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Abstract. This paper is concerned with simultaneous visualization of two or
more volumes, which may be from different imaging modalities or numerical
simulations for the same subject of study. The main visualization challenge is to
establish visual correspondences while maintaining distinctions among multiple
volumes. One solution is to use different rendering styles for different volumes.
Interactive rendering is required so the user can choose with ease an appropriate
rendering style and its associated parameters for each volume. Rendering effi-
ciency is maximized by utilizing commaodity graphics cards. We demonstrate our
preliminary results with two case studies.

1 Introduction

Volume rendering has been accepted as an effective method for visualizing physical
phenomena or structures defined in 3-space. The advent of texture hardware algo-
rithms [2, 5] and special hardware like the VolumePro [14] make possible interactive
volume rendering which is very attractive to many disciplines. While previous volume
visualization algorithms were mostly designed for looking at one volume at a time or
for animating time-varying volume data [11]. the ability to simultaneously visualize
multiple volumes becomes increasingly desirable for many application areas.

In medical research and practice, many imaging modalities including X-ray imag-
ing, Doppler ultrasound, CT scans, MRI scans, etc. are available to physicians for
making better diagnoses and surgical plans. While generally the images from differ-
ent modalities are looked at individually or side by side, it would often beneficial to see
two types of data sets simultaneously by spatially superimposing them. For example, it
is helpful to visualize functional data overlaid on anatomical data.

In scientific computing, to gain a better understanding of the intrinsic properties of
certain physical or chemical process, scientists often try to simulate and study different
aspects of the process. The capability to visualize different variables simultaneously
describing the same spatial domain and to determine their correlations is thus desirable.
For example, in a multi-disciplinary computing environment, several engineering anal-
ysis programs, such as structural and flow solvers, run concurrently and cooperatively
to perform a multi-disciplinary design. The goal may be to identify the relevant design



variables that can explain the causes of a particular phenomenon, like vortices in a flow
field.

Multimodality volume visualization in medical imaging generally must proceed
with a registration step because volumes from different modalities almost always have
either different resolutions or various degree of distortions. Registration can be as sim-
ple as performing a set of linear transformations but can also be a very complex process
involving extensive human intervention [1, 15].

Similarly, in many scientific or engineering studies, simulation data and experimen-
tal data of different resolutions or on different kinds of computational mesh structures
need to be looked at together. Resampling is often done to match one resolution to
the other. Registration/resampling by itself can present many challenges. The work re-
ported in this paper focuses on the visualization problems after registration/resampling
has been done.

We aim to develop techniques that can generate effective visualizations which re-
veal both correspondence and distinction between multimodality volume data sets. Our
approach to the multi-volume visualization problem is to use:

- highly interactive rendering,
- mixed rendering styles, and
- user-controlled data fusion.

Interactive rendering allows the user to freely change rendering and visualization pa-
rameters, as well as data fusion schemes. Rendering different volumes with different
styles, if done appropriately, may enhance perception of shape, structure, and spatial
relationship. The data fusion problem here is to determine how to display multiple data
values defined at the same spatial location. For example, a CT image and MRI image
from the same patient can be combined to show both bones and fat clearly in a single
image. We feel that the user should be allowed to select a particular method to combine
images according to the properties under study. The rest of the paper discusses these
topics. Finally, two different data sets are used to discuss the techniques and processes
we have developed to achieve more efficient multi-volume visualization.

2 Interactive Volume Rendering

Highly interactive volume rendering can be achieved by using either graphics hardware-
assisted methods or a parallel computer. We are particularly interested in utilizing con-
sumer PC graphics cards like the Nvidia GeForce 3. For large data sets, a cluster of PCs
is used to distribute both the data and the the rendering calculations.

2.1 Hardware-accelerated volumerendering

Specialized volume rendering hardware such as the VolumePro [14] has been available
for realtime volume rendering for several years. Recent lower-cost consumer graphics
cards such as the Nvidia GeForce 3 also support volume rendering through the use of
volumetric textures [5]. To render a volume using volumetric textures, a series of planes
parallel to the screen plane are drawn. These planes intersect the volumetric texture,



which is transformed using OpenGL’s texture transformation matrix, and the graphics
hardware interpolates the texture in three dimensions. The closer together the planes
are drawn, the more accurate (but slower) the resulting volume rendering becomes.
This method is limited by the low amount of memory typically available on consumer
graphics cards. For example, the GeForce 3 has 64 MB of memory, limiting the volume
texture size to 256 x 256 x 256. For higher-resolution data, parallel approaches must be
used [12].

A more widely-supported method for hardware-accelerated volume rendering is to
map large numbers of 2-d textures onto axis-aligned parallel planes [2]. Generally, 8-
bit indexed-color textures are used to minimize memory usage and to allow realtime
modification of the colormap and transfer function by palette modification. This method
produces images with more visual artifacts than the 3-d texture method, and sets of
slices for each axis must be kept to prevent the slices from appearing edge-on. However,
2-d textures are somewhat faster than 3-d textures on current hardware, and can be
straightforwardly paged in and out of video memory, so data sets can be displayed
which exceed the memory of the video card (although with a significant performance
penalty).

Realtime lighting can enhance geometry and structure of data. We currently imple-
ment two methods for lighting in hardware, both of which encode normal information
in a separate set of textures. The first method encodes the normal at each data point as
an 8-bit index, indicating one of 256 direction vectors uniformly distributed in 3-space.
These textures are drawn in a separate pass using a palette which maps each normal
index to a specular light value for the current view vector. The second method uses
the texture-shader features of the Nvidia GeForce 3. The normal vector at each point is
encoded in the three color values of an RGB texture. The GeForce 3 interpolates these
values for each pixel and computes the dot product with the current view vector. The
result is used as a lookup into a texture that encodes a reflection map. This method
provides better precision than the first method at a cost of memory usage.

2.2 Paralld volumerendering

Many software algorithms for parallel volume rendering have been developed [9, 10,
13]. In this work, we intend to use hardware-accelerated rendering. One significant
limitation of volume rendering using consumer PC graphics hardware is the relatively
small amount of video memory. For example, the Nvidia Geforce 3’s 64 megabytes of
video memory is shared between the frame buffer and texture memory. It is very de-
sirable to fit the volume being rendered entirely in texture memory in order to avoid
swapping data into the graphics card from main memory over the relatively slow graph-
ics bus. By subdividing the volume spatially and distributing it across a cluster of PCs
equipped with graphics cards, it is possible to render significantly larger volumes into
the aggregated video memory of the entire cluster. In addition to the larger amounts of
texture memory provided by a PC cluster, performance improvements also result from
the combined fill-rate of multiple graphics cards.

A PC cluster we have built recently consists of 17 PCs. The 16 node PCs are con-
nected with a 100-base-T fast Ethernet while the connection to the host PC, which is
used for final display and user interface control, is through the cluster’s switch with



a gigabit Ethernet. Each PC has an AMD Athlon 1.3 Ghz processor, one gigabyte of
PC133 SDRAM and a GeForce 3.

Our current implementation of the renderer subdivides and distributes the volume
using k-d tree subdivision. Each node PC resamples it’s subvolume to a size of 256 x 256 x 256
regardless of the dimensions of the actual volume. For smaller volumes this permits
higher order resampling to be done in software prior to the tri-linear interpolation done
in hardware. During rendering, for each frame, every node on the cluster renders its
subvolume and composites the resulting subimage using binary-swap [13] with the fi-
nal image being sent to the host for display. Presently, using 8 of the node PCs, we are
able to render 512x512x512 voxels to a 512 x 512 window at about 1-2 frames per sec-
ond. The current implementation can switch between high and lower resolution modes
based user’s need for interactivity. For example, rendering a scaled down version of the
data instead like 256 x256 x 256 voxels, over 10 frames per second can be achieved.

3 Mixing Rendering Styles

When rendering multiple volumes, it is important that visual cues be present to help
differentiate the volumes. This can be achieved by varying the color, lighting, as well
as rendering style used for each of the different volumes. For example, Hauser et al. [7]
show how to efficiently perform both maximum intensity projection and direct volume
rendering to generate effective visualizations. In addition, the mixing of photorealistic
and non-photorealistic rendering styles can be particularly effective in not only differ-
entiating the two volumes, but also in drawing focus to features of interest.

3.1 Nonphotorealisticrendering

Non-photorealistic rendering involves the application of techniques used by artists for
the creation of computer generated imagery. These techniques have been applied to
scientific visualization for the creation of imagery that can be more meaningful than that
generated with more traditional photorealistic techniques. Non-photorealistic rendering
is usually associated with the representation of surfaces, but has also been applied to
direct volume rendering [3, 12]. Through the application of several non-photorealistic
rendering techniques it is possible to accentuate key features in a volume, while de-
emphasizing structures that might obstruct or detract from those features.

An artist rarely depicts shading by simply making colors darker, but instead relies
on variations in both light intensity as well as color temperature or tone to indicate illu-
mination. For example, shadows are often shown in cooler blues, while directly illumi-
nated regions are shown with warmer yellows and reds. Gooch et al. [6], describe how
tone shading can be applied to the rendering of surfaces for the creation of illustrations.
We implement tone shading by modulating the rendered volume with a volumetric tone
texture. This texture consists of a paletted texture of gradient directions with a palette
that varies from cool to warm depending on the lighting of each gradient direction as
calculated using a standard Phong shading model.

Silhouette rendering consists of adding dark lines around an object and can be very
effective in enhancing fine structures. They can also aid in depth perception when view-
ing overlapping structures of similar color. Silhouette rendering is accomplished in a



second rendering pass that modulates the transfer function with a texture that is dark
and highly opaque in those regions with a normal perpendicular to the view, and highly
transparent in those regions parallel to the viewer. This texture is obtained by using a
paletted texture with gradient directions and specifying a palette such that each normal
has an opacity that increases with degree silhouette should be shown.

Through the variation of color based on distance, depth perception can be im-
proved [4]. In particular, color can be varied in temperature as well as intensity depend-
ing on the distance from the viewer. We implement this non-photorealistic rendering
style by modulating each textured polygon drawn in the rendering processes with a
color that is selected based on the distance from the viewpoint. The user is able to in-
teractively specify how color is manipulated based on distance using a transfer function
styled interface that maps distance to a color and opacity map. Thus, closer objects can
be mapped to warmer colors compared to cooler distant objects, improving perception
of the depth relationship between these objects.

4 Data Fusion Schemes

When rendering multiple volumes simultaneously, we must decide how to treat multiple
values defined at the same spatial location. There are basically three approaches to this
data fusion problem:

1. using one of the values based on some criterion
2. using one value which is weighted by a function of some or all of other values
3. using one value for each color channel

An example for the first approach is the alternating sampling used in [8] for render-
ing two volumes. The second approach gives us more freedom. For example, we could
use the opacity transfer function for one volume to enhance or de-enhance some as-
pects of the other volume. This is similar to the common practice of volume visualiza-
tion in which gradient magnitude is used to enhance boundary surface. Furthermore,
a weighted sum might be used with scalings that reflect a desired property, such as
distance from the viewer [12]. The third approach is probably the simplest for one to
implement and to verify its results. While it is limited to visualization of three or fewer
volumes, in practice we hardly need to see more than three volume simultaneously.

We have implemented a suite of combining operations based on these three ap-
proaches. Most importantly, our system allows the user to interactively select a particu-
lar way to present multimodality data. We found this capability aids to the multi-volume
data exploration process.

5 Results

We have been studying multi-volume visualization using data sets generated from med-
ical imaging, biological data imaging, and computational fluid dynamics simulations.
In the following sections, case studies on a mouse data set and a plant microbiology
data set are presented to summarize our initial experience. Alternating sampling was
used for data fusion for both data sets.



5.1 Casestudy I: a mouse data set

We use two volumes from small animal imaging: a Positron Emission Tomography
(PET) data and an MRI scan of a mouse head. Each of these data sets consists of 47
slices at 256 x 256 pixels per slice. Prior to visualization, the data was cropped to remove
a significant amount of empty space, and resampled to 100 slices at 256 x256. On a
single PC, we can render to 500 x 500 pixels window without lighting at 25 frames per
second, with one volume lit at 7 frames per second, and with both volumes lit at 1 frame
per second.

The left image in Figure 1 shows high density regions of the PET data set in green,
indicating the region of higher brain activity. The blue areas show a narrow range of
values present in the MRI data set. This allows some anatomical structure to be shown
while keeping most of the PET scan data visible. White specular lighting is applied to
the MRI data to help define its shape.

Fig. 1. Simultaneous visualization of PET and MRI mouse data.

The right image in Figure 1 shows high density PET data in red with specular high-
lighting. The large tube structures around the data are alignment markers to aid in image
registration. The MRI data is shown in gray with a clipping plane to allow a portion of
the PET data to be visible. This MRI data is more difficult to visualize because it con-
sists of large regions of relatively constant value separated by small regions of other val-
ues. This makes it hard to show structure while keeping the image transparent enough
to reveal deeper structure. In addition, noise causes specular lighting to be grainy and
distracting.

In each case, the PET data was much easier to visualize than the MRI data. The
PET data is smooth and present in large, mostly convex areas. This makes it easy to see
desired structure by selecting a cutoff for displayed densities, and the smooth contours
produce smooth, consistent specular highlights. By contrast, the MRI data has a lot of
fine detail at many different densities. A partially transparent MRI image reveals too



many levels of detail to be useful, while a mostly opaque MRI image obscures other
data we may want to see (such as the PET data).

5.2 Casestudy Il: rootsdata set

In our second case study we examine a root data set generated using confocal mi-
croscopy. Two volumes were obtained based on the reflected light emission of two
different fluorescences. The first volume consists of a root from the species Melilotus
alb, which has the common name white clover. The other volume contains mycorrhizal
fungi attached to the root. Each volume has 512x512x 256 voxels. The scientists we
worked with were interesting in studying the symbiotic association that exist between
the plant and fungus.

Fig. 2. Mixed-style rendering of plant root data from confocal microscopy. The red part displays
the cover of the fungi and the green part shows the extent of root.

In Figure 2 we see a hardware rendered image of the root and fungus generated
with our technique. The fungus, shown in red, is rendered using a transfer function
that makes it appear opaque, allowing it’s fine tubular structures to be readily visible.
Lighting parameters have also been specified to make the shape more obvious. The root,
rendered in green, is shown to give the fungus structure context. It is of less importance
to the scientist and is therefore shown with relatively transparent opacity map. Lighting
is less visible for the root since it would draw attention away from the fungus being
studied.



Using eight nodes of our PC cluster to render this data, we are able to achieve over
three frames per second. Using a single PC, we would have to scale down the data to
maintain the same interactivity.

6 Conclusions

Simultaneous visualization of volumetric data from multiple modalities is challeng-
ing because of the disparity in data resolutions, and the higher storage and processing
requirements. In our preliminary study using data from medical imaging and plant mi-
crobiology, we address some of the most relevant issues including rendering models,
data fusion, and high-performance rendering.

We have shown that multi-modality volume visualization can aid in the understand-
ing of volumetric medical data. The additional information provided by simultaneous
visualization allows areas such as tumors or active regions of the brain to be more pre-
cisely located relative to each other and to the anatomy of the animal.

We have also shown that appropriate shading models and use of transparency in
multi-volume visualization provide information not available from the use of a sin-
gle, traditional rendering model. The non-photorealistic rendering we used helps bring
out information about the geometry and boundary of a structure, and the customizable
transparency provides information about the relative positions and size of two or more
structures, and allows the researcher to highlight the most important details of an image.

We intend to create a system framework for further study. Other future work direc-
tions include refining our mixed-style rendering model to derive more effective illustra-
tions, conducting a comprehensive study of the data fusion problem, and studying other
types of multi-volume data,
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