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OR I G I N A L A R T I C L E
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Abstract

Genetic studies on attention have mainly focused on children with attention-deficit/

hyperactivity disorder (ADHD), so little systematic research has been conducted on

genetic correlates of attention performance and their potential brain mechanisms

among healthy individuals. The current study included a genome-wide association

study (GWAS, N = 1145 healthy young adults) aimed to identify genes associated

with sustained attention and an imaging genetics study (an independent sample of

483 healthy young adults) to examine any identified genes' influences on brain func-

tion. The GWAS found that TTLL11 showed genome-wide significant associations

with sustained attention, with rs13298112 as the most significant SNP and the GG

homozygotes showing more impulsive but also more focused responses than the A

allele carriers. A retrospective examination of previously published ADHD GWAS

results confirmed an un-reported, small but statistically significant effect of TTLL11

on ADHD. The imaging genetics study replicated this association and showed that

the TTLL11 gene was associated with resting state activity and connectivity of the

somatomoter network, and can be predicted by dorsal attention network connectiv-

ity. Specifically, the GG homozygotes showed lower brain activity, weaker brain net-

work connectivity, and non-significant brain-attention association compared to the A

allele carriers. Expression database showed that expression of this gene is enriched in

the brain and that the G allele is associated with lower expression level than the A

allele. These results suggest that TTLL11 may play a major role in healthy individuals'

attention performance and may also contribute to the etiology of ADHD.
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1 | INTRODUCTION

Sustained attention is the ability to attend to and focus on an ongoing

task for a continuous amount of time and it underlies other higher

cognitive processes such as learning, memory, and executive con-

trol.1,2 A deficit of sustained attention on the other hand is the key

symptom of attention-deficit/hyperactivity disorder (ADHD).3,4 Con-

sequently, it is of great importance to explore the neural and genetic

mechanisms of sustained attention.

Pliszka et al.5 proposed that attention relies on anterior and pos-

terior brain systems and associated neurotransmitters, namely, dopa-

mine and norepinephrine.5 This theory has been supported by many

subsequent studies,6–10 including a recent transcriptome-wide associ-

ation study.11 Many genes related to these two catecholamine neuro-

transmitters have been implicated for ADHD, such as those of

dopamine transporter (DAT1), receptors (DRD2, DRD4, DRD5), and

synthesis (DBH),4,9 and those of norepinephrine transporter (NET1),

receptor (ADRA2A), and metabolism (MAOA).10,12–15 Genome-wide

association studies (GWAS) have also confirmed some of the genes,

although the results are not consistent across studies.11,16–19 A recent

meta-analysis identified 12 loci that were associated with ADHD.16

However, these studies were mainly conducted with participants of

European ancestries and focused on the comparison between cases

of ADHD and controls. It has been found that the genetic correlation

for ADHD between individuals of Han Chinese and European ances-

tries was low (r = 0.39, SE = 0.15)20 and that genetic effect on atten-

tion performance differed between patients and controls.21

Therefore, more research, particularly that of non-Western samples

such as Chinese, is needed to understand genetic bases of attention

among healthy individuals.

Moreover, imaging genetics studies are needed in order to under-

stand the brain mechanisms involved in the genetic effects on atten-

tion.22 Such studies consider brain structure and function as the

endophenotypes of behaviors of interest, which have been suggested

to have stronger statistical power than behavioral measurements.23

Earlier studies showed that attention involved a dorsal attention net-

work (DAN) consisted of bilateral intraparietal and superior frontal

cortex, which is involved in goal-directed attention (top-down), and a

ventral attention network (VAN) consisted of right temporoparietal

and inferior frontal cortex, which is involved in stimulus-driven atten-

tion (bottom-up).24,25 Using large sample resting state fMRI data,

Yeo26 grouped the cerebral cortex into seven networks according to

intrinsic functional connectivity, which included DAN and VAN. Sub-

sequent studies reported that attention involved broader cortical and

subcortical regions, including pre-supplementary motor area, dor-

somedial prefrontal cortex, dorsal premotor cortex, middle and ven-

trolateral prefrontal cortex, dorsolateral prefrontal cortex, anterior

insula, inferior parietal lobule, temporoparietal junction, temporo-

occipital junction, middle occipital gyrus, cerebellar vermis, thalamus,

putamen, midbrain and so forth,1,9,27,28 confirming the involvement of

DAN, VAN, somatomotor network (SMN), and the default mode net-

work (DMN) in sustained attention.1,28–34 On the other hand, imaging

studies of ADHD also confirmed that DAN and VAN were involved in

inattention, while SMN and DMN were involved in hyperactivity.35

However, only a few studies have explored genetic effects on these

brain regions when performing attention tasks.9,36,37 We thus

expected that genes associated with sustained attention might also be

associated with functional connectivity of these networks.

The current study (1) conducted a genome-wide search for genes

related to sustained attention in healthy Chinese subjects (using the

GWAS sample), (2) confirmed the potential role of the identified gene

(TTLL11) in ADHD using previously published as well as unpublished

GWAS results, (3) examined the identified gene's (TTLL11) effects on

brain functional networks (using the imaging genetics sample), and

(4) explored the expression and functional annotation of TTLL11 using

public databases.

2 | MATERIALS AND METHODS

2.1 | Participants

Participants were healthy Chinese college students recruited from

Beijing Normal University and Southwest University. The GWAS sam-

ple included 1145 participants (434 males and 711 females, mean

age = 20.21 years and SD = 1.94, ranging from 16 to 30) who had

valid genetic and sustained attention data but no brain imaging data,

The imaging genetics sample included an independent sample of

483 college students from Beijing Normal University (237 males and

246 females, mean age = 21.41 years and SD = 2.25, ranging from

17 to 29) who had valid genetic and brain imaging data. Among them,

467 also had valid sustained attention data (230 males and

237 females, mean age = 21.40 years and SD = 2.25, ranging from

17 to 29). All subjects were Han Chinese, had normal or corrected-to-

normal vision, and reported no history of psychiatric diseases, head

injuries, or stroke/seizure. The study was approved by the Institu-

tional Review Board (IRB) of the State Key Laboratory of Cognitive

Neuroscience and Learning at Beijing Normal University, China. Writ-

ten informed consent was obtained from each participant after a com-

plete description of procedures.

2.2 | Neuropsychological measurements

Continuous performance test (CPT) is a widely used neuropsychologi-

cal measurement for sustained attention.21 The current study used

the number version of CPT on WebCNP at University of Pennsylvania

(https://webcnp.med.upenn.edu/).38 In this task, a series of red verti-

cal and horizontal lines flash in a digital numeric frame (resembling a

digital clock) against black background. The participant must press the

spacebar as soon as possible when these lines form complete num-

bers. There are 120 trials that would form complete numbers and

240 trials that would not. Each trial flashes for 300 ms followed by a

black page for 700 ms.

Four indices have been widely used in the literature to measure

sustained attention during the CPT: (1) the number of failed trials in
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response to a target (omission errors), which are often interpreted as

inattention, (2) the number of responses to the non-targets (commis-

sion errors), which are believed to reflect either impulsivity

(i.e., failures to inhibit responses to non-targets)39,40 or temporal inat-

tention or task-unrelated thoughts and mind wandering,41 (3) d0 and

(4) β, which are calculated according to signal detection theory,

reflecting a balance between omission and commission errors as a

measure of attentional capacity.42–45 The log linear rule was used to

treat extreme values of d0 and β.42

2.3 | Genotyping

Detailed procedures of genotyping for this dataset were reported in a

previous publication.46 Briefly, DNA were extracted from blood sam-

ples and genotyped using Infinium chips (Illumina, San Diego, CA,

USA), then imputed using Michigan Imputation Server (https://

imputationserer.sph.umich.edu/index.html) following their protocol

using 1000G Phase 3 EAS population as reference. Imputed data were

cleaned again to keep only SNPs with imputation quality r2 > 0.8,

MAF >0.05, HWE > 1 E-6, retaining 4,856,474 SNPs. No duplicated

or related subjects were identified (maximum PI_HAT = 0.0537, cal-

culated with PLINK2) (https://www.cog-genomics.org/plink/1.9/

).47,48 No clear population stratification problem or outlier subjects

were found by principal component analysis, most likely because this

study only enrolled Han Chinese subjects.

2.4 | Image acquisition and preprocessing

MR images were acquired using a Siemens Trio 3T scanner in the Brain

Imaging Center of Beijing Normal University. Foam pads were used to

minimize head motion. Structural MRI images were acquired using a

T1-weighted, three-dimensional, gradient-echo pulse sequence. Parame-

ters for this sequence were as follows: repetition time/echo time/flip

angle = 2530 ms/3.39 ms/7�, field of view = 256 � 256 mm,

matrix = 256 � 256, slice thickness = 1.33 mm. One hundred and forty-

four sagittal slices were acquired to provide a high-resolution structural

image of the whole brain. Resting state functional images were acquired

with single-shot T2*-weighted gradient-echo EPI sequence, with the fol-

lowing parameters: repetition time/echo time/flip

angle = 2000 ms/30 ms/90�, field of view = 200 � 200 mm,

matrix = 64 � 64, slice thickness = 3.5 mm. Forty-one interleaved axial

slices parallel to the AC–PC line were obtained to cover the whole brain.

A series of 200 images were acquired.

Resting state functional images were processed as described

before.49 Steps included removing first 10 volumes, slice timing cor-

rection, realignment, coregistering and normalizing to the standard-

ized MNI space, linear detrending, nuisance regression, and temporal

band-pass filtering (0.01–0.08 Hz). Amplitude of low-frequency fluc-

tuation (ALFF), which reflects power of brain spontaneous

activation,50 was calculated for each subject, then smoothed

(FWHM = 6 mm) and standardized.

2.5 | Statistical analysis

Genome-wide association analyses were conducted using linear

regression models in PLINK2, with indices of CPT as dependent vari-

ables; genetic markers as predictors; and age, gender, and 10 principal

components of the genomes as covariates. Whole genome results are

shown with Manhattan plot and the most significant region was

shown with LocusZoom (locuszoom.org/).51 Then, the summary statis-

tics from the GWAS results were inputted to MAGMA52 and H-

MAGMA53 for gene-based analysis with raw genotype as reference.

Gene definition was downloaded from the MAGMA website (https://

ctg.cncr.nl/software/magma), using the NCBI37.3 version, resulting in

17,285 genes; annotation files for H-MAGMA were downloaded from

https://github.com/thewonlab/H-MAGMA. SNP level statistical sig-

nificance threshold was set to p < 5E�8 and gene level threshold was

set at Bonferroni-corrected p < 2.89E�6 (0.05/17285).

To confirm a potential role of the gene identified by the GWAS

(TTLL11), we downloaded (1) GWAS summary results of the meta-

analysis of ADHD by the Psychiatric Genomics Consortium (PGC)

(http://ldsc.broadinstitute.org/ldhub/), which included 55,374

European individuals; and (2) GWAS summary results of ADHD inat-

tentive symptom (measured by Clinical Diagnostic Interview Scale,

unpublished data) on 780 Chinese Han samples reported previously.54

We fed these results into MAGMA for gene level analysis, using the

same settings as above, and determined the significance level of the

effect of TTLL11 on ADHD diagnosis. For the PGC sample, the geno-

types of the 1000 genome East Asian sample were used as reference;

and for the Chinese ADHD sample, their raw genotypes were used.

We also calculated gene score of three Chinese samples (GWAS

sample, imaging genetics sample, and Chinese ADHD sample) based

on our GWAS result using the Clumping and Thresholding method.55

The gene score is defined as the sum of allele counts (coded as

0/1/2), weighted by estimated effect sizes obtained from GWAS (beta

in PLINK results).56,57 Variants within the gene region were first

clumped with PLINK (–clump-p1 0.01 –clump-p2 0.05 –clump-r2 0.50

–clump-kb 250) to select the most significant variant iteratively and

prune out redundant correlated loci. The resulting independent vari-

ants with a p value smaller than 0.001 were used to calculate gene

score.

Two power analyses were performed using the Gpower 3.1.9.7,58

one to estimate the effect size that our GWAS SNP analysis would be

able to detect (power = 80%, α = 5E�8) and the other to estimate

the effect size that the gene score analysis would be able to detect

(power = 80%, α = 2.89E�6). The analyses showed that our study

would be able to detect effect sizes of 0.033 or greater at the SNP

level and 0.027 or greater at the gene score level.

To test the specificity of the effect of the identified gene

(TTLL11), we conducted two additional analyses. First, we included

whole-genome polygenic risk score (PRS, after excluding TTLL11) as a

covariate. We used PRSice (http://prsice.info//) to calculate the

whole genome PRS based on our GWAS results and then calculated a

partial correlation between TTLL11-based gene score and β after con-

trolling for the whole-genome PRS. Second, we performed a baseline
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analysis by randomly selecting five SNPs (the same number of SNPs

used for TTLL11-based gene score) from the LD-pruned SNP data

(SNP window = 100, r2 = 0.8; with 607,543 SNPs remaining after

excluding TTLL11 SNPs), calculating their gene score, and correlating

it with β with whole-genome PRS controlled. This procedure was

repeated 1000 times to generate a distribution, which was then used

to assess the magnitude of TTLL11 gene score's correlation with β.

Genetic effects on imaging data were analyzed using FMRIB's

Software Library (FSL) for Linux (https://fsl.fmrib.ox.ac.uk/fsl).59 Indi-

vidual ALFF map was included in a group level analysis, with gene

score as predictor. Resulting maps were corrected with Gaussian ran-

dom field (GRF) correction, with voxel-level threshold of p < 0.005

and cluster-level threshold of p < 0.05. Identified regions were used

as seeds to calculate whole brain functional connectivity (FC) for each

participant, and the resulting FC map was associated to gene score in

the same way as ALFF map. A moderation model was run to explore

the gene-brain-attention relationships, with mean brain signal

extracted from significant clusters as independent variable, sustained

attention as dependent variable, and significant SNP(s) as moderator.

Connectome-based predictive modeling (CPM) was further used

to explore gene-brain correlation,60 which captures whole brain con-

nectivity pattern rather than regional activity captured by ALFF or

seed connectivity captured by FC. The brain was parcellated into

246 regions (nodes) according to the Human Brainnetome Atlas.61 For

each participant, time courses of resting state BOLD signal within

each node were averaged, and the Pearson correlation coefficients

between the time courses of each pair of nodes were computed,

resulting in a 246 by 246 functional connectivity matrix. Prediction of

connectivity matrix on gene score was tested using 10-fold cross-vali-

dation, controlling for age, gender, and whole genome PRS. Subjects

were randomly binned into 10 groups, nine of them were used as

training data and the rest as testing data. In training dataset, Pearson

correlation between each edge in the connectivity matrices and gene

score was performed. Features were picked out at threshold of

p < 0.05. Overall strength of connectivity was calculated by summing

positive and negative features separately and were further used to

predict gene score by linear regression. The resulting linear model was

applied to the testing dataset to get a prediction. This procedure was

repeated 10 times to predict every subject. This 10-fold cross-

validation procedure was repeated for 20 times, and the prediction

values were averaged to get more robust prediction, and connections

showed up every time were identified as final predictive network.62

The Pearson correlation between this mean prediction and actual

gene score was used to estimate prediction performance, and its sig-

nificance was estimated using permutation procedure (1000 itera-

tions). The gene scores were randomly shuffled and the 20 times

10-fold CV was run for each iteration, and the correlation between

average predicted gene score (of 20 times) and true gene score was

calculated, then the empirical p value was calculated as the proportion

of permutated correlation larger than the true correlation.62 Results

were visualized with BioImage Suite Connectivity Viewer (https://

bioimagesuiteweb.github.io/webapp/connviewer.html). Also, a mod-

eration model was run to explore whether the brain-attention

relationship varied by genotype, with the overall connectivity strength

(positive strength minus negative strength) as independent variable,

sustained attention (β) as dependent variable, and significant SNP(s)

as moderator.

Finally, gene expression and functional annotation were searched

on FUMA v1.3.6 (https://fuma.ctglab.nl/), CSEA (http://genetics.

wustl.edu/jdlab/csea-tool-2/) and BrainSeq Phase2 (http://eqtl.

brainseq.org/phase2/eqtl/).63–65 On FUMA, we kept SNPs with

GWAS p < 5E�8 and all variants in LD with them (r2 ≥ 0.6), searched

for eQTL, and mapped to genes with positional, eQTL, and 3D chro-

matin interaction (Hi-C) information.64 On CSEA, we used specificity

index threshold (pSI) of 0.05 and determined enrichment of gene

expression in brain through different developmental stages. On Brain-

Seq, we searched the eQTL results with the whole sample (postmor-

tem DLPFC and hippocampus tissues separately on 286 schizophrenia

patients and 265 controls) as recommended by the developer of the

database (personal communications, October 2, 2019).66

3 | RESULTS

3.1 | Behavioral performance

The mean accuracy of CPT task was 0.98, suggesting that subjects

performed well on the task. The means of omission errors were 3.119

(SD = 6.797) and commission errors were 5.146 (SD = 4.627). Detec-

tion rate (d0) and response bias (β) were 4.243 ± 0.652 and 1.748

± 4.209, respectively. These indices were significantly correlated with

one another (Table S1).

3.2 | Gene effect on behavior

GWAS showed that a locus on chromosome 9 was significantly asso-

ciated with response bias (β). Both LD score regression intercept

(λ = 0.988, SE = 0.0077)67 and Q–Q plot (λ = 1.026) showed no infla-

tion (Figure 1). Other indices did not show any genome-wide signifi-

cant association with genotype. The significant association with β was

mapped to TTLL11 on chromosome 9q33.2 (Figure 2). Leading SNPs

were rs13298112 and rs13294735 (p = 4.79E�10). These two SNPs

were completely linked (r = 1, 3 kb apart), so we used rs13298112 to

represent this locus in the following analysis. The genotype counts for

GG homozygous, GA heterozygous, and AA homozygous individuals

on rs13298112 were respectively 1034, 107, and 4, which did not

deviate from Hardy–Weinberg equilibrium (χ2 = 0.48, p = 0.49). GA

and AA groups were combined to form the group of A allele carriers.

The GG group showed lower mean β than did the A carriers (t = 4.17,

p < 0.001, Cohen's d = 0.42), and a trend of higher mean commission

errors than the latter (t = �1.754, p = 0.08, Cohen's d = �0.175)

(Figure S1). Bootstrap test confirmed the statistical signficanced of

the above differences with 95% confidence interval of [0.231, 3.555]

for β and [�1.54, �0.04] for commission errors. No significant differ-

ences between the two groups were found for omission errors or d'
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(Figure S1). MAGMA gene-based analysis confirmed the effect of

TTLL11 gene on β (z = 5.08, p = 4.23 e-8), and revealed an effect of

LPA gene on d0 (z = 4.61, p = 1.99E�6). These effects again were con-

firmed by H-MAGMA, with significant effects of TTLL11 gene on β

(z = 5.14, p = 1.39E�07) and LPA gene on d0 (z = 4.90,

p = 4.83E�07) using the annotation of adult brain and iPSC-derived

astrocyte respectively.

Five SNPs (Table S2) were retained to calculate a gene score to

represent TTLL11 gene. The effect size of TTLL11 gene score was

0.036, and the effect size of SNP rs13298112 was 0.035. Both effect

sizes were larger than that required by power analysis. These results

are also consistent with the idea that gene scores have stronger

effects than do individual SNPs68,69 and hence gene-level analysis has

an advantage over SNP-level analysis.52

3.3 | Replication and retrospective confirmation of
the genetic effect

Effect of TTLL11 on β was replicated in our imaging genetics sample.

Effect of rs13298112 on β was close to genome-wise significance

(p = 1.65E�07), again with GG group also showing lower mean β

(t = 4.96, p < 0.001, Cohen's d = 0.69, Bootstrap 95% confidence

interval [0.369, 2.636]) than did the A carriers. No significant differ-

ences between the two groups were found for commission errors,

omission errors or d0. MAGMA analysis revealed a significant effect of

TTLL11 at the gene level (z = 3.77, p = 1.52E�05). Gene score for

sustained attention of the imaging genetics sample was calculated

based on the results of the GWAS sample (see the Method section for

details), and significantly correlated with β (r = 0.173, p = 1.79E�04)

F IGURE 1 (A) Manhattan plot shows p values of the effects of SNPs on β, with the dotted line representing i = 5E�8. (B) Q–Q plot shows no
inflation, with the red dotted line representing expected null distribution, and the gray curve showing observed p values

F IGURE 2 The effect of
SNPs on β within ±200 kb of
rs13298112, plotted by
LocusZoom. Y axis of each dot
represents the p value and the
dots' color represents LD with
rs13298112
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after controlling age, gender, and two principal components of the

genomes. Effect of LPA on d0 was not replicated (z = �0.29, p = 0.61),

thus not explored in following analysis.

Effect of TTLL11 on attention was further confirmed by a retro-

spective check of published data. Two ADHD datasets (PGC and a

Chinese dataset, see Method for details) were used to explore

TTLL11's potential role in ADHD. Although rs13298112 did not show

a significant effect on ADHD in either the PGC dataset (p = 0.88) or

the Chinese dataset (p = 0.19), gene-level analysis found significant

effects of TTLL11 (p = 0.008 in the PGC dataset and p = 0.034 in the

Chinese dataset). Gene score was also significantly correlated with

ADHD symptoms in the Chinese dataset (r = 0.102, p = 0.001).

3.4 | Assessment of specificity

The TTLL11-based gene score and the whole-genome PRS were sig-

nificantly correlated (r = 0.168, p = 9.24E�9). The mean correlation

between the random control gene score (randomly selected 1000

times) and the whole-genome PRS was 0.052, none of them larger

than 0.168. TTLL11-based gene score was still significantly correlated

with β after controlling for whole-genome PRS (partial r = 0.129,

p = 1.172 e-5), and again stronger than that of random control gene

score (mean partial r = 0.0014, only 1 out of 1000 larger than 0.129).

3.5 | Gene effect on brain

The gene score of TTLL11 was significantly and positively correlated

with ALFF in the right precentral gyrus and central opercular cortex,

right insular cortex, left postcentral gyrus, left central opercular cortex,

left Heschl's gyri, all of which are within the SMN according to Yeo70

(Table 1 and Figure 3A). FC between these regions and right supple-

mentary motor area, right central opercular cortex, and left postcen-

tral gyrus were also significantly and positively correlated with gene

score of TTLL11 (Table 1), and these regions were all within the SMN

too (Figure 3B). Using each ALFF region as a seed to calculate FC

yielded similar results (data not shown).

The CPM analysis revealed a brain network that was significantly

correlated with gene score (r = 0.13, p < 0.05). There were 136 posi-

tive and 202 negative edges retained in the final prediction model,

with right superior parietal and left inferior temporal gyrus having the

highest degree, both of which belong to the DAN (Figure 4).

Focusing on rs13298112, we compared mean ALFF/FC for the

regions shown in Table 1 and connectivity strength of the network

shown in Figure 3 between the GG and A carrier groups. Compared

to the A carriers, the GG group showed lower ALFF (t = 4.81,

p < 0.001, Cohen's d = 0.66), smaller FC (t = 4.13, p < 0.001, Cohen's

d = 0.58), and weaker overall strength (t = 6.68, p < 0.001, Cohen's

d = 0.93). Bootstrap test showed that the differences in ALFF, FC,

and connectivity strength were robust (95% confidence intervals were

[0.077, 0.196], [0.049, 0.144], [7.024, 13.470], respectively).

We further found a significant moderation effect of rs13298112

on the association between brain indices and sustained attention

(β = 0.28, p < 0.05 for ALFF; and β = 0.48, p < 0.001 for connectivity

strength), with the association significantly negative for A carriers

(ALFF: β = �0.32, p < 0.05, 95% CI [�0.567, �0.075]; connectivity

strength: β = �0.55, p < 0.001, 95% CI [�0.771, �0.318]), but not

significant for the GG homozygotes (ALFF: β = �0.02, p = 0.75, 95%

CI [�0.114, 0.081]; connectivity strength: β = 0.00, p = 0.996, 95%

CI [�0.099, 0.100]) (Figure 5). No significant moderation effect

found on FC.

3.6 | Gene annotation

An exploration of public datasets suggests that rs13298112 was asso-

ciated with the expression level of TTLL11 and this gene was

expressed in the brain. BrainSeq shows that rs13298112 is strongly

associated with transcripts of a region within TTLL11 (p = 9.841 e-7

TABLE 1 Brain regions showing significant correlations between the gene score of TTLL11 and ALFF/FC after Gaussian random field
correction

Brain areas (Harvard-Oxford Cortical Structural Atlas) Cluster size (voxels)

MNI coordinates

T valuex y z

Brain areas showing significant correlations between TTLL11 and ALFF

Right precentral gyrus, central opercular cortex 152 66 �3 18 4.81

Right insular cortex 76 36 �9 �3 4.24

Left postcentral gyrus 74 �63 �9 18 4.54

Left central opercular cortex, Heschls gyrus 66 �45 �18 12 4.23

Right precentral gyrus 48 6 �21 57 4.14

Brain areas showing significant correlations between TTLL11 and FC

Right supplementary motor area 282 3 �9 72 5.04

Right central opercular cortex 188 63 �6 12 5.01

Left postcentral gyrus 164 �66 �12 18 4.14

Abbreviations: ALFF, amplitude of low-frequency fluctuation; FC, functional connectivity.
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F IGURE 3 Brain regions with amplitude of low-frequency fluctuation (A) and functional connectivity (B) significantly correlated with the gene
score of TTLL11. All regions are within the somatomotor network (SMN, the green underlying region).

F IGURE 4 Network that significantly predicted gene score (A, red lines represent positive edges and blue line represent negative edges), with
right superior parietal and left inferior temporal gyrus having the highest degree (B, size of node was proportional to degree), and both regions are
within the dorsal attention network (C, green underlying region represents DAN)

F IGURE 5 Genotype of TTLL11 rs13298112 moderates the association between sustained attention (β) and amplitude of low-frequency
fluctuation (A), and network connectivity strength (B). Significant correlations were found only in A carriers
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in DLPFC and p = 1.5341E�12 in the hippocampus), with GG homo-

zygotes showing the lowest level of expression (see BrainSeq web-

site). The same pattern was found by eQTL annotation in FUMA on

GTEx V8 cerebellum tissue. CSEA analysis showed significant enrich-

ment for the expression of TTLL11 in the striatum during early child-

hood and adolescence and in the cerebellum during the mid-fetal

period. MAGMA Tissue Expression Analysis on FUMA showed that

genetic effect on attention was significantly associated with gene

expression level in 37-PCW old fetal brain on BrainSpan data.

Hi-C analysis on FUMA showed significant (FDR < 1 E-6) chroma-

tin interaction between TTLL11 and 27 genes on chromosome

9 (Figure S2). Twenty-six of these genes are expressed in the brain

(TTLL11, DAB2IP, GPR21, GSN, LHX6, MORN5, MRRF, NDUFA8,

OR1B1, OR1J1, OR1J2, OR1K1, OR1L1, OR1L3, OR1L4, OR1L6,

OR1Q1, PDCL, PTGS1, RAB14, RABGAP1, RBM18, RC3H2, STOM,

ZBTB26, and ZBTB6) (Figure S2). Of them, DAB2IP and LHX6 have

been reported to be associated with sustained attention too.71–73

TTLL11 showed a relatively stronger expression level in the cerebel-

lum compared with other brain tissues. These results suggest that

TTLL11 may contribute to sustained attention and brain function

together with many other genes.

4 | DISCUSSION

The current study provides the first evidence that the TTLL11 gene

contributes to sustained attention in a healthy Chinese sample. Both

SNP-level and gene-level association analyses found that this gene

had significant effects on attention performance. Imaging genetics

results showed that this gene was correlated with the functional activ-

ity and connectivity of brain regions within the DAN and SMN, and

modulated the association between brain and sustained attention.

Public gene expression data showed that this gene is highly expressed

in the striatum and the cerebellum during early development (CSEA,

FUMA). Finally, this gene showed a significant effect on ADHD in pre-

vious large-sample GWAS. Taken together, all these results suggest

that TTLL11 underlies attention function among healthy individuals

and contributes to ADHD.

The TTLL11 gene belongs to the tubulin tyrosine ligase like (TTLL)

family.74 This gene has been found to be essential for neuronal mor-

phogenesis and differentiation; to contribute to the molecular patho-

genesis of schizophrenia, intellectual disability, and bipolar

disorder75–77; and to be associated with educational attainment.78

The underlying mechanism for these associations may be attention

because individuals with schizophrenia or bipolar disorder exhibit a

deficit in sustained attention79,80 and because attention is certainly

vital for learning and education. Indeed, ADHD showed strong genetic

correlation with educational attainment16 and children with ADHD

tend to have learning problems.1

Our imaging genetics results suggested TTLL11 gene might influ-

ence sustained attention through attention networks. Specifically,

TTLL11 had an effect on ALFF and FC in the SMN, and gene score of

TTLL11 can be predicted by functional brain network with hub nodes

belong to the DAN. These networks represent the intrinsic functional

organization of the human brain systems that are responsible for both

low-level processes (e.g., motor control) and high-level processes

(e.g., attention).1,81,82 The SMN was shown to be associated with sus-

tained attention performance,33,35,83 which may reflect the response

movement in sustained attention task and may contribute to the

hyperactivity aspect of ADHD.35 The DAN is involved in the endoge-

nous goal-driven attention orienting (top-down) process, and acts as

critical regions for sustained attentional processes.30 Coactivation of

the DAN and the VAN has been observed frequently for attention ori-

entation.84,85 Connectivity between DAN and SMN is impaired in

ADHD children too.86 In sum, the imaging genetics data of the current

study support the role of TTLL11 in the function of SMN and DAN,

further suggesting that this gene influences attention.

FUMA annotation shows that the expression of TTLL11 is signifi-

cantly enriched in the cerebellum, and CSEA annotation shows signifi-

cant enrichment in the striatum during early childhood and

adolescence and in the cerebellum during the mid-fetal period. The

cerebellum's role in attention has been reported previously,27 so has

the role of functional connectivities between the striatum and the

attention networks.3,35,87–89 According to BrainSeq, the GG group of

rs13298112 shows a lower level of expression of TTLL11 in the brain

than the A carriers. In our results, the GG group showed lower β,

higher commission errors, lower ALFF and FC, weaker overall strength

of resting state brain activity, and non-significant association between

these brain indices and sustained attention. The behavior pattern of

the GG group was consistent with previous results.21 In contrast, the

performance of A allele carriers exhibited an opposite trend of vigi-

lance decrements (lapse in sustained attention).39,40,44,90 These results

suggest that TTLL11 gene might influence brain function and then

affect attention.

We should mention that, although the effect of TTLL11 on sus-

tained attention was confirmed by multiple sources (GWAS, replica-

tion, retrospective confirmation, brain imaging data, FUMA

annotation, and previous relevant literature), we found that the

TTLL11 gene score was significantly correlated with the whole

genome PRS. Therefore, it is plausible that TTLL11 gene score may be

a proxy for more widespread polygenicity that was not detected here.

Future research is needed to explore close that possibility.

Several limitations of this study need to be mentioned. First, our

GWAS sample included 1145 subjects, which was under-powered to

detect small effect sizes. Therefore, our results should be interpreted

with caution before the effects of TTLL11 are replicated in more stud-

ies. More powerful studies may also capture effect of other genes.

Second, the effect of TTLL11 on the brain was only explored in

healthy samples, this effect should be explored in ADHD samples in

the future. Third, the CPT is an easy task so the accuracy rate was

very high, and significant gene effects were found only on β, so fur-

ther studies should replicate our results with other behavioral

paradigms.

To conclude, the current study of Chinese healthy adults found

that TTLL11 was associated with attention performance and the func-

tion of attention networks in the brain. Compared to the A allele
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carriers, GG homozygotes on rs13298112 showed lower expression

of this gene, which may result in lower activity and weaker connectiv-

ity in attention networks and non-significant associations between

brain indices and sustained attention, and consequently lead to more

impulsive but focused responses on the attention task. TTLL11 also

showed a weak but statistically significant association with ADHD

based on a re-examination of previous datasets. Our findings suggest

that TTLL11 may influence the function of brain attention networks

and play a major role in healthy individuals' attention performance

and may also contribute to the etiology of ADHD.
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