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Abstract 
 
GeoChip is a comprehensive functional gene array that targets key functional genes involved in 
the geochemical cycling of N, C, and P, sulfate reduction, metal resistance and reduction, and 
contaminant degradation.  Studies have shown the GeoChip to be a sensitive, specific, and high-
throughput tool for microbial community analysis that has the power to link geochemical 
processes with microbial community structure.  However, several challenges remain regarding 
the development and applications of microarrays for microbial community analysis.  
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Microarrays allow for the examination of thousands of genes at one time in a rapid, high-
throughput, and parallel manner.  The first microarray reported was designed to examine gene 
expression in Arabidopsis thaliana (Schena et al. 1995).  Since then, numerous types of 
microarrays have been developed and widely used for gene expression studies.  The utility and 
power of microarrays was further expanded when the potential for microarrays to study 
microorganisms in the environment was tested (Guschin et al. 1997).  Currently, three main 
types of arrays are being used for environmental studies (Zhou and Thompson 2002; Zhou 2003; 
Gentry et al. 2006).  (1) Phylogenetic oligonucleotide arrays (POA) contain probes derived from 
16S rRNA or other conserved genes designed to examine the phylogenetic relatedness of 
microorganisms or determine community composition.  (2) Community genome arrays (CGA) 
use whole genomic DNA from microbial isolates to determine the relatedness of pure culture 
isolates or to probe for specific microorganisms or genes (Wu et al. 2004; Zhang et al. 2004; Wu 
et al. 2008).  (3) Functional gene arrays (FGA) contain probes for genes that encode enzymes or 
proteins involved in specific functions of interest (Wu et al. 2001; Gentry et al. 2006; He et al. 
2007).  The primary advantage of FGAs is that they allow for the simultaneous examination of 
numerous functional gene groups at one time (Wu et al. 2001; Zhou and Thompson 2002; Gentry 
et al. 2006; Wu et al. 2006; He et al. 2007; Wagner et al. 2007; Zhou et al. 2008) unlike 
traditional PCR-based molecular techniques, which allow examination of only a few genes at a 
time.  Because FGAs provide information regarding the potential functional capabilities of 
microbial communities, this type of array is ideally suited for linking microbial communities 
with geochemical processes.  In addition, compared to 16S rRNA gene-based phylogenetic 
arrays, FGAs can provide higher taxonomic resolution at the species-strain level (Tiquia et al. 
2004).  Due to their usefulness and versatility, this chapter will focus on the development and 
application of FGAs for examining microbial communities.  Several recent reviews are available 
on the use of other types of microarrays for environmental studies (Gentry et al. 2006; Sessitsch 
et al. 2006). 

OVERVIEW OF GEOCHIP ANALYSIS 
The first generation of FGA, a prototype containing 100 functional genes (nirS, nirK, 

amoA, and pmoA) probes, was reported by Wu et al. (2001).  Since this report, several other 
functional gene microarrays have been produced (Cho and Tiedje 2002; Bodrossy et al. 2003; 
Rhee et al. 2004; Gentry et al. 2006; Zhang et al. 2006), including some designed for specific 
groups of interest such as N cycling (Tiquia et al. 2004), contaminant degradation and metal 
resistance (Rhee et al., 2004), antibiotic resistance (Call et al. 2003), or for specific locations, 
such as acid mine drainage sites (Yin et al. 2007).  The most comprehensive FGA reported to 
date is the GeoChip 2.0 (He et al. 2007), a high density FGA, which targets ~10,000 functional 
genes (~24,000 50-mer gene probes) from 150 gene families involved in the geochemical cycling 
of C, N, and S, metal reduction and resistance, and organic contaminant degradation.  GeoChip 
2.0 has been used to investigate biogeochemical, ecological and environmental processes (He et 
al. 2007; Leigh et al. 2007; Yergeau et al. 2007; Wu et al. 2008; Zhou et al. 2008).  A new 
generation GeoChip (GeoChip 3.0) has been designed and is currently being tested and 
validated.  This new GeoChip will have approximately 47,000 probes, representing 292 gene 
families (unpublished data).  This array will target not only many important functional genes 
already on GeoChip 2.0, but also other functional genes such as the phylogenetic marker gyrB.  

A diagram illustrating the protocol for array design, sample preparation, and data analysis 
is shown in Figure 1.  The first step is determining functional genes to be included on the array.  
These genes should encode for an enzyme or protein critical to the processes of interest, should 
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be conserved while still providing enough sequence divergence to allow design of specific 
probes, and should have a large set of sequences available in public databases (Gentry et al. 
2006).  Selected keywords are used to automatically search public sequence databases (e.g., 
GenBank) and resulting sequences are downloaded based on the key words.  To ensure that all 
included sequences are correct, the downloaded sequences are confirmed using HMMER 
alignment (http://hmmer.wustl.edu/) with seed sequences, which have had protein function and 
identity confirmed through experimental methods.  The selected seed sequences are then stored 
in a database for future use.  Those sequences which pass the HMMER alignment are deposited 
to a local sequence database.  Single or multiple probes for each selected sequence are designed 
with CommOligo (Li et al. 2005) by considering sequence homology, continuous stretches and 
free energy (He et al. 2005b).  To ensure probe specificity, all designed probes are checked 
against the GenBank database, and the best probes are then synthesized and used to construct the 
array. 

 
Figure 1.  Design and use of GeoChip.  See text for full explanation of all steps.  DB, database. 
 
File:  GeoChip A high throughput genomic tool_fig 1.TIFF 

 
Community DNA is generally extracted and purified from environmental samples using 

well established methods (Zhou et al. 1996). If environmental samples do not yield sufficient 
DNA for GeoChip analysis, whole community genome amplification (Wu et al. 2006) is used to 
obtain enough DNA (usually, 1-100 ng) for hybridization.  The amplified DNA is then labeled 
with fluorescent dyes (e.g., Cy3, Cy5) and then hybridized to the array at 42 °C and 50% 
formamide.  After hybridization, the array is imaged and then digitally analyzed using 
microarray analysis software, which measures signal and background intensities.  The resulting 
raw data is uploaded to the GeoChip data analysis pipeline (http://ieg.ou.edu/).  The data is then 
evaluated for quality, cleaned by removing poor and low intensity spots, and normalized.  The 
normalized data is stored in an experiment database and can then be used for further statistical 
analysis using the data analysis pipeline.  

Several of these steps are critical in terms of sequence inclusion, probe design, and 
success of hybridization.  Because they are used to validate inclusion of downloaded sequences, 
the selection of seed sequences is critical and chosen sequences must be carefully evaluated.  
Another critical step in array design is determining probe design criteria, as this will greatly 
affect specificity.  For GeoChip 2.0, He et al. (2007) used gene-specific probe criteria of ≤90% 
sequence identity, ≤20-base continuous stretch and ≥-35 kcal/mol free energy.  Group-specific 
probes required the above requirements and ≥96% sequence identity, ≥35-base continuous 
stretch and ≤-60 kcal/mol of free.  Based on these criteria, all probes are expected to be highly 
specific to their corresponding targets and minimal false positive hybridizations occurred at 45 to 
50 °C and 50% formamide.  Finally, DNA quality and purity are of utmost importance in 
obtaining quality hybridization results. 

KEY ISSUES FOR MICROARRAY APPLICATION 

Much progress has been made over the past decade regarding the use of microarray 
technology for environmental studies (Wu et al. 2001, 2004, 2006; Adey et al. 2002; Rhee et al. 
2004; Liebich et al. 2006; Gao et al. 2007; He et al. 2007).  Several key issues are discussed 
below.   
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Quality of nucleic acids.  Obtaining high-quality DNA or/and RNA from environmental 
samples is the key to successful FGA analysis.  While DNA extraction and purification has been 
successful using an established freeze-grind method (Zhou et al. 1996; Hurt et al. 2004), some 
samples are still difficult to purify to the necessary level.  Extraction and purification of mRNA 
is more of a challenge.  The instability and low abundance of environmental mRNA makes 
isolation difficult.  Only a few studies have examined community mRNA from environmental 
samples using FGAs (Hurt et al. 2001; Dennis et al. 2003; Gao et al. 2007).  Peplies et al. (2006) 
used community rRNA for a 16S rRNA array and Parro et al. (2006) used community RNA for a 
Leptospirillum ferrooxidans array.   

Probe coverage.  The number of sequences available in the public databases is increasing 
exponentially. In order to maintain sufficient coverage of known sequences and keep GeoChip 
up-to-date and relevant, continual updates are necessary.  Our probe design system (Figure 1) 
allows automatic updates using the predetermined keywords and seed sequences.  However, with 
the currently available probe design software, it is still difficult and time consuming to design 
and test such large numbers of sequences and probes.  In addition, with the increasing number of 
sequences available, the number of probes on the GeoChip will increase as well.  As such, the 
maximum capacity of arrays is still a limiting factor.    

Specificity.  Designing specific gene probes for community samples is difficult since 
environmental sequences could display high sequence divergence and a majority of 
environmental sequences are unknown.  Oligo-based probes generally provide higher specificity 
than PCR products due to the ability to customize the oligo sequence and omit conserved areas 
of the sequence (Denef et al. 2003; Rhee et al. 2004).  Specificity can be adjusted by changing 
the hybridization stringency.  Hybridizations performed at 65 °C required sequence similarities 
of >87% for hybridization to occur (Wu et al. 2001).  Under low stringency conditions (45 °C), 
detection of sequences divergent (70-75%) from the probe sequence was possible, but no cross-
hybridization occurred (Wu et al. 2001).  Rhee et al. (2004) showed that 50-mer oligonucleotide 
FGAs were able to distinguish sequences <88 to 94% identity at 50 °C and 50% formamide.  As 
mentioned previously, probe design criteria are important in determining specificity.  He et al. 
(2007) used criteria for similarity, stretch and free energy to increase specificity (discussed 
above).  

Sensitivity.  The detection limit for FGAs based on current technology is 5% of the 
microbial community (Bodrossy et al. 2003).  So, only the dominant community members can be 
detected.  The relatively low sensitivity of slide-based arrays is primarily the result of the amount 
of probe (<20 pg/spot for glass slides vs. >1 µg/spot for membranes) (Cho and Tiedje 2002).  So, 
one strategy for increasing sensitivity is to increase probe concentration (Cho and Tiedje 2002; 
Relogio et al. 2002; Zhou and Thompson 2002), although this could also result in loss of signal 
intensity (Denef et al. 2003).  Increasing the probe length increases sensitivity (Denef et al. 2003; 
He at el. 2005a), but also decreases specificity (Relogio et al. 2002).  Several sample preparation 
and hybridization strategies can be applied which can increase sensitivity.  A relatively new 
amplification technique, whole community genome amplification (WCGA), can be used to 
increase the concentration of all community DNA; including low abundance sequences (Wu et 
al. 2006).  With WCGA, 1 to 250 ng of community DNA could be representatively amplified.  
The use of different types of dyes or labeling products can increase sensitivity.  For example, the 
use of cyanine dye-doped nanoparticles for labeling has been shown to increase sensitivity 10-
fold (Zhou and Zhou 2004) as has tyramide signal amplification labeling methods (Denef et al. 
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2003).  An additional strategy to increase sensitivity include development of more sensitive 
signal detection systems (Cho and Tiedje 2002; Zhou and Thompson 2002).     

Quantitative applications.  One goal of microarray analysis is to correlate signal intensity 
with gene abundance.  Several studies have shown correlate between these two variables.  For 
example, a linear relationship (r=0.94) between signal intensity and DNA concentration has been 
observed for both pure culture DNA and community DNA over a concentration range of 0.5 to 
100 ng using PCR probes (Wu et al. 2001).  With 50-mer oligo probes, a linear relationship 
(r=0.98-0.99 for each probe) was observed over a concentration range of 8-1000 ng (Tiquia et al. 
2004).  However, while several studies have suggested that microarray results can be 
quantitatively accurate, there remains the difficulty of accurately determining when differences 
in signal intensity arise from gene abundance or from sequence divergence. 

Statistical analysis.  GeoChip produces a massive amount of data.  The sheer volume of 
this data makes it difficult to determine the best way to analyze and utilize the data.  While 
several statistical methods have been used with GeoChip data (e.g., diversity indices, cluster 
analysis, principle component analysis, DCA, CCA), additional tools and techniques are needed 
to rapidly analyze and visualize such huge datasets.   

APPLICATION OF FGAS FOR ENVIRONMENTAL STUDY 
GeoChip 2.0 is the most comprehensive FGA currently published for studying various 

biogeochemical, ecological, and environmental processes (He et al. 2007).  This and earlier 
FGAs have been used to study the functional potential and diversity of microbial communities 
from a variety of samples and have shown the power of GeoChip to link microbial community 
functional structure to environmental processes and as a generic tool for profiling the differences 
of microbial community structure.  Recent microbial community studies include:  (i)  Examining 
community changes during bioremediation of U(VI).  GeoChip 2.0 was used to examine U-
contaminated groundwater and showed a significant correlation between U(VI) concentrations 
and the amount of cytochrome genes detected (r=0.73, p<0.05) indicating the importance of this 
group of microorganisms in U(VI) reduction (He et al. 2007).  (ii)  Monitoring microbial 
community shifts in a diesel bioremediation system.  Rodríguez-Martínez et al. (2006) examined 
a fluidized bed reactor fed diesel fuel contaminated-groundwater in Vega Baja, Puerto Rico.  
Several genes involved in the degradation of diesel were detected including those involved in the 
degradation of phthalate, biphenyl, cyclohexanol, benzoate, and naphthalene.  An increase in the 
amount of genes involved in anaerobic degradation of organic contaminants was also observed 
over time.  These results were consistent with other evidence that suggested that the system 
shifted to a predominantly anaerobic process over time.  (iii)  Investigating microbial N and C 
cycling in Antarctic sediments.  Yergeau et al. (2007) examined Antarctic sediments using 
GeoChip 2.0 and found that cellulose degradation and denitrification genes positively correlated 
with soil temperature.  (iv)  Examining the impact of different land use strategies on microbial 
soil communities.  Zhang and colleagues (2007) used GeoChip 1.0 to examine microbial 
functional changes under different land use strategies and found that diversity and functional 
gene numbers increased as soil organic carbon increased.  (v)  Determining spatial scaling of 
microbial communities in forest soil.  GeoChip 2.0 was used to assess the gene-area relationship 
of microbial communities in soils and found it to be relatively flat with less turnover than 
observed for plants and animals (Zhou et al. 2008).  (vi)  Examining the structure of marine 
sediment communities.  Examination of sediments from the Gulf of Mexico using GeoChip 1.0 
revealed increasingly unique communities with depth (Wu et al. 2008).  Genes involved in 
several of the key processes of this environment were detected.  In addition, it appeared that 
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several environmental parameters (depth, porosity, and concentrations of ammonium, phosphate, 
Mn(II), and silicic acid) may be important in shaping the structure of microbial communities in 
this environment.  (vii)  Characterizing the structure of deep sea hydrothermal vent 
communities.  Another study examined microbial communities from a mature deep-sea 
hydrothermal vent chimney and the inner and outer portions of a five-day old chimney (Wang et 
al. unpublished data).  The results indicated that microbial functional diversity is much lower in 
the inner chimney than the outer or mature chimnies.  These findings were confirmed by real-
time PCR and clone library results.  (viii)  Other studies.  GeoChip 2.0 has also been used to 
probe pure culture isolates for metal resistance genes (Van Nostrand et al. 2007), to detect active 
microbial populations in stable isotope probing experiments (Leigh et al. 2007), and to examine 
gene expression in microbial communities (Gao et al. 2007).  These studies indicated that the 
GeoChip is a powerful tool for analyzing microbial community functional structure.  

We have recently analyzed four soil samples from two oilfields, Daqing and Shengli, 
located in northeastern and eastern China, respectively (Liang et al. unpublished data).  Both 
sites had been contaminated with crude oil for more than a decade.  The samples were collected 
from uncontaminated (0.5% oil), low (4.9%), medium (6.0%), and high (16.2%) contaminated 
areas.  Interestingly, when all detected functional genes were used for hierarchical cluster 
analysis, the communities grouped based on geographical location with all samples from the 
Daqing oilfield grouping together while the community from the Shengli oilfield was separate 
(Figure 2), suggesting that distance was the most important variable in deciding functional 
community structure.  Canonical correspondence analysis (CCA) was used to further examine 
the relationship between functional genes and environmental variables (ter Braak 1986).  Using 
the two most significant geochemical parameters (pH and oil concentration) for these samples 
showed a very clear sample gradient based on oil concentration along the oil vector.  The results 
of this study also showed the power of GeoChip to profile microbial community differences 
related to hydrocarbon contamination and degradation. 

 
Figure 2.  Hierarchical clustering of functional genes. 
 
File:  GeoChip A high throughput genomic tool_fig 2.TIFF 

 

RESEARCH NEEDS 
While FGAs allow for the examination of functional potential and the presence of specific genes, 
they do not provide information regarding the actual activity of microbial populations.  However, 
a few studies have reported techniques which allow for the examination of microbial activity 
using FGAs.  Stable isotope probing was used to detect active community members involved in 
PCB degradation (Leigh et al. 2007).  Using mRNA for FGA hybridization, similar to the use of 
pure culture arrays, would allow for the determination of active community members (Dennis et 
al. 2003; Bodrossy et al. 2006; Gao et al. 2007).  Since all probes are selected from functional 
gene coding sequences, it is possible to detect microbial activity using RNA targets.  However, 
one difficulty with the use of mRNA in community studies, unlike for pure culture arrays, is the 
low abundance of mRNA in the environment.  A whole community RNA amplification 
procedure was recently published that overcomes this obstacle and allows for the examination of 
active microbial processes, even in samples with low abundance (Gao et al. 2007).  However, 
this protocol is complex and time consuming, so improved techniques for extraction of 
community RNA and subsequent amplification are needed.  
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