered by expression likeliness. 
The genes from Cluster 1 were used to calculate the IFN score. 
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Supplemental Figure 4.19 Gene set enrichment results for GO terms in Module 1 (FDR<0.01). 
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Supplemental Figure 4.20 Gene set enrichment results for GO terms in Module 2 (FDR<0.01). 
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Supplemental Figure 4.21 Gene set enrichment results for GO terms in Module 3 (FDR<0.01). 
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Supplemental Figure 4.22 Gene set enrichment results for GO terms in Module 4 (FDR<0.01). 
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Supplemental Figure 4.23 Gene set enrichment results for GO terms in Module 5 (FDR<0.01). 
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Supplemental Figure 4.24 Gene set enrichment results for GO terms in Module 6 (FDR<0.01). 
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Supplemental Figure 4.25 Mean patient expression of JDM-associated programs (t-test, p<0.05) in B cell (A) and 
CD4T cell (B) compartments, respectively (*p<0.05, **p<0.01, ***p<0.001).  
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Supplemental Figure 4.26 UMAPs of CD4T cells showing expression of NMF program CD4T1 (A) in subcluster 
corresponding to CD4+ effector cells (B).  
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Supplemental Figure 4.27 Heatmaps showing top 10 marker genes for selected disease-associated programs for 
the indicated cell type.  
Colored according to Pearson correlation between gene expression and program expression in the indicated cell 
type. Arrows indicate whether a given program is expressed higher or lower in a specific subset of patients.  
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Supplemental Figure 4.28 GEP scores for longitudinal samples collected at an individual’s high and low disease 
activity point.  
Individuals are labelled using the same Donor ID used throughout the paper. Changes in expression within 
individuals trended, but in this subset of patients with longitudinal samples, there was insufficient statistical power to 
quantify statistical significance given disease activity heterogeneity across these 6 individuals.  
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Supplemental Figure 4.29 Scatter plots showing mean sample expression (n=27) of type I interferon response 
programs in each corresponding cell type (Pearson).  
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Supplemental Figure 4.30 Expression of program B9 in naive B cells. 
(A) wnnUMAP of B cell subsets 
(B) wnnUMAP showing expression of program B9 in B cells.  
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Supplemental Figure 4.31 Mean patient expression of disease activity associated programs (4-way ANOVA, 
p<0.05) in Module 5 (*p<0.05 Post-hoc pairwise Tukey test).  
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Supplemental Figure 4.32 wnnUMAPs showing normalized expression of GEPs CD4T1 and CD4T10 (A-B) with 
co-expression of surface protein CCR4 (C).  
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Supplemental Figure 4.33 Subset of Modules 1, 2, and 5 from original heatmap in Figure 4.6 highlighting the 
negative correlations.  
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Supplemental Figure 4.34 Proxy GEP metric (AUCell) recapitulates key signatures discovered via DECIPHER in 
original dataset. 
(A-B) Single-cell expression of proxy GEP metric calculated using AUCell in the original dataset and quantification 
of proxy program expression for each patient comparing HC (n=5) to JDM (n=22) (t-test: *p<0.05, ***p<0.001). (C) 
Single-cell expression of proxy GEP metric calculated using AUCell in the original dataset and quantification of proxy 
program expression for each patient comparing HC (n=5), Inactive JDM (n=6), Active JDM (n=7), and TN JDM (n=9) 
(4-group ANOVA ***p<0.001).  
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Supplemental Figure 4.35 Relationship between disease activity and proxy scores for GEPs in validation cohort. 
(A-B) Scatterplots correlating disease activity (PGA) with AUCell scores for proxy IFN programs, Myeloid17 and 
CD8T7, in independent dataset (Spearman).  
(C-E) Scatterplots correlating disease activity (PGA) with AUCell scores for proxy CD8T11, NK8, and CD4T17 
programs in independent dataset (Spearman). The cell death regulatory programs previously found to be lowest in 
active and treatment-naive JDM, CD8T11 and NK8, were not significantly correlated in the independent dataset, 
though the single treatment-naïve patient (JDM21) exhibited the lowest scores for both programs. CD4T17 exhibited 
a negative trend with disease activity that did not meet the threshold for significance  

 

  



 149 

Supplemental Table 4.2 ADT sequences and targets for surface protein panel. 

DNA_ID Clone Target barcode 
A0005 2D10 anti-human CD80 ACGAATCAATCTGTG 
A0006 IT2.2 anti-human CD86 GTCTTTGTCAGTGCA 
A0007 29E.2A3 anti-human CD274 (B7-H1, 

PD-L1) 
GTTGTCCGACAATAC 

A0008 24F.10C12 anti-human CD273  (B7-DC, 
PD-L2) 

TCAACGCTTGGCTAG 

A0010 DCN.70 anti-human CD276 (B7-H3) GACTGGGAGGGTATT 
A0016 9M1-3 anti-human Galectin-9 ACTCACTGGAGTCTC 
A0020 122 anti-human CD270 (HVEM, 

TR2) 
TGATAGAAACAGACC 

A0021 11C3.1 anti-human CD252 (OX40L) TTTAGTGATCCGACT 
A0022 5F4 anti-human CD137L (4-1BB 

Ligand) 
ATTCGCCTTACGCAA 

A0023 SKII.4 anti-human CD155 (PVR) ATCACATCGTTGCCA 
A0024 TX31 anti-human CD112 (Nectin-2) AACCTTCCGTCTAAG 
A0026 CC2C6 anti-human CD47 GCATTCTGTCACCTA 
A0029 BJ40 anti-human CD48 CTACGACGTAGAAGA 
A0031 5C3 anti-human CD40 CTCAGATGGAGTATG 
A0032 24-31 anti-human CD154 GCTAGATAGATGCAA 
A0033 HI186 anti-human CD52 CTTTGTACGAGCAAA 
A0034 UCHT1 anti-human CD3 CTCATTGTAACTCCT 
A0046 SK1 anti-human CD8 GCGCAACTTGATGAT 
A0047 5.1H11 anti-human CD56 (NCAM) TCCTTTCCTGATAGG 
A0048 2D1 anti-human CD45 TCCCTTGCGATTTAC 
A0050 HIB19 anti-human CD19 CTGGGCAATTACTCG 
A0052 P67.6 anti-human CD33 TAACTCAGGGCCTAT 
A0053 S-HCL-3 anti-human CD11c TACGCCTATAACTTG 
A0054 581 anti-human CD34 GCAGAAATCTCCCTT 
A0058 W6/32 anti-human HLA-A,B,C TATGCGAGGCTTATC 
A0060 5E10 anti-human CD90 (Thy1) GCATTGTACGATTCA 
A0061 104D2 anti-human CD117 (c-kit) AGACTAATAGCTGAC 
A0062 HI10a anti-human CD10 CAGCCATTCATTAGG 
A0063 HI100 anti-human CD45RA TCAATCCTTCCGCTT 
A0064 6H6 anti-human CD123 CTTCACTCTGTCAGG 
A0066 CD7-6B7 anti-human CD7 TGGATTCCCGGACTT 
A0068 43A3 anti-human CD105 ATCGTCGAGAGCTAG 
A0069 RCR-401 anti-human CD201 (EPCR) GTTTCCTTGACCAAG 
A0071 L291H4 anti-human CD194 (CCR4) AGCTTACCTGCACGA 
A0073 IM7 anti-mouse/human CD44 TGGCTTCAGGTCCTA 
A0081 M5E2 anti-human CD14 TCTCAGACCTCCGTA 
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DNA_ID Clone Target barcode 
A0083 3G8 anti-human CD16 AAGTTCACTCTTTGC 
A0085 BC96 anti-human CD25 TTTGTCCTGTACGCC 
A0087 UCHL1 anti-human CD45RO CTCCGAATCATGTTG 
A0088 EH12.2H7 anti-human CD279 (PD-1) ACAGCGCCGTATTTA 
A0089 A15153G anti-human TIGIT (VSTM3) TTGCTTACCGCCAGA 
A0090 MOPC-21 Mouse IgG1, κ isotype Ctrl GCCGGACGACATTAA 
A0091 MOPC-173 Mouse IgG2a, κ isotype Ctrl CTCCTACCTAAACTG 
A0092 MPC-11 Mouse IgG2b, κ isotype Ctrl ATATGTATCACGCGA 
A0095 RTK4530 Rat IgG2b, κ Isotype Ctrl GATTCTTGACGACCT 
A0100 2H7 anti-human CD20 TTCTGGGTCCCTAGA 
A0101 9E2 anti-human CD335 (NKp46) ACAATTTGAACAGCG 
A0102 BM16 anti-human CD294 (CRTH2) TGTTTACGAGAGCCC 
A0103 RA3-6B2 anti-mouse/human 

CD45R/B220 
CCTACACCTCATAAT 

A0123 9C4 anti-human CD326 (Ep-CAM) TTCCGAGCAAGTATC 
A0124 WM59 anti-human CD31 ACCTTTATGCCACGG 
A0127 NC-08 anti-Human Podoplanin GGTTACTCGTTGTGT 
A0128 16A1 anti-human CD140a 

(PDGFRα) 
ATGCGCCGAGAATTA 

A0129 18A2 Hu CD140b (PDGFRβ) CAATGGTTCACTGCC 
A0132 AY13 anti-human EGFR GCTTAACATTGGCAC 
A0134 P1H12 anti-human CD146 CCTTGGATAACATCA 
A0136 MHM-88 anti-human IgM TAGCGAGCCCGTATA 
A0138 UCHT2 anti-human CD5 CATTAACGGGATGCC 
A0140 G025H7 anti-human CD183 (CXCR3) GCGATGGTAGATTAT 
A0141 J418F1 anti-human CD195 (CCR5) CCAAAGTAAGAGCCA 
A0142 FUN-2 anti-human CD32 GCTTCCGAATTACCG 
A0144 J252D4 anti-human CD185 (CXCR5) AATTCAACCGTCGCC 
A0145 Ber-ACT8 anti-human CD103 (Integrin 

αE) 
GACCTCATTGTGAAT 

A0148 G043H7 anti-human CD197 (CCR7) AGTTCAGTCAACCGA 
A0149 HP-3G10 anti-human CD161 GTACGCAGTCCTTCT 
A0151 BNI3 anti-human CD152 (CTLA-4) ATGGTTCACGTAATC 
A0153 SA231A2 anti-human KLRG1 (MAFA) CTTATTTCCTGCCCT 
A0154 O323 anti-human CD27 GCACTCCTGCATGTA 
A0155 H4A3 anti-human CD107a (LAMP-

1) 
CAGCCCACTGCAATA 

A0156 DX2 anti-human CD95 (Fas) CCAGCTCATTAGAGC 
A0159 L243 anti-human HLA-DR AATAGCGAGCAAGTA 
A0160 L161 anti-human CD1c GAGCTACTTCACTCG 
A0161 ICRF44 anti-human CD11b GACAAGTGATCTGCA 
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DNA_ID Clone Target barcode 
A0162 10.1 anti-human CD64 AAGTATGCCCTACGA 
A0163 M80 anti-human CD141 

(Thrombomodulin) 
GGATAACCGCGCTTT 

A0165 1D11 Hu CD314 (NKG2D) CGTGTTTGTTCCTCA 
A0166 6/40c anti-human CD66b AGCTGTAAGTTTCGG 
A0168 QA17A04 anti-human CD57 

Recombinant 
AACTCCCTATGGAGG 

A0169 F38-2E2 anti-human CD366 (Tim-3) TGTCCTACCCAACTT 
A0170 MIH26 anti-human CD272 (BTLA) GTTATTGGACTAAGG 
A0171 C398.4A anti-human/mouse/rat CD278 

(ICOS) 
CGCGCACCCATTAAA 

A0172 9F.8A4 anti-human CD275 (B7-H2, 
B7-RP1, ICOSL) 

GTTAGTGTTAGCTTG 

A0175 NK92.39 anti-human CD96 (TACTILE) TGGCCTATAAATGGT 
A0176 A1 anti-human CD39 TTACCTGGTATCCGT 
A0177 NOK-1 anti-human CD178 (Fas-L) CCGGTCCTCTGTATT 
A0179 K0124E1 anti-human CX3CR1 AGTATCGTCTCTGGG 
A0181 Bu32 anti-human CD21 AACCTAGTAGTTCGG 
A0185 TS2/4 anti-human CD11a TATATCCTTGTGAGC 
A0187 CB3-1 anti-human CD79b (Igβ) ATTCTTCAACCGAAG 
A0189 C1.7 anti-human CD244 (2B4) TCGCTTGGATGGTAG 
A0196 HIR2 anti-human CD235ab GCTCCTTTACACGTA 
A0205 15-2 anti-human CD206 (MMR) TCAGAACGTCTAACT 
A0207 8F9 anti-human CD370 

(CLEC9A/DNGR1) 
CTGCATTTCAGTAAG 

A0215 11C1 anti-human CD268 (BAFF-R) CGAAGTCGATCCGTA 
A0216 HIP1 anti-human CD42b TCCTAGTACCGAAGT 
A0217 HA58 anti-human CD54 CTGATAGACTTGAGT 
A0218 AK4 anti-human CD62P (P-

Selectin) 
CCTTCCGTATCCCTT 

A0219 GIR-208 anti-human CD119 (IFN-γ R α 
chain) 

TGTGTATTCCCTTGT 

A0224 IP26 anti-human TCR α/β CGTAACGTAGAGCGA 
A0233 MHN3-21 anti-human Notch 3 CTATTGGACGTATCT 
A0236 RTK2071 Rat IgG1, k Isotype Ctrl ATCAGATGCCCTCAT 
A0237 G0114F7 Rat IgG1, λ Isotype Ctrl GGGAGCGATTCAACT 
A0238 RTK2758 Rat IgG2a, κ Isotype Ctrl AAGTCAGGTTCGTTT 
A0240 RTK4174 Rat IgG2c, κ Isotype Ctrl TCCAGGCTAGTCATT 
A0241 HTK888 Armenian Hamster IgG 

Isotype Ctrl 
CCTGTCATTAAGACT 

A0242 K036C2 anti-human CD192 (CCR2) GAGTTCCCTTACCTG 
A0244 CBR-IC2/2 anti-human CD102 (ICAM-2) TGACCTTCCTCTCCT 
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DNA_ID Clone Target barcode 
A0245 STA anti-human CD106 TCACAGTTCCTTGGA 
A0246 TU27 anti-human CD122 (IL-2Rβ) TCATTTCCTCCGATT 
A0247 1A1 anti-human CD267 (TACI) AGTGATGGAGCGAAC 
A0352 AER-37 

(CRA-1) 
anti-human FcεRIα CTCGTTTCCGTATCG 

A0353 HIP8 anti-human CD41 ACGTTGTGGCCTTGT 
A0355 4B4-1 anti-human CD137 (4-1BB) CAGTAAGTTCGGGAC 
A0356 MIH24 anti-human CD254 

(TRANCE, RANKL) 
TCCGTGTTAGTTTGT 

A0357 CD43-10G7 anti-human CD43 GATTAACCAGCTCAT 
A0358 GHI/61 anti-human CD163 GCTTCTCCTTCCTTA 
A0359 HB15e anti-human CD83 CCACTCATTTCCGGT 
A0361 p282 (H19) anti-human CD59 AATTAGCCGTCGAGA 
A0364 WM15 anti-human CD13 TTTCAACGCCCTTTC 
A0366 12G5 anti-human CD184 (CXCR4) TCAGGTCCTTTCAAC 
A0367 TS1/8 anti-human CD2 TACGATTTGTCAGGG 
A0369 TS2/16 anti-human CD29 GTATTCCCTCAGTCA 
A0371 P1E6-C5 anti-human CD49b GCTTTCTTCAGTATG 
A0372 VI-PL2 anti-human CD61 AGGTTGGAGTAGACT 
A0373 5A6 anti-human CD81 (TAPA-1) GTATCCTTCCTTGGC 
A0374 MEM-108 anti-human CD98 GCACCAACAGCCATT 
A0375 M1310G05 anti-human IgG Fc CTGGAGCGATTAGAA 
A0382 MEM-166 anti-human CD177 AGTATGGAGCCATAT 
A0383 JS11 anti-human CD55 GCTCATTACCCATTA 
A0384 IA6-2 anti-human IgD CAGTCTCCGTAGAGT 
A0385 TS1/18 anti-human CD18 TATTGGGACACTTCT 
A0386 CD28.2 anti-human CD28 TGAGAACGACCCTAA 
A0387 1D3 anti-human TSLPR (TSLP-R) CAGTCCTCTCTGTCA 
A0389 HIT2 anti-human CD38 TGTACCCGCTTGTGA 
A0392 W6D3 anti-human CD15 (SSEA-1) TCACCAGTACCTAGT 
A0393 S-HCL-1 anti-human CD22 GGGTTGTTGTCTTTG 
A0395 MIH43 anti-human B7-H4 TGTATGTCTGCCTTG 
A0396 BA5b anti-human CD26 GGTGGCTAGATAATG 
A0397 5E8 anti-human CD193 (CCR3) ACCAATCCTTTCGTC 
A0398 9-4D2-1E4 anti-human CD115 (CSF-1R) AATCACGGTCCTTGT 
A0399 7C9C20 anti-human CD204 TAGCGAGCCAGATGT 
A0401 H037G3 anti-human CD301 

(CLEC10A) 
ACCTAGAAATCAGCA 

A0402 HI149 anti-human CD1a GATCGTGTTGTGTTA 
A0404 H5C6 anti-human CD63 GAGATGTCTGCAACT 



 153 

DNA_ID Clone Target barcode 
A0406 12C2 anti-human CD304 

(Neuropilin-1) 
GGACTAAGTTTCGTT 

A0407 5-271 anti-human CD36 TTCTTTGCCTTGCCA 
A0409 17G10.2 anti-human CD85g (ILT7) TGTCAGTTCCTATGA 
A0418 4E3.16 anti-human CD243 (ABCB1) TGACCCGACCTTTAG 
A0419 3F3 anti-human CD72 CAGTCGTGGTAGATA 
A0420 HP-MA4 anti-human CD158 

(KIR2DL1/S1/S3/S5) 
TATCAACCAACGCTT 

A0423 590H11G1E3 anti-human MERTK TCCTGCATGTACCCA 
A0427 94b/FOLR2 anti-human Folate Receptor β 

(FR-β) 
TGTGGCTAGTCAGTT 

A0430 L1-OV198.5 anti-human CD171 (LICAM) GATGGACGACAATTC 
A0432 3F4 anti-CD230 (Prion) CAGGTCCCTTATTTC 
A0433 8C11 anti-human CD325 (N-

Cadherin) 
CCTTCCCTTTCCTCT 

A0446 VIMD2 anti-human CD93 GCGCTACTTCCTTGA 
A0569 5D3 anti-human CD338 (ABCG2) TAAGACTTGGCCGTC 
A0574 HI264 anti-human CD235a 

(Glycophorin A) 
AGAGTATGTATGGGA 

A0575 TS2/7 anti-human CD49a ACTGATGGACTCAGA 
A0576 9F10 anti-human CD49d CCATTCAACTTCCGG 
A0577 AD2 anti-human CD73 (Ecto-5'-

nucleotidase) 
CAGTTCCTCAGTTCG 

A0579 HI9a anti-human CD9 GAGTCACCAATCTGC 
A0580 AA1 anti-human mast cell tryptase ACTGATAGACCCGCT 
A0581 3C10 anti-human TCR Vα7.2 TACGAGCAGTATTCA 
A0582 B6 anti-human TCR Vδ2 TCAGTCAGATGGTAT 
A0583 B3 anti-human TCR Vγ9 AAGTGATGGTATCTG 
A0586 TREM-26 anti-human CD354 (TREM-1) TAGCCGTTTCCTTTG 
A0588 33.1 (Ab33) anti-human CD202b 

(Tie2/Tek) 
CGATCCCTTACCTAT 

A0590 NKTA255 anti-human CD305 (LAIR1) ATTTCCATTCCCTGT 
A0591 15C4 anti-human LOX-1 ACCCTTTACCGAATA 
A0592 DX27 anti-human CD158b 

(KIR2DL2/L3,  NKAT2) 
GACCCGTAGTTTGAT 

A0597 9E9A8 anti-human CD209 (DC-
SIGN) 

TCACTGGACACTTAA 

A0598 S16017E anti-human CD110 TGTTGTAAGATGCCA 
A0599 DX9 anti-human CD158e1 

(KIR3DL1, NKB1) 
GGACGCTTTCCTTGA 

A0801 P30-15 anti-human CD337 (NKp30) AAAGTCACTCTGCCG 
A0803 RIK-2 anti-human CD253 (Trail) GCCATTCCTGCCTAA 
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DNA_ID Clone Target barcode 
A0804 K041E5 anti-human CD186 (CXCR6) GACAGTCGATGCAAC 
A0805 TX25 anti-human CD226 (DNAM-1) AGACCAACTCATTCA 
A0814 HD30 anti-human CD205 (DEC-

205) 
CTATCGTTTGATGCA 

A0817 W7C5 anti-human CD109 CACTTAACTCTGGGT 
A0819 UV4 anti-human CD126 (IL-6Rα) TGATGGGAGCTTATC 
A0820 2E1B02 anti-human GP130 CACGAGAATTTCAGT 
A0821 67D2 anti-human CD164 GAGGCACTTAACATA 
A0822 NY2 anti-human CD142 CACTGCCGTCGATTA 
A0826 H5/FcRL3 anti-human CD307c/FcRL3 GCCTAGTTTGAACGC 
A0828 413D12 anti-human CD307d (FcRL4) CGATTTGATCTGCCT 
A0829 509f6 anti-human CD307e (FcRL5) TCACGCAGTCCTCAA 
A0843 L053E8 anti-human CD199 (CCR9) ATTCCTCATTCCTGA 
A0844 MEM-55 anti-human CD45RB AGATGGGACTCACCA 
A0845 3B2/TA8 anti-human CD99 ACCCGTCCCTAAGAA 
A0853 50C1 anti-human CLEC12A CATTAGAGTCTGCCA 
A0858 TRA-2-10 anti-human CD46 ACAGTACGACCTTCT 
A0861 50-6 anti-human CD151 (PETA-3) CTTACCTAGTCATTC 
A0862 H44 anti-human CD218a (IL-

18Rα) 
TTGTTGTATCCGATC 

A0864 NT-7 anti-human CD352 (NTB-A) AGTTTCCACTCAGGC 
A0866 AYP1 anti-human CLEC1B (CLEC2) TGCCAGTATCACGTA 
A0867 DX22 anti-human CD94 CTTTCCGGTCCTACA 
A0868 MHE-18 anti-human IgE GGATGTACCGCGTAT 
A0869 1D12 anti-human CD365 (Tim-1) CTTCTGGGATTCTGG 
A0870 A12 (7D4) anti-human CD150 (SLAM) GTCATTGTATGTCTG 
A0871 KPL-1 anti-human CD162 ATATGTCAGAGCACC 
A0872 CD84.1.21 anti-human CD84 CTCCCTAGTTCCTTT 
A0894 MHK-49 anti-human Ig light chain κ AGCTCAGCCAGTATG 
A0895 M3/38 anti-mouse/human Mac-2 

(Galectin-3) 
GATGCAATTAGCCGG 

A0896 GHI/75 anti-human CD85j (ILT2) CCTTGTGAGGCTATG 
A0897 EBVCS-5 anti-human CD23 TCTGTATAACCGTCT 
A0898 MHL-38 anti-human Ig light chain λ CAGCCAGTAAGTCAC 
A0899 BB7.2 anti-human HLA-A2 GAACATTTCCGACAA 
A0900 L263G8 anti-human CD198 (CCR8) AGCCCGGATGTATTT 
A0901 7B11 anti-human GARP (LRRC32) AGGTATGGTAGAGTA 
A0902 6-434 anti-human CD328 (Siglec-7) CTTAGCATTTCACTG 
A0908 H131 anti-human TCR Vβ13.1 TTATGGACGTATGGT 
A0912 CG4 anti-human GPR56 GCCTAGTTTCCGTTT 
A0918 3D12 anti-human CD19 GAGTCGAGAAATCAT 
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DNA_ID Clone Target barcode 
A0919 6D4 anti-human MICA/MICB CCCGCAGTATAACGA 
A0920 ASL-24 anti-human CD82 TCCCACTTCCGCTTT 
A0923 5D12 anti-human NKp80 TATAGTTCCTCTGTG 
A0928 SA17RN1 anti-human TSPAN33 

(BAAM) 
GAGTTCGTTGTTCCA 

A0931 1C1 anti-human CD131 CTGCATGAGACCAAA 
A0932 31G4D8 anti-human Lymphotoxin β 

Receptor (LT-βR) 
CCTCTATTCAGAGCA 

A0933 74/3 anti-Annexin A1 CCCACTGGAGCAATT 
A0934 HSL96 anti-human CD179a (VpreB) TAGATGGGATTCCGG 
A0935 LN2 anti-human CD74 CTGTAGCATTTCCCT 
A0936 RS38E anti-human CD317 (BST2, 

Tetherin) 
AAGAGCCGTTGTGAA 

A0939 TW4-2F8 anti-human LAP (TGF-β1) ATCCTTCCGATTGTG 
A0940 4H1 anti-human CD116 ATGGACAGTTCGTGT 
A0941 M-B371 anti-human CD37 ACAGTCACTGGGCAA 
A0944 BB27 anti-human CD101 (BB27) CTACTTCCCTGTCAA 
A0945 MAb11 anti-human TNF-α CCTATGAACGTAACG 
A0948 OV-5B8 anti-human CD321 GACAGTACCGACACT 
A1018 Tü39 anti-human HLA-DR, DP, DQ AGCTACGAGCAGTAG 
A0028 BY88 anti-human CD30 TCAGGGTGTGCTGTA 
A0056 19F2 anti-human CD269 (BCMA) CAGATGATCCACCAT 
A0131 16G5 anti-human Cadherin 11 CGTTGCCATTAACCA 
A0135 67A4 anti-human CD324 (E-

Cadherin) 
ATCCTTCTCCCTTTC 

A0139 B1 anti-human TCR γ/δ CTTCCGATTCATTCA 
A0152 11C3C65 anti-human CD223 (LAG-3) CATTTGTCTGCCGGT 
A0158 Ber-ACT35 

(ACT35) 
anti-human CD134 (OX40) AACCCACCGTTGTTA 

A0174 TS2/9 anti-human CD58 (LFA-3) GTTCCTATGGACGAC 
A0206 7-239 anti-human CD169 

(Sialoadhesin, Siglec-1) 
TACTCAGCGTGTTTG 

A0208 S15046E anti-human XCR1 AAGACGCATGTCAAC 
A0213 MHN1-519 anti-human Notch 1 AATCTGTAGTGCGTT 
A0248 HAE-1f anti-human CD62E CTCCCTGTGGCTTAA 
A0351 BV10A4H2 anti-human CD135 (Flt-3/Flk-

2) 
CAGTAGATGGAGCAT 

A0360 108-17 anti-human CD357 (GITR) ACCTTTCGACACTCG 
A0362 7D4-6 anti-human CD309 (VEGFR2) TTCACGCAGTAAGAT 
A0363 G077F6 anti-human CD124 (IL-4Rα) CCGTCCTGATAGATG 
A0370 201A anti-human CD303 (BDCA-2) GAGATGTCCGAATTT 
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DNA_ID Clone Target barcode 
A0400 BV9 anti-human CD144 (VE-

Cadherin) 
TCCACTCATTCTGTA 

A0403 10E2 anti-human CD207 (Langerin) CATTCTTCACGGGAT 
A0405 HTA125 anti-human CD284 (TLR4) GCTTAGCTGTATCCG 
A0447 OX-104 anti-human CD200 (OX2) CACGTAGACCTTTGC 
A0593 NP4D6 anti-human CD203c (E-

NPP3) 
TAACCGTACCTGCAT 

A0815 6588-5 anti-human CCR10 ATCTGTATGTCACAG 
A0816 ME20.4 anti-human CD271 (NGFR) AACCGCGCTTCAGAT 
A0831 DL-101 anti-human CD138 

(Syndecan-1) 
GTATAGACCAAAGCC 

A0863 1D6 anti-human CD257 (BAFF, 
BLYS) 

CAGAGCACCCATTAA 

A0180 ML5 anti-human CD24 AGATTCCTTCGTGTT 
A0394 CY1G4 anti-human CD71 CCGTGTTCCTCATTA 
A0143 G034E3 anti-human CD196 (CCR6) GATCCCTTTGTCACT 
A0027 113-16 anti-human CD70 CGCGAACATAAGAAG 
A0070 GoH3 anti-human/mouse CD49f TTCCGAGGATGATCT 
A0428 9F4 anti-human TIM-4 CGTCATATAGTATGG 
A0408 15-414 anti-human CD172a (SIRPα) CGTGTTTAACTTGAG 
A0830 162.1 anti-human CD319 (CRACC) AGTATGCCATGTCTT 
A0600 UP-R1 anti-human CD158f 

(KIR2DL5) 
AAAGTGATGCCACTG 

A0594 S16016B anti-human CD133 GTAAGACGCCTATGC 
A0390 A019D5 anti-human CD127 (IL-7Rα) GTGTGTTGTCCTATG 
A0572 1D9-M12 anti-human C5L2 ACAATTTGTCTGCGA 
A0147 DREG-56 anti-human CD62L GTCCCTGCAACTTGA 
A0164 51.1 anti-human CD1d TCGAGTCGCTTATCA 
A0146 FN50 anti-human CD69 GTCTCTTGGCTTAAA 
A0167 E11 anti-human CD35 ACTTCCGTCGATCTT 
A0214 FIB504 anti-human/mouse integrin β7 TCCTTGGATGTACCG 
A0865 9D9F9 anti-human VEGFR-3 (FLT-4) TGATCCGAAGTCGTG 
A0072 RPA-T4 anti-human CD4 TGTTCCCGCTCAACT 
A0133 24D2 anti-human CD340 

(erbB2/HER-2) 
CTGTAGCCGCCTATT 

  



 157 

 
Supplemental Figure 4.36 Original multi-modal wnnUMAP, using Leiden clustering at a resolution of 1.4.  
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Supplemental Figure 4.37 Elbow plots for rank selection for NMF ran on each major cell type, with rank k indicated 
by vertical line.  
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CHAPTER 5 CONCLUSION 
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Tissues, as complex living systems, exhibit hierarchical organization and 

orchestrated state changes to execute their biological functions. These transitions are 

driven by various factors, including local cell-to-cell signaling and microenvironmental 

cues such as hormonal fluctuations and mechanotransduction. Single-cell genomics 

emerged as a powerful tool for uncovering cellular heterogeneity and molecular 

underpinnings across various biological processes. Nevertheless, analyzing single-cell 

genomics data continues to pose computational challenges due to its high dimensionality 

and noise. This dissertation addressed these challenges by introducing DECIPHER, a 

machine learning framework for network inference applied to single-cell RNA sequencing 

data, specifically targeting cellular coordination and interaction networks from single-cell 

genomics data. 

Summary of Advancements 

During this PhD, I originally set out to tackle the looming question in this current era 

of ‘big data’ biology where the availability of high-dimensional data is scaling in accord 

with Moore’s law: given the sheer amount of data, how do scientists go from big data to 

biological insight? To that end, in this dissertation I have described and demonstrated the 

utility of the DECIPHER algorithm as a tool to address this challenge in single-cell RNA 

sequencing data.  

Chapter 2 introduced the algorithm and its R implementation, deciphR, enabling the 

reconstruction of simulated cell state networks from high-dimensional molecular profiles. 

Expanding upon this, Chapter 3 applied DECIPHER to unveil cell-cell interaction networks 

within human breast tissue, shedding light on the dynamic interplay between different cell 

types in response to hormonal fluctuations and validating a subset of these interactions 
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nominated from transcriptomic data through IHC imaging. Chapter 4 extended 

DECIPHER's application to investigate coordinated immune dysregulation in a rare 

autoimmune disease, uncovering functional immune imbalances and potential 

therapeutic avenues.  

In particular, the successful application of the DECIPHER framework to a rare disease 

with poorly understood etiology—and subsequent validation of key DECIPHER-

discovered signatures in a separate cohort with a different computational method—

exemplifies the technical advancements enabled by this machine learning approach. By 

deploying NMF in a way that both integrates data and extracts key biological signals, i.e. 

combining the advantages of iNMF and consensus NMF, we were able to maximize the 

biological information learned from a limited patient cohort and resolve heterogeneity that 

could not be parsed by traditional differential expression approaches. 

Beyond the technical advantages of this method, I have prioritized interpretability of 

the algorithm and downstream results in order to strengthen its utility for biologists. For 

example, an initial version of the method relied on identifying correlations between PCs 

because first, the dimensionality reduction of PCA provides a unique solution and second, 

the PCs are ranked according to the amount of variability explained by that component 

and thus provide a starting point for prioritizing biological interpretation. However, PCs 

contain both ‘positive’ and ‘negative’ components, i.e. genes that are both highly and lowly 

expressed which together explain a fraction of the observed variability. Thus, interpreting 

the meaning of correlations between PCs becomes more difficult, as one must parse the 

contributions of both up- and down-regulated genes to the observed co-variation across 

biological contexts. As another example of how I have prioritized usability of this method, 
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I developed the method to interface with Seurat, a popular single-cell analysis pipeline. 

Finally, in the deciphR package implementation, we have included visualization functions 

for both the network outputs and intermediate metrics that are tuned during rank 

optimization. With these design choices, we hope that the DECIPHER algorithm will be a 

useful tool to not just computational and systems biologists, but also biologists across 

disciplines who are generating single-cell genomics data. 

Limitations and Assumptions 

However, the downstream results and technical advantages of DECIPHER should 

be interpreted in the context of the method’s limitations and assumptions. First, as has 

been previously mentioned, NMF is distinct from principal component analysis in that 

there is no single solution for the number of patterns or components into which the data 

is segmented. As such, it is necessary to optimize the parameter 'rank K' such that the 

NMF results capture the relevant biology at an appropriate granularity. By developing the 

DEW metric, we intended to address this limitation of NMF as none of the previously 

reported metrics for rank selection such as KL divergence or reconstruction error 

produced a clear ‘elbow’ or saturation point when used in k-sweeps. However, further 

investigation, including broader use of the algorithm, would help identify cases and 

general ‘data structures’ that the DEW metric does not cleanly resolve.  

Additionally, the NMF algorithm is computationally intensive, particularly because 

our consensus approach requires replicate iterations of NMF with unique random seeds. 

Although some of the time required for dimensionality reduction has been reduced by 

adopting the online iNMF approach78 developed by Gao et al. and parallelization of the 

replicates, running the K-sweep remains a major process bottleneck in the workflow. We 
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hope that by making the method open source before manuscript acceptance, the deciphR 

package can be further refined through the input of the broader computational biology 

community.  

Finally, the network approach used in the second half of the DECIPHER workflow 

makes several fundamental biological assumptions in order to apply the chosen 

mathematical framework. First, by filtering nodes based on modularity, i.e. programs that 

are poorly connected to the rest of the network, we assume that biologically relevant 

programs co-vary with multiple other activity programs. Thus, we assume the low 

dimensionality of gene expression on multiple levels: first on the level of individual genes 

during NMF and second on the level of coordinated activity programs during network 

inference. As previously mentioned in Chapter 2, if one is interested in querying single-

cell data for rare cell types or isolated biological processes, this method is likely not 

appropriate.  

Second, the network construction from all samples in the dataset assumes that the 

underlying structure of the cellular coordination network is consistent across biological 

contexts and only the magnitude of correlation, i.e. proximity of individual nodes in graph 

representations, differs across the sample cohort. There are several clear cases where 

this assumption would not apply such as lesional versus healthy skin tissue within an 

individual or tumors, which are characterized by high mutational burden and markedly 

distinct microenvironments. Despite these limitations, I believe the DECIPHER method 

still contributes to the advancement of the field because it presents an interpretable and 

generally implementable machine learning tool to biologists interested in nominating 

hypotheses from high dimensional data in a principled manner. 
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Future Directions 

Looking ahead, an exciting frontier lies at the integration of multi-modal data and 

application of transfer learning techniques within the DECIPHER framework. Multi-modal 

data fusion, encompassing transcriptomics, proteomics, and epigenomics, holds promise 

for a more holistic understanding of cellular dynamics and interactions, providing insights 

into tissue-specific responses and disease mechanisms. Transfer learning, meanwhile, 

enables the transfer of knowledge across datasets and tissues, facilitating the translation 

of findings from model systems to clinical contexts and is already deployed by the iNMF 

algorithm adapted for DECIPHER. By leveraging transfer learning, we can bridge the gap 

between experimental models and human biology, accelerating the development of 

clinically relevant insights and personalized treatment strategies. 

Importantly, future research endeavors should prioritize experimental validation 

and perturbation studies to elucidate the functional implications of identified cell-cell 

interaction networks. Incorporating spatial information into single-cell genomics analysis 

will further enhance our understanding of tissue microenvironments and cellular 

interactions within spatial contexts. 

Translating research findings into clinical applications remains paramount. Utilizing 

DECIPHER-derived insights for biomarker discovery, patient stratification, and 

therapeutic target identification could markedly improve clinical decision-making and 

treatment outcomes for complex diseases. Interdisciplinary collaborations between 

computational biologists, experimentalists, and clinicians will be crucial for ensuring the 

seamless integration of computational insights into clinical practice, ultimately improving 

patient care and outcomes. 
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