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CALCULATION OF PROPERTIES OF THE ELECTRON-HOLE 

LIQUID IN UNIAXIALLY STRESSED Ge AND Si 

S.M. Kelso• 

Physics Department, University of California and 

Materials and Molecular Research .Division, 
Lawrence Berkeley Laboratory, Berkeley, CA 94 720 

and 

Bell Laboratories, Murray Hill, N.J. 07974 

LBL-13387 

We present a detailed theoretical study of the stress dependence of properties of the 

electron-hole liquid, both at zero and finite temperatures, in < 111 >-stres_:;ed Ge and < 1 00>-

stressed Si. These properties include the ground-state equilibrium density, pair energy, electron 

and hole Fermi energies, sign of the electron-hole drop charge, luminescence linewidth, and 

liquid compressibility. The results are compared at T=O to the calculations of Kirczenow and 

Singwi and at T:::::2K to the available data. We discuss the possibility of a phase transition 

associated with the depopulation of the upper electron valleys in Ge. We also discuss m~thods 

of extrapolating from finite to infinite stress. The importance of the nonparabolicity of the 

valence bands is emphasized throughout. We discuss ranges of validity for a low-temperature 

expansion of the free energy. Results are presented for the systematic · low-temperature 

variation of the liquid density, Fermi energy, and chemical potential and for the critical 

temperature and 'density. These theoretical results are found to be in reasonably good 

agreement with available data. Finally, we discuss scaling relations for combinations of 

electron-hole liquid properties. 

• Present address: Xerox Palo Alto Research Center, Palo Alto, CA 94304. 
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I. Introduction 

The first theories of the electron-hole liquid 1 (EHL) in semiconductors were concerned with 

predicting and understanding the properties of the EHL for systems in which it had already 

been observed experimentally, i.e., unstressed Ge and Si. 2- 4 It is well known that the band 

structures of Ge and Si simplify under infinite uniaxial compression: for < 111 >-stressed Ge 

only a single conduction band minimum remains occupied; while for < 100>-stressed Si tw.o 

conduction band minima remain occupied; in both cases the single populated valence band 

becomes ellipsoidal. Because of these simplifications, the infinite-stress limit ·was also 

considered theoretically. 2•3 These calculation~ ;::edirted that the EHL would be unbound or just 

barely bound with respect to free excitons in Ge. However, the more sophisticated calculations 

of Vashishta et al. 5 indicated that the EHL should be observable in the infinite-stre.ss limit. All 

the calculations predicted that the electron-hole pair density would be considerably reduced 

compared to that of unstressed crystals. Vashishta et al. 6 also performed a calculation for an 

ideal intermediate-stress case in which the electrons were treated as for infinite stress and the 

holes as for zero stress; the results were intermediate between the zero- and infinite-stress 

theories. In addition, the effects of finite temperature on EHL properties and the critical.point 

were estimated for zero and infinite stress, using an expansion valid at low T. 7- 9 

In the meantime, several experiments1<r- 12 were performed to study the EHL in Ge and Si 

stressed along the three principal crystallographic directions. In these early experiments a stable 

liquid phase was observed under moderate stresses. Although the luminescence spectra shifted 

with stress, they were not analyzed in enough detail to determine the properties of the EHL. 

Expenmentsp-erformed--en-in.homogeneously stressed Ge showed that at moderate stresses the 

electron-hole pai.r density is reduced from its value in unstressed Ge. 13
•
14 More recently, 

systematic experiments have been performed on Ge under <Ill> uniaxial stress 15
-

19 and on 

Si under < 1 00> stress20 to study the stress dependence of EHL properties. 

Since experiments cannot be performed at infinite stress or zero temperature 1 it is clearly 
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desirable to· have a finite-stress, finite-temperature theory. A first attempt to predict the 

systematic variation of the ground state (T=OK) properties of the EHL in <111 >-stressed Ge 

was made by Markiewicz and Kelso.21 In that paper, the stress dependence of the holes was 

taken into account but the electrons were treated as for infinite stress, so the results are valid 

only for the intermediate- to high-stress range. Liu et al. 22•23 performed a calculation for two 

values of the stress, for both Ge and Si, and included a low-_T expansion to estimate the critical 

point. Kirczenow and Singwi have considered the systematic stress dependence of some EHL 

properties in Ge24 and Si, 25 restricted to T=O. 

In this paper we present detailed calculat:"ns26
•
27 of the properties of the electron-hole liquid 

as a function of compressive <111> stress in Ge and <100> stress i~ Si, both at T=O and 

finite temperature. We include the full stress dependence of the conduction and valence bands 

in the kinetic energy, except that the split-off valence band is ignored. Energy- and stress­

dependent hole masses, introduced previously, 14
•
21

•
28 are used to describe the nonparabolicity of 

the valence bands. We initially consider several models for the exchange-correlation energy; 

two include separate stress and density dependences. We compare the exchange-correlation 

energies directly, as well as results for the EHL ground-state density and energy. Two ~odels 

are selected for further calculations and for comparison with experiment. We believe that 

uncertainty in the mathematical representation of the correlation energies of Vashishta et al. 

can result in model-dependent predictions. Consequently, one of the models· selected for our 

detailed calculations uses a simple empirical correlation energy. Both models are different from 

those considered by Kirczenow and Singwi. 24•25 

Results are presented for several properties of the EHL at T=2K to facilitate comparison 

with experiment.. In addition to the density, we discuss the electron and hole Fermi energies, 

the sign of the charge on electron-hole drops (EHD), and the binding energy, cp, of the EHL 

with respect to free excitons. While there is overall qualitative agreement between theory and 

experiment, some q~antitative differences are discussed. 
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It is convenient to introduce two critical values of stress. When the stress-induced splitting 

of the conduction bands, Esepl• is equal to the electron Fermi energy, Ef, the upper electron 

valleys are depopulated (at T=O). Thus a critical stress, u e• is determined by the condition 

Esepl = EF. Similarly, a critical stress, uh, associated with the emptying of one valence band is 

defined by the condition Es~I = E~. 

In agreement with Kirczenow and Singwi,24
•
25 we find a ·rapid decrease in the electron-hole 

pair density associated with the emptying of the upper conduction bands at u e· For Ge at T= 0, 

we discuss the possibility of two different types of EHL, with a phase transition as a function of 

stress. Our model-dependent results indicatt. ;:;. critical dependence on details of the exchange­

correlation energy, such as curvature with respect to density, which are not well known. We 

show by explicit calculation that the change in the number of occupied conduction bands is an 

important factor in the possibility of a discontinuous change in the equilibrium density at u e; 

thus the unambiguously more gradual density change predicted for Si is understood. 

We predict significant changes in all EHL properties for stresses beyond uh. Since no 

further changes take place in the number of occupied bands, the high-stress variation of EHL 

properties arises solely from the residual nonparabolicity of the vaknce band, which remains 

important even after the bands are well split in energy. ·Because these variations continue well 

past uh, we discuss procedures for extrapolating finite-stress data to the infinite-stress limit. 

For finite temperatures, both low-T and high-T limits are considered. At sufficiently low 

temperatures we find that the usual expansion for the kinetic energy of a degenerate Fermi 

system is valid, except at stresses very near ue and uh. We discuss the systematic low-T 

variation of EHL properties, usin-g--deri-vati-v.es-oLth_e_ground-state free energy versus density. 

Near the critical ·point, however, we find that the expansion is no longer valid at any stress. 

Thus we calculate the kinetic energy exactly at all finite temperatures. Our theoretical results 

are compared with available data. In addition, we consider scaling relations of certain 

combinations of EHL properties as the band structure changes with stress. 
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The paper is divided into several sections. The calculation of the free energy of electrons 

and holes at arbitrary stress and temperature is described in Section II. Results for ground-state 

EHL properties are presented in Section III. Finally, results for finite temperatures are 

presented in Section IV. 

II. Formalism: The Free Energy at Arbitrary Stress and Temperature 

We begin with some basic thermodynamic definitions for a neutral plasma of electrons and 

holes. The total free energy F is a function of the number of electron-hole pairs N, volume V, 

and temperature T (assumed here to be the lattice temperature). It is convenient to work with 

the free energy per pair;., TfN and the pair density n = N/V, and to consider variations off 

with n. We note the following definitions and simplifications: 

F 5 U-TS = NJL-PV ( Ia) 

where 

(1 b) 

is the pressure and 

JL = r~] = f + n r_j£_] l aN T,V [an T,V 
(I c) 

is the chemical potential. The second equality in Eq. ( Ia) comes from the definition of the 

grand potential: 

n 5 -PV = U-TS-NJL. (I d) 

For the electron-hole liquid, the free energy is separated into kinetic and exchange-correlation 

energy contributions, 

F = Fkin + Fcxcor • (2) 

which are treated in the next two subsections. 

A. Kinetic Energy 
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The kinetic energy term is just the free energy for a gas of free Fermi particles. The grand 

potential for carriers in a band with a density of states D(E) is given by 

n e- kT I D(E)ln(I+e(EF-E)/kT) dE 
0 

The Fermi energy, EF, is determined by the relation 

and depends on temperature. The free energy is obtained from Eqs. (la), (ld), and (3b): 

(3a) 

(3b) 

(4) 

(5) 

Information about the band structure is contained in the density of states. As has been 

noted previously, 28 it is convenient to write 

D(E) = y'iy m 3/2(E) Et/2 
11"1}3 dloc • (6a) 

where mdloc(E) is a local density-of-states mass given by 

3/2 = n3 I 2 dk mdloc(E) - . ;;; 112 k dE d n 
4v271"E 

(6b) 

The integration is performed-over-selid-a-ngle_o_n the k-space surface with energy E. This mass 

depends on energy only if the band is nonparabolic, as is the case for the valence bands in 

germanium or silicon at finite stress. Results for <Ill >-s_tressed Ge and < 1 00>-stressed Si 

are given in Ref. 28 (see Figs. lc and 2a). The conduction band is assumed to be parabolic, 

with the same energy-independent density-of-states mass at all stresses. 

\.. 
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In stressed Ge or Si the conduction and valence bands are both split by the stress, with only 

the band(s) lowest in energy remaining populated at high stress. Suppose that a set of v1+v 2 

bands, degenerate at zero stress, becomes split by an energy Esph with v1 bands below the other 

v2 bands. For example, in <111>-stressed Ge, v1 = 1 and v2 = 3 for electrons while v1 = 

v2 = 1 for holes. In this case the density of states becomes 

(7) 

where m 1(E) and m2(E) are the local density-of-states masses for the two sets of bands and E is 

measured from the bottom of the band for the lower set. It is understood that mi::::~ = 0 for 

E<Espl· This form for the density of states should be used in Eqs. (4) and (5). We use the 

same Fermi level for both subsets, indicating that all the carriers are in thermal equilibrium 

with each other. This corresponds to the equilibrium limit of Kirczenow and Singwi. 24 

Equations (4)-(6) may be used separately for electrons and for holes, with 

(8) 

Note that, for a particular temperature and stress, f~n• f~n• and ne = nh depend only on the 

relevant Fermi energy EF orE~. Thus, for fixed stress, f is a function only of n and T: 

(9) 

The procedure for calculating the kinetic energy fkin was as follows: ( 1) a hole Fermi energy 

E~ was chosen; (2) the density was computed using Eq. (4) for holes; (3) the electron Fermi 

energy EF was obtained by inverting Eq. (4) for electrons; (4) f~n and f~n were computed using 

Eq. (5). We usually wanted to find a minimum in f(n) or the disappearance of a minimum in 

p(n). These minima were often very shallow: for example, in order to determine the 

equilibrium density at T=O to within 1% it was necessary to calculate f(n) to a precision of 

1 part in I 06• Of course, the band structure parameters are not known this well, but it was 

desirable to reduce the mathematical uncertainties. 
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At finite temperature the kinetic energy was computed exactly, rather than using the T2 

expansion employed by other authors7
•
8
•
23 (see discussion in Sec. IVB). The integrals in 

Eqs. (4) and (5) are (modified) Fermi-Dirac integrals for the electrons (holes). Since they 

cannot be evaluated analytically at finite temperature, they must be computed numerically. 

Some care must be taken to ensure that the results vary sufficiently smoothly with hole Fermi 

energy. For example, it was necessary to iterate the step (3) inversion to convergence. 

The local density-of-states hole masses given by Eq. (6b) and by the valence band structure 

of Ge and Si were calculated numerically as a function of reduced energy E' = E/ u (see 

Ref. 28). The results for the two bands were fit to simple analytic functions over sev~;,c.l ra~~es 

of E', matching the functions and their first derivatives at the crossover points between the 

ranges. This procedure, in conjunction with the numerical integration at finite T, was found to 

be satisfactory. 

The zero-temperature calculation is much simpler. The integrals in Eqs. ( 4) and (5) are 

trivial for electrons. For holes, the integrals can be performed analytically by directly 

integrating the formulas for the local masses. 

B. Exchange-Correlation Energy 

The exchange-correlation energy is usually separated into two terms: 

Fcxcor = Fex + Fcorr · (10) 

As in all other calculations to date, we suppose that the exchange-correlation energy is 

independent of temperature9 and use results for T=O. A detailed first-principles calculation, 

including the effects ofnnilest-ress-on-t-he-ba-n4-str.uctur_e.., would be extremely difficult and has 

not been attempted. However, such a calculation is not really necessary: the exchange­

correlation energy appears to be largely independent of such band structure details as masses, 

anisotropies, and degeneracies, as long as both the exchange and correlation energies are 

calculated using the same details. 29•30 One reason for this is that the separate dependences of the 
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exchange and correlation energies on the band structure, which can be substantial, tend to 

cancel in the sum. 31 This cancellation has been exploited in other zero-temperature 

calculations. 21
•
24

•
25

•
30 In addition, Vashishta has suggested32 that the correlation energy should 

depend only weakly on the (hole) mass. Here we consider both of these ideas. 

For zero or infinite stress the exchange energy per electron-hole pair is given by 

f ·=- 2£. (3 2 )l/3[¢(p~) + ·'·( )] 
ex 4 11' n 1/3 't' Pb , 

11'K lie 
(11) 

where lie is the number of electron valleys and p=mv'm1 is the electron or ho!f~ anisotropy 

parameter. Values for cP(pe) and l{;(pb) are listed in Table I, along with other parameters used 

in the calculations. 

We considered six models for the exchange-correlation energy, summarized in Table II. 

The first three models were used in our preliminary calculations for Ge. 21 The scheme used for 

Models 1 and 2 (infinite-stress electrons, zero-stress holes) is intended6•33 to most closely 

represent an intermediate stress· near ue, although it does· not correspond exactly to any value 

of stress. The Model 1 correlation energy uses the results of a detailed numerical calculation34 

in a fully self-consistent (FSC) approximation4•5•
7 including multiple scattering and band 

anisotropy. The results were fit to a polynomial in the interparticle spacing r5 for higher 

densities and matched to a Wigner form for lower densities. 35 In Model 2, this detailed 

calculation is replaced by a simple empirical correlation energy, taken to be a sum of Wigner-

type contributions from the electrons and holes: 36 

f. =- c 
corr -1/3 + / n a moe 

c 
(12) 

where m0 c is the electron optical mass and mh is a hole mass, here the infinite-stress optical 

mass. The constants a and c are chosen to match the value and first derivative of Eq. (12) to 

the Model 1 correlation energy at the equilibrium density for the "ideal" system (infinite-stress 

electrons, zero-stress holes in the kinetic energy). Values for a, c, and the masses are given in 
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Table I. 

Models ~ and 4 represent attempts to determine the effect of a dependence of the 

correlation energy on the hole mass, which varies with density and stress. 28 Both models are 

similar to Model 2: the correlation energy has the form of Eq. (12) and is matched to Model 1 

in the same way as Model 2. In Model 3, mh is the optical mass averaged over the longitudinal 

and transverse components of the two hole bands (see the curves labelled mopt in Figs. 3c and 

4a of Ref. 28). In Model 4 we use the integrated density-of-states mass (see the curves mjj1 

and m~~~ in Figs. 1c and 2a of Ref. 28) averaged over the two hole bands. 

Models 5 and 6 were chosen to illustrate two extreme cases in which both the exchange a11.! 

correlation energies are calculated using the same band structure details. Model 5 uses an 

exchange-correlation energy appropriate for zero stress, while Model 6 uses one appropriate for 

infinite stress. The correlation energies are the FSC results of Kalia and Vashishta, 33 and are 

very similar to models considered by Kirczenow and Singwi. 24
•25•30 

Variations among the exchange-correlation energies are investigated conveniently by 

considering ratios of different models. Models 1, 5, and 6 are compared to Model 2 in Figs. 1 

and 2 for Ge and Si, respectively. In these models, the density dependence is independent of 

stress. Model 2 was selected as the normalization model because it uses a simpler form for the 

correlation energy. The maximum spread between these models is only about 15% for Ge and 

10% for Si over a range of two orders of magnitude in density. Several of the FSC models 

appear to exhibit small oscillations in the figures. It should be emphasized that these 

oscillations, relative to Model 2, do not occur in the individual exchange-correlation energies. 

t 

They are artifacts of the fitting polynomials. It is clear, fiowever, tnat-th·e-curva-t-ur-e-of-t-he-------­

exchange-correlation energy may not be well represented by certain models. This will be 

important for the calculation of the critical point and is discussed further, along with the dashed 

curves, in Section IVB. 
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III. Results: Ground-State Properties 

In this section we present results for the ground-state properties of the electron-hole liquid 

in < 111 >-stressed Ge and < 100>-stressed Si. First we compare results for the six models 

with each other and with other calculations. Next we discuss a possible phase transition 

associated with the emptying of the upper electron valleys in Ge. Finally, we compare the 

results at T=2K with the available data and give guidelines for extrapolating to the infinite­

stress limit. 

A. Comparison of Models 

The ground state of the EHL occurs at the density for which the free energy per electron­

hole pair is a minimum at T=OK. It is convenient to have the computer search for the 

associated zero in the pressure, as in Eq. (1 b). The ground state densities n0 are shown as a 

function of compressive stress O" in Figs. 3 and 4 for Ge and Si, respectively. According to 

convention, compressive stresses are negative and are expressed in kgf/mm2, where 1 kgf = 

9.80665 Newton. In both figures, part (a) shows the results for the models based on FSC 

correlation energies, while part (b) shows the results for the models which use Wigner-type 

correlation energies. Arrows indicate the values which _should be most nearly correct at zero 

and infinite stress (Models 5 and 6, respectively). 

As expected, all the models show the same general trends with stress: 0) A fairly rapid 

decrease in· density occurs near the critical stress a e• where EF = Esepl and the upper electron 

valleys become depopulated. The density change is larger for Ge due to the greater change in 

the number of occupied valleys. (2) The density remains nearly constant between a e and <T h• 

where EF = E5~1 and the lower hole band becomes depopulated. (3) A slight kink in n0 occurs 

at the stress <T b• followed by ( 4) a further gradual decrease in density which is still apparent at 

stresses much greater than ub. As shown below, -uh::::::: 6 kgfjmm 2 in <111>-stressed Ge 

and -ub::::::: 37 kgfjmm2 in <100>-stressed Si. Indeed, the equilibrium density changes by 

over a factor of 2 in Si and by approximately a factor of 4 in Ge after uh. In Models 1, 2, 5, 
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and 6 this stress dependence comes entirely from the hole kinetic energy contribution and 

arises from the residual nonparabolicity of the occupied (IMJI=1/2) valence band. Thus the 

valence bands do not decouple until they are split quite far apart in energy21
·:

2
•
27 (see also 

Section IIIC). 

The results· for Model 3 show an oscillation in the equilibrium density associated with a local 

maximum in the hole optical mass used in the correlation energy. Model 4 does not exhibit an 

oscillation, since the hole density-of-states mass changes monotonically with stress. The kink 

associated with uh is more pronounced for Si because the hole mass is changing more quickly. 

Models ..; an.: ~ !'redict the lowest high-stress densities due to the significant change in the hole 

mass with stress. 

While Models 2, 3, and 4 are very similar at low stresses and show greater differences at 

high stresses, the opposite is true for Models 1, 5, and 6. The spread among the results for the 

latter models is nearly 50% at zero stress but only -10% at infinite stress. 

Our results may be compared to other calculations. For Ge, Model 6 is virtually identical to 

one model used by Kirczenow and Singwi24 and is similar to the model used by Liu et al.; 22
•
23 

the results are correspondingly similar. The second model used by Kirczenow and Singwi does 

not correspond to any of the present models. Their results are most similar to Model 1, except 

that their equilibrium density falls off more rapidly at high stresses, somewhat like Model 4. 

Similar comments apply to a comparison with other calculations 22
•
23

•
25 for Si. However, we 

note that we have used deformation potentials for Si which are different from those implied by 

---~---~Kirczenow-and_Singwj.~As shown in Table I, the deformation potentials used here yielded a 

ratio of conduction to valence band splitting E:pt!Eshpl = 3.2, compared to a ratio of 1.81 used by 

Kirczenow and Singwi.37 For Ge we used a ratio Escpi/Es~l = 2.9, in agreement with the ratio 

used by Kirczenow and Singwi.24 

The ground-state energy per pair, fG, is shown for all six models in Figs. 5 and 6. A rather 

sudden change in slope occurs at the stress u e· The EHL is bound with respect to free excitons 

., 
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if lfGI is greater than the exciton binding energy Ex. For infinite stress Ex is the excitonic 

Rydberg,38 which is 2.65 meV forGe and 12.85 meV for Si. These values are shown as dashed 

lines in Figs. 5 and 6. For zero and intermediate stresses the exciton structure is complicated 

due to the valence-band degeneracy and the conduction-band anisotropy. 39 Experimental values 

for the binding energy of the lowest zero-stress exciton state are 4.15 me V for Ge40 and 

14.7 meV for Si.41 Independent of the details of the variation of Ex at intermediate stress, 

which has been neither measured nor calculated, the binding energy of the liquid with respect 

to free excitons is expected to decrease rather rapidly with stress at low stresses. This effect has 

been .:!:'~erved both in Ge42 and in Si.20•43 Comparing to the dashed lines in the figures, our 

calculations predict a bound liquid state at all stresses, with the exception of Models 3 and 4 

above -u ::::::; 23 and 13 kgfjmm2, respectively, in Ge and Model 4 above -u ::::::; 44 kgfjmm2 in 

Si. 

For further calculations it is unnecessary to consider so many models. We note that a 

bound liquid state has been observed in Si (Ge) at high stresses where Model(s 3 and) 4 does 

(do) not predict binding (see Section IIIC) .. In addition, since the hole mass variations in 

Models 3 and 4 were omitted from the exchange energy, both models probably overestimate 

the effect of the changes in the valence band on the exchange-correlation energy. These 

models will not be discussed further. Among the models based on FSC correlation energies, 

we select Model 1 as a reasonable average. The Wigner-based Model 2 provides a useful 

complement sirice the correlation energies agree in value and slope at one point but have 

different curvatures and density dependences. Thus Models I and 2 will be compared in detail. 

Numerical results for several ground-state properties of the EHL are listed in Table III for 

selected stress values for Models 1 and 2. In addition the Model 5 zero-stress and Model 6 

infinite-stress results are listed, along with experimental val?es for zero stress. 1 The first stress 

is slightly greater than -ue, so that the upper electron valleys are depopulated. Similarly, the 

second stress is slightly greater than -uh, so that only one valence band is populated. The final 

stress is a few times -uh and illustrates that further changes occur before the high-stress limit 
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is attained. 

B. Possible Phase Transition in Ge Near u e 

We noted in the previous section that a rapid change in the equilibrium d~nsity occurs just 

below the critical stress u e· Our detailed calculations for Models 1, 5 and 6 in Ge showed27 that 

the pair free energy has two minima as a function of density in a very narrow range of stresses 

{.6.u ;::::; 0.1 kgf/mm 2) around u e· At T=O, the true ·ground state of the system is associated 

with the minimum having the lowest energy fa. As the stress changes the relative energies of 

the two minima change. Thus the calculations predict a discontinuous decrease in n0 {i.e., a 

phase transition) as tht- :tr-:s!: increases. This is indicated in Fig. 3a by dashed lines. The 

possibility of such a discontinuous change in density was noted independently by Kirczenow 

and Singwi24 but seems less clear for the equilibrium limit in their calculations. 

The prediction of a double minimum in the free energy for Ge is not model independent: 

Models 2, 3 and 4 predict a rapid but continuous change in n0 (see Fig. 3b). Andryushin et al. 44 

used a model in which the valence band changes were ignored and which employed a 

Combescot-Nozieres form2 of the correlation energy; they found no phase separation. On the 

other hand, Kastal'skii's Hartree-Fock calculation (no correlation energy) does predict a double 

minimum.45 Corresponding calculations for < 100>-stressed Si 25
•
27

•
44 predict that the double 

minimum does not occur for that system. 

We examined the free energy curves for Ge in some detail27 and found that the height of 

the energy barrier between the two minima was very small, less than ::::::o.004 meV or 0.05K. 

--------W-het-her-t-w.o--lllinima_o_c,cur_,_as for examQle in Model 1, or only one minimum, as for example 

in Model 2, depends very sensitively on the details of the density dependence of the correlation 

energy in the range n:::::: (0.6-1.5} X 1017cm-3• The ratio of the exchange-correlation energies 

for Models 1 and 2 varies between 1.000 and only 1.005 in this range. It is difficult to 

distinguish between the mathematical representations on a first-principles basis. 
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Whether or not a discontinuous change occurs in the density it is clear from Fig. 3 that n0 

should change by approximately a factor of two in a very narrow range of stress, perhaps a few 

tenths of a kgffmm2• Some recent data, 19 discussed in the next subsection, appear to agree 

with this prediction. 

For the case of < 1 00>-stressed Si, the density decrease in Fig. 4 associated with the 

depopulation of the upper electron valleys is smaller and more gradual than for Ge. The 

change in the number of populated conduction bands is smaller in Si than in Ge. To 

investigate the effect of the relative change in the number of occupied conduction bands, a 

series oi art:5....-i<=~l models was constructed. The models were similar to Model 1 for <111 >­

stressed Ge, with the number v2 of upper electron valleys a parameter. The ground-state 

equilibrium densities for several models with v2 ranging from 1 to 9 are shown in Fig. 7. The 

curve labelled v2 = 3 thus corresponds to Ge, while the curve labelled v2 = 2 corresponds 

(qualitatively) to Si, since the electron valley degeneracy changes by the same factor of 3. It is 

clear that a large relative change in the conduction band degeneracy, which is accompanied by a 

rapid variation in the electron kinetic energy, tends to favor the formation of a double 

minimum. 

It would be very interesting if nature provided a real system with a large change in a band 

degeneracy. In the alloy Ge 1-xSix, with x ~ 0.15-0.20, the four Ge-like < 111 > conduction­

band minima and the six Si-Iike <100> minima are degenerate. 46 With the application of 

<Ill> uniaxial stress the < 100> valleys would remain degenerate while the <Ill> valleys 

would become stress-split. Thus the number of EHL-occupied conduction bands would change 

from 10 to 7 to l for increasing <Ill> stress. Other indirect semiconductor alloys in which 

the <111>- and <100>-associated minima become degenerate include the Ill-Y 

' pseudobinaries In 1-xGaxP (x::::::0.77) 47 and AlxGa 1-xSb (x~0.56) 48 • Although the EHL has not 

yet been observed in the latter materials, an experimental study of such a system would provide 

valuable insight into the nature of this proposed phase transition. 

C. Comparison with Experiment: The Approach to the Infinite-Stress Limit 
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The results of our calculations using Models 1 and 2 are compared with experiment in this 

section. Because experiments are typically performed with the sample immersed in pumped 

liquid Helium, the calculations have been redone for T=2K. The procedure. for the finite­

temperature calculation of the free energy was described in Section II. At T=2K the gas 

pressure o.utsi~e the EHL is sufficiently low that the equilibrium density is given very accurately 

by the free-energy minimum. 

We consider first the results for < 111 >-stressed Ge. Figure 8 shows the theoretical 

equilibrium density along with several sets of data obtained at temperatures in the range T = 

1.8-2.1~. N~tP. that Model 1 predicts a discontinuous density change at cr e even at T= 2K, but 

we find that the energy barrier between the minima is even lower than at T=O. The 

experimental densities were obtained by fitting luminescence spectra from the EHL · in 

uniaxially stressed Ge !6-JS or from the strain-confined EHL 14 or by fitting plasma resonance 

lineshapes for uniaxially stressed samples. 19 In all cases the lineshape analyses were performed 

using the appropriate energy- and stress-dependent hole masses. 27•28 Overall, theory and 

experiment are in reasonable agreement. The density decrease associated with the emptying of 

the upper electron valleys is not as pronounced in the data as in the theory. However, a 

decrease of a factor of two in density has been observed within a very narrow stress range, less 

than half a kgf/mm2, by Zarate and Timusk. 19 

While the data of Zarate and Timusk agree very nicely with Model 2, the data of Feldman 

et al. 16 and of Chou and Wong17 decrease more rapidly at higher stresses than the predictions of 

either model. Although care was taken to assure stress uniformity in the experiments, we note 

that residual nonuniformity will result in l:iroader spectra and-htgher-deduced-densiti~s.-.:r-lws,--------­

if the stress calibrations are accurate and if comparable lineshape analyses are performed, the 

narrower spectrum and lower density should be more nearly correct. 

The EHL work function 4> has been measured spectroscopically from EHL and exciton 

luminescence spectra at two stresses. Furneaux et al. 14
•
49 found 4> ::::: l meV at -cr ::::: 
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6 kgf/mm 2• A theoretical upper limit to 4> is obtained using the infinite-stress Ex; we find 

4> :::;1.15 meV for both models. In addition, Feldman et alY measured 4> = 0.65 ± 0.07 meV 

at -a= 13 kgfjmm2, compared to 0.82 meV for Model 1 and 0.77 meV for Model 2. The 

agreement is quite satisfactory. 

The electron and hole Fermi energies, E~ and E~. are shown in Fig. 9. The dashed lines are 

the conduction and valence band splittings, Escpt and Es~I· The critical stresses, determined by 

the relations Ep = Esph are 

-a c ~ 2.5 kgf/mm2 
} 

-ah ~ 6 kgf/mm2 Ge, T=2K, <111 >stress (13) 

for both models. At low stresses, the electron Fermi energy is forced to increase as the upper 

electron valleys begin to depopulate; the hole Fermi energy decreases gradually as the density 

decreases. The changes in the electron kinetic energy become increasingly important near a e• 

and the density and both Fermi energies decrease rapidly. Above a e• E; decreases smoothly, 

tracking the density, since there are no further changes in the conduction band structure. The 

changes in the hole Fermi energy between a c and uh reflect the changes in the population of 

the IMJI=3/2 valence band and in the hole mass. Above ah the decrease in E~ and n is due to 

the decrease in the density-of-states hole mass. 27 

Several of the general features of the theoretical curves in Fig. 9 are observed 

experimentally. The data of Thomas and Pokrovskii 18 and of Chou and Wong 17 are shown as 

circles and triangles, respectively, where the solid (open) symbols indicate E~ (Ep). The 

electron Fermi energy increases at low stresses, as predicted. However, the sharp decrease in 

both Fermi energies which should denote a c is not observed. Both theoretically and 

experimentally E~ > E~ below a c and above a h• while the reverse is true between a c and u h· 

The decrease in the experimental Fermi energies relative to theory at higher stresses parallels 

the densities in Fig. 8. 
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The Fermi energies can be used to predict the electric charge on electron-hole drops. An 

EHD can become charged if the electron and hole chemical potentials differ. Because the 

electron and hole contributions to the exchange-correlation energy are nearly equal, 50 the sign 

of the chemical potential difference is given by the difference in Fermi energies. If E~ > E~ 

then holes are less 'tightly bound to the EHD than electrons; holes evaporate, leaving the drop 

negatively charged. From Fig. 9 we find that EHD should be negatively charged in the stress 

ranges below a c and above ab, approximately, and positively charged in the intermediate range. 

These predictions are in agreement with the detailed calculations of Kalia and Vashishta33 for 

three ideal cases. Pokrovskii and Svistunova51 found experimentally that EHD are negatively 

charged in unstressed Ge, h~cc.me positively charged around -a ~ 2 kgfjmm2, and remain 

positively charged at least up to -a ~ 9 kgfjmm2
• The last result is difficult to interpret since 

the luminescence spectra obtained by the same authors52 indicate tha_t E~ has become larger 

than E~. Further experiments at higher stresses would help resolve this discrepancy. The 

experimental results for lower stresses, however, are in excellent agreement with the 

predictions. 

We turn now to a comparison with experimental results for < 1 00>-stressed Si. Figure 10 

shows curves for Models 1 and 2 of the full-width-at-half-maximum Iinewidth, tlE, of 

luminescence spectra computed for the T= 2K equilibrium densities. The procedure for 

calculating luminescence spectra at finite stress has been discussed previously.28 We show 

calculations of tlE to facilitate comparison with raw data independent of fitting procedures. The 

theoretical curves show a rapid decrease in the luminescence linewidth associated with the 

______ __,e=m=:PJYl!!g of the up2er electron valleys and a much smaller decrease associated with the 

emptying of the IMJI=3/2 hole band. The figure also shows several sets of experimental 

points. 20
•
53

-
57 With the exception of the points from Wagner and Sauer55 the data are in 

excellent agreement with each other. This is notable because· the spectra have been analyzed 

using different procedures, in some cases 54
•55•

57 incorrect ones, resulting in different deduced 

densities for the same value of strcss. 28 

·-

• 

t .. \ 
: 
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Although the experimental linewidth decreases with stress, the details of the decrease differ 

markedly from theory. In particular, the sharp decrease associated with the critical stress u e is 

not observed experimentally. We note that there should be no ambiguity associated with the 

conduction band deformation potential, since several measurements are in g9od agreement. 58 

However, the discrepancy between experiment and theory occurs in a stress range where the 

equilibrium limit used in the calculation may not be appropriate: interv<;11ley scattering is 

inhibited because Esepl is too small to allow the particip-ation ofT A phonons. 55 If the experiment 

samples non-equilibrium-limit conditions then the average observed density and linewidth will 

be larger than for the equilibrium Iimit.25 More efficient intervalley thermalization takes place 

above -25 kgfjmm2 (Ref. 55). This provides a qualitative understanding for the difference 

between theory and experiment in the intermediate stress range. 

The luminescence spectra obtained by Gourley and Wolfe were analyzed using energy- and 

stress-dependent hole masses. 20 Their deduced equilibrium densities are shown in Fig. II along 

with our T= 2K calculations. The density variations follow the linewidths of Fig. 10. At high 

stresses the experimental values are significantly smaller than theory. A similar but less 

pronounced difference was also found for Ge in Fig. 8. The importance of the discrepancy 

should not be underestimated, since the infinite-stress theory should be better than the zero-

stress theory due to the simplifications in the band structure. The relevant band structure 

features are the number of bands, the masses, and their anisotropy. The number of bands is 

known, and because the occupied bands are ellipsoidal for infinite stress the anisotropy can be 

incorporated in the masses. 

We have investigated the effect of a uniform change in both electron and hole masses on 

the EHL equilibrium density. 27 We suppose that the masses change in the kinetic energy and 

that the exchange-correlation energies are unchanged. For a mass decrease of 10%, we find 

that the equilibrium densities decrease rather uniformly for all stresses by nearly 25% in 

Model I and by ~35% in Model 2. The Fermi energies and the luminescence linewidth have a 

smaller decrease, ~8%. On the other hand, in extracting the density by fitting a luminescence 
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spectrum, a given spectrum would be assigned a density about 15% larger. The net effect of 

these changes in Fig. 11 would be to bring both theoretical curves and the data nearly into 

coincidence at high stresses. Thus a reduction of the electron and hole masses by -10% at 

high compressive stress could remove some of the current discrepancies between theory and 

experiment. 

Let us examine several possibilities for changes in one or both masses. First, our 

calculation of the hole masses 28 ignored the effects of the split-off valence band and fourth­

order (k4
) terms which have been discussed by Hasegawa. 59 We find that including the split-off 

valen\..:: hand results in only a small change in the density-of-states hole mass at the stresses 

attained in experiments: ~1.7% for -u = 165 kgfjmm 2 along <1·00> in Si and for 

-u = 20 kgfjmm2 along < 111 > in Ge. In addition, this mechanism increases rather than 

decreases the hole mass. 60 The fourth-order terms become less important at high stresses. 

Second, the reduction in the average band gaps with stress should be accompanied by a 

d~crease in the carrier masses. These decreases may be simply estimated using the k·p result 

m-1 
- E;-1 and a typical value lOmeV/kbar = 1meV mm2/kgf for the change in E8 with stress. 

The relevant gaps are direct gaps, i.e., E0 -0.9eV and E1-2.3eV in Ge61 and E0 -4.2eV and 

E2-4.5eV in Si.62 At the highest stresses attained in experiments, the masses would decrease 

by -1-2% in Ge and -4% in Si. A third possibility is the renormalization of the carrier 

masses within the EHL by many-body effects. It has been found both theoretically63•64 and 

experimentally65
•
66 that for unstressed Ge the masses within the EHL increase by ~ 10% 

relative to the bulk masses. The stress dependence of this mass renormalization is not known. 

---------..:we-conGI-udc--t-ha-t-d-ecreases-in_the_carrier_masses bx as much as 10% at high stresses cannot be 

reliably predicted by these considerations. 

The electron and hole Fermi energies for Si are shown in Fig, 12, where the solid circles 

indicate EF and the open circles E~. We find the following theoretical values for the critical 

stresses: 
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-u e :::::: 10 kgf/mm 2 
} 

..._, 37 k f/ 2 Si, T=2K, < 100> stress . 
-uh- g mm 

(14) 

The qualitative theoretical behavior of E~ and E~ can be understood for Si in the same way as 

for Ge. We note that the dashed line which indicates Esepl crosses the experimental points near 

their maximum. A similar feature occurs in Fig. 9 for Ge. This deviation from theory may be 

associated with the inappropriate use of the equilibrium limit in this stress range. In spite of 

the quantitative differences between theory and experiment, we note that E; > E~ at all 

stresses. Thus EHD should be negatively charged at all stresses in Si, in contrast to the 

situation for Ge. There are no experimental results concerning the charge on EHD in Si. 

Two experimental measurements of the EHL binding energy are available for stressed Si. 

Kulakovskii et al.67 found ¢ = 2 ± 0.2 meV at a stress -u = 48 kgfjmm2
• We find 

theoretical upper limits of 2.40 me V for Model 1 and 2.50 me V for Model 2. In addition, 

Wolfe and Gourley68 measured ¢ = 1.5 ± 0.5 meV at a stress -u = 90 kgfjmm 2
, compared 

to 1.84 meV for Model 1 and 2.01 meV for Model 2. The agreement between theory and 

experiment is satisfactory: as expected, ¢ decreases at higher stresses. 

We consider finally the th~ infinite-stress limit of the EHL in Ge and Si. This limit is 

important because the simplifications in the band structure should make theories more 

tractable. Since infinite stress is impossible to attain experimentally, it is necessary to 

understand what constitutes a stress "high enough" that the valence band nonparabolicity is 

negligible or to have a method for extrapolating to infinite stress. Our calculations show that 

the properties of the EHL are still changing at stresses much greater than uh. The T= 2K 

equilibrium densities for Ge and Si are replotted as a function of 1 f u in Figs. 13 and 14, 

respectively, where the arrows indicate uh. Data points from the sources for Figs. 814•16-19 and 

11 20 are also shown. In Ge, at -u = 20 kgfjmm 2
, the largest experimental stress to date, the 

theoretical densities are still twice their infinite-stress values. To obtain densities within 20% of 

the infinite-stress value, stresses in the range -u <; 70 kgfjmm 2 would be required for Ge and 

-u <; 150 kgfjmm 2 for Si. 
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Data for somewhat lower stresses can be used, however, to extrapolate to infinite stress. 

For example, Fig. 13 shows that a linear extrapolation (on an n vs. 1/ u semilog plot) would be 

appropriate for stresses greater than ~15 kgf/mm2• A different extrapolation procedure used 

by Thomas and Pokrovskii 18 was inappropriate because it was based on only a few data points, 

all obtained at rather low stresses. While the data of Zarate and Timusk19 agree well ,with 

Model 2, their densities are larger than those obtained by Chou et al. 16
•
17 and should be treated 

with caution. Therefore, is not possible to make a reliable extrapolation to infinite stress based 

on current data for Ge. For Si, it is evident from Fig. 14 that such a linear extrapolation 

procedure should be reasonable for stresses above ~40 kgfjmm2• The data of Gourley and 

Wolfe20 extend well into this range. Our extrapolation yields an infinite-stress density 

n ~2.8XI0 17cm-3 (T ~ 1.4K in the experiments). 

IV. Results: Finite Temperature 

In this section we are interested in the variation of EHL properties with temperature. First 

we shall consider the systematic variations at low temperatures, which involve derivatives of 

ground-state properties. Then we will consider the critical point of the electron-hole liquid-gas 

system. Finally, we comment briefly on scaling relations for EHL parameters. 

A. Low-Temperature Variations; Compressibility 

The usual procedure for studying the properties of the EHL at low temperatures is a . 

perturbation treatment. At sufficiently low temperatures, EHL properties vary as T2, just like 

any other degenerate Fermi system. The systematic low-temperature variations depend on 
: 

derivatives of ground-state properties. In this section we const<Ier-four quantiti-es:-t-he-------­

isothermal compressibility, KT, and quantities which describe the low-temperature variations of 

the equilibrium density (c5n), chemical potential (<5,.), and total Fermi energy (c5E)· 

The following definition of the isothermal compressibility is valid for any density and 

temperature: 
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K-fl e -v ( ap )NT 
av · 

= 2n2((n,T) + n3((n,T); (15) 

where the prime denotes differentiation with respect to density at constant te.mperature. The 

second line uses Eqs. (lb) and (9). For the ground state 

(16) 

where 

(17) 

is the curvature of the free energy. The ground state compressibilities for Models 1 and 2 are 

shown as a function of stress for Ge and Si in Figs. 15 and 16, respectively. The second 

derivative f~ was calculated numerically. The overall increase in KT(n0 ) with stress is primarily 

due to the decrease in n0 • At densities just above those where the upper conduction and 

valence bands empty, the free energy is relatively flat so its curvature is relatively small, 

resulting in anomalous peaks in the compressibility. The anomalies occur just below the critical 

stresses u e and u h• and their size depends on how drastic the carrier redistribution is. Because 

the predicted increase in KT(n 0 ) just below u e is so large for both Ge and Si, experimental 

measurements in this range of stresses would be particularly interesting. Two measurements of 

the compressibility have been obtained in stressed Ge. We have found, 69 for T=1.9K and 

' 
-u ::::: 5.5 kgf/mm2

, that KT ::::: 0.067 ± 0.017 cm2/dyne (n:::::o.47X10 17cm-3), compared to a 

theoretical value of 0.041 cm2/dyne for Model 1. In addition, Ohyama et al. 70 obtained 

KT ::::: 0.023 ± 0.002 cm2/dyne for T = 0 and a similar but unspecified stress. Because the 

latter authors did not take into account the compression of the liquid by the strain well, 

however, we believe that their result could underestimate the true value by as much as a factor 

of 3.69 In view of the complexity of the measurements, the agreement is fairly good. 

The parameters On, 011 , and oE are defined from the following relations: 1 
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(18a) 

14(T) = JL(O) - CJ,.(kT) 2 , CJ,. in mev-1 (18b) 

(18c) 

Because of the complications due to the band splitting and nonparabolicity, the derivation of 

these quantities will be outlined here. We use a T=O expression for the exchange-correlation 

energy, so the pair free energy for finite T can be written 

f(n,T) = fkin(n,T) + fexcor(n,O). ( 19) 

At low temperatures the kinetic energy can be rewritten as 

(20a) 

where 

(20b) 

Note that 'Y is a function of density via the Fermi energy and that Eq. (20) can be used 

separately for electrons and holes. The density of states is given by Eq. (7). The quantity -y, 

which is related to the beat capacity, is a monotonically decreasing function of the density 

except in a narrow range of densities where the occupation of the upper v2 bands is small (but 

nonzero). At the density corresponding to EF(O) - Espl the derivative '"Y'(n) is discontinuous. 

Thus anomalies occur in quantities which depend on I' at stresses just below u e and u h· 

We note that the validity of the low-temperature expansi.on requires 0 < E~~) << 1 and 

kT 
0 < << 1. For the special case EF = Espl• then, Eq. (20) is invalid. For other 

EF(T)-Espl 

cases, these conditions may be fulfilled by restricting the expansion to sufficiently low 
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temperatures. 

Equations ( 19) and (20a) may be combined to give 

(21) 

writing out explicitly the electron and hole contributions to the low-temperature correction. If 

the equilibrium density at the temperature T is writteri 

n(T) = n0 + .6.n, (22) 

then the following equa•ion :s easily obtained: 

(23) 

to first order in .:ln. Using Eqs. (16), (17), (18a), (22), and (23), «5 0 may be written 

(24) 

The results for «5 0 are shown in Fig. 17a for Ge and in Fig. 18a for Si. The complicated stress 

dependence is of course a combination of the components in the formula. For most stresses 'Yc 

and 'Yb decrease as a function of density, so that «5 0 is positive. Thus, as is familiar from 

unstressed Ge and Si, the electron-hole liquid expands with temperature. However, at stresses 

just below q c and qb• «5 0 becomes negative, implying initial thermal contraction. Because of the 

restricted range of conditions for the thermal contraction and because of the difficulties 

associated with the measurement of all the o quantities, the observation of a negative «5 0 would 

be very difficult indeed (but very interesting). 

The quantity «5,. describes the variation in the chemical potential with temperature. At a 

!ow-temperature equilibrium density the chemical potential can be written 
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p(T) ""' p(n(T),T) = f(n0+~n.T) 

(25) 

to first order in ~n. Here we have used Eqs. (Ic), (21), (22), and the fact that f is a minimum 

at a low-temperature equilibrium density. Using the definition in Eq. {18b), 

(26) 

The results for Ge and Si are shown in Figs. 17b and 18b, respectively. The enhancement just 

below a e and uh shows the behavior of 'Ye(n) and 'Yh(n), respectively, at the associateu 

densities. The broader u e-related structures in Si, as compared to Ge, reflect the more gradual 

emptying of the upper electron valleys. The discontinuity at u e for Model 1 in Ge arises from 

the discontinuity in the density. 

The quantity oE describes· the variation in the total Fermi energy Et01 = EF + EP with 

temperature. There are actually two distinct contributions to the change in a (hole or electron) 

Fermi energy: the first is due to the change in equilibrium density with temperature, while the 

second is an explicit temperature dependence at constant density. 1 Thus we may write27 

(27) 

where 

(28a) 

and 

(28b) 

In Eq. (28a) the prime indicates a derivative with respect to density, while in Eq. (28b) the 

prime indicates a derivative with respect to energy. These expressions are true for electrons or 
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for holes, with separate (additive) contributions required. The parameter liE may be written as 

follows, using Eqs. (18c), (27), and (28): 

(29a) 

where 

(29b) 

and 

o'(Ef(O)) D'CEP(O)) 
----+-----
D(Ef(O)) D(ENO)) 

Ef(O) + Ef(O) 
(29c) 

For most stresses liE is dominated by the first contribution, which is due to the change in the 

equilibrium density. Just below CTc and uh, however, the second contribution becomes more 

important, because of the rapid change in the density of states at the Fermi level. The results 

for liE are shown in Fig. 17c forGe and in Fig. 18cfor Si. These curves are very similar to the 

curves for o0 in Figs. I7a and l8a, with the exception just mentioned. Note that it is easy to 

verify that the expressions for o0 , o,., and liE in Eqs. (24), (26), and (29) simplify for 

unstressed Ge and Si to the usual expressions. 1 

Numerical results for KT(n0 ) and the o quantities are listed in Table IV for the same models 

and stresses as in Table III. In comparing Models 1 and 2, it is useful to remember that the 

quantities in the table depend on derivatives of the free energy (or a related quantity) and 

sometimes on high powers of the equilibrium density. Close agreement requires very detailed 

similarities between the models. 

Measurements of the quantities discussed in this section are sparse. Zero-stress values are 

listed in the table and are in reasonable agreement with theory. Feldman et al. 15 found \ 

o0 = 6.7 ± 2.0 me\'2 at 13 kgf/mm 2 in Ge, to be compared to theoretical values of 5.1 and 
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3.4 mev-2 for Models 1 and 2, respectively. Kulakovskii et al. 71 found o0 = 0.21 ± 0.3 mev-2 

for Si at an unspecified stress, probably in the range 50-80 kgf/mm 2• The corresponding 

theoretical values are :::::::0.18 and ::::::o.24 mev-2 for Models I and 2, respectively. No 

experimental values foro,. or oE have been published for either stressed Ge or·stressed Si. 

B. The Critical Point 

Thermodynamically, the definition of the critical point is 

~] =r~] =0 rav T,N ( aV2 
T,N ' 

(30a) 

which may be rewritten using Eqs. (I b), (lc), and (9): 

~]=r~]=o Fn T [an2 T · 
(30b) 

Thus the critical point corresponds to the inflection point in the chemical potential versus 

density. By performing the calculation for a plasma of electrons and holes, we assume that 

other species such as excitons, trions, and biexcitons are not important near the critical point. 

This scheme was first used by Combescot8 and has been followed in other calculations of the 

critical point at zero and infinite stress. 

The finite-temperature kinetic energy contribution was computed exactly, as described in 

Section IIA, and temperature-independent exchange-correlation energies were used. In 

addition, in order to obtain meaningful results for Model 1, it was necessary to modify the 

correlation energies. As shown in Figs. 1 and 2 the Model 1 correlation energies containsligllt _______ _ 

anomalies which result from the polynomial fit; these anomalies are greatly magnified in the 

second and third derivatives which determine the cri~ical point. To circumvent this 

mathematical problem we fitted the original Model 1 correlation energies to a simple Wigner 
I 

form, consisting of a single term in Eq. (12), over an intermediate density range corresponding 
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to r5=2 to 3, and then extended the calculation to higher and lower densities as needed. This 

procedure is reasonable since the correlation energy is expected to have a Wigner-type density 

dependence for r5> 2. 32 The modified Model 1 exchange-correlation energies are shown as 

dashed curves in Figs. 1 and 2. 

The results. for the critical temperature Tc and critical density nc in Ge are shown in Figs. 19 

and 20, respectively, while the results for Si are shown in Figs. 21 and 22. The results for 

Models 1 and 2 are quite similar, considering the sensitivity of the calculation to details such as 

curvature of the correlation energy. The qualitative stress dependences are analogous to the 

behav~-:;: of ~round-state properties: gradual decreases in both Tc and nc with stress, with a 

more rapid ~hange associated with the depopulation of the upper electron valleys and a leveling 

off at high stresses where the valence-band changes become more gradual. The reduction in Tc 

with stress follows from the reduction in the liquid binding energy c/>·, while the decrease in nc 

approximately parallels the decrease in the ground state density n0 except in the immediate 

vicinity of u e· 

Numerical results for the critical point at selected values of the stress are given in Table IV, 

where they are compared to other calculations of the critical point. We show in the table the 

results of a T2 calculation for Model 5 at zero stress and Model 6 at infinite stress. These 

models are practically identical to those used by Vashishta, Das, and Singwi7 but the results 

differ substantially. This is due to an error in the calculation of Ref. 7 and those. results have 

now been revised, in agreement with the values in the table. 29
•
32 We show for comparison the 

results of Reinecke et al. 72 calculated using their noninteracting fluctuation model, 73 which also 

uses a T2 expansion. The values for Tc obtained in this model are lower than those obtained 

using the plasma model, while the values for nc are consistently larger. Within the plasma 

model, the T2 expansion overestimates both Tc and nc, compared to the corresponding exact-T 

calculation. Other theoretical estimates8•
9

•
74

•
75 of the critical point in unstressed or infinitely 

stressed Ge and Si using different approximations for the exchange-correlation energy are in 

remarkably good agreement with the values in the table. Also, Liu and Liu 23 have calculated 
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the critical point at two values of the stress for Ge and Si, using energy-dependent masses and a 

T2 expansion for the kinetic energy. Taking this into account, their results are in reasonable 

agreement with our calculations for the same stresses. 

We wish to reiterate the systematic differences mentioned above between T2 and exact-T 

calculations. The low-T expansion is only valid if 0 < ~TF << 1 and 0 < E ~i << 1 for 
F spl 

both electrons and holes. We find that these conditions are violated at the critical point for all 
. l 

stresses in both Ge and Si: the ratios fall outside the ranges (0 to 0.25) and (0 to 0. 75) for 

Models 1 and 2, respectively, in Ge and outside the range (0 to I) for both models in Si. In 

view of this, we tind it surr:rising that the differences between the two types of estimates are 

not larger. 

Experimental measurements of the critical point in unstressed Ge. and Si are listed in Table 

IV. Measurements for stressed Ge include those of Furneaux et al. 49 (Tc = 4.7-5.7K for 

-a ~ 6 kgf/mm2) and Feldman et al. 15 (Tc = 3.5 ±0.5K and nc = 7.7 ±2.0XI015cm-3 for 

-a= 13 kgf/mm 2). These measurements are in reasonable agreement with the present 

calculations. In < 1 00>-stressed Si, Forchel et al. 76 found Tc =~ 14.0 ± 0.5K and 

nc = 1.8±0.3X1017cm-3 for -a= 35 kgf/mm2• Kulakovskii et al.71 found Tc = 14± 1.5K for 

an unspecified stress, probably in the range -a = 5o~so kgf/mm 2• Finally, Gourley and 

Wolfe20
•
68 find Tc = 12-22K for -a= 90 kgf/mm 2 and Tc :<:: 20K for -a= 163 kgf/mm2• 

Until the large experimental discrepancies are resolved it is difficult to make meaningful 

comparisons with theory. 

C. Scaling Relations 

We comment briefly on scaling relations of properties of electron-hole liquids. An early 

suggestion was made 1 that certain combinations of EHL properties should scale from one 

system (i.e., band structure) to another. More recently, Reinecke and Ying71 have proposed on 

the basis of theoretical arguments a revised set of scaling quantities. They assume that the 
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conduction and valence bands are parabolic and that the exchange-correlation energy can be 

written fcxror - nP, using the same value of p for different systems. In this 'model the proposed 

scaling quantities are nJn0 , lfGI/KTc, and KTJnC (K/~) 1-3P, where ~ is an optical average of 

the electron and hole masses, in units of the free electron mass. In addition, they propose that 

p::::::: 0.25. 

The validity of these ideas can easily be tested by computing the above quantities as a 

function of stress for Ge and Si, using Models 1 and 2. We find the following ranges of values: 

nc 
-::::::: 0.08-0.14 (31a) 
no 

lfGI 
kT ::::::: 7.8- 10.2 

c 
(31 b) 

[ ]

1/4 
~K K _ ~ 
1i4 -. - 0.016-0.025 K em . 
no ~ 

(31c) 

We have excluded from consideration a small range of stresses around u e• where we find 

somewhat larger variations. The ratio nJn0 , in particular, changes rapidly in the vicinity of u e• 

as can be seen by comparing Figs. 3 and 4 with Figs. 20 and 22. The values obtained for these 

quantities using the fluctuation model77 are different from the present values obtained using the 

plasma model for the critical point. The experimental valu~s given in Tables III and IV for 

unstressed Ge, for which there· is good agreement among different experiments, seem to favor 

the fluctuation model. However, the variations with stress, exchange-correlation energy model, 

and material from Eq. (31) are expected to persist. We find, for example, that the extreme 

values for the scaling quantities are not necessarily obtained at zero or infinite stress. We 

conclude that the "universal" scaling quantities, originally proposed for model systems, have 

somewhat more variation when considered as functions of stress. This undoubtedly occurs 

I 
because the simple form for the free energy used in Ref. 77 is not applicable at finite stresses. 
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Table I. Parameters used in the calculations. 

Parameter Ge Ref Si Ref 

Electrons 

11\elmo 0.08152 a 0.1905 b 

mcf/mo 1.588 a 0.9163 b 

mdclmo 0.2193 c 0.3216 c 

moefmo 0.1192 d 0.2588 d 

(/>(Pc) 0.8401 e 0.9490 e 

- Pe(zero stress) 4 6 

11 e(infinite stress) 1 ( < l11 > stress) 2 ( <100> stress) 

-EsepV<1 1.05 
,. 

0.86 f • 

Holes 

,.t-(pb)(zero stress) 0.710 g 0.746 g 

-Es~.fa 0.362 h 0.272 h 

Holes: infinite stress < 111 > stress <100> stress 

mbtfmo 0.1302 0.2561 

mbq/mo 0.04037 0.1989 

mdhf'mo 0.08811 c 0.2354 c 

mohf'mo 0.07474 d 0.2337 d 

1f(pb) 0.9698 e 0.9986 e 

Miscellaneous 

IC 15.36 j 11.40 j 

a(Model 2) 0.1917 k 0.2128 k 

c(Model 2) 4.461 k 8.552 k 
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Table I Refs. 

a~ B. W. Levinger and D. R. Frankl, J. Phys. Chern. Solids 20, 281 (1961). 

b. J. C. Hensel, H. Hasegawa, and M. Nakayama, Phys. Rev. 138, A225 (1965). 

d. m,;-1 = +(2m;-1 + m1-
1
) for electrons or holes. 

e. M. Combescot and P. Nozieres, J. Phys. C 5, 2369 (1972). 

Zu 
f. Units: meV tnm2/kgf. For <111> stress (Ge), -EsepVCT = 4 

9
C

44
• For <100> stress 

-
(Si), -E{p1u = C -::_~ . Values for Zu are from I. Balslev, Phys. Rev. 143, 636 (1966). 

II 12 

Values for the C's forGe are from M. E. Fine, J. Appl. Phys. 26, 862 (1965) (T=l.7K). 

Values for the C's for Si are from H. J. McSkimin, J. Appl. Phys. 24, 988 (1953) 

(T=78K values multiplied by 1.002 to extrapolate to low temperature). 

g. W. F. Brinkman and T. M. Rice, Phys. Rev. B7, 1508 (1973). 

d 
h. Units: meV mm2/kgf. For <111> stress (Ge), -E~pVCT = For <100> stress v'3c44 · 

(Si), -E~pVCT = C ~ . Values for d (Ge) and b (Si) are from J. C. Hensel and K. 
II 12 

Suzuki, Phys. Rev. B9, 4219 (1974) and from J. C. Hensel and G. Feher, Phys. Rev. 129, 

1041 (1963), respectively. Values for the C's are as in Ref. f. 

i. Calculated from Ge and Si. valence band structures: see S. M. Kelso, Phys. Rev. B (in 

press), Rev. 28. 

j. R. A. Faulkner, Phys. Rev. 184, 713 (1969). 

k. Model 2 is described in the text. If n has units l0 17cm-3 and the masses are multiples of 

the free electron mass, then a is dimensionless and cis in meV. 
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Table II. Electron and hole treatments in the exchange-correlation energy models. 

Exchange Energy Correlation Energy 
Model . Type Electrons Holes Electrons Holes 

FSC infinite stress zero stress infinite stress zero stress 

2 Wigner infinite stress zero stress infinite stress infinite-stress 
optical mass 

3 Wigner infinite stress zero stress infinite stress stress-dependent 
optical mass 

4 Wigner infinite stress zero stress infinite stress stress-dependent 
density-of-states mass 

5 FSC zero stress zero stress ::~ .. {) stress zero stress 

6 FSC infinite stress infinite stress infinite stress infinite stress 



Table III. Setected numerical results for the ground state properties of the EHL in stressed Ge and Si. 

Material, -a no -fa E~ E~ KT{n0 ) 

Stress 
Direction {kgf/mm2) Model {1017 cm-3) (meV) (meV) (meV) (cm2/dyne) . . 
Ge, <Ill> Zero Ex pt. a 2.3±0.1 6.1 ±0.2 2.53 ±0.02 3.90±0.02 {2.3 ±0.6)Xto-3 

5 2.21 5.88 2.40 3.73 3.12X1o-3 

1 2.70 6.14 2.75 4.27 2.3IX1o-3 

2 2.24 6.03 2.43 3.77 2.87XI0-3 

3 0.642 4.06 2.66 2.16 1.80X10-2 

2 0.659 4.06 2.71 2.19 1.38X1o-2 

7 0.435 3.66 2.05 2.32 3.75XI0-2 

2 0.491 3.65 2.23 2.45 2.42X10-2 

20 1 0.200 3.22 1.:..2 2.19 9.05Xl0-2 

2 0.259 3.15 1.45 2.49 5.98X10-2 

Infinite 0.098 2.96 0.76 1.92 1.25X10-I 

2 0.112 2.82 0.83 2.10 1.09Xl0-1 

6 0.109 3.07 0.81 2.06 1.39Xl0-1 

Si, <100> Zero Expt.a 33± 1 23 7.8±0.1 14.4±0.1 {3.4±2)Xl0-5 

5 32.3 21.97 7.50 13.79 5.96X10-5 

1 31.8 22.52 7.43 13.64 6.69Xl0-5 

2 29.3 22.42 7.03 12.91 6.47X10-5 

12 1 13.6 17.42 8.75 9.32 1:58XI0-4 

2 13.1 17.42 8.55 9.14 1.78X10-4 

40 9.04 15.47 6.68 10.25 2.88X10-4 

2 8.18 15.54 6.25 9.74 3.98X10-4 

100 6.22 14.60 5.20 9.94 4.22X10-4 

2 5.41 14.78 4.74 9.17 5.63Xl0-4 · 

Infinite 4.74 14.09 4.34 9.46 5.50X10-4 

2 4.20 14.35 4.01 8.73 6.40Xl0-4 

4-:-4"() 1-4-fl-1 4,-1-7 2.,_08 s.99Xto-4 

a The experimental data at zero stress arc compiled from J. C. Hensel, T. G. Phillips, and G. 
A. Thomas, Solid State Physics, ed. by H. Ehrenreich, F. Seitz, and D. Turnbull, Vol. 32 
(Academic Press, 1977), p. 88. 
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Table IV. Selected numerical results for properties of the EHL in stressed Ge and Si at finite temperature. 

Material, -u 6D 6,. c5E Tc De 

Stress 
Direction {kgf/mm2) Model {mev-2) {mev-1) (meV-2) {K) {1017 cm-3) . 
Ge, <ll1> Zero Ex pt. 0.9-l.48 •b 2.2±0.9b 0.71 ±0.14b 6.5-7 .or.g.h o.5-1.or.g.h 

5 1.24 1.69 0.92 8.18j 0.5oi 

Flue. 6.73k 0.66k 

1 0.98 1.47 0.73 6.95 0.28 

2 1.15 1.67 0.85 7.96 0.31 

3 1 2.91 2.41 1.91 5.05 0.065 

2 2.25 2.37 1.52 5.92 0.087 

7 1 3.90 2.75 2.47 4.59 0.042 

2 2.67 2.57 1.76 5.39 0.062 

20 1 5.65 3.53 3.61 3.95 .0.018 

2 4.19 3.07 2.66 4.53 0.028 

Infinite 1 5.94 4.53 4.52 3.61 0.010 

2 5.41 4.14 4.07 3.99 0.014 

6 6.84 4.23 5.05 3.72i 0.017j 

Flue. 2.91k 0.032k 

Si, <100> Zero Ex pt. 0.055 ±0.020c,d 0.3-1.7c,d,e 0.05 ± 0.025c,d,e 26-3oe.i,22-241 10-14e,i,1 

5 0.104 0.508 0.078 28.6i 5.1i 

Flue. 23.5k 9.6k 

1 0.117 0.513 0.086 27.4 3.7 

2 0.110 0.542 0.082 26.7 3.5 

12 1 0.136 0.599 0.094 23.2 1.7 

2 0.152 0.613 0.104 22.6 1.6 

40 1 0.169 0.685 0.113 20.4 0.90 

2 0.222 0.727 0.146 20.0 0.82 

100 0.193 0.750 0.135 19.2 0.63 

2 0.246 0.823 0.175 18.8 0.58 

Infinite 1 0.231 0.829 0.174 18.6 0.52 

2 0.258 0.898 0.196 18.3 0.48 

6 0.246 0.864 0.186 24.4i 0.78j 

Flue. 14.2k 1.42k 
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Fig. I. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Fig. 10. 
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Figure Captions 

Exchange-correlation energy per electron-hole pair for Models 1, 5, and 6, 

normalized to Model 2, for <Ill >-stressed Ge. The dashed curve is discussed in 

Section IVB. 

As Figure 1, for < 1 00>-stressed Si. 

Ground-state density n0 versus stress u for the EHL in <Ill >-stressed Ge. (a) 

Models 1, 5, and 6; (b) Models 2, 3, and 4. The arrows indicate the Model 5 

zero-stress and Model 6 infinite-stress densities. 

A:. ~i.;!lre ~, fc r < 1 00>-stressed Si. 

Ground-state electron-hole pair energy versus stress for the EHL in < 111 >­

stressed Ge. The dashed line is the infinite-stress exciton binding energy. 

As Figure 5, for <100>-stressed Si. 

Equilibrium density versus stress for Ge-like bands with one lower and v2 upper 

electron valleys. The Model 1 exchange-correlation energy is used. 

Equilibrium density versus stress for Ge at T=2K. The curves are the results for 

Models 1 and 2. The data points are taken from Refs. 18 (e), 16(" ), 17 (A), 14 

(+),and 19 (D). 

Electron and hole Fermi energies, Et and Ep, versus stress for Ge at T= 2K. The 

dot-dashed curves are Model 1, while the solid curves are Model 2. The dashed 

lines indicate the energy splitting, Esph between upper and lower bands for 

electrons and for holes. The data points for Et (solid symbols) and EP (open 

symbols) arc from Refs. 18 (circles) and 17 (triangles). 

Luminescence linewidth versus stress for the EHL in <100>-stressed Si at T=2K. 

The curves are the results for Models I and 2. The data points are taken from 

Refs. 53(.). 54 (LI), 55 (A), 56("), 57(~). and 20 (e). 



Fig, I L 

Fig. I2. 

Fig. 13. 

Fig. 14. 

Fig. 15. 

Fig. I6. 

Fig. 17. 

Fig. I8. 

Fig. 19. 

Fig. 20. 

Fig. 2L 

Fig. 22. 
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Equilibrium density versus stress for Si at T=2K. The curves are the results for 

Models I and 2, and the data points are from Ref. 20. 

Electron and hole Fermi energies versus stress for Si at T=2K. Notation for the 

curve~ is similar to Fig. 9, while the data points for Ef ( •) and ·Ep ( o) are from 

Ref. 20. 

Equilibrium density versus 1/u forGe at T=2K. The curves are the results for 

Models I and 2, and the data points are the same as in Fig. 8. The arrow indicates 

the critical stress uh. 

As Figure i 3, f;Ji ~i. The data points are from Ref. 20. 

Isothermal compressibility of the EHL ground state as a function of <Ill> stress 

in Ge, for Models 1 and 2. 

As Figure 15, for < 100> stress in Si. 

(a) o0 , (b) o,., (c) oE as a function of <111> stress forGe. Models 1 and 2 are 

shown. 

As Figure I7, for <100> stress in Si. 

EHL critical temperature versus <Ill> stress in Ge, according to Models I and 2. 

EHL critical density versus <111> stress in Ge, for Models I and 2. 

EHL critical temperature versus <I 00> stress in Si, for Models I and 2. 

EHL critical density versus <I 00> stress in Si, according to Models I and 2. 
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