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The present work uses a reduced order model to study the motion of a buoyant vortex
ring with non-negligible core size. Buoyancy is considered in both non-Boussinesq and
Boussinesq situations using an axisymmetric contour dynamics formulation. The density
of the vortex ring differs from that of the ambient fluid, and both densities are constant
and conserved. The motion of the ring is calculated by following the boundary of the
vortex core, which is also the interface between the two densities. The velocity of the
contour comes from a combination of a specific continuous vorticity distribution within
its core and a vortex sheet on the core boundary. An evolution equation for the vortex
sheet is derived from the Euler equation, which simplifies considerably in the Boussinesq
limit. Numerical solutions for the coupled integro-differential equations are obtained. The
dynamics of the vortex sheet and the formation of two possible singularities, including
singularities in the curvature and the shock-like profile of the vortex sheet strength,
are discussed. Three dimensionless groups, the Atwood, Froude and Weber numbers,
are introduced to measure the importance of physical effects acting on the motion of a
buoyant vortex ring.

Key words: contour dynamics, vortex dynamics, vortex flows

1. Introduction

Vortex rings have attracted much attention from applied mathematicians and fluid
dynamicists over the history of vortex dynamics. Early studies can be traced back to the
work of Kelvin (1867) and Hicks (1884). Their theories for the steady motion of a vortex
ring assumed that the core is small and circular. The vortex core refers to the region
enclosed by a contour shown in figure 1. The area of that region allows us to define a
vortex core radius a. If a is very small compared to the radius of the vortex ring about
its axis of symmetry, we define it as a thin ring; otherwise the ring is “fat”. A detailed
description of the profile of the vortical core was missing until Fraenkel (1972) provided
an asymptotic formulation for small cross-section rings. Norbury (1972) found steady
“fat” vortex rings close to the Hill’s spherical vortex. Norbury (1973) then connected the
previous two solutions via a one-parameter family of steady vortex rings ranging from
thin to fat rings. This solution has an azimuthal vorticity distribution inside the ring

† Email address for correspondence: chc054@eng.ucsd.edu
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given by

ωφ = rΩ, (1.1)

where r is the radial distance to the axis of symmetry and Ω is constant. Then ωφ satisfies
the vorticity equation in axisymmetric geometry,

D

Dt

(ωφ
r

)
= 0, (1.2)

where D/Dt is the material derivative. We are using cylindrical coordinates (r, φ, z).

In general, classic vortex dynamics deals with incompressible, inviscid Euler flows. The
flows are dominated by vorticity and the fluid density is set constant throughout. Shariff,
Leonard & Ferziger (1989) provides a comprehensive review of vortex rings, while Shariff
& Leonard (1992) has a clear discussion of the formation, dynamics, interactions and the
stability of vortex rings. In many circumstances, e.g. in geophysical and environmental
settings, fluid flows are not only governed by vorticity but also by other physical effects.
The additional physics we want to address here is buoyancy, the combined effect of
density difference and gravity. Well-known example of buoyant vortices are the bubble
rings created and manipulated by dolphins (see Marten et al. 1996), which might be
important to understand animal behaviour. One can also observe bubble rings created by
human divers in the ocean or a swimming pool. A smoke ring can be created from a fireball
or a thermal plume, and smoke rings expelled from a volcano have also been observed
(Velasco Fuentes 2014). From a fluid dynamics perspective, the first study of buoyant
vortex rings was the theoretical work and laboratory observations of Turner (1957).
The theoretical study of Pedley (1968) confirmed Turner’s finding of the expansion of
a buoyant vortex ring in inviscid flows and predicted finite lifetimes for bubble rings.
Chang & Llewellyn Smith (2018) calculated the motion of thin buoyant vortex filaments
including a buoyant ring with a small inclination. However, these results are for thin
vortex rings whose core size is much smaller than their radius.

Buoyant vortex rings with large cores have been studied theoretically and numerically
by Lundgren & Mansour (1991) and Chen et al. (1999). Their calculations start from a
spherical bubble rising due to buoyancy. The bubble is penetrated by the surrounding
fluid from its bottom because of the gradient of hydrostatic pressure and then changes
its topology to a bubble ring. Lundgren & Mansour (1991) used a boundary-integral
method based on potential theory to calculate the motion of bubbles before and after
they turned into rings. A model equation similar to that in Turner (1957) and Pedley
(1968) was used when the vortex ring became very thin at later times. Chen et al.
(1999) used the incompressible Navier–Stokes equations to calculate the transition from
a spherical bubble to a bubble ring numerically. Another numerical study by Cheng,
Lou & Lim (2013) carried out three-dimensional DNS that showed that a bubble ring is
eventually destroyed by instability. The recent experimental studies of Vasel-Be-Hagh,
Carriveau & Ting (2015a) and Vasel-Be-Hagh et al. (2015b) investigate the formation
and the dynamics of bubble rings along with the viscous drag acting on a buoyant vortex
ring.

Here we use a contour dynamics method in axisymmetric geometry to study buoyant
vortex rings. Contour dynamics was first used by Zabusky, Hughes & Roberts (1979)
to calculate the nonlinear evolution of a vortex patch in two dimensions. It was later
adapted to axisymmetry in Pozrikidis (1986); Shariff et al. (1989); see also Riley (1998)
and Shariff, Leonard & Ferziger (2008). A detailed description and numerical techniques
of the method can be found in Dritschel (1989) and in the review of Pullin (1992).
Blyth et al. (2014) showed that buoyancy enters the vorticity equation through the
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baroclinic term. To take account of buoyancy, we assign constant densities ρ1, ρ2 to
the surrounding fluid and the vortex ring respectively. The density gradient becomes
a Dirac delta function on the interface and the baroclinic torque is zero everywhere
except on the interface. As a result, vorticity is generated on the interface and forms
a vortex sheet. An evolution equation for the vortex sheet is essential for buoyancy to
be included into the contour dynamics formulation. Other additional physics such as
magnetic force (see Hattori & Moffatt 2006; Llewellyn Smith & Hattori 2012) also enters
in the form of a vortex sheet. A review of contour dynamics method with additional
physics can be found in Llewellyn Smith et al. (2018). The evolution equation for vortex
sheet strength between different density fluids can be found in Baker et al. (1982) and
Baker & Xie (2011) for two-dimensional free-surface waves. A similar formulation was
used with gravity absent in Sohn & Hwang (2005) and Shin, Sohn & Hwang (2018) for
two-density flows. Tryggvason (1988) and Stock, Dahm & Tryggvason (2008) derived
an evolution equation for a vortex sheet to investigate the problems of Rayleigh–Taylor
instability and the interaction between vortices and a density interface.

Surface tension can also be important in the dynamics of buoyant vortex rings, and the
vortex sheet equation will contain a term representing surface tension. Studies including
surface tension in the vortex sheet dynamics are Baker & Nachbin (1998), Shin, Sohn &
Hwang (2014), Sohn (2015) and Shin et al. (2018). Most studies solve two-dimensional
problems and with an initially straight line or a slightly perturbed vortex sheet, although
Baker & Moore (1989) and Sohn (2015) study a circular vortex sheet in two dimensions.

In this paper, calculations for a vortex sheet in axisymmetry are carried out. In § 2, we
introduce axisymmetric contour dynamics and derive an evolution equation for the vortex
sheet on the interface using the Euler equation. The relevant dimensionless numbers in
this problem are also discussed. In § 3, we present our numerical approaches for solving
the coupled integro-differential equations in axisymmetric domain. Numerical results are
presented in § 4. We conclude in § 5.

2. Mathematical formulation

We consider a buoyant vortex ring in an ideal fluid. The governing equations are

∇ · u = 0, (2.1)

ρ
Du

Dt
= −∇p+ ρg. (2.2)

The cross-section of a vortex ring core forms a confined region in the r-z plane (see
figure 1) and the vorticity is zero everywhere except inside or on this contour. The
contour is material and represented by a parameterized curve R. Its evolution determines
the motion of the axisymmetric vortex ring. The flow is axisymmetric without swirl, so
the velocity field and the vorticity field are u = (ur, 0, uz) and ω = (0, ωφ, 0), respectively.
We can calculate the motion by evolving the contour using

dR

dt
= u, (2.3)

where the velocity is

ur = −1

r

∂ψ

∂z
, uz =

1

r

∂ψ

∂r
. (2.4)

The Stokes streamfunction is given by

ψ(r, z, t) =

∫∫
ωφ(r′, z′, t)G(r, z|r′, z′) dr′ dz′, (2.5)
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and satisfies the equation

1

r

(
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2

)
ψ = −ωφ. (2.6)

This differential equation is solved using the Green’s function

G(r, z|r′, z′) =

√
rr′

2π

[(
2

k
− k
)
K(k)− 2

k
E(k)

]
, (2.7)

where

k2 =
4rr′

(r + r′)2 + (z − z′)2
. (2.8)

Here K(k) and E(k) are the complete elliptic integrals of the first and second kind
respectively. The double integral in (2.5) is transformed into a contour integral using
Green’s theorem and the velocity field in (2.4) is obtained. The velocity on the boundary
is then evaluated and the contour is evolved in time. This technique is called contour
dynamics. More details of contour dynamics calculation for vortex rings can be found in
Pozrikidis (1986); Shariff et al. (1989); Riley (1998) and Shariff et al. (2008).

If a vortex sheet is present on the interface, the velocity will consist of contributions
from both the vortex sheet on the interface and the continuous vorticity inside. The latter
is referred to as a vortex patch. For a classic vortex ring with one density throughout the
flow, there is only a vortex patch. Riley (1998) gives a good discussion of axisymmetric
vortex patches. The continuous vorticity distribution is taken to be ωφ = rΩ, where Ω
is a constant (see § 1). Using Green’s theorem gives the contour integrals

up(r, z) =
Ω

r

∮
G cos θ′r′ ds′ r̂ +Ω

∮
[H cos θ′(z′ − z)−G sin θ′] ds′ ẑ, (2.9)

where s is the arc length and θ(r, z) is the angle between the outward normal to the
interface and the unit vector in z (see figure 1). All variables with primes in the integral
are functions of (r′, z′). The function G is given in (2.7), while

H(r, z|r′, z′) =
r′K(k)

π
√

(r + r′)2 + (z − z′)2
. (2.10)

For the vortex sheet, carrying out the integral in (2.5) along the interface and using
(2.4) gives the self-induced velocity of a vortex sheet with strength γ as (see Hattori &
Moffatt 2006)

us(r, z) = −1

r

∮
∂G

∂z
γ′ dξ′ r̂ +

1

r

∮
∂G

∂r
γ′ dξ′ ẑ, (2.11)

where ξ is a parameterisation without any specific physical significance that increases
clockwise along the contour (see figure 1). The contour is evolved using u = up + us in
(2.3).

2.1. The non-Boussinesq case

For a vortex ring whose density differs from that of the environment, the density jump
on the interface results in baroclinic generation of vorticity. Baroclinic torque creates a
vortex sheet on the interface. In axisymmetric geometry, the vortex sheet is composed
of vorticity perpendicular to the r-z plane, i.e. in the azimuthal direction. The interface
can be written as a closed curve R = (R(ξ, t), Z(ξ, t)), where ξ is the parameterisation
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r

z

ξ γ > 0ωφ = rΩ

ρ1 ρ2
g

n

t

θ

Figure 1: A schematic illustration of the contour in axisymmetric domain; ωφ and γ are
positive into the plane. The parameterisation ξ goes clockwise.

introduced earlier. The local tangent and normal vectors are

t =
∂R

∂ξ

∣∣∣∣∂R∂ξ
∣∣∣∣−1 , n =

∂t

∂s
κ−1, (2.12)

where κ is the curvature, s is arclength, and

∂s

∂ξ
=

∣∣∣∣∂R∂ξ
∣∣∣∣ = L (2.13)

is the arc length metric. The normal vector points out of the vortex.
On either side of the interface, the densities are ρ1 and ρ2, where the subscripts 1 and

2 indicate outside and inside. The corresponding velocities are u1, u2 and the vortex
sheet strength is defined by γ = L(u1 − u2) · t. The tangential velocity on the interface
is given by averaging velocities from either side, ū = (u1 +u2)/2. A Lagrangian velocity
following material points is defined by

ũ = ū + α
γ

2L
t. (2.14)

For α = 1 or −1, the material points follow the motion of outside or inside fluid
respectively (see Baker et al. 1982). Then velocities on either side of the interface are

u1 = ū +
γ

2L
t = ũ + (1− α)

γ

2L
t, u2 = ū− γ

2L
t = ũ− (1 + α)

γ

2L
t. (2.15)

Evaluating the Euler equation on both sides gives

∂u1

∂t
+ (u1 · ∇)u1 = − 1

ρ1
∇p+ g, (2.16)

∂u2

∂t
+ (u2 · ∇)u2 = − 1

ρ2
∇p+ g. (2.17)

We follow the procedure in Baker et al. (1982) to eliminate pressure. We first subtract
(2.17) from (2.16) and replace u1 and u2 in the advection term by ũ from (2.15), giving

d

dt

( γ
L
t
)

+
γ

L
t · ∇ũ− α γ

L
t · ∇

( γ
L
t
)

= −
(

1

ρ1
− 1

ρ2

)
∇p. (2.18)

A material derivative following Lagrangian points is defined as

d

dt
=

∂

∂t
+ (ũ · ∇). (2.19)
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Similarly, adding (2.16) and (2.17) together, and replacing u1 and u2 by ũ and ū gives

2
dū

dt
− α γ

L
t · ∇ū +

γ

2L
t · ∇

( γ
L
t
)

= −
(

1

ρ2
+

1

ρ1

)
∇p+ 2g. (2.20)

The ratio between the coefficients of the pressure gradient in (2.18) and (2.20) is the
Atwood number

A =
ρ1 − ρ2
ρ1 + ρ2

. (2.21)

Eliminating the pressure yields

d

dt

( γ
L
t
)

+
γ

L
t · ∇ũ− α γ

L
t · ∇

( γ
L
t
)

= −2A

[
dū

dt
− α

2

γ

L
t · ∇ū +

γ

4L
t · ∇

( γ
L
t
)
− g

]
.

(2.22)
To simplify the equation above, it can be shown that

1

L

dL

dt
= t · [(t · ∇)ũ], t · ∇ =

1

L

∂

∂ξ
. (2.23)

By projecting (2.22) on the tangential direction and using the Frenet–Serret formulas,

1

L

∂t

∂ξ
= κn,

1

L

∂n

∂ξ
= −κt, (2.24)

we obtain

dγ

dt
− α

2

∂

∂ξ

( γ
L

)2
= −2AL

[
t · dū

dt
− α

2

γ

L2

∂ū

∂ξ
· t +

1

8

1

L

∂

∂ξ

( γ
L

)2
− t · g

]
. (2.25)

This equation agrees with equation (2.15) in Baker et al. (1982), although their problem
is two-dimensional and they use complex variables and Bernoulli’s equation. We can
match each term to their two-dimensional formulation, so the vortex sheet dynamics are
the same in two-dimensional and axisymmetric flows. In this paper, we set α = 0, i.e. we
follow material points on the mean velocity so that ũ = ū. We now drop the tildes and
bars to obtain

dγ

dt
= −2AL

[
t · du

dt
+

1

8

1

L

∂

∂ξ

( γ
L

)2
− t · g

]
. (2.26)

A similar equation can also be found in Shin et al. (2018), although gravity is omitted
in their formulation.

The evolution equation for γ is coupled with (2.9) and (2.11). These equations can be
transformed into a Fredholm integral equation of the second kind for dγ/dt. Using (2.9),
(2.11) and the definition of the unit tangent, we have

t · du

dt
= t · dup

dt
+ t · dus

dt

=
1

R

(
− 1

L

∂R

∂ξ

∮
dγ′

dt

∂G

∂Z
dξ′ +

1

L

∂Z

∂ξ

∮
dγ′

dt

∂G

∂R
dξ′
)

+ f(R,Z, γ,u), (2.27)

where f is a function of R, Z, γ and u, provided in Appendix A. The evolution equation
of dγ/dt is coupled with the Lagrangian advection equation in (2.3).

2.2. The Boussinesq limit

When the density difference across the interface is small but gravity remains impor-
tant, we may assume ρ1 ≈ ρ2 in all terms except for gravity. This is the Boussinesq
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approximation. The evolution equation for γ in the Boussinesq limit is

dγ

dt
= 2ALt · g =

(
1− ρ2

ρ̄

)
Lt · g, (2.28)

where ρ̄ = (ρ1 + ρ2)/2 (other definitions are possible). In the Boussinesq approximation,
the acceleration term t · (du/dt) vanishes in the vortex sheet equation. This gives an ad-
vantage in solving the integro-differential equations numerically, since dγ/dt is no longer
determined by a Fredholm integral function and can be integrated by straightforward
time-stepping.

2.3. Surface tension

When a vortex ring consists of air or vapor inside a liquid, the pressure is discontinuous
across the interface. This dynamical jump is balanced by surface tension Ts,

p2 − p1 = κTs, (2.29)

where κ is the curvature of the interface. Typically Ts is a constant. We can replace the
pressure in (2.16) and (2.17) by p1 and p1 + κTs, respectively, then carry out the same
calculation as in § 2.1. We obtain

dγ

dt
= −2AL

[
t · du

dt
+

1

8

1

L

∂

∂ξ

( γ
L

)2
− t · g

]
+
Ts
ρ̄

∂κ

∂ξ
. (2.30)

The rate of change of the vortex sheet strength contains a contribution proportional to
the gradient of curvature along the interface when surface tension is present.

2.4. Dimensionless parameters

There are four dimensionless parameters for this problem. One is the aspect ratio of
the ring, S = a0/R0, where a0 is the initial radius of vorticity core and R0 is the initial
radius of vortex ring. Another dimensionless number can be taken as the Froude number

Fr =
Uc√
ga0

, (2.31)

where Uc is a velocity scale. We set Uc = a20Ω, which characterizes the translation of a
homogeneous ring. The time scale is a0/Uc = 1/(a0Ω). The vortex sheet strength γ can
be scaled by a0Uc while ξ has no dimension. A dimensionless form of (2.30) is then given
by

dγ

dt
= −2AL

[
t · du

dt
+

1

8

1

L

∂

∂ξ

( γ
L

)2
+

1

Fr2 t · ẑ
]

+
1

We

∂κ

∂ξ
, (2.32)

where gravity g = −gẑ. The last parameter in the dimensionless equation is the Weber
number,

We =
ρ̄U2

c a0
Ts

(2.33)

A special case is Ω = 0, when there is no continuous vorticity inside the vortex. We then
choose the velocity scale using Uc =

√
ga0, giving Fr = 1.

We call the third term on the right-hand side of (2.32) the buoyancy or source term,
since vorticity is created by baroclinic generation. The second term on the right-hand
side is the quadratic or nonlinear term. The first term is the dynamic-coupling term, in
which the dynamics of the contour is coupled to the evolution of the sheet strength. The
last term corresponds to surface tension.
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Domain Density
difference

Body
force

Surface
tension

Vortex
patch

Baker et al. (1982) 2D yes gravity no no
Krasny (1986a) 2D no no no no
Baker et al. (1993) 2D yes gravity no no
Hou, Lowengrub & Shelley (1994) 2D yes gravity yes no
Baker & Nachbin (1998) 2D no no yes no
Baker & Xie (2011) 2D yes gravity no no
Shin et al. (2018) 2D yes no yes no

Pozrikidis (1986) axisymm no no no yes
Shariff et al. (1989) axisymm no no no yes
Nitsche & Krasny (1994) axisymm no no no no
Nitsche (2001) axisymm no no no no
Hattori & Moffatt (2006) axisymm no magnetic no no
Llewellyn Smith & Hattori (2012) axisymm no magnetic no yes
Present work axisymm yes gravity no yes

Table 1: Previous studies on vortex sheet evolution compared to present work.

3. Numerical method

Before we start our discussion of the numerical scheme, it is worth surveying the
literature to identify similar problems that have been investigated. In table 1 we list
some references with calculations of vortex sheet evolution. The vortex sheet strength
does not evolve when density differences, body forces and surface tension all vanish. Once
density differences are introduced, the dynamic-coupled and quadratic terms in (2.32)
are nonzero. Body forces behave like a source in (2.32). The self-induced velocity of the
vortex sheet is calculated using the Biot–Savart law. If a vortex sheet is a closed contour
enclosing vorticity, the contribution from vortex patch (2.9) must be added.

Our numerical scheme consists of four main parts: an interpolation method to ap-
proximate the location of the contour and compute spatial derivatives, quadrature to
evaluate contour integrals, an integral equation to obtain the vortex sheet strength and
a time-stepping method to evolve the contour. The contour is discretised using a set of
Lagrangian points, i.e. material points, Xn in the r-z plane with n = 1, 2, . . . , N . The
initial contour is given by

R(ξ, 0) = R0 + a0 cos ξ, Z(ξ, 0) = a0 sin ξ (3.1)

for ξ ∈ [0, 2π); R0 is the initial radius of the ring and a0 is the radius of its core. For
small ring sizes, this is almost the steadily propagating solution of Norbury (1973). We
set R0 = 1 in all calculations. These Lagrangian points are evolved using (2.3),

dXn

dt
= un, (3.2)

where un is u evaluated numerically on Xn.
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3.1. Interpolation and spatial differentiation

Since the contour is a closed curve, it is natural to use a Fourier series to interpolate
between points,

R(ξ) =

N/2−1∑
k=−N/2

X̂k eikξ, (3.3)

where the X̂k are the Fourier coefficients of the Lagrangian points’ locations. Here k =
−N/2,. . . , −1, 0, 1,. . . , N/2−1 are the wavenumbers. The parameter ξ is equally spaced
in [0, 2π). The mth derivative along the contour is computed from the Fourier series

R(m)(ξ) =

N/2−1∑
k=−N/2

(ik)mX̂k eikξ. (3.4)

The spatial distribution of the vortex sheet strength γn is also interpolated using
Fourier series. A Fourier filter is used to cut off the highest one-third of the spectrum to
mitigate the the aliasing error from the quadratic term.

f̂(k) =

{
1, |k| 6 N/3
0, |k| > N/3,

(3.5)

The aliasing error from the quadratic term can also be mitigated. A filter proposed by
Krasny (1986b) is also implemented to suppress the growth of noise due to round-off
error using a threshold of O(10−12). At every time step, filters are applied whenever the
time derivatives, u and dγ/dt, are obtained. Krasny’s filter is applied first, then (3.5)
right after it. Once the time derivatives are filtered, (R,Z) and γ are marched forward
by one time step and the same filtering process applied to the new (R,Z) and γ.

3.2. Quadrature rule

The velocity u for each material point is the sum of (2.9) and (2.11), in which the
contour integrals are computed numerically. The quadrature can be done using the
trapezoidal rule which gives spectral convergence for periodic functions (Trefethen &
Weideman 2014). However the functions G and H are singular as (r′, z′)→ (r, z), because
the complete elliptic integral of the first kind, K(k), is unbounded when k → 1. There are
several ways to remove the singularity. One way is the vortex blob method (see Krasny
1986a): a small parameter ε is introduced into the denominator in (2.8), giving

k2 =
4rr′

(r + r′)2 + (z − z′)2 + ε2
. (3.6)

The idea is essentially the same as the Moore–Rosenhead method (see Saffman 1992,
p. 213) to desingularise the Biot–Savart integral for vortex filaments, in which a small
parameter ε is added into denominator to avoid a division by zero. It acts to remove
scales smaller than ε. The appropriate value of ε is discussed below.

A formally exact method is to subtract the singular part of the integrand. The regu-
larised integral is then computed numerically using the trapezoidal rule. The asymptotic
behavior of the singularity of (2.7) is (Pozrikidis 1986)

Gs ∼
r′

2π
ln

4√
1− k2

. (3.7)

Shariff et al. (1989); Nitsche & Krasny (1994); Nitsche (2001); Hattori & Moffatt (2006);
Llewellyn Smith & Hattori (2012) use this method to remove the singularity. A local
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Figure 2: (a) Comparison of the blob method (solid line) and the series expansion method
(dashed line) using velocity us only. ε = 0.01; (b) a close look of velocity profile for various
ε; (c) convergence test with different core size a0.

series is then integrated term by term over segments adjacent to the singular point.
Another method used in two dimensions (Baker et al. 1993; Hou et al. 1994; Baker & Xie
2011; Shin et al. 2018) is the trapezoidal rule based on alternative/mid points to avoid
the singular point. This idea is not pursued here (but see § 5).

While the series expansion method should formally yield higher accuracy, it suffers
from two problems. First, the function takes a different form on the segment including the
singularity which may reduce the accuracy of the trapezoidal rule. Second, it is difficult
to implement when solving the dynamic-coupled term in the vortex sheet equation, since
it requires a local approximation to dγ/dt, which is unknown. As a result, the blob
method appears to be the most natural regularisation and is the one that was used.
Nevertheless we can examine the difference between the two. The contours in figure 2(a)
show very little difference using ε = 0.01. Some differences can be noticed near the roll-up
at t = 0.8, but the bulk motions of the two are almost the same. That serves our purpose
well enough to model the motion of a buoyant vortex ring, even though the small scales
are not perfectly resolved. We also test different value of ε. In figure 2(b), the profiles
almost overlap for ε 6 0.01, and the maximum error of velocity profile is O(10−6). The
volume is a conserved quantity and the change in volume is 0.2% during t = 0–0.84 with
ε = 0.01. With ε = 0.05 the computation lasts for a longer time t = 0–1.09 and the
change in volume is 0.6%. In the present study, we used ε = 0.05 in order to achieve
longer integration in time.

The convergence test for u with respect to N uses the following approach: first we
calculate the velocity u(N/2) with grid resolution N/2, then we double the resolution
to N by adding one new point between every two existing points. The velocity is then
calculated again as u(N). We compute the change in velocity at the original points, then
take its norm as

εN = ||u(N) − u(N/2)||. (3.8)

We find εN → 0 when N →∞, where εN is a function of N and a0 plotted in figure 2(c).
Different initial vortex core radii a0 require different values of N . If we set εN = 10−4

as our desired accuracy, a0 = 0.2 satisfies this criterion with N = 64, while a0 = 0.8
the required resolution rises to N = 256. Therefore, we choose N = 64 for a0 = 0.2 and
N = 256 for a0 = 0.8, N = 128 for a0 = 0.4 and N = 256 for a0 = 0.6 to keep εN
below 10−4. For higher accuracy, e.g. εN < 10−8, a0 = 0.2 needs resolution N = 128 and
a0 = 0.8 needs at least N = 512.
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3.3. Integral equation

To solve for γ, the rate of change of γ is calculated by solving the integral equation
given by combining (2.27) and (2.30):

dγ

dt
= −2ALdγ

dt
+ F , (3.9)

where the linear integral operator is

Ldγ

dt
=

1

R

(
−∂R
∂ξ

∮
∂G

∂Z

dγ

dt
dξ′ +

∂Z

∂ξ

∮
∂G

∂R

dγ

dt
dξ′
)

and F contains all the terms on the right-hand side of (2.30) except the terms in dγ/dt.
The Green function G is regularised by the blob method. The integral operator L is
discretised using the trapezoidal rule and Fi is F evaluated at Xn. Then (3.9) becomes

dγ

dt

∣∣∣∣
i

= −2A
∑
j

Lij
dγ

dt

∣∣∣∣
j

+ Fi. (3.10)

The discretised equation can be transformed into the linear system

(δij + 2ALij)
dγ

dt

∣∣∣∣
i

= Fi. (3.11)

The matrix is diagonally dominant and (3.11) can be solved by successive over-relaxation
(SOR) efficiently.

3.4. Time-stepping

Finally, X and γ are advanced in time using the classic four-stage Runge–Kutta scheme

dX

dt
=

1

6

[
u(1) + 2u(2) + 2u(3) + u(4)

]
, (3.12)

where the u(j) are intermediate values (e.g. see Iserles 2009, § 3.2). The time step ∆t is
fixed at 0.001 in our calculations. The initial value of γ is zero. The two filters introduced
earlier are also applied to intermediate values.

4. Numerical results

We first discuss the γ-equation and its solutions. We show the possible emergence of
curvature singularities that limit the length of numerical calculations. Then we present
numerical results and discuss their dependence on the dimensionless numbers A and Fr .
Finally we quantify the motion of the ring using integral quantities.

4.1. Boussinesq vs non-Boussinesq cases

The evolution equation for γ, (2.32), is central when using axisymmetric contour
dynamics to calculate the motion of buoyant vortex rings. The first two terms on the
right-hand side of (2.32) are multiplied by the Atwood number A and represent the
contribution from density difference alone. The third term with gravity has a prefactor
A/Fr2 which measures the strength of buoyancy. We exclude surface tension for now, so
that We →∞. When the density difference is small but gravity is strong, we have A→ 0
but A/Fr & 1. The problem can then be approximated by the Boussinesq formulation.
For small Atwood number, e.g. A = 0.01, the vortex sheets evolved using (2.26) and
(2.28) are almost identical (figure 3a). Profiles computed from both γ equations are very
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Figure 3: (a, b) The vortex sheet strength γ along the boundary and (c, d) the snapshots
of contours. The Atwood numbers are A = 0.01, 0.5 for (a, c) and (b, d), respectively.
All cases have Fr = 1 and We =∞. For the Boussinesq case, γ is obtained using (2.28),
while (2.26) is used for non-Boussinesq calculations.

similar, as shown in figure 3(c). Since A is small, the first two terms in the non-Boussinesq
formulation are negligible.

We increase the Atwood number to 0.5. The solutions for γ are show in figure 3(b)
and the corresponding contours in figure 3(d). The Boussinesq and non-Boussinesq cases
differ when A is sufficiently large. The contour in the Boussinesq case have evolved
into two roll ups when t = 0.6. The non-Boussinesq case is similar to the Boussinesq
calculation before t = 0.2, but then the contour starts to deform more drastically than
the Boussinesq case when t > 0.2. The non-Boussinesq calculation stops around t = 0.3
when the contour develops a sharp tip near (0.92, 0.36) in figure 3(d) at which point the
Fourier spectrum has saturated (see below), but before any roll-ups appear. The roll-ups
are associated with the formation of finite-time singularity in curvature which has been
found in many other studies on vortex sheet calculations.

4.2. Singularities and vortex sheet dynamics for moderate A

We plot the curvature of vortex sheets in the non-Boussinesq case for A = 0.3, 0.5
in figure 4. The formation of a spike in each case is apparent. This could indicate a
finite-time curvature singularity as seen in the literature. The formation of curvature
singularities of a vortex sheet was studied by Moore (1979). These singularities can be
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Figure 4: Curvature along the contour for A = 0.3 and 0.5. The height of the spike
increases as A increases.

observed physically when singularities in the complex plane reach the real axis. Meiron,
Baker & Orszag (1982) and Krasny (1986b) numerically confirmed Moore’s asymptotic
result. Cowley, Baker & Tanveer (1999) showed how singularities move in the complex
plane and reach the real axis in finite time. Krasny (1986b) studied the formation of
these singularities using the point–vortex approach, while Krasny (1986b) and Cowley
et al. (1999) identified the singularity as having a 3

2 -power form. Baker et al. (1993)
applied a vortex sheet model to the Rayleigh–Taylor instability problem, and showed
that singularities do not reach the real axis in finite time if one layer of fluid has zero
density (i.e. A = 1). These investigations considered two-dimensional periodic problems.
The present calculation is axisymmetric, but the same kind of curvature singularity is
possible. The nature of these singularities is worthy of a more detailed study, but that
lies beyond the scope of this work as our intention is to calculate the motion of buoyant
vortex rings. The reason we discuss singularities here is to point out that such a spike
will cause a numerical blowup in our calculations. Even though our blob method may
not allow actual singularity formation, the resulting growth in curvature appears strong
enough to terminate the simulation for the values of ε required to obtain good overall
numerical accuracy.

The Fourier spectrum of dγ/dt in figure 5 shows the growth of higher modes. The
spectrum still fills up when a filter is applied. The calculation blows up when the highest
filtered mode, |k| = N/3, reaches the order of magnitude of the |k| = 1 mode. For the
Boussinesq case, the highest mode grows but never exceeds the magnitude of mode |k| = 1
during the calculation. The difference between the vortex sheet evolution equations for the
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Figure 5: Fourier spectra of dγ/dt for Boussinesq and non-Boussinesq calculations for
A = 0.5, Fr = 1 and We = ∞, shown in figure 3(b) and (d). The calculations were
stopped when the Fourier coefficient of highest mode becomes ' O(1).

Boussinesq and non-Boussinesq cases comes from the first two terms in (2.26), which we
now examine in detail. The behaviour of dγ/dt is investigated by examining the evolution
of each term in (2.26), as shown in figure 6. At t = 0.1, dγ/dt is dominated by the source
term (III), i.e. buoyancy, along with the dynamic-coupled term (I). The quadratic term
(II) is small compared to the first two and negligible. As the calculation proceeds to
t = 0.2, the dynamic-coupled term dominates dγ/dt while the source terms become less
important. The quadratic term became of the same order as the source term, and this
is when the dynamics becomes more complicated. The contour in figure 3(d) starts to
deviate from its initially circular shape. The sharp drop of vortex sheet strength profile
near s = 0.83 indicates that a roll-up is beginning. In the plots at later times t = 0.25
and 0.3, the ratio of the source term diminished. At this moment, the entire dynamics is
dominated by the sharp spike in the γ-profile, which is a combined contribution from the
dynamic-couple and the quadratic terms. Note that while this is happening, the matrix
on the left-hand side of the linear system (3.11) remains diagonally dominated, so that
the linear system is well-conditioned.

4.3. Non-Boussinesq vortex rings

We first fix the aspect ratio at S = 0.6 for the following calculation. Our aim is to
investigate how buoyancy alters the motion of the rings. Buoyancy is a result of combining
density difference and gravity, and can be measured by A/Fr2. We examine the terms
on the right-hand side of (2.32). If A is small and Fr is large, buoyancy is negligible
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(2.27); II: quadratic term; III: buoyancy. A = 0.5 and Fr = 1. Their sum is dγ/dt.
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Figure 7: Evolution of contour with different Atwood numbers A = 0.3, 0.5, 0.7, from
left to right respectively. Other parameters are kept constant: S = 0.6, Fr = 0.3 and
We =∞.

and dγ/dt ≈ 0, so the vortex ring retains its classic solution. If Fr decreases such that
A/Fr2 equals or greater than O(1), the buoyant vortex ring is in the Boussinesq limit. If
A increases significantly, every term in the γ-equation become important and the vortex
ring evolves in the non-Boussinesq regime.

The evolution of contours for cases with Atwood numbers, A = 0.3, 0.5, 0.7, is shown in
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Figure 8: Vortex sheet strength γ evolving into a shock-like profile. A = 0.7, Fr = 0.3
and We =∞.

figure 7. In each case, we observe that contours were deformed from their initially circular
shape. The lower half of the contour bent inward and the ambient fluid squeezed into the
vortical core from below. Similar behaviour was obtained in Lundgren & Mansour (1991)
for a spherical vortex bubble. As the contour for A = 0.3 and 0.5 evolves, two counter-
rotating roll-ups develop. These are due to the dot product of local tangent and gravity,
i.e. t · ẑ, in the buoyancy term. The dot product is negative when the local tangent of the
contour points down and positive when it points up. As the result, the source term has
different signs on the left and right half of the contour. Once the vortex sheet is created
by the baroclinic torque, it rotates in opposite directions. In the A = 0.3 and 0.5 cases,
a mushroom-like structure can be seen when the contour evolves for a longer time. We
did not include surface tension in the calculations here, but we anticipate that surface
tension will suppress the development of roll-up. The mushroom structure did not appear
for the A = 0.7 case, when the calculation stopped earlier than the former two cases,
before any roll-up will appear. Since roll-up did not happen, the failure of the calculation
does not seem to be related to the curvature singularities we discussed above. We look
into the vortex sheet strength profile for A = 0.7 by plotting γ along the contour. We
found that as the vortex sheet strength evolved, a shock-like discontinuity developed in
its profile, as shown in figure 8. This originates from the quadratic term in the vortex
sheet equation. For large enough Atwood number, the evolution equation for γ resembles
the inviscid Burgers equation, which is known to allow shocks. The whole calculation
then broke down once the discontinuity appeared in γ and subsequently spread to other
numerical quantities.

Calculations were carried out in a wider parameter space for A and Fr , as shown in
figure 9. The dotted curves are lines of constant A/Fr2 that represent the strength of
buoyancy. The Weber number is infinite. The contours are shown at the moment when
the magnitude of highest filtered mode |k| = N/3 is in the same order to the magnitude
of mode |k| = 1 so that failure of the calculations is imminent. The bottom left corner
is where A and Fr are both small, and hence it is the Boussinesq limit. The cases with
A = 1 on the right have more limited calculation time, since the nonlinear term ∂γ2/∂ξ
becomes important and leads to a shock-like discontinuity in γ as discussed above. On the
top of the chart, the computations are also very limited. In this regime, the vortex sheet
equation is dominated by the dynamic-coupled and the quadratic terms while buoyancy
is weak. Our numerical scheme is not very stable in this regime. In general, contours on
the bottom-left portion of the domain are more manageable for numerical calculation.

The aspect ratio of the ring S was then varied from 0.6 to 0.2, 0.1 and 0.05. As shown
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in figure 10, the contour is still bending inward from its bottom, but its inner half (closer
to the axis of symmetry) is lifted up compared to the S = 0.6 case. The mushroom-like
structure is not observed during the calculation. Calculations stopped because a shock-
like profile of γ formed. When the aspect ratio dropped to 0.05, the dynamic became
different from those with larger S. The contour maintained its near-circular shape until
t = 0.4, then it started to deform into an elliptic shape. Then it paused its upward motion
and stayed near (1.08, 0.11) during t = 0.4–0.5. From t = 0.7 it resumed its upward
motion, and a small tip appeared on the top of the contour before the calculation failed.
In figure 11, we plot the centroid (defined in § 4.4) for S = 0.05. Initially Zc increases
linearly and then is nearly constant around t = 0.4–0.5, before increasing again. Before
the contour deviated from its circular shape, the initial vertical velocity can be estimated
using the thin ring model from Chang & Llewellyn Smith (2018):

∂Zc
∂t

=
Γ

4πR

(
ln

8

S
− 1

2
+

1

4

ρ2
ρ1

)
,

where Γ is the circulation and the expansion rate of the ring can be estimated by

∂Rc
∂t

=

(
1− ρ2

ρ1

)
πa2g

Γ
,

which are plotted by dashed lines in figure 11 for S = 0.05. Then Rc expanded rapidly
before t = 0.4, then diminished a little before resuming its expansion. While the current
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Figure 10: Evolution of contour with aspect ratio S = 0.2, 0.1, 0.05, respectively. Other
parameters are kept constant: A = 0.3, Fr = 0.3 and We =∞.
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Figure 11: Evolution of the centroid for the case with aspect ratio S = 0.05 shown in
figure 10. Dashed lines are estimations using thin ring model.

calculations eventually fail, for a thin ring Pedley (1968) has shown that the radius of a
buoyant ring increases as

√
t when t→∞.

The vertical acceleration can be calculated by differentiating ∂Zc/∂t:

∂2Zc
∂t2

= − Γ

4πR2

(
ln

8

S
− 1

2
+

1

4

ρ2
ρ1

)
∂R
∂t
− Γ

4πR
1

S

∂S

∂t
,

=
a2g

4R2

(
1− ρ2

ρ1

)(
− ln

8

S
+ 2− 1

4

ρ2
ρ1

)
,

(4.1)

where the continuity equation gives −2S−1∂S/∂t = 3R−1∂R/∂t. Scaling (4.1) by U2
c /a0,

the acceleration of a thin ring due to buoyancy is(
1− ρ2

ρ1

)
S2

4Fr2

(
− ln

8

S
+ 2− 1

4

ρ2
ρ1

)
.
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4.4. Centroid and circulation

We now present some quantitative results of contour evolution. Two integral quantities
are used to quantify vortex motion and dynamics: the centroid and the circulation. The
centroid of the vortical core is calculated using the formula (Pozrikidis 1986):

R2
c =

∮
R3Zt · r ds∮
RZt · rds

, Zc =

∮
R3Z2t · r ds

2
∮
R3Zt · r ds

. (4.2)

To control the strength of buoyancy, we set Fr = 0.3 and increase A from 0.3 to 1.
Figure 12 shows the evolution of the centroid (Rc, Zc). Buoyancy increases the speed of
the vortex ring in the vertical direction and expands the ring. The speed of translation
for A = 0.3 is a constant and Zc is almost linear in time. When A is increased, the ring
accelerates slightly. The slope of Zc becomes steeper in time for A > 0.3, which indicates
that a stronger buoyancy accelerates the vortex ring in the vertical direction. The growth
of Rc shown in figure 12 indicates the expansion of the vortex ring, which increases as
buoyancy strengthens.

The evolution of circulation Γ and its derivative are plotted in figure 12. The circulation
of a buoyant vortex ring has contributions from both patch and sheet, with

Γ = Γp +

∮
γ dξ, Γp = Ω

∮
R2t · zds, (4.3)

where Γp is the part from the vortex patch computed using the contour integral given in
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Figure 13: Evolution of contour for positive, zero, and negative Ω from left to right
respectively. S = 0.6, A = 0.3, We =∞.

Pozrikidis (1986). The sign is reversed because we evaluate the integral clockwise. The
circulation contributed by the vortex sheet is calculated by integrating γ along the con-
tour. When there is no density difference and buoyancy, circulation is conserved according
to Kelvin’s circulation theory, i.e. Γ = Γp and dΓ/dt = 0. The material derivative of Γ
can be obtained by integrating (2.32) along the contour. For the Boussinesq case, there
is only one term on the right-hand side,

dΓ

dt
= −2

A

Fr2

∮
Lt · z dξ, (4.4)

and dΓ/dt is a function of the shape of the contour only. The shape is characterized by
the local tangent t and the metric L. For the non-Boussinesq case, dΓ/dt also requires
integration over the dynamic-coupled and the quadratic terms, which are functions of γ
and the dynamics of the contour. For A = 0.3, the rate of change of the circulation is
approximately zero in figure 12. For larger values of A, the circulation decreases. This can
be compared to the contours shown in figure 9. As the contours evolve and are deformed
into two lobes, the vorticity on the contour is swept into the region between the two lobes
and accumulate. The net effect is a negative circulation contributed by the vortex sheet.
With Γp kept constant, the total circulation then drops. The circulation for A = 1 and
Fr = 0.3 reached a minimum at t = 0.145 then increases beyond its initial value.

4.5. Calculations for Ω 6 0

The results we have shown so far are for Ω > 0, for which the ring is moving upward
against gravity. Other possibilities include Ω = 0, when the vorticity inside the core
vanishes and the vortex ring is “hollow”, and Ω < 0, for which the vortex ring moves
downward when there is no buoyancy. We calculate both cases and compare them to the
Ω > 0 case in figure 13. For Ω > 0 and Ω < 0, we set |Ω| = 6.7392 so that Fr = 1.
The Froude number is greater than that used in figure 7, so the bulk vorticity inside the
core is more dominant here than the cases shown in figure 7 (Fr = 0.3). The contour still
bent inward from the bottom, but it did not evolve into two counter-rotating rollups like
a mushroom structure. Instead a single rollup, located on the inner half (closer to the
axis of symmetry) and rotating counter-clockwise, appeared first. The outer half (away
from the axis of symmetry) moved slower and is dragged behind the inner half. When
the continuous vorticity Ω inside vanishes, we observe a different behaviour: a rollup
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Figure 14: Evolution of (a) centroid: (Rc, Zc) and (b) the trajectories for Ω > 0; —,
Ω = 0; - -, Ω < 0; · –.

rotating clockwise appeared on the outer half of the contour earlier than its counter-
clockwise counterpart. This might show that the two counter-rotating rollups appeared in
the Fr = 0.3 are associated with the dominant balance between the bulk vorticity (vortex
ring) and the vortex sheet (density and gravity) respectively. When the bulk vorticity
dominates, the counter-clockwise rollup appears, while when vortex sheet dominates the
clockwise rollup emerges first. The expansion of the ring radius and the vertical speed of
the ring are also decreased when the continuous vorticity vanishes (figure 14).

If we reverse the direction in which vortex ring travels by setting Ω = −6.7392, the
contour moved downward initially as shown in figure 13. This downward movement
reversed at t ≈ 0.4 where Zc started to increase (figure 13). A clockwise rollup emerged
and the end of calculation at t = 0.7 indicating vortex sheet grown to a stage that took
over the dominance on the evolution of the contour. A long lobe close to the axis of
symmetry can be seen being dragged behind as the bulk motion of the contour moves
up.

4.6. Energy conservation

The kinetic energy of the flow associated with the vortex sheet is

Ts = (ρ1 − ρ2)π

∮
ψ u · tLdξ + (ρ1 + ρ2)π

∮
ψγ

2
dξ, (4.5)

while the contribution from vortex patch can be calculated as a contour integral, as in
(A3) of Pozrikidis (1986). The potential energy is

U = π(ρ2 − ρ1)g

∮
RZ2 ∂R

∂ξ
dξ. (4.6)

(See appendix B for detailed derivations.) In the absence of surface tension, the total
energy (kinetic plus potential) is conserved under inviscid dynamics. The volume, which
should also be constant in time, is numerically well conserved. For ρ1 = ρ2 and for the
Boussinesq case shown in figure 15(a,c) respectively, this is true for energy. In the non-
Boussinesq case, the numerical conservation of total energy is limited (see figure 15 b). It
is conserved well until a certain time of integration, which decreases as A increases. For
A = 0.3 shown in figure 15(b), total energy is conserved until around t = 0.35, whereas
it is conserved when t < 0.6 for A = 0.1 and when t < 0.12 for A = 0.7. The numerical
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Figure 15: Ω = 0, (a) A = 0; (b) A = 0.3; (c) Boussinesq calculation for A = 0.3.
Potential energy; —, kinetic energy; - -, potential plus kinetic energy; · · · .

failure of energy conservation must be due to the extra terms in the non-Boussinesq cases:
the dynamic-coupled term (t · du/dt) and the quadratic term (∂γ2/∂ξ). The numerical
problem could be due to a number of reasons including the desingularisation used in the
numerical method, the growth of γ and the possible appearance of singularities discussed
in § 4.2 (see figure 6). We also observed the Fourier spectrum filling up in figure 5: the
numerical growth of high modes is correlated to the failure of energy conservation. Further
study of the limitations of energy convervation is left as future work.

5. Conclusions

We have presented theoretical and numerical results on the motion of a buoyant vortex
ring in the non-Boussinesq regime. We derived a vortex sheet equation in (2.26) from the
Euler equation. A set of coupled integro-differential equations, (2.3), (2.9), (2.11) and
(2.26), is used to calculate the motion of a buoyant vortex ring. The nondimensionalized
vortex sheet equation in (2.32) contains three dimensionless parameters: the Atwood
number, A, the Froude number, Fr and the Weber number, We, representing different
physical effects. When A and Fr are both small, the flow is in the Boussinesq limit;
the vortex sheet is dominated by the gravity term and decoupled from the dynamics
of the contour. The problem moves into the non-Boussinesq regime when A and Fr
becomes moderate to large. In this regime, the γ equation is coupled with du/dt. The
apparent emergence of curvature singularities limits the validity in time of our numerical
calculations, as discussed in § 4.2

Our numerical results show that the contour can deform drastically when the vortex
sheet is present. Numerical results are obtained for both the Boussinesq and non-
Boussinesq cases where the Atwood and the Froude numbers are small to moderate.
Calculations for large Froude number and Atwood number close to one have been
attempted but the results are very limited. In § 4.3 we pointed out that a shock-like
discontinuity in the vortex sheet strength γ leads to numerical failure for those cases.
This does not appear to be a curvature singularity, although this may be an artifact of
the blob method, since Baker & Xie (2011) showed curvature singularities approaching
the real axis in the complex plane for A = 1. Our results for small to moderate Atwood
and Froude numbers show how the motion of vortex rings deviate from a classic steady
solution into nonlinear evolution when adding density effect and buoyancy. The core of the
vortex ring is deformed in such a fashion that the surrounding fluid squeezes in from the
bottom. In some cases, a mushroom-like pattern develops with two counter-rotating roll-
ups on the contour. Surface tension is given in our formulation, but we did not include it in
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the numerical results. The numerics for surface tension requires careful treatment, so the
present work emphasized the effects of density and buoyancy. Our results give insights into
flows dominated by buoyancy and vorticity, which have implications on geophysical and
environmental fluid dynamics. Possible future work includes investigations of the stability
of these vortex rings, the effect of surface tension, and as an investigation of curvature
singularities in axisymmetry. These last two work would require the development of a
numerical method that is robust in the presence of surface tension and that does not
use blobs, e.g. adapting the midpoint rule used by Baker & Nachbin (1998) to work in
axisymmetric geometry.
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Appendix A. Calculation of t · du/dt
Taking the material derivative d/dt of (2.9) yields

dup,r
dt

= − Ω

R2
ur

∮
R′ cos θ′Gds′ +

Ω

R

∮ (
u′r cos θ′G−R′ sin θ′ dθ

′

dt
G+R′ cos θ′

dG

dt

)
ds′,

(A 1)

dup,z
dt

=Ω

∮ [
(u′z − uz) cos θ′H − (Z ′ − Z) sin θ′

dθ′

dt
H + (Z ′ − Z) cos θ′

dH

dt

]
ds′

−Ω
∮ (

cos θ′
dθ′

dt
G+ sin θ′

dG

dt

)
ds′.

(A 2)

The primes indicate dummy variables in the integrals and (R,Z) is the location of
Lagrangian point. The first subscript represent the contribution from the vortex patch
or vortex sheet, while the second subscript indicates the velocity components. We do the
same for (2.11) for the sheet:

dus,r
dt

= − 1

R

∮
dγ

dt

∂G

∂Z
dξ′ +

1

R2
ur

∮
γ
∂G

∂Z
dξ′ − 1

R

∮
γ

d

dt

(
∂G

∂Z

)
dξ′, (A 3)

dus,z
dt

=
1

R

∮
dγ

dt

∂G

∂R
dξ′ − 1

R2
ur

∮
γ
∂G

∂R
dξ′ +

1

R

∮
γ

d

dt

(
∂G

∂R

)
dξ′. (A 4)
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Taking the dot product of du/dt with the tangent t = L−1(∂R/∂ξ, ∂Z/∂ξ) yields (2.27)
with

f(R,Z, γ,u) =
1

L

∂R

∂ξ

[
Ω

R

∮ (
u′r cos θ′G−R′ sin θ′ dθ

′

dt
G+R′ cos θ′

dG

dt

)
ds′

− Ω

R2
ur

∮
R′ cos θ′Gds′ − 1

R2
ur

∮
γ
∂G

∂Z
dξ′ − 1

R

∮
γ

d

dt

(
∂G

∂Z

)
dξ′
]

+
1

L

∂Z

∂ξ

{
−Ω

∮ (
cos θ′

dθ′

dt
G+ sin θ′

dG

dt

)
ds′

+Ω

∮ [
(u′z − uz) cos θ′H − (Z ′ − Z) sin θ′

dθ′

dt
H + (Z ′ − Z) cos θ′

dH

dt

]
ds′

+
1

R2
ur

∮
γ
∂G

∂R
dξ′ +

1

R

∮
γ

d

dt

(
∂G

∂R

)
dξ′
}
.

(A 5)

Appendix B. Expressions for the kinetic and potential energies

Using (3.11.4) in Saffman (1992), the kinetic energy in a volume V is given by

T =
1

2
ρ

∫
V

|u|2 dV =
1

2
ρ

[∫
V

A · ω dV −
∫
S

(u×A) · ndS

]
, (B 1)

where the unit normal vector n points out from the volume V enclosed by the surface S,
and the vector potential gives u = ∇×A. For axisymmetric flows in (r, φ, z),

ω = ωφφ̂, A =
ψ

r
φ̂

and

dV = rdr dφdz, dS = r dφ ds,

where the surface S is a torus and s is the arc length of a contour on the rz plane.
Integrating over φ gives

T = πρ

[∫∫
ωφψ dr dz −

∮
(u×A) · nr ds

]
. (B 2)

For the setting shown in figure 1, the kinetic energies outside and inside the vortex are

T1 = −πρ1
∮

(u1 ×A) · (−n)r ds, (B 3)

and

T2 = πρ2

[∫∫
ωφψ dr dz −

∮
(u2 ×A) · n rds

]
, (B 4)

respectively. The total kinetic energy is T = T1+T2. The double integral in T2 corresponds
to the vortex patch,

Tp = πρ2

∫∫
ωφψ dr dz = πρ2Ω

∫∫
ψrdr dz, (B 5)

and can be calculated using (A3) in Pozrikidis (1986) as a contour integral. The remaining
integrals in T are related to the vortex sheet:

Ts = πρ1

∮
(u1 ×A) · n r ds− πρ2

∮
(u2 ×A) · nr ds. (B 6)
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By using ui = uir̂ + viẑ and ds = Ldξ, we obtain

(ui ×A) · n =
ψ

r

(
ui
∂R

∂ξ
+ vi

∂Z

∂ξ

)
1

L
=
ψ

r
ui · t. (B 7)

Then (B 6) becomes

Ts = πρ1

∮
ψu1 · tds− πρ2

∮
ψu2 · tds, (B 8)

= (ρ1 − ρ2)π

∮
ψu · t Ldξ + (ρ1 + ρ2)

π

2

∮
ψγdξ. (B 9)

If ρ1 = ρ2 = ρ,

Ts = πρ

∮
ψ(u1 − u2) · tLdξ,= πρ

∮
ψγ dξ, (B 10)

where γ = L(u1 − u2) · t. Taking ρ = 1, this is identical to (2.36) in Hattori & Moffatt
(2006). Finally, the potential energy is calculated from

U = 2π(ρ2 − ρ1)g

∫∫
rzdrdz = π(ρ2 − ρ1)g

∮
RZ2 ∂R

∂ξ
dξ. (B 11)
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