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Abstract

Optical imaging of calcium signals in the brain has enabled researchers to observe the activity 

of hundreds-to-thousands of individual neurons simultaneously. Current methods predominantly 

use morphological information, typically focusing on expected shapes of cell bodies, to better 

identify neurons in the field-of-view. The explicit shape constraints limit the applicability of 

automated cell identification to other important imaging scales with more complex morphologies, 

e.g., dendritic or widefield imaging. Specifically, fluorescing components may be broken up, 

incompletely found, or merged in ways that do not accurately describe the underlying neural 

activity. Here we present Graph Filtered Temporal Dictionary (GraFT), a new approach that 

frames the problem of isolating independent fluorescing components as a dictionary learning 

problem. Specifically, we focus on the time-traces—the main quantity used in scientific discovery

—and learn a time trace dictionary with the spatial maps acting as the presence coefficients 

encoding which pixels the time-traces are active in. Furthermore, we present a novel graph 

filtering model which redefines connectivity between pixels in terms of their shared temporal 
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activity, rather than spatial proximity. This model greatly eases the ability of our method to 

handle data with complex non-local spatial structure. We demonstrate important properties of our 

method, such as robustness to morphology, simultaneously detecting different neuronal types, and 

implicitly inferring number of neurons, on both synthetic data and real data examples. Specifically, 

we demonstrate applications of our method to calcium imaging both at the dendritic, somatic, and 

widefield scales.
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dictionary learning; sparse coding; calcium imaging; two-photon microscopy; re-weighted

I. INTRODUCTION

Functional optical imaging has become a vital technique for simultaneously recording large 

neural populations at single cell resolution hundreds of micrometers beneath the surface 

of the brain in awake behaving animals [1]–[3]. This class of techniques has become 

quite extensive, including one- two- and three- photon imaging [1], [4], [5], imaging at 

dendritic, somatic and widefield scales [1], [6]–[8], and imaging of various indicators 

of neural activity, including calcium, voltage etc. [9]–[11]. Of these methods, calcium 

imaging (CI) via two-photon microscopy has emerged as a dominant modality providing 

a practical method to optically record the calcium concentrations in neural tissue that is 

intrinsically representative of neural activity [1]–[3]. Novel extensions, such as volumetric 

imaging [12], [13] and widefield imaging [8], [14], [15], promise to even further increase the 

dimensionality of such data and the spatiotemporal statistics that must be leveraged for data 

processing and analysis.

Given the large, and ever-growing, size of CI datasets, recent advances in automated CI 

analysis have sought to remove the need for traditional manual annotation of such data. 

To date, automatic analysis of CI primarily focused on factoring the recorded video into 

two sets of variables: the spatial profiles1 representing the area that a neuron occupies, 

and the corresponding time-traces of fluorescence activity. As imaging of cell-bodies 

(somatic imaging) is the most prevalent, CI demixing algorithms have largely incorporated 

spatiotemporal regularization based on the statistics of cell-bodies, e.g., well localized 

spatially with sparse activity, to improve cell-finding [16].

Recent variants of optical imaging have aimed to expand the scope of accessible brain 

signals by imaging both larger and smaller neural structures (see Fig. 1A). At one end of 

this spectrum, imaging of finer-scale dendritic and spine structures captures how individual 

neurons communicate [17], [18]. Dendritic imaging, while also having sparse temporal 

statistics, can have long, thin spatial profiles that span the entire field-of-view (FOV). At 

the other end, cortex-wide (i.e., widefield) imaging can be achieved at resolutions too coarse 

to isolate activity signals of individual neurons, but instead can capture brain-wide activity 

patterns in head-fixed and freely moving animals [14]. At both scales, the spatial statistics 

1We prefer to use the terminology “spatial profiles” over the alternate term “Regions of Interest” (ROIs), as we believe it more 
accurately captures the physical nature of these shapes as 2D projections of 3D anatomical shape.
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of the sought-after components differ significantly from somatic imaging, and require new 

approaches that can be seamlessly applied across modalities.

To fully realize the potential of functional imaging data and relate the observed neural 

activity to behavior and stimuli, the fundamental step for analysis is detecting neuronal 

components and inferring their corresponding time-traces. The majority of developed 

methods focus on calcium imaging, where the predominant form of automated analysis 

is regularized matrix factorization [19]–[22]. The matrix factorization model is formulated 

as

Y T = AΦT + ET , (1)

where Y ∈ ℝT × NxNy, is the Nx × Ny pixel FOV sampled at T time-points, A ∈ ℝNxNy × M

and Φ ∈ ℝT × M are the M spatial profiles and corresponding time-traces for each 

component, and E ∈ ℝT × NxNy is i.i.d. Gaussian sensor noise2. Here we propose two major 

changes to improve the accuracy and scope of inferring fluorescing components from CI 

data. First, following our recent work [23], we refocus the goal of the problem onto finding 

the time-traces of each component. Mathematically, we reorient the matrix factorization 

model formulation in (1) to the model’s transpose

Y = ΦAT + E (2)

The goal for this step is not to change the model, as both formulations are trivially 

identical, however we aim to change the philosophy with which calcium imaging is viewed, 

putting the emphasis on the time-traces which are the critical component to studying how 

neural activity is linked to behavior, stimuli, learning, etc. This philosophical shift strongly 

recommends an algorithmic shift to a dictionary learning paradigm, where we treat the time-

traces as the dictionary. Furthermore, the spatial regularization becomes a natural extension, 

correlating the dictionary decomposition between pixels [24].

The second contribution is generalizing the rigid spatial grid of the FOV to a more flexible 

graph model over the pixels. The additional graph modeling layer serves to remedy the fact 

that in many imaging scales the typical assumptions of co-localized spatial profiles (i.e., 

neighboring pixels are likely composed of similar components) no longer holds, e.g., in 

dendritic imaging (Fig. 1A-B). The graph essentially redefines what “neighborhood” means, 

either pulling together, or moving apart, pixels based on their temporal correlation structure 

and not their spatial adjacency. The graph-based regularization is used for deciding how 

the sparse coefficients (i.e., the spatial maps) are correlated as a function of the pixel-wise 

temporal correlations.

Taken together, these two complementary changes give us a flexible new tool for automated 

CI analysis: Graph Filtered Temporal (GraFT) dictionary learning. The graph creates a data-

2While the noise in CI is actually not Gaussian, at higher photon counts the noise is more Gaussian-like, and we, as many others, have 
found that Gaussian noise assumptions a practical simplification.
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driven space where the correlation of dictionary coefficients over space during dictionary 

learning becomes a natural regularizer no matter what the scale of imaging. While we 

motivate and apply this method here to optical imaging data, the method itself is very broad 

and falls into the general class of graph-regularized dictionary learning (e.g., [25], [26]). We 

thus first present the algorithm in its most general form, followed by demonstrations both in 

simulated data, and in real recordings of somatic, dendritic and widefield data.

II. RELATED WORK

Due to the importance of calcium imaging in neuroscientific inquiry, a number of methods 

have been developed to extract individual fluorescing components from calcium imaging. 

We summarize the main points here, and refer the interested reader to the recent review 

paper [16].

One class of methods focusing solely on identification of the spatial components have been 

mostly inspired by image segmentation. Each of these methods relies on a spatial model 

of the data, either preset or learned from the data. Some methods have addressed cell 

detection in calcium imaging as an image segmentation problem with solutions based on 

active contours [27] or clustering using graph cuts [28] or spectral embeddings [29], [30]. 

Dictionary learning has been applied to CI data where methods have focused on learning 

spatial dictionary elements [21], [31], [32], whose atoms represent neuronal shapes. The 

identified neuron shapes can then be used to estimate corresponding time-traces. Solutions 

are based on spatial generative models using convolutional sparse block coding [31], or 

learning spatial components via iterative merging and clustering [21]. Our approach, in 

contrast, simultaneously learns a temporal dictionary and sparse spatial coefficients.

The next class of methods take into account a spatiotemporal decomposition, identifying 

both the spatial footprint of the neuronal components as well as the time traces. For 

example, Diego and Hamprecht [32] propose a sparse space-time deconvolution which both 

learns a dictionary of cell shapes as well as recovers the sparse events of the corresponding 

time-traces. The majority of spatiotemporal approaches are based on regularized non-

negative matrix factorization (NMF) [19], [20], [22], [33]–[35], and explicitly model 

the statistics of somatic components to improve cell-finding, specifically that somatic 

components are often well localized with sparse activity. Thus, these methods aim to solve 

the cost function

A, Φ = arg min
A, Φ

Y T − AΦT F
2 + ℛA(A) + ℛΦ(Φ),

where here ℛA(A) and ℛΦ(Φ) represent appropriate regularizations that can vary between 

methods. Typical regularization terms include the component norms, the number of 

components, spatial and temporal sparsity, and spatial cohesion, and are necessary for 

interpretable results [19]–[22], [36], [37]. One of the state-of-the-art methods, Constrained 

NMF (CNMF) [20], [38] includes a linearized model of calcium dynamics to recover the 

time-traces and splits the decomposition into recovering localized cells and a background 
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component [20]. As direct optimization is often difficult for problems of this size, alternating 

descent type algorithms are often employed, i.e., iteratively solving

A ∣ Φ = argmin
A

YT − AΦT
F
2

+ ℛA(A),

Φ ∣ A = argmin
Φ

YT − AΦT F
2 + ℛΦ(Φ) .

In contrast to these approaches, GraFT while including non-negative constraints, flips the 

factorization model to define the critical features as temporal features (2). Furthermore, 

to still leverage the important spatial information in a flexible way, we incorporate a data-

driven graph of the spatial domain to guide the inference of the spatial maps.

Finally, modern deep learning methods for image segmentation have also been adapted 

for CI analysis, and as opposed to the unsupervised approaches above, are supervised 

methods that require labeled training data. These methods either rely solely on spatial 

information [39], [40], or consider the spatiotemporal information via (2+1)D [41] 

convolutional networks, or 3D convolutional networks [42]. These methods solely extract 

spatial components and leave time-trace estimation for post-processing. So far these they 

have been solely applied to somatic imaging, and networks trained on somatic training data 

cannot extend to dendritic data (which is difficult to label) or widefield (for which ground 

truth segmentation does not even exist) due to the different morphology.

Previous work has suffered from several limitations. Methods focusing solely on identifying 

spatial components treat time-trace estimation as an afterthought, which reduces the utility 

of the estimated quantities in neuroscience. This also raises the need for additional 

post-processing steps such as neuropil (background) estimation and denoising. Matrix 

factorization methods can often be susceptible to noise and are, for example, particularly 

sensitive to initialization procedures and pre-processing (e.g., motion correction, baseline 

subtraction, variance normalization etc.). Finally, methods developed for specific imaging 

modalities and relying on calcium dynamics [20] do not generalize to new technologies and 

require developing extensions and adaptations for new modalities and scales [43], [44].

III. BACKGROUND

A. Dictionary learning

Dictionary learning (DL) is an unsupervised method aimed at finding optimal, parsimonious 

representations given exemplar data [45], [46]. Consider the model in Equation (2) and 

the equivalent Gaussian likelihood model of the data given the coefficients A, i.e., 

Y ∣ Φ, A N ΦAT , σ2I , where σ2 is the noise variance, and assume a sparsity-inducing 

prior distribution p(A) over the coefficients A. The invoked sparsity encourages learned 

representations that parsimoniously represent the data, i.e. each data-point can be 

reconstructed using only a small number of dictionary elements. DL in its purest form seeks 

to infer only the dictionary Φ via maximum likelihood, marginalizing over the coefficients
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Φ = argmax
Φ

p(Y ∣ Φ) = argmax
Φ ∫ p(Y ∣ A, Φ)p(A)dA .

This marginal maximum likelihood optimization involves an often intractable integral. 

In particular, the prior p(A) is often chosen to be an i.i.d. Laplacian distribution with 

parameter λ: p Aij = (λ/2)e−λ Aij . To bypass this difficulty, variational methods are often 

employed to iteratively solve this optimization [47]–[49]. For DL, this often takes the form 

of alternatively solving for the sparse coefficients of a subset Γ of the data, i.e.,

a Γ = argmin
y Γ

p a Γ ∣ y Γ , Φ , (3)

followed by the equivalent of a stochastic gradient descent over Φ using this subset of 

estimated coefficients

Φ Φ + μ∇Φ log p aΓ ∣ y Γ , Φ , (4)

for some step size μ. These steps are often termed the “inference” and “learning” 

steps, respectively, and stem from an interpretation as inference of the maximum 

marginal likelihood via an expectation-maximization procedure [47]–[49]. Traditional sparse 

coding assumes this model with Dirac-delta posterior approximations and an exponential 

(Laplacian) prior resulting in the commonly known inference/learning steps of

a Γ = arg min
a Γ

∑
i ∈ Γ

yi − Φai 2
2 + λ ai 1

Φ Φ + μ ∑
i ∈ Γ

yi − Φai ai
T .

(5)

In general, more than one gradient step over Φ can be taken at once, resulting in a least-

squares solution Φ = Y A#, where A# is the pseudo-inverse of A. This solution can be 

computed efficiently, e.g., using local updates based on sparsity [46].

The capabilities of DL to learn generic features that efficiently represent data have found use 

more generally in applications beyond the original image processing applications [45], [50]. 

For example, in hyperspectral imagery (HSI), DL has been used to identify material spectra 

directly from image cubes in an unsupervised manner [51], [52].

B. Sparsity-based Stochastic Filtering

The sub-selection of points Γ is often uniformly at random and thus DL does not inherently 

take into account relationships between exemplar data-points. More recent models, however, 

provide the tools to modify the sparse inference stage to take into account that some 

data-points may have similar decompositions [24], [53]–[55]. Specifically, a challenge 

in the past decade was to identify a filtering technique that enabled the correlation 

between the decomposition of similar data-points while maintaining the sparsity of the 
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inferred coefficients. One such method, termed Re-weighted ℓ1 Spatial Filtering (RWL1-SF)

—and the related work in dynamical filtering [54]—uses an auxiliary set of variables, 

λ, to correlate the probability of coefficients in neighboring vectors being active [24]. 

These approaches use the λ vector, which provide individual hyperparameters for each 

coefficient instead of a global λ parameter, to modify the probability of any such coefficient 

being active. The weights are shared between data-points, and have demonstrated marked 

improvements in both spatial data (HSI data [24]) and temporal data (video recovery [54]). 

Based on the reweighted-ℓ1 extension of basis pursuit denoising (BPDN) [56], [57], RWL1-

SF alternates between updating the estimates λ and a as

a Γ = argmin
a

∑
i ∈ Γ

yi − Φai 2
2 + diag λi ai 1

λik = ξ
β + aik + H * Ak i

,
(6)

where H * Ak is the 2D convolution between a kernel H and the coefficient image for the kth 

dictionary coefficient Ak, λi is a vector of weights for the coefficients at point i, and β and ξ 

are model parameters that control the maximum value of λik(ξ/β) and the rate of decay with 

increasing coefficient values. The convolution defines the local influence of the neighboring 

coefficients on the ith data-point’s decomposition. Prior work [24], [58] demonstrated that 

as opposed to directly constraining the coefficients via ℓp norms with their neighbors [59] 

(similar to filtering-via-local-averaging), filtering via a hierarchical model better maintains 

sparsity, and thus results in better estimates of the sparse underlying coefficient vectors. 

While previous work naturally fits into this deconvolution interpretation of a neighborhood 

[23], [24], in this work we expand on this idea and redefine what it means for two pixels to 

be “close”, using the formalism and tools of data-driven graph constructions and manifold 

learning.

C. Graph Sparse Coding

A prevalent assumption in high-dimensional data analysis is the manifold assumption, 

according to which in many real applications the data, while being observed in a high-

dimensional feature space, actually lies on or near a low-dimensional manifold embedded 

in the high-dimensional ambient space [60]–[62]. Under this assumption, when learning a 

new representation for data, two datapoints should have a similar representation if they are 

intrinsically similar, i.e. close to one another on the manifold. The manifold assumption has 

played an increasing role in dictionary learning via graph regularized sparse coding (GRSC) 

[63]–[67], where the underlying manifold is represented in the discrete setting as a graph 

on the data-points. Formally the graph is denoted G = (V, ℰ, W ), where V are the nodes in 

the graph, ℰ is the set of edges connecting the nodes, and W is the undirected weighted 

adjacency matrix for G, with W ij ≥ 0 representing the similarity between nodes i and j. Let 

D be a diagonal matrix whose diagonal elements Dii = ∑jW ij are the node degrees of the 

graph. The symmetric graph-Laplacian is defined as L = D − W, and is typically used in the 

sparse coding inference step to “encourage” datapoints who are close in the graph to employ 
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similar representations with respect to the dictionary. For example, the coefficient inference 

objective in [65] is given by

A = arg min
A

∥ Y − ΦA ∥2
2 +

i
λ ai 1 + μTr ATLA , (7)

where Tr ATLA = 1
2 ∑ijW ij ai − aj

2.

In image processing applications, GRSC enables incorporating non-local structure [68] by 

considering similarities in the high-dimensional feature domain as opposed to only relying 

on local spatial information. In this paper, we propose a new sparse coding solution, which 

adapts re-weighted ℓ1 spatial filtering [24] to a graph-based filter. Instead of the symmetric 

graph Laplacian, we use the normalized random-walk matrix K = D−1W. This matrix allows 

us to replace the spatial convolution kernel with diffusion along the data-driven graph 

constructed on the pixels. It can be interpreted as a non-local averaging filter [69]. Next we 

describe the mathematical model and derive the algorithm that accomplishes these tasks.

IV. GRAFT DICTIONARY LEARNING FOR FUNCTIONAL IMAGING

As DL was initially presented in the image processing literature, early applications to CI 

focused on learning spatial features indicative of fluorescing cells and processes [21], [31], 

[32]. The benefit to learning a set of temporal dictionary vectors instead is that we directly 

model the main objects of interest to science: the neural activity traces. To infer these traces 

we consider the hierarchical model in Figure 1C, which describes the statistical relationships 

between the time-traces Φ, data Y, presence coefficients A, weights λ, and data graph K. 

Mathematically we can define this model via the conditional probability distributions

yi ∣ Φ, ai N Φai, σy2I (8)

Φ ℳN 0, I, Σϕ (9)

aik ∣ K, λ Lap Kλk i (10)

λik Gamma(α, θ) . (11)

Starting at the top, Equation (8) places an isotropic mean-zero, variance σy2 Gaussian 

likelihood on the fluorescence trace at each ith pixel given the temporal dictionary and 

coefficients. Next, in Equation (9), we place a mean-zero Matrix normal prior over the 

dictionary. The between-dictionary covariance matrix Σφ both penalizes unused time-traces 

(similar to [70]) and penalizes time-traces that are too similar. The prior over the coefficients 

(Eqn. (10)) takes the form of a sparsity-inducing Laplacian distribution where the parameter 

for the kth coefficient at pixel i is given by applying the i element of the filtered weights 

Kλk. The weights themselves, λ, follow a conjugate Gamma hyper-prior with parameters 
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α and θ, comparable to previous work [23], [24]. Our model represents a Graph-filtered 

dictionary-based linear generative model where we can use a DL approach to learn the 

time-traces and graph-correlated sparse coefficients.

Inference under the above model can be complex and computationally intensive. We thus 

break down inference into three main stages: graph construction, coefficient inference and 

dictionary update. These stages are performed sequentially, as outlined in Algorithm 1 in an 

alternating minimization procedure. At a high level we are iterating over Equations (3) and 

(4). The main differences are a) we infer the coefficients for all data-points simultaneously, 

b) we replace the i.i.d. model with the graph-correlated model above, and c) we optimize the 

dictionaries completely at each iteration, rather than taking a single gradient step.

A. Re-weighted ℓ1 Graph Filtering

The first sub-step needed is to infer A under the model of Equations (8)-(11) given a 

fixed dictionary Φ. This involves expanding the idea of spatially filtered sparse inference 

(6) beyond the previous definition of neighborhood. Mathematically, we are moving 

from a convolutional kernel-based filtering H * Ak to the more general graph filtering 

Kak that defines the influence of the neighboring coefficients on the ith data vector’s 

decomposition weights for each dictionary index k. This optimization requires a definition 

of neighborhood, which previous convolution-based weights define using the spatial distance 

between pixel locations [23], [24]. In general applications, beyond imaging, it is difficult 

to define a universal pre-set sense of neighborhood, prompting the use of data-driven graph 

constructions. Thus Kak can be interpreted as applying a single graph diffusion step to the 

coefficients. This generalizes the spatial averaging convolutional kernel to the graph setting.

There are multiple ways to construct a data-driven graph. Here we construct a graph on the 

pixels using k-nearest neighbors graph with the Euclidean distance between the time-traces 

yi. We calculate the weighted graph affinity matrix W using a Gaussian kernel for similarity, 

and set

W ij = exp − yi − yj 2/σij2 (12)

if yi is among the k nearest-neighbors of yi′ or vice-versa. The bandwidth σij = σiσj is set to 

be the self-tuning bandwidth [71], which is a local adaptive bandwidth. Then the diffusion 

graph filter is calculated by normalizing the rows of W as K = D−1W.

Given the filter, we can solve the maximum likelihood inverse problem defined by Equations 

(8), (10), (11) for A via minimizing the negative log-likelihood
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A = argmin
A

[ − log(p(A ∣ Y , Φ))]

= argmin
A

[ − log(p(Y , A ∣ Φ))]

= argmin
A

−log ∫ p(Y ∣ A, Φ))p(A ∣ λ)p(λ)dλ

= argmin
A

−log(p(Y , A ∣ Φ))

−log ∫ p(A ∣ λ)p(λ)dλ .

The exact integration of the above integral (marginalizing over λ) is, in general intractable. 

The integral, however, can be very well approximated by the closed form

∫ p aik ∣ λ p(λ)dλ =
α Kλk i + θ−1 −α

2 aik + Kλk i + θ−1 α + 1 .

This prior results in a non-convex optimization negative log-likelihood cost function.

The sparse coding solution thus iteratively solves a weighted LASSO that can be interpreted 

as an approximation to a variational expectation-maximization (EM) optimization of the true 

ML problem [54], [57]. In this EM scheme, which we term Re-weighted ℓ1 Graph Filtering 

(RWL1-GF), the weights are updated at each algorithmic iteration based on smoothing with 

the graph-based kernel:

ai = arg min
a ≥ 0

1
2σy2

yi − Φa 2
2 + λ0∑

k
λik aik (13)

λik = ξ
β + aik + Kak i

, (14)

where β and θ are algorithmic parameters that depend only on the Gamma hyperparameters 

and can be tuned independently, and λ0 is included for numerical stability of the 

TFOCS [72] weighted BPDN solver. The weights λ in RWL1-GF incorporate spatial 

information into per-pixel solutions by sharing second-order statistics. Note that this spatial 

information is non-local, thus handling both components with compact spatial support 

such as cell-bodies, in addition to far ranging spatial components such as dendrites (Fig. 

2A,B). Practically, the effect of RWL1-GF serves to better connect the entirety of neural 

components, as well as to suppress background activity (Fig. 2,C).

B. Updating the temporal dictionary

The second step in the dictionary learning procedure is to update the time-traces themselves 

with respect to a learning rule. We use the above probabilistic model to specify an 

appropriate cost function. In particular, the matrix normal prior induces two regularizing 

terms to the cost. The first penalty involves the Frobenious norm over Φ, essentially 

penalizing excess activity. This term serves to remove unneeded time-traces from the 
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dictionary by setting them to zero [70] (Fig. 2D). Thus the exact number of components 

need not be known a prior and can be modified automatically. The second penalty, 

ΦTΦ − diag ΦTΦ sav = ∑i ≠ kΦi
TΦk, is a function of the intra-dictionary correlations3. 

This penalty ensures that time-traces are not learned multiple times with minute differences 

stemming from subtle nonlinearities or noise. These terms come together in the cost function

Φ = arg min
Φ ≥ 0

Y − ΦAT
F
2 + γ1 Φ

F

2

+ γ2 ΦTΦ − diag ΦTΦ sav,
(15)

where the parameters γ1 and γ2 trade-off these penalties. These parameters have a direct 

link to the covariance matrix Σφ in Equation (9) when Σφ is the sum of the identity plus a 

rank-one matrix.

We note that in our formulation we are optimizing the entire dictionary completely at 

each iteration. This is because we are inferring all pixels mixing coefficients at each 

iteration in order to maximally utilize the complex graph connectivity. We thus lose some 

of the robustness imbued by a stochastic gradient descent procedure, and therefore modify 

Equation (15) to ensure stable convergence. Specifically, we include a continuation term 

that penalizes the change in the estimate Φ between updates. This term prevents too large 

a deviation in the dictionary between iterations, smoothing out the cost landscape and 

allowing for more robust solutions. Mathematically, the update for the estimate at the tth 

iteration Φt
 is given by

Φt = arg min
Φ ≥ 0

Y − ΦA
F

2
+ γ1 Φ

F

2

+ γ2 ΦTΦ − diag ΦTΦ sav + γ3 Φ − Φt − 1
F
2

,
(16)

where γ3 is the parameter determining the rate of change in the dictionary over iterations.

C. GraFT Dictionary Learning

The full algorithm incorporating all these elements—Data-driven graph correlations, re-

weighted ℓ1 coefficient estimation, and robust, regularized time-trace learning—comes 

together in Algorithm 1. Specifically, we initialize with a graph constructed from the raw 

data4 temporal correlations and a randomly generated dictionary. The algorithm then iterates 

between using the new RWL1-GF algorithm to find approximate presence values, and the 

dictionary learning optimization of Equation (16). The final output is the learned dictionary 

Φ.

3In this definition we use the sav or sum-absolute-value which is the direct analog of the ℓ1 norm for vectors, i.e., 

A sav = ∑ij Aij . This is necessary as the A 1 has an alternate technical definition as the maximum ℓ1 norm of all the 

columns maxj∑i Aij
4We note that the graph normalization D−1 will never be singular since in our construction a vertex is always connected to itself and 
thus the minimal vertex degree of a node 1. Thus D is a diagonal matrix with diagonal elements dii ≥ 1 for all i.
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D. Computational complexity and convergence

GraFT at its core relies on three main computationally intensive steps: the initial 

construction of the graph, the inference of the spatial maps via per-pixel re-weighted 

ℓ1 minimization, and the least squares optimization to update the dictionary. The graph 

construction only needs to be computed once, and operates over all N pixels. To construct 

the k-nearest neighbor graph we use Randomized approximate nearest neighbors algorithm 

[73]. Specifically, the algorithm iterates L times, and attempts to find k nearest neighbors for 

each pixel, where k is pre-specified by the user. Given k and L the total complexity of the 

algorithm is proportional

Algorithm 1

GraFT DL

Input: data Y, parameters β, ξ, λ0, γ1, γ2, γ3 `

Initialize Φ0
 randomly

Learn the graph W via Equation (12)

Normalize K = D−1W

while not converged do

 for all voxels do

  Initialize λik = 1∀ i, k
  for l ≤ 3 do

   Update ai via Equation (13)

   Update λik via Equation (14)

  end for

 end for

 Update Φt
 via Equation (16)

end while

to LN(Tlog(T) + k(T + log(k))log(N)) + Nk2(T + log(k)), where T is the number of time-points 

per pixel.

The second computational bottleneck is the weighted ℓ1 optimization that underlies the 

RWL1-GF inference procedure. Specifically, if the computational complexity of weighted 

ℓ1 is C, then the computational complexity of RWL1-GF is NLC + LNk, where N is the 

number of pixels, L is the number of iterations the RWL1 procedure is run and k is the 

number of nearest neighbors in the graph. C itself can vary based on the algorithm and 

other considerations, such as warm-starts, and the end-distance to the optimal solution η. 

We found that the TFOCS package [72], which converges at an optimal rate of C O(TM/ η)
[72], was able to converge quickly in the RWL1 case when using past solutions as warm-

starts for new iterations in the re-weighted procedure.

Finally, the least-squares optimization in Equation 16 uses the built in quadratic 

programming package in MATLAB, which uses an interior point method. The complexity 
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of this algorithm is O(TMlog(1/η), where η bounds the solution distance from the global 

minima [74].

The total complexity of the algorithm can be reduced in a number of ways. First, the RWL1 

optimizations per pixel are parallelizable across all pixels. Second, the full FOV can be 

broken down into smaller patches and later merged (as was done in, e.g., [38]). This reduces 

N dramatically and further reduces the number of dictionary elements M for each patch, 

speeding up all three of computational bottlenecks. The nearest neighbor search can be made 

faster by reducing the dimensionality of the data, e.g., by using PCA, thus reducing T by at 

least an order of magnitude.

While each stage of our algorithm is known to converge, the theoretical properties of the 

global convergence for GraFT are still as yet unknown. Future work will aim to fully 

analyze the performance, as well as seek further improvements both in the computational 

complexity and the convergence rate.

While the design of GraFT adds additional computational stages in performing repeated ℓ1
minimizations and constructing a graph, we note that our overall runtime is comparable to 

one of the more highly used methods in [38]. Other methods, such as Suite2p [35] and 

ABLE [27] are faster, however are less accurate.

V. RESULTS

To test GraFT we assess its performance both on simulated benchmark data, as well as apply 

GraFT to multiple datasets across all scales of optical imaging. Specifically, we assess the 

utility of GraFT for somatic, dendritic and widefield data.

A. Implementation considerations

A number of practical considerations arise in our method, specifically initialization, 

selecting the number of neurons, setting the graph connectivity W, and parameter 

selection. First, we initialize Φ with random values, demonstrating a reduced sensitivity 

to initialization than other approaches [20]. Second, the number of dictionary components 

should be set to more than the expected number of neurons and background components. 

The sparsity and Frobenius norms serve to decay unused components (implicitly estimating 

the number of neurons), but cannot add new elements. We construct the weighted graph 

affinity matrix W using k-nearest neighbors [73], where each pixel is connected to k = 

48 nearest neighbors and the affinity matrix is then symmetrized. For parameter selection, 

we manually adjusted parameters using intuition built from prior work in RWL1-based 

algorithms [23], [24], [54]. The full set of parameters to set are λ0, γ1, γ2, γ3, ξ, and β. We 

find that for appropriately normalized data (normalized by the the median pixel value across 

the entire dataset), γ2 = γ3 = 0.1 provide accurate results across all datasets. Similarly we 

find that γ1 = 0.2 appropriately penalizes extra components. For the RWL1 parameters, we 

set ξ = 2 and β = 0.01 for all experiments. This choice sets a maximum cap of 200 for the 

per-element sparsity parameter modulator, and enables the weights to meaningfully vary as 

≈ a−1 for small values ≈ 1. The main parameter we find necessary to vary is λ0 and in our 

experiments we manually tune this parameter in the range 0.001 < λ0 < 0.1.
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Operating on the entire dataset simultaneously can often be time-consuming. Thus, for 

somatic datasets we follow similar procedures in other pipelines whereby the full field-of-

view is partitioned into smaller, overlapping spatial patches [20], of size ∼ 50×50 pixels 

with 5 pixels overlap between partitions on all sides. The number of dictionary atoms in 

each patch is set to be on the order of 5–10. Each partition can be analyzed in parallel, 

and the results are merged together to ensure that components present across patched 

are appropriately combined. Merging is accomplished by weighted averaging of highly 

correlated dictionary components (> 0.85), and then recalculating the spatial maps over all 

pixels.

A final consideration is the pre-processing that most algorithms use to denoise data before 

analysis. Optical imaging at micron scales and high framerates often incur significant 

additional noise. Essentially all methods use some pre-processing to reduce the noise levels, 

ranging from spatial and temporal low-pass filtering to deep neural networks [75]. GraFT 

in particular benefits from denoising in the preprocessing stage as the pixel connectivity 

graph is generated before the time-trace learning optimization has a chance to denoise via 

regularization. Specifically, the graph is based on time-trace correlations between pixels, 

which are sensitive to added noise. Thus, to maintain high-frequency temporal content, we 

denoise each pixel’s time-trace independent of all other pixels with a simple wavelet-based 

Block James-Stein (BJS) [76] denoising in a 2-level ‘sym4’ wavelet decomposition. With 

these aspects in mind, we implemented our code in MATLAB5.

B. NAOMi Simulated two-photon calcium imaging

To test our framework, we use recent advances in highly-detailed biophysical simulations 

that produce realistic two-photon imaging data based on computational models of anatomy 

and optics, i.e., the NAOMi simulator [37]. As the anatomy and time-traces are all 

simulated, the full spatiotemporal ground truth is known, including voxel/pixel occupancy 

of neurons (the spatial profiles of every fluorescing component), and the changes in 

fluorescence over time (each component’s time-trace). Rather than being “drawn from the 

generative model”, this data is generated by sampling 3D volumes of neural tissue and 

calcium activity, and then simulating the optical propagation and sampling to generate the CI 

data.

We applied GraFT to a 500 μm ×500 μm simulated field-of-view with 20,000 simulated 

frames. The simulation framerate was 30 Hz, and the spatial resolution was 1 μm/pixel. 

We compared our results to other methods from the literature: CNMF/CaImAn [20], [38]6, 

Suite2p [35], and PCA/ICA [19], ABLE [27], and STNeuroNet [42]. We note that of 

these CNMF/CaImAn, Suite2p, and PCA/ICA tend to be the most widely used, and in 

particular Suite2p and CNMF/CaImAn have active and ongoing code updates. Parameters 

for all methods were set via a combination of manual search, as well as the use of built-in 

parameter adjustments available in some methods, such as ABLE (see Appendix A for exact 

parameter settings).

5Code is available at https://github.com/adamshch/GraFT-analysis
6We note that CNMF and CaImAn are based on the same approach, and so we present here the best performance across both 
code-bases in MATLAB and Python.
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As a further point of comparison, we compute the profile-assisted least-squares (PALS) 

time-traces based on oracle knowledge of the spatial maps. PALS uses the ground-truth 

spatial maps given by the NAOMi simulation, A†, where † indicates ground-truth, and 

computes the least-squares time traces as

Φ = argmin
Φ

Y − A†Φ F
2

While PALS is not ground truth (the ground truth traces are independently provided by the 

NAOMi simulation), the traces PALS provides are an approximate baseline of per-neuron 

SNR and the general visibility of neurons in the dataset sans any regularization. We note, 

however, that they are not oracle traces, as PALS leverages no regularization or significant 

preprocessing (e.g., the denoising present in all other algorithms). When comparing the 

found components to the ground-truth traces, we find that GraFT identifies 434 unique 

neural components (i.e., including somatic and dendritic components), 37.76% more true 

positives than the next best performing algorithm, CNMF, that found 303 unique neurons, 

and even 19 (4.58%) more than the PALS time-traces (Fig. 3A,B,C). We note that the traces 

NAOMi identifies that other algorithms do not tend to have non-stereotyped shapes (Fig. 

3D,E).

C. Two-photon population calcium imaging

In addition to assessing GraFT on simulated data, we furthermore test GraFT on data from 

the NeuroFinder [77] dataset. NeuroFinder data includes two-photon calcium imaging at 

the somatic scale, along with manually annotated spatial maps for neurons. We note that 

while these labeled spatial maps are provided, they are limited in their use as ground truth. 

Some neurons are visible but do not fire and are thus functionally unidentifiable, while other 

active neurons are not labeled [42]. In addition, other clearly fluorescing components might 

not be labeled as they may represent dendritic (apical or otherwise) components. Note for 

example that there are obvious bright cells and dendritic components in Fig. 4A not labeled 

as ground-truth.

We ran GraFT on a 445 μm × 445 μm field of view in area vS1 of mouse visual cortex, 

recorded at 8 Hz. For comparison we ran Suite2p, optimizing parameters of both algorithms 

manually. Suite2p was run with ‘diameter’ set to 12, and 500 SVD components, and the 

remaining parameters were set to their default. In total, GraFT and Suite2p identified 

150 and 103 components respectively. GraFT and Suite2p found 46 and 48 out of 56 

labeled components respectively (Fig. 4A-C). Comparing the time-traces estimated by both 

approaches (Fig. 4C), the GraFT time-traces tend to have less noise, despite not explicitly 

regularizing for smoothness. Suite2p traces tend to exhibit negative “dips” indicating poor 

neuropil correction.

In addition, GraFT identifies a number of extra neuronal components, including somas, 

dendritic segments and apical dendrites. Further inspection revealed that movie frames 

during active bursts in the learned dictionary time-traces matched the spatial profiles, 

verifying that these components do represent real fluorescing components in the data (Fig. 
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4D). Identifying these additional components individually removes their localized activity 

from the soma-adjacent areas, improving neuropil estimation and subtraction.

Finally, we noted that some somatic components appeared to be found in duplicate. We 

explored these cases and discovered that GraFT was, in fact, separating the cytoplasmic 

and nuclear portions of these cells (Fig. 4E). When plotted together, the time-traces for 

each pair follow closely together, with a muted and delayed response for the nuclear 

component relative to the cytoplasmic. As expected, the nuclear signal is lower amplitude 

and has slower dynamics. Thus, GraFT is able to partition even very similar activity patterns, 

revealing potentially interesting differences within individual cells.

D. Sparsely labeled dendritic imaging

One of the principle benefits of GraFT is to enable the extraction of non-compact 

components in the data. While somatic-scale imaging contains some dendritic components, 

dendritic-specific imaging at high zoom levels drastically changes the spatial statistics of 

the data. We thus next apply GraFT to dendritic imaging of both sparsely and densely 

labeled tissue. First we use the sparsely labeled data to assess the accuracy of GraFT via 

comparisons to anatomical measurements.

We imaged dendritic calcium signals in an awake sparsely-labeled mouse using a Bruker 

2P-Plus microscope with an dual-beam Insight X3 laser (Spectra Physics), equipped with an 

8 kHz bidirectional resonant galvo scanner and a Nikon 16X CFI Plan Fluorite objective 

(NA 0.8). Fluorescence was split by a 565LP dichroic and filtered with 525/70 and 

595/50 bandpass filters before collection on two GaAsP photomultiplier tubes (Hamamatsu 

H10770PB-40 and H11706–40, respectively). We imaged a square region 375 μm per side, 

768 × 768 pixels. Frames were acquired at 20 Hz and 13-bit resolution. Illumination was 

centered at a wavelength of 940 nm, and laser power exiting the objective was in the range 

of 30–40 mW. PMT gains were set to minimize saturated pixels during calcium transients.

We supplemented the functional imaging with anatomical imaging to provide ground 

truth for assessing the GraFT decompositions. Immediately following calcium imaging 

experiments, we anaesthetized the mouse with 1–2% isoflurane and placed a heating pad 

underneath the mouse. We then recorded large field-of-view volumetric z-stacks (750 μm 

square, 1536×1536 pixels, 5 micron axial spacing) of mRuby2 fluorescence by illuminating 

at 1045nm using the galvo scanners at a 10 microsecond dwell time. This z-stack was 

manually traced, to recover a depth tracing of the dendrites of each of the individual neurons 

in the FOV, which serves as spatial ground-truth for assessment. The depth tracing reveals 6 

neurons, 3 of which were active in the functional imaging data and identified by GraFT.

As a preprocessing step, we apply a structural mask to the imaging video which yields 

91,737 pixels in the FOV. The mask was constructed by thresholding a mean projection 

of the mRuby2 fluorescence channel from the functional imaging session. For sparsely 

labeled data, GraFT identified 10 distinct components in the data (Fig. 5A,B). Seven of 

these components are well localized with distinct firing patterns, and three are baseline/

background components. Comparisons to the anatomical image stack show that GraFT 

identifies both background components with approximately equal overlap across all 
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dendrites and components with high overlap with only one anatomically traced dendrite 

structure (Fig. 5C).

Interestingly, some components appeared to capture different spatial portions of the same 

dendritic branch. We further examined this effect and noted that these components are 

capturing the same anatomical object but at depth difference of approximately 10–15 μm 

(Fig. 5D). Thus GraFT is identifying the same anatomical component, but modulated due to 

the slow axial drift in the plane of imaging.

Since GraFT does not impose that the spatial maps need to be contiguous or spatially 

connected, we are able to extract disconnected segments of the same dendrite within a single 

spatial map. In comparison, we ran Suite2p—set to ‘dendrite’ mode with ‘diameter’ set to 

5 and all other parameters set to their default values—which extracted 1,457 ROIs (note 

that we removed all ROIs Suite2p found that did not overlap with the structural mask used 

for GraFT). Of the extracted ROIs approximately 650 correspond to the 3 active neurons 

in the FOV, with about 200 ROIs matching each active neuron (Fig. 5E-F). GraFT thus 

easily enables studying the dynamics of the dendrite as a whole, whereas Suite2p requires 

post-processing by which ROIs need to be clustered together based on temporal correlations 

in order to study the dendrite as whole.

E. Dense dendritic imaging

While sparse imagine provides the possibility of comparisons to anatomical imaging and 

tracing, we are also interested in the ability of GraFT to disentangle components in images 

of tissue with a higher density of labeled dendrites. We thus run GraFT on a dataset of 

densely labeled dendrites using the same imaging parameters as the sparse dataset. Overall 

GraFT extracted 60 individual components from the dataset, including many with spatial 

maps stretching across the entire field-of-view (Fig. 6A). In comparison, Suite2p extracted 

approximately 800 ROIs (results not shown). The time-traces for the GraFT components are 

more uniformly firing over the span of the imaging session, indicating a lack of axial drift 

that was noticed in the sparse imaging data (Fig. 6B). Furthermore, these components are 

significantly diverse in their time-traces (Fig. 6C), as can be seen in the correlation matrix 

between time traces (Fig. 6D). One interesting finding in this decomposition is the presence 

of multiple time-traces identified in the same dendritic branch (Fig. 6E). Specifically, for one 

pair of components we find that one of the components is much more localized around one 

small branch, specifically about one spine (Profile 2 in Fig. 6E). The time-traces for these 

two components, while correlated, do have different activity levels (Fig. 6F-G) as can be 

verified by tracking the components in the raw fluorescence video (Fig. 6H-I). In Fig. 6H 

Profile 1 appears brighter, as implied by Fig. 6F and in Fig. 6I Profile 2 appears brighter, as 

implied by Fig. 6G. Thus these profiles are truly independent components and not an artifact 

of the method.

F. One-photon widefield imaging

Similar to dendritic imaging, widefield imaging captures activity patterns that can stretch 

across the entire field-of-view. Widefield imaging systems can be designed to capture 

dynamics across large areas of the surface of cortex at a resolution coarser than single 
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neurons. Thus widefield captures global activity patterns across the brain’s surface, similar 

to very high density EEG, giving us a second imaging modality to test GraFT’s ability to 

capture complex neural activity patterns.

We applied GraFT to a 20-minute long video of calcium dynamics within an 8 mm × 

4 mm FOV of the dorsal cortex of a GCaMP6f expressing transgenic rat. The recording 

was performed using a head-mounted widefield microscope [14] as the rat freely moved 

around its homecage (Fig. 7A). With 28 components, GraFT extracted a diverse set of 

dynamics from the widefield data (Fig. 7B-C). Most of the learned components featured 

spatial profiles that are either localized or widely distributed across the cortical surface (n = 

20/28). Pixels belonging to observable vasculature were assigned low weights among these 

spatial profiles. In contrast, four other components showed spatial profiles with vasculature 

structures. The remaining components have spatial profiles with vertical stripes in the 

peripherals of the FOV suggesting they represent artifacts related to the imaging procedure. 

The 28 components exhibit unique spatial profiles but have time-traces that correlate to 

varying degrees (Fig. 7D).

To test the reliability of GraFT in extracting relevant dynamics in widefield calcium imaging 

data, we trained GraFT on odd and even frames of the widefield video separately (Fig. 

7E). The learned components exhibit spatial profiles that overlapped between the odd and 

even frames (average Pearson’s r = 0.6324), indicating that GraFT can reliably recover 

dynamics in the data only from a portion of the total frames. We then trained GraFT on the 

first and second halves of the widefield video (Fig. 7F). The average coefficient along the 

diagonal of the spatial correlation matrix between the first and second half of the video is 

equal to 0.5376, suggesting that GraFT was able to extract sufficiently stable components in 

the video. We further assessed the performance of GraFT in extracting components in the 

widefield data, by measuring the R-squared between the original video and reconstructions 

based on the learned components. GraFT was able to capture a significant proportion of 

variance in the original data with only one component (R2 = 0.812) and achieved maximum 

performance with 44 components (R2 = 0.858). While the performance of GraFT increases 

with additional components, the change in performance seems to greatly decrease with ≈ 
20 components (Fig. 7G). Together, these results indicated that GraFT reliably captures the 

spatial and temporal calcium dynamics recorded via widefield imaging in freely moving 

rodents.

VI. DISCUSSION AND FUTURE WORK

We propose a new algorithmic framework for dictionary learning based on data-driven 

graphs. These graphs permit the learning process to explicitly take advantage of correlated 

occurrences of features in the data. Specifically, we combined ideas from spatially correlated 

re-weighted-ℓ1 filtering with random walk diffusion on graphs to create a re-weighted- 

ℓ1 graph-filtering inference algorithm. Learning of the linear generative model under the 

RWL1-GF model was performed via a variationally-motivated dictionary learning algorithm 

and was able to uncover the fundamental time-traces in spatiotemporal data with complex 

spatial correlations.
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A core component of GraFT is the graph-filtering algorithm leveraging graph-based 

analyses, such as graph signal processing; a class of approaches that is proving powerful 

across functional neuroimaging applications [78]–[80]. Our module is based on prior 

algorithmic development in both dynamic and spatial filtering that focused on the inference 

of correlated sparse vectors [24], [54]. These earlier works showed a clear improvement 

of using the hierarchical Laplacian prior over other filtering approaches that constrained 

the difference between coefficients of related data vectors via an ℓp norm (similar to the 

Kalman filter in the dynamic filtering case). It is an interesting question, however, if the 

filtering procedures or the graph constructions over which the filtering is implemented, can 

be improved, e.g., by changing the filtering approach or using alternative graph filters. We 

will explore such extensions in future work.

While this powerful framework could have many potential uses, we design and 

demonstrate this algorithm on the important and rapidly developing application of functional 

fluorescence microscopy. We applied GraFT to learn the time-traces from these complex 

and high dimensional data that are vital to understanding neural function. In particular we 

showed benefits both in standard somatic imaging, as well as in more complex dendritic and 

widefield imaging settings.

For somatic imaging we demonstrated via experiments on biophysical simulations the 

ability to identify many more true components in a given dataset than competing methods. 

These gains primarily come from components with highly non-somatic statistics. Despite 

the flexibility to capture such components, GraFT can still capture somatic signals, as 

demonstrated on both simulation and annotated Neurofinder data. In both cases the time-

traces obtained by GraFT were less noisy despite having no temporal regularization or 

explicit modeling of the calcium dynamics (e.g., an autoregressive model as in [38]). The 

lack of explicit temporal modeling further endowed GraFT with a sensitivity to different 

signal time-scales. Specifically, in real data GraFT was able to identify and separate the 

cytoplasmic and nuclear signals within the same cell. These signals essentially have the 

same spike-train driving both signals, albeit with different temporal signal dynamics.

In dendritic imaging we validated the ability of GraFT to recover fluorescing dendrites via 

comparisons against manual anatomical tracing. In contrast to current methods, i.e., Suite2p 

in “dendritic mode”, GraFT does not force locality and compactness of components, which 

enabled GraFT to identify farreaching and segmented dendritic structures more accurately 

and more completely. Similarly, in widefield imaging GraFT was able to identify highly 

non-localized activity patterns in the data, including both hemodynamic and calcium related 

signals. Moreover, GraFT was able to isolate artifacts of the imaging procedure, effectively 

removing their effects from the true signal components. Finally, GraFT, as opposed to 

current widefield analysis [43], does not rely on anatomical atlases, which are not always 

available, and thus is a more generalizable approach.

One of the primary advantages GraFT has over previous algorithms is the reorganization of 

spatial distances onto a graph. Prior CI analysis methods all combat the variability in SNR, 

dynamic range, and other sources of error, e.g., residual motion, by using a signal model 

over the expected shapes of the components. This model can either be explicit, e.g. total 

Charles et al. Page 19

IEEE Trans Image Process. Author manuscript; available in PMC 2023 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variation normalization [22], implicit, e.g., by classifying correct/incorrect components via 

a trained classifier [38], or learned, e.g., via cell detection in trained convolutional neural 

networks [42]. GraFT avoids requiring any such spatial signal models by instead imposing 

the sparsity over time-traces: i.e., no more than a few neurons can overlap in a given pixel. 

For most calcium imaging settings, this assumption is reasonable due to the thin plane 

over which imaging is performed. The axial extent is not large enough for more than 2–3 

components to overlap.

We note that for volumetric imaging using axially elongated beams, more components per 

pixel may be captured in the data [81]. This is especially true in dense labeling and in 

tissue with dense neuronal packing (e.g., hippocampus). Imaging of thick, dense volumes 

thus may not abide by the sparsity constraint as used in GraFT. What would need to be 

tested is if the total number of active coefficients is low enough per-pixel to justify the 

ℓ1 regularization. Similarly, completely overlapping components can occur in volumetric 

imaging if no axial encoding is accounted for (e.g., via spectroscopy [12]). In these cases the 

two components would be merged into a single component. Again, this situation is highly 

unlikely in standard single-plane imaging due to the thinness of the volume as compared to 

the sizes of neural processes.

GraFT is inherently based on identifying independent time-traces. Thus, if two neurons 

had exactly the same time-traces, the signals would be combined and the neurons would 

not be able to be distinguished from each other. While this is a potential issue in very 

short recordings, we note that in long recordings GraFT is able to separate very similar 

time-traces, e.g., somatic and nuclear signals from the same cell (Fig. 4E). Thus, GraFT is 

best suited to analyzing longer recordings where individual components are less likely to be 

completely synchronous. This does not impose large limitations, as many imaging sessions 

in neuroscience consist of thousands of frames.

A third current limitation, which is present in all algorithms, is the assumption of Gaussian 

noise. Low-light imaging, such as is being used for voltage imaging [82] can have more 

pronounced shot-noise reminiscent of Poisson statistics. In future work we will expand our 

noise model to better account for these statistics, such as the noise model used for denoising 

in [58], essentially creating extensions that will allow for low-light image analysis.

One aspect we note, that is not solved in any algorithm to date, is the effect of axial motion 

artifacts on the identified components. In the sparse imaging session we are able to identify 

manually when the resulting components represent the same neurons at different depths due 

to drift, however a full solution would require significant additional post-processing to the 

model that includes 3D spatial information.

GraFT, as with other segmentation algorithms, identifies multiple types of components. For 

example, in the Neurofinder data GraFT identified somas, nuclei, dendritic segments and 

rising apical dendrites. Currently, sub-selecting based on component type is a per-analysis 

choice, however future work (e.g., the post-processing classifier in CaImAn [38]) can 

provide additional methods that automatically classify the output of GraFT and other 

algorithms. As fluorescence microscopy continues to expand, for example in new volumetric 
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imaging techniques across scales [12], [81], [83]–[87], we expect GraFT to become even 

more critical to the important fist step of extracting single component activities.

With regards to parameter setting we observed that the same basic parameters, with the 

exception of the sparsity parameter λ, produced good results across all imaging scales. This 

observation reinforces the ability for the graph learning step to incorporate the natural spatial 

correlations into the same algorithmic core. With one parameter left, manual adjustments or 

simple grid searches were sufficient to obtain good performance. Further improvements can 

be obtained by leveraging, for example, BayesOpt [88], in optimizing parameters.

Finally, our method is broader than fluorescence microscopy data and is applicable to other 

imaging modalities, e.g., hyper-spectral imaging, where spatial structure can be informative, 

but features can interact in complex ways. In such cases, the dictionary is in the feature 

space, and not necessarily temporal, e.g., spectral bands in hyper-spectral imaging. Our 

framework also falls under the general class of graph-based dictionary learning in graph 

signal processing, an emerging area focused on the analysis of high-dimensional signals that 

lie on a graph, or for which a graph can be learned based on correlated features. We leave 

the extension of our framework to additional domains for future work.
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APPENDIX

A. Algorithm parameter setting

For CNMF, CaImAn, Suite2p, and PCA/ICA parameters were manually adjusted to optimize 

the number of unique neurons identified. For ABLE, we use the built in visualization tool for 

parameter identification. For STNeuroNet we used the pre-trained model provided with the 

code.

For CNMF/CaImAn, CNMF provided better results than CaImAn, and the parameters 

used were fr = 30, tsub = 5, patch_size = [40,40], overlap = [8,8], K = 7, tau = 

6, p = 0, and num_bg = 1. For Suite2P we used diameter = 12, DeleteBin = 1, sig 

= 0.5, nSVDforROI = 1000, NavgFramesSVD = 5000, signalExtraction = ‘surround’, 

innerNeuropil = 1, outerNeuropil = Inf, minNeuropilPixels = 400, ratioNeuropil = 5, 

imageRate = 30, sensorTau = 0.5, maxNeurop = 1, sensorTau = 0.5, and redmax = 1. For 

PCA/ICA we used fr = 30, ssub = 2, tsub = 10, nPCs = 1000, smwidth = 3, thresh = 2, 

arealims = 10, mu = 0.5, dt = tsub/fr, deconvtau = 0, spike_th = 2, norm = 1. While figures 

displayed typical outputs (i.e., denoised traces from CNMF), all quantitative comparisons 

were computed using the raw DF/F traces returned by each algorithm. For ABLE we used 

radius = 7, alpha = 0.45, lambda=10, mergeCorr = 0.95, and mergeDuring = 1.
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Fig. 1. 
Graph-based dictionary learning for calcium image analysis. A: Optical imaging of different 

neural components at different scales. B: In calcium imaging, distant pixels might be highly 

correlated while neighboring pixels might be very different. For example, for two crossing 

dendrites any technique based on local averaging is prone to corruption by competing 

signals. By reorganizing the pixel relationships into a data-drive graph, local averaging 

defined by the graph can make more judicious use of temporal correlations between pixels 

and extract better signal estimates. C: The graphical model of GraFT organizes variables 

into three layers: a set of variance parameters interconnected by the data-driven graph W, 

a set of sparse coefficients conditioned on the parameters, and the observed fluorescence 

video which is linearly generated by the coefficients through the dictionary Φ. D: Matrix 

factorization model: GraFT emphasizes the role of time-traces and decomposes the data into 

a dictionary of component time-traces and correspoding spatial maps.
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Fig. 2. 
GraFT regularization effects. A. Mean projection of dense dendritic imaging. The graph 

neighborhood of two pixels (white points)—overlaid in blue and orange—respect the 

geometry of the underlying dendrites and extend far along them, compared to the extent of 

a spatial neighborhood of 7 × 7 (red squares). B. Graph filtering applied to estimated sparse 

components is limited to the pixels along dendritic structures, whereas spatial filtering blurs 

the pixels, incorporating information from the background into the inference. C. The RWL1 

filtering becomes important for suppressing background activity (left) and finding all pixels 

within a component (right). D. Frobenius norm in the DL cost enables components “turning 

off”, thus leading to more accurate learning of the number of components in the data.
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Fig. 3. 
Assessment of GraFT and competing methods on anatomically-based calcium imaging 

simulations. A: The number of unique neurons found with each method. B: Histogram of 

temporal correlations between extracted time-traces and the ground truth traces. The GraFT 

dictionary better matches the ground-truth compared to other methods. C: GraFT finds more 

complete spatial profiles for neurons that are also identified by other methods, and dendrites 

are better identified. D: Time-traces for neurons not found via other methods correlate well 

with ground truth traces, but have low SNR. E: Neurons found only with GraFT tend to have 

less localized spatial profiles.
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Fig. 4. 
Somatic imaging from NeuroFinder. A: Mean projection of the field-of-view (green) with 

overlay of all manually identified cells. Most cells are identified by both GraFT and Suite2p 

(white), some (red) were not identified at all (i.e., due to inactivity), and a couple were 

identified only by Suite2p (yellow). B: All non-background (well-isolated) profiles found 

by GraFT that were not in the ground-truth, including many apical dendrites, several 

somatic components and other small components. C: Comparison of the average trace of 

the manually labeled spatial profile with GraFT and Suite2p time-traces. D: Additional 

identified components beyond the manual labels exhibited smaller, dendritic structure, even 

when these are in proximity to brighter somatic components (right column, middle). Local 

averages of frames from the movie demonstrate that these components do exist in the 

data and were simply not labeled manually. E: The sensitivity of GraFT enables for the 

cytoplasmic (green) and nuclear (blue) portions of individual neurons to be identified.
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Fig. 5. 
Sparse dendrite data. A-B: 10 temporal dictionary elements and 10 corresponding spatial 

maps identified with GraFT. Dendritic components extend throughout the entire image. 

C: Correlations of GraFT components with anatomical labels. D: The two identified 

components found per ground truth structure (colored in red and green channels) overlap 

with slightly different portions of the dendritic structure (dilated in blue). The full ground 

truth projected onto one image on the right column, and the middle and right plots showing 

the ground truth at slices shifted by 2 μm. This reveals that each component corresponds to 

a slightly different axial portion of the neuron, indicating that the difference is due to axial 

motion. E: Suite2p run in “dendrite” mode identifies approximately 200 ROIs for Neuron 

3 (different colors in the lower-left plot) comprise this single neuron. GraFT picks up the 

same neuron with two components: each corresponding to a different depth. F: Correlations 

of Suite2p ROIs with anatomical labels.
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Fig. 6. 
Dense dendrite data. A: Many fluorescing components are highly overlapping as seen in 

the mean projection (top). GraFT identifies 60 components in this dataset (bottom; each 

component is plotted with a different color). B: Examples of spatial maps recovered by 

GraFT. C: Example time-traces demonstrate a diversity of activity patterns that overlap 

in time. D: Correlation matrix of the estimated time-traces indicates the decomposition is 

capturing sufficiently different time-traces. E: The two highest correlated time-traces, along 

with the corresponding spatial maps, indicate these two overlap significantly, perhaps both 

representing pieces of one true dendritic component. F-I: Closer inspection of the spatial 

profiles reveals that profile 2 actually represents a different process in the dendrite centered 

around a spine in the lower-left-hand corner of the image. Two example bursts of activity (F 

and G) demonstrate that these components have different activity at different times. Frames 

from the starred time-points in F and G are shown in H and I respectively, with the raw data 

frame in the top row and the reconstruction in the bottom row.
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Fig. 7. 
Widefield data. A. The imaged cross-cortical field-of-view. B. GraFT spatial maps when 

run with n = 28 components. Three main classes of components can be identified: broad 

cortical activity (blue), vasculature-based fluorescence (red), and imaging artifacts (yellow). 

C. Time-traces for the n = 28 case, color coded by the class of the component. D. GraFT 

demonstrates inference consistency, as demonstrated by comparing the learned time-traces 

and spatial maps for GraFT run only on the odd and even frames separately. Pearson’s 

correlation between best-matched spatial and temporal maps are very high for all maps 

and dictionary elements for the case of n = 28. E. Breakdown of the diagonal elements of 

the correlation matrix in D by class (cortical, vascular, and artifactual). The learned spatial 

maps and time-traces for cortical maps was the most consistent, with the highest correlation 

values. F. A similar analysis of spatial maps learned separately across the first half and the 

second half of the imaging session for n = 28 demonstrates that consistent cortical areas are 

observed during the same behavior even over different epochs. G. Variance explained as a 

function of the number of dictionary elements shows a plateau at approximately 0.855 with 

≈ 20 components.
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