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The deposition of extracellular amyloid β is one of the hallmarks of Alzheimer’s 

disease and cerebral amyloid angiopathy. The formation of amyloid fibrils is one 

manifestation of the misfolding and aggregation of amyloid β into a prion 

conformation, which then induces the misfolding of additional copies of amyloid β in

a self-propagating process. Prions were first discovered for the PrP protein1,2 and are

the cause of Creutzfeldt-Jakob and mad cow diseases. In 1994, soon after the 

discovery of PrP-prions, self-propagating forms of unrelated proteins in yeast and 

other fungi were found to have beneficial, rather than pathological, roles in these 

organisms.3 Thus, prions mediate diverse processes in organisms separated by 

hundreds of millions of years of evolution. Given the early adoption of the term 

prion to describe these agents in all organisms, from fungi to humans, we do not 

agree with the suggestion to instead use the term proteopathic seed to describe 

aggregated proteins that adopt alternative shapes and undergo self-propagation, as

Elsa Lauwers and colleagues4 propose in their Personal View in The Lancet 
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Neurology. To remove any ambiguity, we propose that the prion nomenclature 

should include the misfolding protein—eg, tau-prion, α-synuclein-prion, and amyloid 

β-prion.

Lauwers and colleagues4 argue that cerebral amyloid angiopathy is an amyloid β-

prion disease. As in PrP-prion diseases, both Alzheimer’s disease and cerebral 

amyloid angiopathy present in familial and sporadic forms, and amyloid β pathology

can be transmitted to animals.5,6 Human-to-human spread of amyloid β-prions can 

occur through iatrogenic transmission of cerebral amyloid angiopathy,7 similar to 

PrP-prion diseases. However, iatrogenic transmission is rare compared with sporadic

and familial Alzheimer’s disease and cerebral amyloid angiopathy.4 Moreover, 

acquired cerebral amyloid angiopathy is expected to be even rarer in the future, 

because of safeguards4 that have eliminated the human-to-human transmission of 

PrP-prions. Looking more broadly at neurodegenerative diseases, a study with 1.5 

million recipients did not show evidence of transmission of Alzheimer’s disease by 

blood transfusion,4 so a considerably larger sample size would be needed to reach a

statistically significant endpoint. Thus, although Lauwers and colleagues4 advocate 

for increased surveillance and epidemiological analyses, they also discuss the need 

to balance the cost–benefit relationships of such studies. Given the prevalence and 

burden of sporadic and familial Alzheimer’s disease and cerebral amyloid 

angiopathy, large outlays of funds might be better directed to tackle these diseases 

than very rare iatrogenic cerebral amyloid angiopathy or yet-to-be-detected 

iatrogenic Alzheimer’s disease. Lauwers and colleagues4 also advocate for the 

uniform adherence to hospital safeguards against possible transmission; however, 

these safeguards are already implemented in many hospitals and laboratories 

worldwide.

Furthermore, Lauwers and colleagues4 highlight progress in the development of 

animal and cellular models for evaluating the propagation of prions. Building on the 

cellular assays for tau-prions,8 assays developed for amyloid β-prions showed that 

patient longevity and the severity of Alzheimer’s disease are related to the 

infectivity of tau-prions and amyloid β-prions rather than the amount of insoluble, 

inert amyloid plaques in post-mortem brain samples (Alzheimer’s disease is a 

double prion disease).9 Thus, cellular and animal models provide insight into 
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pathways that either exacerbate or inhibit prion propagation, which might lead to 

cures for neurodegenerative diseases. Nevertheless, although animal and cellular 

models can reproduce many aspects of prion propagation, it is important to 

continuously ask how well these models reproduce the precise features responsible 

for disease and to make improvements as needed.

The detailed molecular structures of the amyloid fibrils formed by tau, α-synuclein, 

and amyloid β derived from human meninges have been reported.10 Such precise 

structures will facilitate the design of new diagnostics and perhaps also 

therapeutics; the excitement caused by these structural studies is palpable. 

However, before drug design can progress apace, we must establish the 

relationships between the structures of large inert amyloid deposits, the 

corresponding infective prions, and the toxic species responsible for cell death. 

Indeed, there has been a litany of failures in Alzheimer’s disease therapeutics—

measuring inert products of Alzheimer’s disease pathogenesis, such as plaques and 

tangles, has been unproductive.9 Understanding the mechanism of prion spread and

toxicity will lead to therapeutics that can potentially halt disease progression.

To quote Winston Churchill, “Now this is not the end. It is not even the beginning of 

the end. But it is, perhaps, the end of the beginning.” Perhaps we are at “the end of 

the beginning,” and within the foreseeable future, we will be able to initiate the 

development of effective therapeutics for Alzheimer’s disease based on advances in

amyloid β-prion biology.
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