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S. M. Kelso'
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Materials and Molecular Research Division,
Lawrence Berkeley Laboratory, Berkeley, CA 94720

and

Bell Laboratories, Murray Hill, N.J. 07974

We present a detailed theoretical study of the stress dependence of properties of the
electron-hole liquid, both at zero and finite temperatures, in <111>-stres§ed Ge and <100>-
stressed Si. These properties include the ground-state equilibrium density, pair energy, electron
and hole Ferfni energies, sign of the electron-hole drop charge, luminescence linewidth, and

liquid compressibility. The results are compared at T=0 to the calculations of Kirczenow and

. Singwi and at T=2K to the available data. We discuss the possibility of a phase transition

associated with the depopulation of the upper electron valleys in Ge. We also discuss methods
of extrapolating from finite to infinite stress. The importance of the nonparabolicity of the
valence bands is emphasized throughout. We discuss ranges of validity for a low-temperature
expansion of the free energy. Results are presented for the systematic low-temperature
variation of the liquid density, Fermi energy, and chemical potential and for the critical
temperature and density. These theoretical results are found to be in reasonably good
agreement with available data. Finally, we discuss scaling relations for combinations of

electron-hole liquid properties.

* Present address: Xerox Palo Alto Research Center, Palo Alto, CA 94304.



1. Introduction

The first theories of the electron-hole liquid! (EHL) in semiconductors were concerned with
predicting and understanding the properties of the EHL for systems in which it had already -

been observed experimentally, i.e., unstréssed Ge and Si.Z™* It is well known that the band

by

structures of Ge ana Si simplify under infinite uniaxial compression: for <111>-stressed Ge
only a single conduction band minimum remains occupied, while for <100>-stressed Si two
conduction band minfma remain occupied; in both cases the single populated valence band
_becomcs ellipsoidal. Because of these simplifications, the infinite-stress limit was also
considered theoretically.> These calculations predicted that the EHL would be unbound or just
barely bound with respect to free excitons in Ge. However, the more sophisticated calculations
of Vashishta et al.’ indicated that the EHL should be observable in the infinite-stress limit. All
the calculations predicted that the electron-hole pair density would be considerably reduced
compared to ihat of unstressed crystals. Vashishta et al.® also performed a calculation for an
ideal intermediate-stress case in which the electrons were treated as for infinite stress and the
holes as for zero stress; the results were intermediate between the zero- and infinite-stress
theories. In addition, the effects of finite temperature on EHL propertics and the critical, point

were estimated for zero and infinite stress, using an expansion valid at low T.™?

10—-12

In the meantime, several experiments were performed to study the EHL in Ge and Si

stressed along the three principal crystallographic directions. In these early expériments a stable
liquid phase was observed under moderate stresses. Although the luminescence spectra shifted

with stress, they were not analyzed in enough detail to determine the properties of the EHL.

-

Experiments performed-on-inhomogeneously stressed Ge showed that at moderate stresses the

electron-hole pair density is reduced from its value in unstressed Ge.'>!* More recently,

15-19

systematic experiments have becn'pcrformed on Ge under <111> uniaxial stress and on

Si under <100> stress?® to study the stress dependence of EHL properties.

Since experiments cannot be performed at infinite stress or zero temperature, it is clearly



desirable to have a finite-stress, finite-temperature theofy. A first attempt to predict the
syétematic variétion of the ground state (T=0K) properties of the EHL in <111>-stressed Ge
was ‘made by Markiewicz and Kelso.! In that paper, the stress dependence of the holes was
taken into account but the electrons were treated as for infinite stress, so the results are valid
only for the intermediate- to high-stress range. Liu et al.?*?* performed a calculation for two
values of the stress, for both Ge and Si, and included a low-.T expansion to estimatt; the critical
point. Kirczenow and Singwi have considered the systematic stress dependence of some EHL

properties in Ge?* and Si,?’ restricted to T=0.

26,27 of the properties of the electron-hole liquid

In this paper we present detailed calculatinns
as a function of compressive <111> stress in Ge and <100> stress in Si, both at T=0 and
finite temperature. We include the full stress dependence of the conduction and valence bands
in the kinetic energy, except that the split-off valence band is ignored. Energy- and stress-

14,21,28

dependent hole masses, introduced previously, are used to describe the nonparabolicity of

the valence bands. We initially consider several models for the exchange-correlation energy;

~ two include separate stress and density dependences. We compare the exchange-correlation

energies directly, as well as results for the EHL ground-state density and energy. Two models
are selected for further calculations and for comparison with experiment. We believe that
uncertainty in the mathematical representation of the correlation energies of Vashishta et al.
can result in model-dependent predictions. Consequently, one of the models selected for our
detailed calculations uses a simple empirical correlation energy. Both models are different from

those considered by Kirczenow and Singwi.?*?

Results are presented for several propertie§ of the EHL at T=2K to facilitate comparison
with experiment. In addition to the density, we discuss the electron and hole Fermi energies,
the sign of the charge on electron-hole drops (EHD), and the binding energy, ¢, of the EHL
with respect to free excitons. While there is overall qualitative agreement between theory and

experiment, some quantitative differences are discussed.



It is convenient to introduce two critical values of stress; When the stress-induced splitting
of.thc c;nducti‘on bands, Egy, is equal to the electron Fermi energy, Ef, the upper electron
valleys are depopulated (at T=0). Thus a critical stress, o, is determined by the condition
Egy = Ef. Similarly, a critical stress, oy, associated with the emptying of one valence band is
defined by the condition E}; = EP.

2425 we find a rapid decrease in the electron-hole

In agreement with Kirczenow and Singwi,
pair density associated with the emptying of the upper conduction bands at o.. For Ge at T=0,
we discuss the possibility of two different types of EHL, with a phase transition as a function of
stress. Our model-dcpendentA results indicatv o critical dependence on details of the exchange-
correlation energy, such as curvature with respect to density, which are not well known. We
show by explicit calculation that the change in the number of occupied conduction bands is an

important factor in the possibility of a discontinuous change in the equilibrium density at o;

thus the unarﬂbiguously more gradual density change predicted for Si is understood.

We predict significant changes in all EHL properties for stresses beyond ej. Since no
" further changes take place in the number of occupied bands, the high-stress variation of EHL
properties arises solely from the residual nonparabolicity of the valcnce band, which remains
important even after the bands are well split in energy. Because these variations continue well

past oy, we discuss procedures for extrapolating finite-stress data to the infinite-stress limit.

For finite temperatures, both low-T and high-T limits are considered. At sufficiently low
temperatures we find that the usual expansion for the kinetic energy of a degenerate Fermi

system is valid, except at stresses very near o, and o,. We discuss the systematic low-T

variation of EHL properties; using-derivatives—of_the ground-state free energy versus density.
Near the critical ‘point, however, we find that the expansion is no longer valid at any stress.
Thus we calculate the kinetic energy exactly at all finitc temperatures. Our theoretical resuits
are compared with available data. In addition, we consider scaling relations of certain

combinations of EHL properties as the band structure changes with stress.

q



The paper is divided into several sections. The calculation of the free energy of electrons
and holes at arbitrary stress and temperature is described in Section II. Results for ground-state
EHL properties are presented in Section III. Finally, results for finite temperatures are

presented in Section IV.

IL. Formélism: The Free Energy at Arbitrary Stress and Temperature

- We begin with some basic thermodynamic definitions for a neutral plasma of electrons and
holes. The total free energy F is a function of the number of electron-hole pairs N, volume V,
and temperature T (assumed here to be the lattice temperature). It is convenient to work with
the free energy per pair { == T/N and the pair density n = N/V, and to consider variations of f

with n. We note the following definitions and simplifications:

F = U-TS = Nu—PV . (1a)
where
JdF af
P=—|— =n2[—] (1b)
av TN an jry
is the pressure and
dF of
b= |— =f+n ———-] (1¢)
oN |1y an j;y

is the chemical potential. The second equality in Eq. (1a) comes from the definition of the

grand potential:
Q = —PV=U-TS—Nyu. (1d)

For the electron-hole liquid, the free energy is separated into kinetic and exchange-correlation

energy contributions,
F= I:kin + Fexcor ’ . (2)

which are treated in the next two subsections.

A. Kinetic Energy



The kinetic energy term is just the free energy for a gas of free Fermi particles. The grand

potential for carriers in a band with a density of states D(E) is given by

Q = —&T| D(E)ln[l+e(EF_EmT] dE ‘ (3a)
[\] -
o (E -1
- [f D(u)du [ ‘E‘EF”“] dE . (3b)
0

The Fermi energy, Ep, is determined by the relation

’ 30 < (E-Ep)AT] ! ’
N=-— = D(E [H—e F ] dE 4
, [GEF ]Tv _!)- (E) (4)

and depends on temperature. The free energy is obtained from Egs. (1a), (1d), and (3b):

o (E -1
F=NE— [ [ [ D(u)du}[1+e‘E‘E*‘”“] dE . (5)
0 [1]

Information about the band structure is contained in the density of states. As has been

noted previously,?® it is converient to write

\/‘V
2

D(E) = ¥2(E) EV2, (6a)

where my,(E) is a local density-of-states mass given by

miZ(E) = e (65)

The integration is performed over-solid-anglc_on_the k-space surface with energy E. This mass
depends on energy only if the band is nonparabolic, as is the case for the valence bands in
germanium or silicon at finite stress. Results for <111>-stressed Ge and <100>-stressed Si
are given in Ref. 28 (see Figs. 1¢ and 2a). The conduction band is assumed to be parabolic,

with the same energy-independent density-of-states mass at all stresses.



In stressed Ge or Si the conduction and valence bands are both split by the stress, with only
the band(s) lowest in energy remaining populated at high stress. Suppose that a set of v +»,
bands, degenerate at zero stress, becomes split by an energy E,, with »; bands below the other
v, bands. For example, in <111>-stressed Ge, v; = 1 and v, = 3 for electrons while », =

v, =1 for holes. In this case the density of states becomes

V2V

P ="

{Vnmnm(E)El’z + vom3"*(E)(E—Egp) "2} , )

.where m,(E) and m,(E) are the local density-of-states masscs for the two sets of bands and E is
measured from the bottom Qf the band for the lower set. It is understood that m,(} = 0 for
E<E;,. This form for the dcnsity of states should be used in Eqgs. (4) and (5). We use the
same Fermi level for both subsets, indicating thalt all the carriers are in thermal equilibrium

with each other. This corresponds to the equilibrium limit of Kirczenow and Singwi.?*
Equations (4)-(6) may be used separately for electrons and for holes, with
N, =N, =Nand Fy, = F5, + F}, . (8)

Note that, for a particular temperature and stress, f&,, fin, and n, = ny depend only on the

relevant Fermi energy Ef or EX. Thus, for fixed stress, f is a function only of n and T:

ar] _ [eof
—6;1—]1._\, N [an ]T ) ©)

The procedure for calculating the kinetic energy fy;, was as follows: (1) a hole Fermi energy

TN

of
dn

E! was chosen; (2) the density was computed using Eq. (4) for holes; (3) the electron Fermi
energy Ef was obtained by inverting Eq. (4) for electrons; (4) {5, gnd £, were computed using
Eq. (5). We usuvally wanted to find a mirlximum in f(n) or the disappearance of a minimum in
pu(n). These minima were often very shallow: for example, in order to determine the
equilibrium density at T=0 to within 1% it was necessary to calculate f(n) to a precision of
1 pélrt in 105, Of course, the band structure parameters arc not known this well, but it was

desirable to reduce the mathematical uncertainties.



At finite temperature the kinetic energy was computed exactly, rather than using the T2
expansion employed by other authors’®?* (see discussion in Seé. IVB). The integrals in
Eqgs. (4) and (5) are (modified) Fermi-Dirac intcgral(s. for the eclectrons (holes). Since they
cannot be evaluated analytically at finite temperature, they must be computed numericélly.
Some care must be taken to ensure that the results vary sufficiently smoothly with hole Fermi

energy. For example, it was necessary to iterate the step (3) inversion to convergence.

The local density-of-states hole masses given by Eq. (6b) énd by the valence band structure
_of Ge and Si were calculated numerically as a function of reduced energy E = E/o (see
Ref. 28). The results for the two bands were fit to simple analytic functions over seveial ranges
of E, matching the function#' and their first derivatives at the crossover points between the
ranges. This procedure, in conjunction with the numerical integration at finite T, was found to

be satisfactory.

The zero-temperature calculation is much simpler. The integrals in Egs. (4) and (5) are
trivial for electrons. For holes, the integrals can be performed analytically by directly
integrating the formulas for the local masses.

B. Exchange-Correlation Energy
The exchange-correlation energy is usually separated into two terms:

FCXCOI‘ = FCX + FCOIT . (10)

As in all other calculations to date, we sﬁppose that the exchange-correlation energy is
independent of tempt:rau.xre9 and use results for T=0. A detailed first-principles calculation,
m_ﬁiﬁﬁmﬁs—on—t—he—ba—nd—s.tmcm_rg, would be extremely difficult and has
not been attempted. However, such a calculation is not recally necessary: the exchange-
correlation energy appears to be largely independent of such band structure details as masses,
anisotropies, and degeneracies, as long as both the exchange and correlation encrgies are

calculated using the same details.?>3® One reason for this is that the separate dependences of the

v



exchange and corrclation energies on the band structure, which can be substantial, tend to
cancel in the sum.3! This cancellation has been exploited in other zero-temperature

calculations.?'*?42%:30 I addition, Vashishta has suggest.ed32 that the correlation energy should

depend only weakly on the (hole) mass. Here we consider both of these ideas.

For zero or infinite stress the exchange energy per electron-hole pair is given by

. 3 2 ¢(.Dc)
f,,=——z~19r-;-(31r2n)”3{7+¢(ﬂh)] ) (an

where v, is the number of e¢lectron valleys and p=m,/m; is the electron or hole anisotropy
parameter. Values for ¢(p.) and Y(py) are listed in Table I, along with other parameters used

in the calculations.

We considered six models for the exchange-correlation energy, summarized in Table IL
The first three models were used in our preliminary calculations for Ge.?! The scheme used for
Models 1 and 2 (inﬁnite-stre;s electrons, zero-stress holes) is intended®3? to most closely
represent an intermediate stress near &c, although it does not correspond exactly to any value
~of stress. The Model 1 correlation energy uses the results of a detailed numerical calculation

7 including multiple scattering and band

in a fully self-consistent (FSC) approximation®>
anisotropy. The results were fit to a polynomial in the interparticle spacing r, for higher
densities and matched to a Wigner form for lower densities.’® In Model 2, this detailed

calculation is replaced by a simple empirical correlation energy, taken to be a sum of Wigner-

type contributions from the electrons and holes:¢

foorr = — < ~ : , 12
o n 3 +a/m,, nY*+a/my (12)

where m,, is the electron optical mass and m, is a hole mass, here the infinite-stress optical
mass. The constants a and ¢ are chosen to match the value and first derivative of Eq. (12) to
the Model 1 correlation energy at the equilibrium density for the "ideal” system (infinite-stress

electrons, zero-stress holes in the kinetic energy). Values for a, ¢, and the masses are given in
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Table L.

Models 3 and 4 represent attempts to determine the effect of a dependence of the
correlation energy on the hole mass, which varies with density and stress.?® Both models are
similar to Model 2: the correlation energy has the form of Eq. (12) and is matched to Model 1 R
in the same way as Model 2. In Model 3, m, is the optical mass averaged over the longitudinal
and transverse components of the two hole bands (see the curves labelled m,, in Figs. 3¢ and
int

4a of Ref. 28). In Model 4 we use the integrated density—of—ﬁtates mass (see the curves mg)

and mi} in Figs. 1c and 2a of Ref. 28) averaged over the two hole bands.

Models S and 6 were chosen to illustrate two extreme cases in which both the exchange aud
correlation energies are calculated using the same band structure details. Model 5 uses an
exchange-correlation energy appropriate for zero stress, while Model 6 uses one appropriate for
infinite stress. The correlation energies are the FSC results of Kalia and Vashishta,® and are

very similar to models considered by Kirczenow and Singwi.?425:%

Variations among the exchange-correlation energies are investigated conveniently by
considering ratios of different models. Models 1, 5, a.nd 6 are compared to Model 2 in Figs. !}
and 2 for Ge and Si, respeétively. In these models, the density dependence is independent of
stress. Model 2 was selected as the normalization model because it uses a simpler form for the
correlation energy. The maximum spread between these models is only about 15% for Ge and
10% for Si over a range of two orders of magnitude in density. Several of the FSC models
appear to exhibit small oscillations in the figures. It should be emphasized that these

oscillations, relative to Model 2, do not occur in the individual exchange-correlation energies.

' They are artifacts of the fitting polynomials. It is clear, however, that the—curvature—of-the

exchange-éorrelation energy may not be well represented by certain models. This will be v

important for the calculation of the critical point and is discussed further, along with the dashed

curves, in Section IVB.
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III. Results: Ground-State Properties

In this section we present results for the ground-state properties of the electron-hole liquid
in <l11>-stressed Ge and <<100>>-stressed Si. First we compare results for the six models
with each other and with other calculations. Next we. discuss a possible phase transition
associated with the emptying of the upper electron valleys in Ge. Finally, we compafe the
_ results at T=2K with thé available data and give guidelines for extrapolating to the infinite-
stress limit. |

A. Comparison of Models

Tl;e' ground state of the EHL occurs at the density for which the free energy per electron-
hole pair is a minimum at T=0K. It is convenient to have the computer search for the
associated zero in the pressure, as in Eq. (1b). The ground state densities n, are shown as a
function of compressive stress o in Figs. 3 and 4 for Ge and Si, respectively. According to
convention, compressive stresses are negative and are expressed in kgf/mm?, where 1 kgf =
_ 9.80665 Newton. In both figures, part (a) shows the results for the model's based on FSC
correlation energies, while part (b) shows the results for the models which use Wigner-type
correlation energies. Arrows indicate the values which should be most nearly correct at zero

and infinite stress (Models 5 and 6, respectively).

As expected, all the models show the same general trends with stress: (1) A fairly rapid
decrease in density occurs near the critical stress o, where E'F = Eg, and the upper electron
valleys become depopulated. The density change is larger for Ge due to the greater change in
the number of occupicd valleys. (2) The density remains nearly constant between o, and oy,
where Ef = Eshp, and the.lower hole band becomes depopulated. (3) A slight kink in n, occurs
at the stress oy, followed by (4) a further gradual decrease in density which is still apparent at
stresses much greater than ¢,. As shown below, —o, = 6 kgf/mm? in <111>-stressed Ge

and —o, = 37 kgf/mm? in <100>-stressed Si. Indeed, the equilibrium density changes by

over a factor of 2 in Si and by approximately a factor of 4 in Ge after ay. In Models 1, 2, 5,
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and 6 this stress dependence comes entirely from the hole kinetic energy contribution and
arises from the residual nonparabolicity of the occupied (IM;|=1/2) valence band. Thus the
valence bands do not decouple until they are split quite far apart in energy?*% (see also

Section II1C).

The results for Model 3 show an oscillation in the equilibrium density associated with a local
maximum in the hole optical mass used in the correlation energy. Model 4 does not cxhi'bit an
oscillation, since the hole density-of-states mass changes monotonically with stress. The kink
associated with ¢y is more pronounced for Si because the hole mass is changing more quickly.

Models s and 4 nredict the lowest high-stress densities due to the significant change in the hole

mass with stress.

While Models 2, 3, and 4 are very similar at low stresses and show greater differences at
high stresses, the opposite is true for Models 1, 5, and 6. The spread among the results for the

latter models is nearly 50% at zero stress but only ~10% at infinite stress.

Our results may be compared to other calculations. For Ge, Model 6 is virtually identical to
one model used b); Kirczenow and Singwi?* and is similar to the model used by Liu et al.;?>?
the results are correspondingly similar. The second model used by Kirczenow and Singwi does
not correspond to any of the present models. Their results are most similar to Model 1, except

that their equilibrium density falls off more rapidly at high stresses, somewhat like Model 4.

Similar comments apply to a comparison with other calculations?*23?> for Si. However, we

note that we have used deformation potentials for Si which are different from those implied by

Kirczenow-and_Singwi.?>_As_shown in Table I, the deformation potentials used here yielded a

=y
¢

ratio of conduction to valence band splitting E:p/Es';,l = 3.2, compared to a ratio of 1.81 used by
Kirczenow and Singwi.’” For Ge we used a ratio ES/Efy = 2.9, in agreement with the ratio

used by Kirczenow and Singwi.?*

The ground-state energy per pair, fg, is shown for all six models in Figs. 5 and 6. A rather

sudden change in slope occurs at the stress o.. The EHL is bound with respect to free excitons
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if |fgl is greater than the exciton binding energy E,. For infinite stress E, is the excitonic
Rydberg,*® which is 2.65 meV for Ge and 12.85 meV for Si. These values are shown as dashed
lines in Figs. 5 and 6. For zero and intermediate stresses the exciton structure is complicated
due to the valence-band degeneracy and the conduction-band anisotropy.’® Experimental values
for the binding energy of the lowest zero-stress exciton state are 4.15 meV for Ge*® and
14.7 meV for Si.*! Independent of the details of the variation of E, at intermediate stress,
.which hasi been neither measured nor calculated, the binding energy of the liquid with respect
to free excitons is expected to decrease rather rapidly with stress at low stresses. This effect has
been chserved both in Ge“z. and in Si.?**3 Comparing to the dashed lines in the figures, our
calculations predict a bound liquid state at all stresses, with the exception of Models 3 and 4
above —¢ =~ 23 and 13 kgf/mm?, respectively, in Ge and Model 4 above —¢ = 44 kgf/mm? Ain
Si.

For further calculations it is unnecessary to consider so many models. We nétc that a
bound liquid state has been observed in Si (Ge) at high stresses wl'-levre Model(s 3 and) 4 does
(do) not predict binding (see Section IIIC). . In addition, since the hole mass variations in
Models 3 and 4 were omitted from the exchange energy, both models probably overestimate
the effect of the changes in the valence band on the exchange-correlation energy. These
models will not be discussed further. Among the models based on FSC correlation energies,
we select Model | as a reasonable average. The Wigner-based Model 2 provides a useful
complement since the correlation energies agree in value and slope at one point but have

different curvatures and density dependences. Thus Modeis 1 and 2 will be compared in detail.

Numerical results for several ground-state properties of the EHL are listed in Table III for
selected stress values for Models 1 and 2. In addition the Model 5 zero-stress and Model 6
infinite-stress results are listed, along with experimental values for zero stress.! The first stress
is slightly greater than —o,, so that the upper electron valleys are depopulated. Similarly, the
second stress is slightly greater than —oy, so that only one valence bahd is populated. The final

stress is a few times —oy, and illustrates that further changes occur before the high-stress limit
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is attained.

B. Possible Phase Transition in Ge Near o,

4

We noted in the previous section that a rapid change in the equilibrium d;x;sity occurs just
below the critical stress o,. Our detailed calculations for Models 1, 5 and 6 in Ge showed?’ that
the pair fr.ee ehergy has two minima as a function of dchsity in a very narrow range of stresses
(As < 0.1 kgf/mm?) around o, At T=0, the true ground state of the system is associated
with the minimum having the lowest energy fg. As the stress changes the relative energies of
the two minima change. Thus the calculations predict a discontinuous decrease in n, (i.e., a
phase transition) as the ctrasc increases. This is indicated in Fig. 3a by dashed lines. The
possibility of such a discontinuous change in density was noted indepe'ndemly by Kirczenow

and Singwi®* but seems less clear for the equilibrium limit in their calculations.

The prediction of a double minimum in the free energy for Ge is not model independent:
Models 2, 3 and 4 predict a rapid but continuous change in n, (see Fig. 3b). Andryushin et al.*
used a model in which the valence band changes were ignored and which employed a
Combescot-Nozieres form? of the correlation energy; they found no phase separation. On the
other hand, Kastal’skii’s Hartree-Fock calculation (no correlation energy) does predict a double
minimum.*> Corresponding calculations for <100>-stressed Si?***"** predict that the double

minimum does not occur for that system.

We examined the free energy curves for Ge in some detail’’ and found that the height of

the energy barrier between the two minitha was very sfall, less than =0.004 mecV or 0.05K.

in Model 2, depends very sensitively on the details of the density dependence of the correlation

energy in the range n = (0.6-1.5) X 10'7cm™3,

The ratio of the exchange-correlation energies
for Models 1 and 2 varies between 1.000 and only 1.005 in this range. It is difficult to

distinguish between the mathematical representations on a first-principles basis.
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Whether or not a discontinuous change occurs in the density it is clear from Fig. 3 that n,
should change by approximately a factor of two in a very narrow range of stress, perhaps a few

2

tenths of a kgf/mm?2 Some recent data,'® discussed in the next subsection, appear to agree

with this prediction.

For tl;'e case of <100>-stressed Si, the density decrease in Fig. 4 associated with the
depopulation of the upper electron valleys is smaller and more gradual than for Ge. The
change in the number of populated conduction bands is smaller in Si than in Ge. To
investigate the effect of the relative change in the number of occupied conduction bands, a
series o5 artiScial models was constructed. The models were similar to Model 1 for <111>-
stressed Ge, with the number v, of upper electron valleys a parameter. The ground-stgte
equilibrium densities for several models with v, ranging from 1 to 9 ére shown in Fig. 7. The
curve labelled », = 3 thus corresponds to Ge, while the curve labelled v, =2 corresponds
(qualitatively) to Si, since the electron valley degeneracy changes by the same factor of 3. 1Itis
clear that a large relative chan.gc in the conductioﬁ band de_gcneracy; which is accompanied by a
rapid variation in the electron kinetic energy, tends to favor the formation of a double

minimum.

It would be very interesting if nature provided a real system with a large change in a band
degeneracy. In the alloy Ge;Si;, with x = 0.15-0.20, the four Ge-like <111> conduction-
band minima and the six Si-like <100> minima are degenerate. With ;hq application of
<<111> uniaxial stress the <<100> valleys would remain degenerate while the <111> valleys
would become stress-split. Thus the number of EHL-occupied conduction bands would change
from 10 to 7 to 1 for increasing <111> stress. Other indirect semiconductor alloys in which
the <111>- and <100>-associated minima become degenerate include the III-V
pseudobinaries Inl_,Ga;P (xz().77)“.7 and Al,Ga,_,Sb (x=0.56)*®. Although the EHL has not
yet been observed in the létter materials, an experimental study of such a system would provide
valuable insight into the nature of this propésed phase transition.

C. Comparison with Experiment: The Approach to the Infinite-Stress Limit
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The results of our calculations using Models 1 and 2 are compared with experiment in this\
section. Because experiments are typically performed with the sample immersed in pumped
liquid Helium, the calculations have been redone for T=2K. The procedure. for the finite-
temperature calculation of the free energy was described in Section II. At T=2K the gas
pressure outside the EHL is sufficiently low that the equi)ibrium density is given very accurately

by the free-energy minimum.

We consider first the results for <111>-stressed Ge. Figure 8 shows the theoretical
pquilibrium density along with several sets of data obtained at temperatures in the range T =
1.8-2.1K. Note that Model 1 predicts a discontinuous density change at o cven .at T=2K, but
we find that the energy barrier between the minima is even lower than at T=0. The
experimental densities were obtained by fitting luminescence spectra from the EHL in

16718 or from the strain-confined EHL' or by fitting plasma resonance

uniaxially stressed Ge
lineshapes for uniaxially stressed samples.'® In all cases the lineshape analyses were performed
using the appropriate energy- and stress-dependent hole masses.??® Overall, theory and
experiment are in ;casonable agreement. The density decrease associated with the emptying of
the upper electron valleys is not as pronounced in the data as in the theory. However, a

decrease of a factor of two in density has been observed within a very narrow stress range, less

* than half a kgf/mm?, by Zarate and Timusk.!’

While the data of Zarate and Timusk agree very nicely with Model 2, the data of Feldman
et al.! and of Chou and Wong!? decrease more rapidly at higher stresses than the predictions of

either model. Although care was taken to assure stress uniformity in the experiments, we note

that residual nonuniformity will result in broadér spectra and higher-deduced-densities—Thus,
if the stress calibrations are accurate and if comparable lineshape analyses are performed, the

narrower spectrum and lower density should be more nearly correct.

The EHL. work function ¢ has been measured spectroscopically from EHL and exciton

A~

luminescence spectra at two stresses. Furneaux et al.'"* found ¢ = I meV at —¢ =
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6 kgf/mm2 A theoretical upper limit to ¢ is obtained using the infinitc-stress E,; we find
¢ <1.15 meV for both models. In addition, Feldman et al.’® measured ¢ = 0.65 = 0.07 meV
at —¢ = 13 kgf/mmz, compared to 0.82 meV for Model 1 and 0.77 meV for Model 2. The

agreement is quite satisfactory.

The electron and hole Fermi cnergies, E¢ and EQ, are shown in Fig. 9. The dashed lines are
the conduction and valence band splittings, Egy and Es‘},,. The critical stresses, determined by
the relations Ef = Egy, are

-0, = 2.5 kgf/mm?

—oy = 6 kgf/mm? }Ge, T=2K, <l11>stress (13)

for both models. At low stresses, the electron Fermi energy is forced tc; increase as the upper
electron valleys begin to depopulate; the hole Fermi energy decreases gradually as the density
decreases. -The changes in the electron kinetic energy become increasingly important near o,
and the density and both Fermi energies decrease rapidly. Above o, Ef decreases smoothly,
tracking the density, since there are no further changes in the conduction band structure. The
changes in the hole Fermi energy between o, and oy reflect the changes in the population of
the |M;|=3/2 valence band and in the hole mass. Above oy the decrease in EP and n is due to

the decrease in the density-of-states hole mass.?’

Several of the general features of the theoretical curves in Fig. 9 are observed
experimentally. The data of Thomas and Pokrovskii'® and of Chou and Wong!” are shown as
circles and triangles, respectively, where the solid (open) symbols indicate Ef (E;’.-’). The
electron Fermi energy increases at low stresses, as predicted. However, the sharp decrease in
both Fermi c.nergies which should denote o, is not observed. Both theoretically and
experimentally E} > Ef below o, and above oy, while the reverse is true bet\ycen geand oy
The dccrease in the experimental Fermi energies relative to theory at higher stresses parallels

the densities in Fig. 8.
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The Fermi energies can be used to predict the electric charge on electron-hole drops. An
EHD can become charged if the electron and hole chemical potentials differ. Because the
electron and hole contributions to the exchange-correlation energy are nearly equal,So the sign
of the chemical potential difference is given by the difference in Fermi energies. If E} > Eg
then holes are less 'tightly bound to the EHD than electrons; holes evaporate, leaving the drop
negatively .char.ged. From Fig. 9 we find that EHD should be negatively charged in the stress
ranges below o, and above oy, approximately, and positively charged in the intermediate range.
These predictions are in agreement with the detailed calculations of Kalia and Vashishta? for
three ideal cases. Pokrovskii and Svistunova®' found experimentally that EHD are negatively
charged in unstressed Ge, l'écome positively charged around —o =~ 2 kgf/mm?, and remain
positively charged at least up to —¢ = 9 kgf/mm?. The last result is difficult to interpret since
the luminescence spectra obtained by the same authors®? indicate that EE has become larger
than Eg. Further experiments at higher stresses would help resolve this discrepancy. The
experimental results for lower stresses, however, are in excellent agreement with the

predictions.

We turn now to a comparison with experimental results for <100>-stressed Si. Figure 10
shows curves for Models1 and 2 of the full-width-at-half-maximum linewidth, AE, of
luminescence spectra computed for the T=2K equilibrium densities. The procedure for
calculating luminescence spectra at finite stress has been discussed previously.?® We show
calculations of AE to facilitate comparison with raw data independent of fitting procedures. The
theoretical curves show a rapid decrease in the luminescence linewidth associated with the

emptying_of the upper electron valleys and a much smaller decrease associated with the

emptying of the |M;|=3/2 hole band. The figure also shows several sets of experimental

20,53~

points. 57 With the exception of the points from Wagner and Sauer’ the data are in

cxccllent agreement with each other. This is notable because the spectra have been analyzed

54,55,57

using different procedures, in some cases incorrect ones, resulting in different deduced

densities for the same value of stress.??
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Although the experimental linewidth decreases with stress, the details of the decrease differ
markedly from theory. In particular, the sharp decrease associated with the critical stress o is
not observed experimentally. We note that there should be no ambiguity assqciatcd with the
conduction band deformation potential, since several measurements are in good agreement.>®
However, the disércpancy between experiment and theory occurs in a stress range where the
equilibrium li;nit used in the calculation may not be; appropriate: intervalley scattering is
inhibited because Eg is too small to allow the’ participAation of TA phonons.*® If the experiment
samples non-equilibrium-limit conditions then the average observed density and linewidth will
be larger than for the equilibrium limit.2*> More efficient intervalley thermalization takes place

above ~25 kgf/mm? (Ref 53). This provides a qualitative understanding for the difference

between theory and experiment in the intermediate stress range.

The luminescence spectra obtained by Gourley and Wolfe were analyzed using energy- and
stress-dependent hole masses.?® Their deduced equilibrium densities are shown in Fig. 11 along

with our T=2K calculations. The density variations follow the linewidths of Fig. 10. At high

stresses the experimental values are significantly smaller than theory. A similar but less

pronounced diﬂ'erénce was also found for Ge in Fig. 8. The importance of the discrepancy
should not be underestimated, since the infinite-stress theory should be better than the zero-
stress theory due to the simplifications in the band structure. The relevant band structure
features are the number of bands, the masses, and their anisotropy. The number of bands is
known, and because the occupied bands are ellipsoidal for infinite stress the anisotropy can be

incorporated in the masses.

Ws have investigated the effect of a un\iform change in both electron and hole masses on
the EHL equilibrium density.?” We suppose that the masses change in the kinetic energy and
that the exchange-correlation encrgies are unchanged. For a mass decrease of 10%, we find
that the equilibrium densities decrease rather uniformly for all stresses by nearly 25% in

Model 1 and by =35% in Model 2. The Fermi energies and the luminescence linewidth have a

smaller decrease, =8%. On the other hand, in extracting the density by fitting a luminescence
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spectrum, a given spectrum would be assigned a density about 15% larger. The net effect of
these changes in Fig. 11 would be to bring both theoretical curves and the data nearly into
coincidence at high stresses. Thus a reduction of the electron and hole masses by ~10% at
high compressive stress could remove some of the current discrepancies between theory and

experiment.

Let us examine several possibilities for changes in one or both masses. First, our
calculation éf the hole masses?® ignored the effects of the split-off valence band and fourth-
order (k*) terms which have been discussed by Hasegawa.>® We find that including the split-off
vélenc: hand results in only_ a small change in the density-of-states hole mass at the stresses
attained in experiments: =~1.7% for —¢ = 165 kgf/mm? along <100> in Si and for
—0 =20 kgf/mrn2 along <1il> in Ge. In addition, this mechanism increases rather than
decreases the hole mass.®® The fourth-order terms become less important at high stresses.
Second, the reduction in the average band gaps with stress should be accompanied by a
decrease in the carrier masses. These decreases may be simply estimated using the kP result
m! ~ Eg_l and a typical value 10meV/kbar = ImeV mm?¥/kgf for the change in E; with stress.
The relevant gaps are direct gaps, i.e., E;~0.9¢V and E;~2.3eV in Ge®! and E,~4.2¢V and
E,~4.5eV in Si.52 At the highest stresses attained in experiments, the masses would decrease
by ~1—2% in Ge and ~4% in Si. A third possibility is the renormalization of the carrier
masses within the EHL by many-body effects. It has been found both theoretically®®%* and
expcrimcntaily“"s6 that for unstressed Ge the masses within the EHL increase by =~10%

relative to the bulk masses. The stress dependence of this mass renormalization is not known.

reliably predicted by these considerations.

The electron and hole Fermi energies for Si are shown in Fig, 12, where the solid circles
indicate EE and the open circles ER. We find the following theoretical values for the critical

stresses:
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—o, = 10 kgf/mm?

—y = 37 kgf/mmz } Si, T=2K, <100> stress . (14)

The qualitative theoretical behavior of Ef and Ef can be understood for Si in the same way as
for Ge. We note that the dashed line which indicates Eg, crosses the experimental points near
their maximum. A similar feature occurs in Fig. 9 for Ge. This deviation from theory may be
associated with the inappropriate use of the equilibrium limit in this stress range. In spite of
the quantitative differences between theory and exi)eriment, we note that Ef > Eg at all

stresses. Thus EHD should be negatively charged at all stresses in Si, in contrast to the

situation for Ge. There are no experimental results concerning the charge on EHD in Si.

Two experimental measurements of thel EHL binding energy are available for stressed Si.
Kulakovskii etal.’’ found ¢ = 2 + 0.2 meV at a stress —¢ = 48 kgf/mm2 We fiﬁd
theoretical upper limits of 2.40 meV for Model 1 and 2.50 meV for Model 2. In addition,
Wolfe and Gourley®® measured ¢ = 1.5 = 0.5 meV at a stress —o = 90 kgf/mm2, compared
to 1.84 meV for Model 1 and 2.01 meV for Model 2. The agreément between theory and

experiment is satisfactory: as expected, ¢ decreases at higher stresses.

We. consider finally the the infinite-stress limit of the EHL in Ge and Si. This limit is
important because the simplifications in the band structure should make theories more
tractable. Since infinite stress is impossible to attain experimentally, it is necessary to
understand what constitutes a stress "high enough” that the valence band nonparabolicity is
negligible or to have a method for extrapolating to infinite stx;css. Our calculations show that
thg properties of the EHL are still changing at stresses much greater than ¢y,. The T=2K
eqﬁilibrium densities for Ge and Si are replotted as a function of 1/s in Figs. 13 and 14,
respectively, where the arrows indicate ¢,. Data points from the sources for Figs. 8416719 and
11% are also shown. In Ge, at —¢ = 20 kgf/mmz, the largest experimental stress to date, the
theoretical densities are still twice their infinite-stress values: To obtain densities within 20% of
the infinjte-stress value, stresses in the range —¢ = 70 kgf/mm? would be required for Ge and

—a¢ = 150 kgf/mm? for Si. '
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Data for somewhat lower stresses can be used, however, to extrapolate to infinite stress.
For example, Fig. 13 shows that a linear extrapolation (on an n vs. 1/¢ semilog plot) would be

appropriate for stresses greater than =15 kgf/mm?

. A different extrapolation procedure used
by Thomas and Pokrovskii'® was inappropriate because it was based on only a few data points,
all obtained at rat'her low stresses. While the data of Zarate and Timusk'® agree well ‘:Wit.h
Model 2, their densities are larger than those obtained by Chou et al.'®!7 and should be treated
with caution. Therefore, is not possible to make a reliable extrapolation to infinite stress based
on current data for Ge. For Si, it is evident from Fig. 14 that such a linear extrapolation
procedure should be reasonable for stresses above =40 kgf/mm?. The data of Gourley and

Wolfe?® cxtend well into this range. Our extrapolation yields an infinite-stress density

n ~2.8X10"%cm™3 (T = 1.4K in the experiments).

IV. Results: Finite Temperature

In this section we are interested in the variation of EHL properties with temperature. First
we shall consider the systematic variations at low temperatures, which involve derivatives of
ground-state properties. Then we will consider the critical point of the electron-hole liquid-gas

system. Finally, we comment briefly on scaling relations for EHL parameters.

A. Low-Temperature Variations; Compressibility

The usual procedure for studying the properties of the EHL at low temperatures is a -
perturbation treatment. At sufficiently low temperatures, EHL properties vary as T2, just like
any other degenerate Fermi system. The systematic low-temperature variations depend on
derivatives of ground-state properties. In this section we consxd?fcmtities:—t—he\‘

isothermal compressibility, Ky, and quantities which describe the low-temperature variations of -

the equilibrium density (8,), chemical potential (8,), and total Fermi cnergy (dg).

The following definition of the isothermal compressibility is valid for any density and

temperature:



-23.-

Ki' = =V (G-)nr
=20 (a,T) + n’(n,T), (15)

where the prime denotes differentiation with respect to density at constant temperature. The
second line uses Egs. (1b) and (9). For the ground state
~1

Kr(n,) = [né‘ fc";] , (16)

where

fg = f'(n,,0) (17)

" is the curvature of the free energy. The ground state compressibilities for Models 1 and 2 are
shown as a function of stress for Ge and Si in Figs. 15 and 16, respectively. The second
derivative fg was calculated numerically. The overall increase in Ky(n,) with stress is primarily
due to the decrease in n,. At densities just above those where the upper conduction and
valence bands empty, the free energy is relatively flat so its curvature is relatively small,
resulting in anomafous peaks in the compressibility. The anomalies occur just below the critical -
stresses o, and oy, and their size depends on how drastic the carrier redistribution is. Because
the predicted increase in Ky(n,) just below o, is so large for both Ge and Si, experimental
measurements in this range of siresses would be particularly interesting. Two measurements of
the compressibility have been obtained in stressed Ge. We have found,®® for T=1.9K and
—¢ = §.5 kgf/mm?, that K1 = 0.067 + 0.017 cm?/dyne (nf“~'0.47X10'7<;m"3), compared to a
theoretical value of 0.041 cm?/dyne for Model 1. In addition, Ohyama et al.” obtained
Kt = 0.023 # 0.002 cm?*/dyne for T=0 and a similar but unspecified stress. Because the
latter authors did not take into account the compression of the liquid by lthe strain well,
however, we belicve that their result could underestimate the true value by as much as a factor

of 3.% In view of the complexity of the measurements, the agreement is fairly good.

The parameters 8y, 3,, and 3¢ are defined from the following relations:!
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n(T) =n, [l - 6n(kT)2] , 0,in meV™2 (18a)
p(T) = p(0) — 5,(kT)?, 4,in meV™! (18b)
1, Ef(T) = Ex(0) [1 - BE(kT)z] . g in meV~?. ‘ (18¢)

Because of the complications due to the band splitting and nonparabolicity, the derivation of
these quantities will be outlined here. We use a T=0 expression for the exchange-correlation

energy, so the pair free energy for finite T can be written

f(n,T) = fkin(n'T) + fexcor(nvo)- (19)

At low temperatures the kinetic energy can be rewritten as

fia(0,T) = figa(n,0) = 2-¥(M)T?, (202)

where

J(n) = 22 o DEEO)

3 N (20b)

Note that v is a function of density via the Fermi energy and that Eq. (20) can be used
separately for electrons and holes. The density of states is given by Eq. (7). The quantity 7,
which is related to the heat capacity, is a monotonically decreasing function of the density
except in a narrow range of densities where the occupation of the upper v, bands is small (but
nonzero). At the density corresponding to E;:(O) = E the derivative 7'(5) is discontinuous. .

kT

We note that the validity of the low-temperature expansion requires O < E-(T) << 1 and
: F
kT . - .
O < ———=—=— << 1. For the special case Eg = E,,, then, Eq. (20) is invalid. For other
EF(T)—Espl

cases, these conditions may be fulfiled by restricting the expansion to sufficiently low
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temperatures.

Equations (19) and (20a) may be combined to give

{0, T) = £(n,0) = 2 [re(n) + m(m) |12 ,_ 1)

writing out explicitly the electron and hole contributions to the low-temperature correction. If

the equilibrium density at the temperature T is written

n(T) =n, + An, (22)

then the following equaiion is <asily obtained:

(e + An, T) = 0 = An £ (5,0) = = [vi(no) + 7i(na) T, (23)

to first order in An. Using Eqs. (16), (17), (18a), (22), and (23), §, may be written

5 = — nozKT(no)
N n 2k2

[retn) + mina)). 24)
The results for &, ;dre shown in Fig. 17a for Ge and in Fig. 18a for Si. The complicated stress
dependence is of course a combination of tﬁe components in the formula. For most stresses v,
and v, decrease as a function of density, so that §, is positive. Thus, as is familiar from
unstressed Ge and Si, the electron-hole liquid expands with temperature. However, at stresses
just below ¢, and oy, 8, becomes negative, implying initial thermal contraction. Because of the
restricted range of conditions for the thermal contraction and because of the difficulties

associated with the measurement of all the 6 quantities, the observation of a2 negative §, would

be very difficult indeed (but very interesting).

The quantity §, describes the variation in the chemical potential with temperature. At a

low-temperature equilibrium density the chemical potential can be written

s
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#(T) = p(n(T),T) = f(ny+4n,T)

= 4(0) = 3 [re(ne) + mn) |12 (25)

to first order in An. Here we have used Egs. (1¢), (21), (22), and the fact that f is a minimum

at a low-temperature equilibrium density. Using the definition in Eq. (18b),
1
b= [1e(n0) + va(n) | (26)

The results for Ge and Si are shown in Figs. 17b and 18b, respectively. The enhancement just
below o, and o, shows the behavior of y.(n) and ~v,(n), respectively, at the associateu
densities. The broader o -related structures in Si, as compared to Ge, reflect the more gradual
emptying of the upper electron valleys. The discontinuity at ¢, for Model 1 in Ge arises from

the discontinuity in the density.

The quantity &g describes: the variation in the total Fermi energy E}*'=Eg+ E} with
temperature. There are actually two distinct contributions to the change in a (hole or electron)
Fermi energy: the first is due to the change in equilibrium density with temperature, while the

~second is an explicit temperature dependence at constant density.! Thus we may write?’

Eg(T) = Ex(0) + AE; + AE,, 27)

where

AE, = — n, §, E¢(0) (kT)? (28a)

and

2 D(EK0)

—_ 2
AE, & ey <D | (28b)

In Eq. (28a) the prime indicates a derivative with respect to density, while in Eq. (28b) the

prime indicates a derivative with respect to energy. These expressions are true for electrons or
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for holes, with separate (additive) contributions required. The parameter §g may be written as

follows, using Egs. (18c), (27), and (28):

8 = 8g; + dpa, ' (29a)

where

Eg(0) + Ef(0
s = By 1o e B0 (D) (290)
ES(0) +EF(O)

and

DE§(0) , D'(E}O)
s > D(Ef0))  D(EN0))
26 E£(0) + EX(0)

(29¢)

For most stresses g is dominated by the first contribution, which is due to the change in the
equilibrium density. Just below ¢, and oy, however, the second contribution becomes more
important, because of the rapid change in the density of states at the Fermi level. The results
for 8g are shown in. Fig. 17¢c for Ge and in Fig. 18c for Si. These curves are very similar to the
curves for &, in Figs. 17a and 18a, with the exception just mentioned. Note that it is easy to
verify that the expressions for &, 6,, and &g in Egs. (24), (26), and (29) simplify for

unstressed Ge and Si to the usual expressions.!

Numerical results for Kt(n,) and the & quantities are listed in Table IV for the same models
and stresses as in Table III. In compﬁring Models 1 and 2, it is useful to remember that the
quantities in the table depend on derivatives of the free energy (or a related quantity) and
sometimes on high powers of the equilibrium density. Close agrecement requires very detailed

similarities between the models.

Measurements of the quantities discussed in this section are sparse. Zero-stress values are
listed in the table and are in reasonable agrcement with theory. Feldman et al.!® found

6,=6.7 * 2.0 meV~2 at 13 kgf/mm? in Ge, to be compared to theoretical values of 5.1 and
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3.4 meV~2 for Models 1 and 2, respectively. Kulakovskii et al.”' found 6, = 0.21 = 0.3 meV 2
for Si at an unspecified stress, probably in the range 50-80- kgf/mm?2 The corresponding
theoretical values are =0.18 and =0.24 meV~? for Models 1 and 2, respectively. No

experimental values for §, or ég have been published for either stressed Ge or-stressed Si.

B. The Critical Point

Thermodynamically, the definition of the critical point is

‘ 3P a’p
= |—— =0, 30a
OV i~ av? TN (30)
which may be rewritten using Egs. (1b), (1c), and (9):
ou u ’
= |——| =0. 30b
dn ]T ["“2 ]r (300

Thus the critical point correspon&s to the inflection point in the chemical potential versus
density. By performing the calculation for a plasma of electrons and holes, we assume that
other species such as excitons, trions, and biexcitons are not important near the critical point.
This scheme was first used by Combescot® and has been followed in other calculations of the

critical point at zero and infinite stress.

The finite-temperature kinetic energy contribution was computed exactly, as described in
Section IIA, and temperature-independent exchange-correlation energies were used. In

addition, in order to obtain meaningful results for Model 1, it was necessary to modify the

correlation energies. As shown in Figs. 1 and 2 the Model | correlation energies contain slight
anomalies which result from the polynomial fit; these anomalies are greatly magnified in the
second and third derivatives which determine the critical point. To circumvent this
mathematical problem we fitted the original Model 1 correlation energies to a simple Wigner

form, consisting of a single term in Eq. (12), over an intcrmediate density range corresponding
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to r,=2 to 3, and then extended the calculation to higher and lower densities as needed. This
procedure is reasonable since the correlation energy is expected to have a Wigner-type density
dependence for r,>2.32 The modified Model 1 exchange-correlation energies are shown as

dashed curves in Figs. 1 and 2.

The results. for the critical temperature T, and critical density n. in Ge are shown in Figs. 19
and 20, respectively, while the results for Si are shown in Figs. 21 and 22. The results for
Models 1 and 2 are quite similar, considering the sensitivity of the calculation to details such as
curvature of the correlation energy. The qualitative stress dependences are analogous to the
behavic:s of eround-state properties: gradual decreases in both T, and n; with stress, with a
more rapid change associated with the depopulation of the upper electron valleys and a leveling
off at high stresses where the valence-band changes become more gradual. The reduction in T,
with stress follows from the reduction in the liquid binding energy ¢, while the decrease in n,
approximately parallels the decrease in the ground state density n, except in the immediate

vicinity of o.

Numerical results for the critical point at selected values of the stress are given in Table IV,
where they are compared to other calculations of the critical point. We show iﬁ the table the
results of a T? calculation for Model 5 at zero stress and Model 6 at infinite stress. These
models are practically identical to those used by Vashishta, Das, and Singwi’ but the results
differ substantially. This is due to an error in the calculation of Ref. 7 and those results have
now been revised, in agreement with the values in the table.?>*> We show for comparison the
results of Reinecke et al.”? calculated using their noninteracting fluctuation model,”® which also
uses a T? expansion. The values for T, obtained in this model are lower than those obtained
using the plasma model, while the values for n. are consistently larger. Within the plasma
model, the T? expansion évcrestimates both T, and n., compared to the corresponding exact-T

8.9.74.75 of the critical point in unstressed or infinitely

calculation. Other thcoretical estimates
stressed Ge and Si using different approximations for the exchange-correlation energy are in

remarkably good agreement with the values in the table. Also, Liu and Liu® have calculated
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the critical point at two values of the stress for Ge and Si, using energy-dependent masses and a
T? expansion for the kinetic energy. Taking this into account, their results are in reasonable

agreement with our calculations for the same stresses.

We wish to reiterate the systematic differences mentioned above between T? and exact-T

calculationis. The low-T expansion is only valid if O < XT << land O < kT

— << | for
Ef l?‘F_-Espl

both electrons and holes. We find that these conditions are violated at the critical point for all
‘ ¢

stresses in both Ge and Si: the ratios fall outside the ranges (0 to 0.25) and (0 to 0.75) for

Models 1 and 2, respectively, in Ge and outside the range (0 to 1) for both models in Si. In

view of this, we {ind it surprising that the differences between the two types of estimates are

not larger.

Experimental measurements of the critical point in unstressed Ge and Si are listed in Table
IV. Measurements for stressed Ge include those of Furneaux et al.* (T,=4.7-5.7K for
— = 6kgf/mm2)v and Feldman et al.'* (T.=3.5+0.5K and n,= 7.7+2.0X10"”%cm™3 for
—o =13 kgf/mm?). These measurements are in reasonable agreement with the present
calculations. In ~<100>-stressed Si, Forchel et al.’® found T.=14.0%0.5K and
n, = 1.8+0.3X10""cm™ for —¢ = 35 kgf/mm?. Kulakovskii et al.”' found T, = 14£1.5K for

2 Finally, Gourley and

an unspecified stress, probably in the range —o¢ = 50—80 kgf/mm
Wolfe?¢® find T, = 12—22K for —¢ = 90 kgf/mm? and T, > 20K for —¢ = 163 kgf/mm?>.

Until the large experimental discrepancies are resolved it is difficult to make meaningful

comparisons with theory.

A C. Scaling Relations ' :

We comment briefly on scaling relations of properties of electron-hole liquids. An early -
suggestion was made' that certain combinations of EHL properties should scale from one
system (i.c., band structure) to another. More recently, Reinecke and Ying”” have proposed on

the basis of theoretical arguments a revised set of scaling quantities. They assume that the
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conduction and valence bands are parabolic and that the cxchéngc-correlation energy can be
written f .., ~ nP, using the same value of p for different systems. In this model the proposed
scaling quantities are n/n,, |fgl/xT., and «To/nd (x/n)!™°, where u is an optical average of
the electron and hole masses, in units of the free electr;)n mass. In addition, they propose that

p = 0.25.

The validity of these ideas can easily be tested by computing the above quantities as a

function of stress for Ge and Si, using Models 1 and 2. We find the following ranges of values:

ne :
— ~ 0.08 — 0.14 : (31)
N
Ife! |
~ 7.8 — 10. 1b
T~ 18— 102 (31b)
T« 1/4
T [J‘—] = 0.016 — 0.025 K cm¥*. (31¢c)
ng »

We have excluded from consideration a small range of stresses around ¢, where we find
somewhat larger variations. The ratio n/n,, in particular, changes rapidly in the vicinity of o,
as can be seen by comparing Figs. 3 and 4 with Figs. 20 and 22. The values obtained for these

quantities using the fluctuation model”’

are different from the present values obtained using the
plasma model for the critical point. The experimental values given in Tables IlII and IV for
unstressed Ge, for which there is good agreement among different experiments, seem to favor
‘the fluctuation model. However, the variations with stress, exchange-correlation energy mod?l,
and material from Eq. (31) are expected. to persist. We find, for example, that the extreme
values for the scaling quantities are not necessarily obtained at zero or infinite stress. We
conclude that the "universal” scaling quantities, originally proposed for model systems, have
somewhat more variation when conéidered as functions of stress. This undoubtedly occurs

!
because the simple form for the free energy used in Ref. 77 is not applicable at finite stresses.
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Table 1. Parameters used in the calculations.

Parameter Ge Ref Si Ref
Electrons
me,/m, 0.08152 a 0.1905 b
me/m, 1.588 a 0.9163 b
mg,/m, 0.2193 c 0.3216
Mmee/m, 0.1192 d 0.2588 d
d(pe) 0.8401 € 0.9490 e
ve(zero stress) 4 6
v (infinite stress) 1 (<111> stress) 2 (<100> stress)
—Eg/o 1.05 H 0.86 f
Holes
¥{(pp)(zero stress) 0.710 g 0.746 g
- —Eg/o 0.362 h 0.272 h
Holes: infinite stress <111> stress - <100> stress
my,/m, 0.1302 i 0.2561 i
mye/m, 0.04037 i 0.1989 i
mgy/m, 0.08811 0.2354 c
myy/m, 0.07474 d. 0.2337 d
¥(py) 0.9698 e 0.9986 e
Miscellaneous
X 15.36 11.40 j
a(Model 2) 0.1917. 0.2128 k
c(Model 2) 4.461 k 8.552 k
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Table I Refs.
B. W. Levinger and D. R. Frankl, J. Phys. Chem. Solids 20, 281 (1961).

J. C. Hensel, H. Hasegawa, and M. Nakayama, Phys. Rev. 138, A225 (1965).

my = (m(zm,\) 173 for electrons or holes.
mg' = %(th'l + my™") for electrons or holes.

M. Combescot and P. Noziéres, J. Phys. C 5, 2369 (1972).

]
-
=17}

9Cs4s

Units: meV mm?¥kgf. For <111> stress (Ge), —Eg/o =4 For <100> stress

It}

u

(Si), —Efj0 = ———
spl Cii—Cy2

Values for Z, are from I. Balslev, Phys. Rev. 143, 636 (1966).

Values for the C’s for Ge are from M. E. Fine, J. Appl. Phys. 26, 862 (1965) (T=1.7K).
Values for the C's for Si are from H. J. McSkimin, J. Appl. Phys. 24, 988 (1953)

(T=78K values multiplied by 1.002 to extrapolate to low temperature).

W. F. Brinkman and T. M. Rice, Phys. Rev. B7, 1508 (1973).

Units: meV mm%kgf. For <111> stress (Ge), —Es"p,/a = —g—. For <100> stress
, V3iCy .

(Si), —Es';, o =—2L—., Values for d (Ge) and b (Si) are from J. C. Hensel and K.
Cu——Ci2

Suzuki, Phys. Rev. B9, 4219 (1974) and from J. C. Hensel and G. Fcher, 'Phys. Rev. 129,

1041 (1963), respectively. Values for the C’s are as in Ref. f.

Calculated from Ge and Si valence band structures: see S. M. Kelso, Phys. Rev. B (in

press), Rev. 28.

R. A. Faulkner, Phys. Rev. 184, 713 (1969).

Model 2 is described in the text. If n has units 10!7cm™ and the masses are multiples of

the free electron mass, then a is dimensionless and ¢ is in meV.
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Table II. Electron and hole treatments in the exchange-correlation energy models.

Model

Type

Exchange Energy

Electrons

Holes

Correlation Energy

Electrons

Holes

FSC

Wigner

Wigner

Wigner

FSC

FSC

infinite stress

infinite stress

infinite stress

infinite stress

zero stress

infinite stress

zero stress

Zero stress
Zero stress
zZero stress

zero stress

infinite stress

infinite stress

infinite stress

infinite stress

infinite stress

zern stress

infinite stress

zZero stress

infinite-stress
optical mass

stress-dependent
optical mass

stress-dependent
density-of-states mass

Zero stress

infinite stress
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Table II1. Selected numerical results for the ground state properties of the EHL in stressed Ge and Si.

Material, -0 n, ~fg Eg Ef K1(n,)
Stress
Direction (kgf/mm?) Model (107 cm™) (meV) (meV) (meV) (cm?/dyne)
Ge, <111> Zero Expt* 23%0.1 6.120.2 2.53%0.02 3.90+0.02 (2.3%0.6)X1073
) 5 2.21 5.88 2.40 3.73 3.12X1073
1 2.70 6.14 275 4.27 2.31X107?
2 2.24 6.03 . 243 3.77 2.87X1073
3 1 0.642 4.06 2.66 2.16 1.80X1072
2 0.659 4.06 271 2.19 1.38X1072
7 1 0.435 3.66 2.05 2.32 3.75X1072
2 0.492 3.65 2.23 2.45 2.42X1072
20 1 10.200 3.22 1.22 2.19 9.05X1072
2 0.259 3.15 1.45 2.49 5.98X1072
Infinite 1 0.098 2.96 0.76 1.92 1.25X107!
2 0.112 2.82 0.83 2.10 1.09X1071
6 0.109 3.07 0.81 2.06 1.39%107!
Si, <100> Zero Expt. 331 23 78+0.1 14.4%0.1 (3.4£2)X107°
5 32.3 21.97 7.50 13.79 5.96X107°
1 31.8 22.52 7.43  13.64 6.69X107°
2 29.3 22.42 7.03 12.91 6.47X1073
12 1 13.6 17.42 8.75 9.32 1.58X107*
2 - 13.1 17.42° 8.55 9.14 1.78X107*
40 1 9.04 15.47 6.68 10.25 2.88X107*
2 8.18 15.54 6.25 - 9.74 3.98X107*
100 1 6.22 14.60 5.20 9.94 4.22X107*
2 5.41 14.78 4.74 9.17 5.63X1074 -
Infinite 1 4.74 14.09 4.34 9.46 5.50X107*
2 4.20 1435 . 4.01 8.73 6.40X1074

T4

417 9,08 5.99X107™*

a The experimental data at zero stress are compiled from J. C. Hensel, T. G. Phillips, and G.
A. Thomas, Solid State Physics, ed. by H. Ehrenreich, F. Seitz, and D. Turnbull, Vol. 32
(Academic Press, 1977), p. 88.
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Table 1V. Selected numerical results for properties of the EHL in stressed Ge and Si at finite temperature.

Material, —0 8, S, 0 T, ng
Stress )
Direction  (kgf/mm?2) Model (meV™?) (meV}) (meV72) - (K) (107 cm™3)
Ge, <111>  Zero Expt. 0.9-1.4*®  2240.9° 0.71+0.14>  6.5-7.00&b  0.5.1.0%&b
5 1.24 1.69 0.92 8.18 0.50f
Fluc. : 6.73% 0.66%
1 0.98 1.47 0.73 695 0.28
2 115 1.67 0.85 7.96 0.31
3 1 2.91 2.41 1.91 5.05 0.065
2 2.25 2.37 1.52 5.92 0.087
7 1 3.90 2.75 2.47 4.59 0.042
2 2.67 2.57 1.76 5.39 0.062
20 1 5.65 3.53 3.61 3.95 .0.018
2 4.19 3.07 2.66 453  0.028
Infinite 1 5.94 4.53 4.52 3.61 0.010
2 5.41 4.14 4.07 3.99 0.014
6 6.84 4.23 5.05 3.72) 0.017
Fluc. - 2.91* 0.032%

Si, <100> Zero  Expt. 0.055+0.020%¢ 0.3-1.7%%¢ 0.05+0.025%%¢ 26-30°,22-24' 10-14%

5 0.104 0.508 0.078 28.6 5.1

Fluc. 23.5% 9.6%

1 0.117 0.513 0.086 27.4 3.7

2 0.110 0.542 0.082 26.7 3.5

12 1 0.136 0.599 0.094 23.2 1.7
2 0.152 0.613 0.104 22.6 1.6

40 1 0.169 0.685 0.113 20.4 0.90
2 0.222 0.727 0.146 20.0 0.82

100 1 0.193 0.750 0.135 19.2 0.63
2 0.246 0.823 0.175 18.8 0.58

Infinite 1 0231 0829  0.174 18.6 0.52
2 0.258 0.898 0.196 18.3 0.48
6 . 0.246 0.864 . 0.186 24.4 0.78}

Fluc. ' 14.2 1.42%
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Figure Captions

Exchange-correlation energy per electron-hole pair for Models 1, 5, and 6,
normalized to Model 2, for <111>-stressed Ge. The dashed curve is discussed in

Section IVB.
As Figure 1, for <100>-stressed Si.

Ground-state density n, versus stress o for the EHL in <111>-stressed Ge. (a)
Models 1, 5, and 6; (b) Models 2, 3, and 4. The arrows indicate the Model 5

zero-stress and Model 6 infinite-stress densities.
As Tigure 3, fcr <100>-stressed Si.

Ground-state electron-hole pair energy versus stress for the EHL in <I111>-

stressed Ge. The dashed line is the infinite-stress exciton binding energy.
As Figure 5, for <100>-stressed Si.

Equilibrium density versus stress for Ge-like bands with one lower and v, upper

electron valleys. The Model 1 exchange-correlation energy is used.

Equilibrium density versus stress for Ge at T=2K. The curves are the results for
Models 1 and 2. The data points are t_aken from Refs. 18 (s), 16(V), 17 (4), 14

(+), and 19 (&).

Electron and hole Fermi energies, E§ and EE, versus stress for Ge at T=2K. The
dot-dashed curves are Model 1, while the solid curves are Model 2. The dashed
lines indicate the energy splitting, E,;, between upper and lower bands for
electrons aﬁd for holes. The data points for E§ (solid symbols) and Ef (open

symbols) arc from Refs. 18 (circles) and 17 (triangles).

. ‘Luminescence linewidth versus stress for the EHL in <100>-stresse}d Si at T=2K.

The curves are the results for Models 1 and 2. The data points are taken from

 Refs. 53 (@), 54 (B), 55 (4), 56 (V), 57 (»), and 20 (e).
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Equilibrium density versus stress for Si at T=2K. The curves are the results for

Models 1 and 2, and the data points are from Ref. 20.

Electron and hole Fermi energies versus stress for Si at T=2K. Notation for the

curves is similar to Fig. 9, while the data points for E§ (e) and 'E,‘:‘ (o) are from

* Ref. 20.

Equilibrium density versus 1/¢ for Ge at T=2K. The curves are the resuits for
Models 1 and 2, and the data points are the same as in Fig. 8. The arrow indicates

the critical stress oy.
As Figure i3, for 5i. The data points are from Ref. 20.

Isothermal compressibility of the EHL ground state as a function of <111> _str-eés

in Ge, for Models 1 and 2.
As Figure 15, for <100> stress in Si.

(a) 4,, (b) &,, () ok as a function of <111> sfress fér Ge. Models 1 and 2 are
shown..

As Figur.c 17, for <l;)0> stress in Si.

EHL critical temperature versus <111> stress in Ge, according to Models 1 and 2.
EHL critical density versus <111> stress in Ge, for Models 1 and 2.

EHL critical temperature versus <<100> stress in Si, for Models 1 and 2.

EHL critical density versus <<100> stress.in Si, according to Models 1 and 2.
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