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A B S T R A C T  

Domestication  and  agricultural  intensification  dramatically  altered  maize  and  its
cultivation  environment.  Changes  in  maize  genetics  (G)  and  environmental  (E)
conditions  increased  productivity  under  high-synthetic-  input  conditions.  However,
novel selective pressures on the rhizobiome may have incurred undesirable trade- offs
in  organic  agroecosystems,  where  plants  obtain  nutrients  via  microbially  mediated
processes including mineralization of organic matter. Using twelve maize genotypes
representing an evolutionary transect (teosintes, landraces, inbred parents of modern
elite germplasm, and modern hybrids) and two agricultural soils with contrasting long-
term  management,  we  integrated  analyses  of  rhizobiome  community  structure,
potential  microbe-microbe  interactions,  and  N-cycling  functional  genes  to  better
understand  the  impacts  of  maize  evo-  lution  and  soil  management  legacy  on
rhizobiome recruitment.

We show complex shifts in rhizobiome communities during directed evolution of maize
(defined  as  the  transition  from  teosinte  to  modern  hybrids),  with  a  larger  effect  of
domestication  (teosinte  to  landraces)  than  modern  breeding  (inbreds  to  hybrids)  on
rhizobiome  structure  and greater  impacts  of  modern  breeding  on  po-  tential  microbe-
microbe interactions. Rhizobiome structure was significantly correlated with plant nutrient
composition.  Furthermore,  plant  biomass  and nutrient  content  were affected  by  G x  E
interactions in which teosinte and landrace genotypes had better relative performance in
the organic legacy soil  than  inbred  and modern genotypes. The abundance of six N-
cycling genes of  relevance for  plant  nutrition and N loss pathways did not  significantly
differ between teosinte and modern rhizospheres in either soil management legacy. These

re- sults  provide  insight  into  the  potential  for  improving  maize  adaptation  to  organic
systems and contribute to interdisciplinary efforts toward developing resource-efficient,
biologically based agroecosystems.

1. Introduction

Natural and artificial selection have changed modern
maize pro- foundly in comparison to its wild ancestor,
teosinte (Zea mays ssp. par-  viglumis).  Crop breeding
and directed evolution led to environmental and genetic
changes  that  dramatically  increased  productivity  in
high-  input,  intensively  managed  conventional
agricultural systems.

However,  this  process  may  have  created  undesirable
tradeoffs  for  in-  teractions  between  maize  and  its
rhizosphere microbiome (“rhizo- biome”, Olanrewaju et
al., 2019), which are especially crucial in organic
systems  that  rely  on  microbial  nutrient  cycling  for
resource  acquisition  (Schmidt  et  al.,  2016).  Recent
studies  of  maize  evolution in single soil  environments
have revealed inadvertent effects of directed
aboveground  selection on root traits and rhizosphere
processes (Brisson et al., 2019b;

Abbreviations: ASV, amplicon sequence variant; G x E, genotype-by-environment; GWAS, genome-wide association studies; ITS, 
internal transcribed spacer; N, nitrogen.
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Emmett  et  al.,  2018;  Szoboszlay  et  al.,  2015).
Nonetheless, it remains unclear whether genetic (G) and
environmental  (E)  selective  pressures  that drove
adaptation to conventional agricultural systems may
have led to a G x E interaction in which modern maize
and  its  rhizobiome  are  maladapted  to  organic
agricultural systems.

With  recent  shifts  toward  understanding  host-
microbiome associa- tions as pan-genomes (Tkacz and
Poole,  2015)  or  holobionts  (Dessaux et al., 2016;
Vandenkoornhuyse et al., 2015), host genetic effects on
the rhizobiome should be integrated into evolutionary
studies.  Improve-  ment  of  aboveground  traits  during
maize  evolution  had  unintended  belowground  effects
that  likely  impacted  rhizosphere  interactions.  For
example,  both  domestication  and  agricultural
intensification affected maize root system architecture,
which can affect rhizobiome composi- tion  (Corneo et
al.,  2016), and  anatomy, which can affect pathogenic
and  symbiotic  fungal  colonization  (Galindo-Castan~eda
et  al.,  2019).
Domestication led to longer nodal roots, more seminal
roots, more aerenchyma, and greater genetic variation
for  anatomical  and  archi-  tectural  traits  in  landraces
than teosinte  (Burton et  al.,  2013),  and reduced root
branching despite  equivalent  root:shoot  ratio  (Gaudin
et  al.,  2014).  Physiological  changes  such  as
enhancement of culinary properties (e.g. via genes su1
and  ae1)  may  have  altered  systemic  car-  bohydrate
metabolic  pathways  affecting  root  exudation  (da
Fonseca  et al., 2015). Furthermore, the domestication-
related  genetic  bottleneck  from teosinte  to  landraces
(Eyre-Walker et al., 1998; C. J.  Yang et al., 2019) may
have correspondingly decreased diversity of the maize
microbiome (P�erez-Jaramillo et al., 2016).

The genetic effects described above create
differences in rhizobiome composition of various maize
evolutionary stages even in a single soil  environment.
For instance, teosinte, landrace, and modern genotypes
recruit  distinct  rhizosphere  bacterial  and  fungal
communities from a nutrient-depleted soil, but with no
differences in diversity (Brisson et al., 2019b). Maize
genotypes varying at the su1/sh2 locus, a domestication
gene affecting kernel  starch  and sugar  content,  have
rhizobiomes  that  differ  in  structure  and  fertilization
response (Aira et al., 2010). Simi- larly, sweet corn and
popping corn have decreased rhizosphere bacterial and
fungal diversity and changes in rhizobiome composition
compared to teosinte (Szoboszlay et al., 2015). Studies
of modern maize inbreds and hybrids have also shown
effects of host genetic group on rhizobiome structure
(Bouffaud  et  al.,  2012;  Walters  et  al.,  2018)  and
extracellular  enzyme  activity  (Emmett  et  al.,  2018),
although this influence is inde- pendent of host genetic
distance or decade of release.

Genetic  changes  to  improve  agronomic  traits  went
hand-in-hand  with  agricultural  intensification:  a
transition  from  low-synthetic-input  agroecosystems  to
increasingly  managed,  high-density,  and  input-
dependent  cultivation  environments.  Agrochemical
inputs for fertility, weed management, and pest control
became widespread (Duvick, 2005)  and  synthetic  N
fertilizer application rates rose rapidly, replacing organic
matter as the primary source of crop nutrients (Cao et
al., 2018).  Today,  although  the  diversity  of  modern
agricultural systems is not accurately represented by a
conventional-organic  dichotomy,  manage-  ment
systems that rely on inorganic inputs vs. organic matter
have  profoundly  different  consequences  for  soil

physicochemical  properties  and  microbial  communities.
Crucially, the effects of divergent man- agement practices
extend beyond a single growing season to long-term legacy
impacts:  Organically  managed  agroecosystems  have
distinct mi- crobial diversity, community structure (Francioli
et al., 2016; Li et al., 2017; Lupatini et al., 2017; Mader et
al.,  2002;  Wang  et  al.,  2016),  and  microbe-microbe
ecological  interactions (Berry and Widder, 2014;  Coyte et
al., 2015; Faust and Raes, 2012; Layeghifard et al., 2017) in
comparison  to  conventionally  managed  systems.  Plant-
microbe in- teractions likely also have a greater impact on
crop  health  and  pro-  ductivity  in  organic  systems  that
depend  on  microbial  mineralization  processes  to  release
plant-available  nutrients  than  when  inorganic  fer-  tilizers
are applied.

While genetic and environmental changes during maize
evolution

have frequently been investigated separately, the
interaction of these
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selective forces may have had profound impacts on
the  modern  maize  rhizobiome  and  microbially-
mediated  adaptation  to  organic  agro-  ecosystems.
Adaptation of landrace genetic clusters to local
climatic and ecological conditions appears to have
been influenced by the rhizobiome (Vigouroux et al.,
2008).  Later,  the  high-density,  high-nitrogen  (N)
environment of modern intensive agriculture led to
shallower  root  sys-  tems with reduced branching
(York et al., 2015) and potential reduction  in  the
benefits to maize of microbial mutualisms (Kiers et
al.,  2002;  Wissuwa et  al.,  2009).  However,  G  x  E
interactions impacting maize acquisition of organic N
and adaptation to organic agroecosystems have not
been fully investigated.

We  examined  potential  impacts  of  maize
evolution  on  rhizobiome  composition  and  plant
growth  in  soils  of  contrasting  agricultural  man-
agement  legacy.  Using  twelve  genotypes
representing  an  evolutionary  transect  (teosintes,
landraces,  inbred  parents  of  modern  elite  germ-
plasm,  and  modern  hybrids)  and  two  agricultural
soils  with  contrasting  management  legacies  (long-
term conventional vs. organic),  we deter- mined G
(maize genetic group), E (soil management legacy),
and G x E  effects  on  rhizobiome  diversity  and
structure,  potential  microbe-  microbe  interactions,
and agriculturally relevant N-cycling processes. We
hypothesized  that  domestication  and  further
agricultural  intensifi-  cation  led  to  a)  decreased
rhizobiome  diversity  and  b)  caused  progres-  sive
shifts  in  rhizobiome  composition  and  potential
microbe-microbe interactions, with a  greater effect
of  modern  breeding  than  domestica-  tion.
Furthermore,  we  hypothesized  that  c)  rhizobiome
composition would be correlated with plant nutrition
and productivity, and that  d) G x E interactions in
plant and rhizobiome metrics would reflect
decreased adaptation to the organic legacy soil over
evolutionary time. Addressing  these questions can
provide a more comprehensive understanding of the
impacts  of  maize  evolution  on  its  rhizobiome and
inform  breeding  ef-  forts  to  develop  more
sustainable agroecosystems.

2. Material and methods

2.1. Soil collection

Soil  for a  greenhouse experiment  was collected
from  the  Century  Experiment located at Russell
Ranch Sustainable Agriculture Facility of  the

University of California, Davis (38.54�N, 121.87�W)
(Wolf  et  al., 2018).  Topsoil  was collected  from the
upper  10  cm of  soil  at  random locations  in  three
replicate  0.40-ha plots  per long-term management
treatment (organic and conventional) of the maize-
tomato  rotation  in  September  2016  after  maize
harvest.  Plots  had  been  under  continuous
conventional or certified organic management since
1993 with the same total N rate applied but different
N sources. Conventional plots received inorganic N
fertilizer, whereas organic plots received organic N
sources in the form of cover crops and composted
poultry manure before each crop cycle. Furthermore,
the organically managed plots were planted with a
winter  cover  crop  of  mixed  oat  (Avena  sativa  L.),
vetch (Vicia villosa) and bell bean (Vicia faba L.) that
was cut and incorporated prior  to  tomato

transplanting in the spring. Pests were controlled in both
treatments using sulfur and Bacillus thuringiensis
applications as needed.  For  further  details  of  the
management systems and soil properties, please refer
to Wolf et al. (2018) and Li et al. (2019). After collection,
soil was homogenized in a cement mixer and used to fill
5-gallon pots over a 1-week period. Pots were placed in
a greenhouse and watered with  individual  drippers  to
avoid  cross-contamination  between  experi-  mental
units. Soil physicochemical properties were analyzed at
the  UC  Davis Analytical Laboratory (Davis, CA, USA);
details and references for the analysis protocols can be
found in Supplementary Table S1.

2.2. Maize growth and plant analysis

Seeds of 12 Zea mays genotypes representing an
evolutionary tran- sect (sensu  Iannucci et al., 2017) of
maize  domestication  and  breeding  (Supplementary
Table S2) were first germinated on moist paper towels
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in the dark for 4 days. Genotypes included major stages
in  maize  evo-  lution:  teosinte,  the  wild  ancestor;
landraces,  which were created through domestication,
dispersal,  and  local  adaptation;  inbreds,  created  from
the  best-performing  open-pollinated  varieties  that
originated from North American landraces (Duvick et al.,
2004; Smith et al., 2005); and single-cross and double-
cross hybrids, created by crossing elite inbred lines. The
inbreds  selected  were  not  the  direct  parents  of  the
hybrids.  Teosinte  seeds  were  scarified  with  sterilized
nail  clippers  on  one  end  to  enhance  homogeneous
germination.  Six  germinated  seeds  per genotype  and
soil combination were transplanted into moist soil at
approximately
1.5  cm  depth  (n  144).  Pots  were  arranged  in  a
randomized  complete  block design and watered daily
without fertilization until harvest so that  plant  growth
would reflect differences in the combined effect of soil
management legacy and microbial communities. Weeds
were controlled manually as needed. Plants were grown
for 35 days without supple- mental lighting or heating

(temperature  range  16–32  �C).  The  duration  of the
experiment was chosen to prevent pots from becoming
rootbound  and  experiencing  corresponding  resource
limitation  that  might  have  impacted  plant-microbe
interactions.

At  35  days  after  transplanting  (growth  stage  V5),
each  plant  was  clipped  at  the  base and  shoots  were

dried at 105 �C for 72 h and weighed. The entire shoot
was ground, sieved (2 mm) and three shoot samples per
genotype and soil combination were analyzed for C and
N content onan elemental analyzer (Costech Analytical
Technologies, Inc.,  Valencia,  California,  USA)  and
submitted for total nutrient analysis (N, P, K, Ca, Mg, S,
Cu, Mn, Zn, Na, B, Al, Fe) using the acid digest method
(Huang and  Schulte,  1985)  at  the  Pennsylvania  State
University Agri-  cultural Analytical Services Laboratory
(University Park, Pennsylvania, USA).

2.3. Statistical analysis of plant parameters

All statistical analyses were carried out in R software
v.3.4.4 (R Core Team, 2018). Data were assessed to
satisfy the requirements for analysis  of variance
(ANOVA), including homogeneity of variance and
normality of residuals,  using normal QQ plots, Bartlett
tests,  and  Shapiro-Wilk  tests.  Shoot  dry  biomass  was
analyzed  using  ANOVA  with  manage-  ment  legacy
(conventional,  organic),  genetic  group  (teosinte,
landrace,  inbred  line,  modern  hybrid),  and  their
interaction  as  fixed  effects,  ge-  notype  nested  within
genetic group and block as random effects. Normality of
residuals was assessed with the Shapiro-Wilk test.
Relative  performance under different management
legacy for each genetic group  was calculated by
dividing the mean shoot biomass in the organic legacy
soil by mean shoot biomass in the conventional legacy
soil  for all  sam- ples belonging to that genetic group.
Because  the  same  plants  were  not  grown  in  both
conditions and relative performance was thus calculated
as  the  ratio  of  group  means,  lack  of  replication
precluded the use of ANOVA for this metric. Plant tissue
nutrients  were  ordinated  using  principal  components
analysis (PCA). Permutational multivariate anal- ysis of
variance (PERMANOVA) based on Bray-Curtis distance
with 999 permutations was used to test fixed effects of
soil  management and ge- netic group as well as their
interaction on plant tissue nutrients. Mantel tests were
conducted on Bray-Curtis dissimilarity matrices to

determine  whether  tissue  nutrients  were  correlated
with bacterial and fungal rhizosphere communities.

2.4. Rhizosphere soil collection

At  harvest,  theentire  root  system was immediately
removedfrom the soil and stored at 4  �C.  Rhizosphere
soil adhering to roots after shaking was collected from 3
5-cm  segments  of  roots  5  cm away  from  the  crown
within 72 h. Root subsamples with adhering soil were
gently  shaken  (120  rpm)  for  90  min  in  a  0.9%
NaCl/0.01% Tween 80 (v/v) solution (Sigma Aldrich, St.
Louis, Missouri, USA). Roots were removed and the
solution was centrifuged for 10 min at 14,000 rpm. The
resulting pellet was stored at  - 80 �C.  Total DNA was
extracted from rhizosphere soil
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using  a  DNeasy  PowerSoil  Pro  kit  according  to
manufacturer’s in- structions (Qiagen, Inc., Germantown,
Maryland, USA) and stored at
-80 �C until further use.

2.5. 16S rRNA gene sequencing

Genomic DNA was submitted to the DOE Joint Genome
Institute  (Walnut  Creek,  CA,  USA)  for  amplicon-based
sequencing  of  the  16S  rRNA gene for bacteria and
archaea (region V4–V5, Parada et al., 2016)  and  the
internal transcribed spacer for fungi (ITS2, (White et al.,
1990). An Illumina MiSeq platform was used to generate
300-bp  paired-end reads.  Sequencing  data  analyzed  in
this project is available  in  the NCBI SRA database under
the project ID PRJNA593859.

Raw sequencing  data  were  demultiplexed  using  the
Idemp toolkit and primers were removed using Cutadapt
(Martin, 2011). All  further read processing was done in
the Dada2 package (Callahan et al., 2016) using R v.3.4.1
(R Core Team, 2018). Based on read quality profiles, 16S
rRNA gene forward reads were truncated to 210 bp and
reverse reads to 160 bp; ITS reads were not truncated to
a  specific  length  because  the  length  of  this  region  is
highly variable. 16S rRNA gene sequences were filtered
and trimmed using the parameters maxEE  2 and truncQ
2   and forward and reverse reads merged, while ITS
reads were filtered and  trimmed  using  maxEE  2  and
truncQ  11.  Bacterial  and  archaeal  taxonomy was
assigned to the genus level using the SILVA reference
database  v.128  (Glo€ckner  et  al.,  2017)  and  fungal
taxonomy  was
assigned using the 2017 release of the UNITE database
(Ko~ljalg et al., 2013).  Sequences  were  rarefied  to  the
minimum number of reads per sample (4949 for 16S rRNA
gene and 71052 for ITS), leaving a total of 11062 16S rRNA
amplicon  sequence  variants  (ASVs)  and  3248  fungal  ITS
ASVs for further analysis.

2.6. Microbial community diversity and composition

Microbial  community diversity  and composition  were
analyzed in rhizosphere soil samples. The Shannon index
was calculated for each sample as a measure of alpha
diversity (Spellerberg and Fedor, 2003). ANOVA was used
to test the effects of soil management legacy, genetic
group,  and  their  interaction  on  alpha  diversity  as
described  for  shoot  biomass.  Non-metric
multidimensional  scaling  (NMDS)  of  distance  matrices
based  on  Bray-Curtis  dissimilarity  values  was  used  to
ordinate  prokaryotic  and  fungal  rhizosphere
communities.  Permutational  anal-  ysis of variance
(PERMANOVA) based on Bray-Curtis distance with 999
permutations  was  used  to  test  the  effects  of  soil
management  legacy,  genetic  group,  and  the
management legacy x group interaction on rhi- zobiome
composition. The proportion of variation corresponding to
each of these factors was calculated by converting the
PERMANOVA  estimated  components  of  variation  to
percentages.  To  compare  between-sample  (β)  diversity
among  maize  genetic  groups,  the distance  from each
rhizobiome sample to the group centroid was calculated
using  management-legacy-specific  Bray-Curtis  distance
matrices with the usedist package (Bittinger, 2017). One-
way ANOVA was  used  to  test  whether  the  distance to
group  centroid  differed  among  genetic  groups,  with
distance to centroid as the response variable and genetic
group  as  the  independent  variable.  Furthermore,  the
distance  between  group  centroids  was  calculated  for
samples from each pair of maize genetic groups based on

Bray-Curtis  distances.  Distance-between-centroid  cal-
culations  were  conducted  separately  for  prokaryotic
communities  and  fungi  within  each  soil  management
legacy.

2.7. Differential abundance analysis

Differential abundance analysis was used to identify
ASVs differing  in  abundance  among  maize  genetic
groups using the DESeq2 package (Love et al., 2014).
Samples from different genetic groups did not differ in
library  size,  so it  was appropriate  to  use non-rarefied
data  for  the  DESeq2 analysis. For more detailed
justification of the use of
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non-rarefied data in differential abundance analysis, the
reader is referred to Weiss et al. (2015, 2017). Analysis
was conducted for pro- karyotic and fungal communities
separately using the Wald test, para- metric fit, and a
significance threshold of p < 0.01.

2.8. Indicator species analysis

Indicator  ASVs  associated  with  a  genetic  group  or
combination of two groups were identified within each
soil management legacy. Taxa considered as indicators
of a given environment are defined as being both more
abundant in that environment than other environments
and  found  more  frequently  there  than  in  other
environments  (see  Dufrene and  Legendre  (1997) for
further  explanation).  Combinations  of  two  genetic
groups  (teosinte-landrace,  teosinte-inbred,  teosinte-
hybrid, landrace-inbred, landrace-hybrid, inbred-hybrid)
were  included  to  provide  insight  into  shifts  during
domestication and breeding,  as more shared indicator
taxa  could  indicate  greater  similarity  between  rhizo-
biomes. To avoid bias due to rare taxa, only sequences
present in at least  10  samples  were  included.  The
Indicator  Value  (IndVal)  index,  which  integrates
abundance and frequency of  occurrence  into  a single
metric,  was  calculated  for  each  bacterial/archaeal  or
fungal ASV (Dufrene and Legendre, 1997). Associations
of ASVs with each of the 20 environments  [2  soil
management  legacies  x  (4  genetic  groups  6
combinations of  two genetic groups)] were tested for
significance with 999 permutations  using the
indicspecies package (De Ca�ceres  and Legendre,
2009). The Bonferroni correction was used to control the
family-wise error rate at α
¼ 0.05 for the 20 comparisons.

2.9. Network analysis

Co-occurrence network analysis was used to visualize
differences in  microbe-microbe  interactions  within
rhizobiome samples. Nodes in these networks represent
microbial ASVs and edges represent significant  co-
occurrence patterns. Only sequences present in at least
10 samples were included in network analyses to avoid
bias due to rare taxa (Berry and Widder, 2014), leaving
a  total  of  465  prokaryotic  and 114 fungal  ASVs.  The
HabitatCorrectedNetwork  tool,  which  accounts  for
habitat  filtering effects by centering each sample
around the mean value for the respective subgroup, was
used  to  construct  correlation  tables  based  on  the
Spearman’s  rank  correlation  coefficient  and  corrected
for habitat filtering by using genotype as the subgroup
variable  (Brisson  et  al., 2019a).  One  network  was
constructed for each maize genetic group within each
soil  management  legacy  from  significant  positive
correla-  tions  (r  >  0.75  and  p  <  0.01).  Network
properties thought to be ecologically relevant according
to the literature, such as number of nodes and edges,
mean degree, and modularity, were calculated using the
igraph package (Cs�ardi and Nepusz, 2006).

2.10. Quantitative PCR (qPCR of N-cycling genes

Abundances of six microbial genes involved in N-
cycling processes in  the rhizosphere of teosinte and
modern maize were quantified as proxies for potential
alterations to the N cycle. Specifically, the genes
measured were nifH for N2 fixation, archaeal amoA and
bacterial amoA for nitri-  fication,  and  nirK,  nirS,  and

nosZ for denitrification.
A microfluidics Fluidigm Gene Expression chip was

used to amplify and quantify all genes simultaneously.
The following primers were used: Po1F/Po1R (nifH) (Poly
et  al.,  2001),  CrenamoA23f/CrenamoA6161r  (archaeal
amoA) (Tourna et al., 2008), amoA-1F/amoA-2R (bacterial
amoA) (Rotthauwe et al., 1997), nirK876/nirK1040 (nirK)
(Henry et al., 2005), nirSCd3aF/nirSR3cd (nirS) (Kandeler
et  al.,  2006),  and nosZ1F/nosZ1R (nosZ) (Henry et al.,
2006). Specific target amplification  (STA)  was  used  to
increase the amount  of template for  each target gene
prior to Fluidigm qPCR (Ishii et al., 2014). The STA pre-
amplification  reaction  was  performed  in  5  μl  reaction
mixtures containing 2  �  Taq-  man PreAmp Master Mix
(Applied Biosystems), 0.5 μM of all primer sets
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listed  above,  and  1.25  μl  of  the  DNA  template
extracted from rhizo- sphere soil. The STA reaction was
performed on an MJ Research Tetrad  thermal  cycler
with the following cycling program: 95  �C  for 10  min
followed by 14 cycles of 95 �C for 15 s and 58 �C for 4
min. Standards of each gene were  derived from  soil
microbial communities,  quantified,
and mixed. A 5-fold dilution series from 1     105  to 3.2
101 copies/μl
was  subjected  to  the  STA  pre-amplification  reaction
along with the soil DNA to provide standard curves for
Fluidigm qPCR. STA products were  treated  by
exonuclease to remove excess primers. For qPCR, 5 μl
of sample premix was prepared containing 2 � SsoFast
Evagreen Supermix with Low Rox (BioRad), 20 � DNA
Binding Dye Sample Loading Reagent  (Fluidigm),  and
2.25  μl  exonuclease-treated STA products.  Five  μl  of
assay mix was prepared containing 2 � Assay Loading
Reagent  (Fluid-  igm),  1  DNA  Suspension  Buffer
(Teknova), and 50 μM each forward and reverse primer
for each gene target. The sample premix and assay mix
were  loaded  on  a  96.96  chip  (Fluidigm),  and
amplification by primer sets for individual genes was
performed according to the following program: 70  �C
for 40 min, 58 �C for 30 s, 95 �C for 1 min followed by
30 cycles of 96 �C for 5 s, 58 �C for 20 s, and followed
by a  dissociation curve. All of the samples and
standards were analyzed in 12 technical replicates. The
Fluidigm Real-Time PCR Analysis software version 4.1.3
and the copy number of  each gene (calculated from
DNA quantification in Qubit and the known length of
each gene) were used to  determine the Ct (cycle
threshold). All Fluidigm qPCR was conducted at the Roy
J. Carver Biotechnology Center (Urbana, IL, USA). Mean
values and standard errors for number of copies per ng
DNA  (quantified  by  Qubit,  Invitrogen,  Carlsbad,  CA,
USA)  were  calculated  from  technical  replicates  with
quality scores of at least 0.65.

2.11. qPCR data analysis

Data were again tested for homogeneity of variance
and normality of  residuals  using  normal  QQ  plots,
Bartlett  tests,  and  Shapiro-Wilk  tests.  Analysis of
variance (ANOVA) was used to test the fixed effects of
soil  management  legacy  and  genetic  group  on
abundance  of  each  N-cycling  gene  with  block  as  a
random effect. Outliers identified as greater than four
times  the  mean  value  for  Cook’s  distance  were
removed  to  meet  assumptions  of  normality  of
residuals. Because both soil  management legacy and
genetic group significantly influenced abundance,
Student’s t  tests were used to examine whether the
abundance of each gene differed significantly between
the rhizobiome of teosinte and modern maize hybrids
within each soil management legacy.

3. Results

3.1. Plant biomass and nutrient content

Plant biomass was higher in the organic legacy soil,
which  was  higher  in  most  nutrients  (Supplementary
Table  S1)  than the conven-  tional legacy soil, for all
genetic groups (Fig. 1a). However, a significant
genetic group x soil management legacy interaction
showed that relative growth in the two soil treatments
varied by genetic group (p < 0.001). Relative  biomass
increases in the organic legacy soil compared  to the
conventional legacy soil  were higher for teosinte and

landrace  geno-  types  than  inbred  and modern  hybrid
genotypes (Fig. 1b).

Shoot  nutrient  composition  was  also  affected  by  a
genetic group  x soil management legacy interaction (p
< 0.01). Soil management legacy appeared to have a
stronger effect than genetic group on plant nutrient
profiles: PCA ordination separated samples primarily by
soil  manage-  ment  legacy  along  the  first  principal
component  (PC1)  axis,  which  explained  29.8%  of
variation (Fig. 1c). Plant shoot nutrients with the highest
factor loadings for this axis included Ca, Mg, Al, Na, Fe,
Mn, and
B. The second principal component (PC2), which
accounted for 25.1% of variation, was most influenced
by N, P, K, and Zn (Fig. 1c).
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Fig. 1. Plant aboveground biomass and nutrient composition. A) Dry shoot biomass was higher in the organic legacy soil
for all genetic groups. B) Relative  growth, calculated as biomass in the organic legacy soil relative to biomass in the
conventional legacy soil on a percentage basis, varied by genetic group (p < 0.001). Teosinte and landrace genotypes had
higher relative growth in the organic legacy soil than inbred and modern genotypes. C) Principal components analysis (PCA)
revealed that shoot nutrient composition was affected by a genetic group x soil management legacy interaction (PERMANOVA p
< 0.01). Separation by soil management legacy occurred primarily along the PC1 axis, which explained 29.8% of variation, but
genetic group effects were less clearly shown.

3.2. Rhizobiome composition and diversity

Within-sample (α) diversity of rhizosphere prokaryotic
communities did not differ by soil management legacy
or maize genetic group (p  >  0.05, Supplementary Fig.
S1a). Fungal alpha diversity was significantly higher (p
<  0.001)  in  the  rhizosphere  of  plants  growing  in  the
conven- tional legacy soil but did not differ between
genetic groups (Supple-
mentary  Fig.  S1b).  In  contrast,  between-sample  (β)
diversity (or dispersion), calculated as the distance to
the  group  centroid,  tended  to  decrease  along  the
evolutionary  transect  from  teosinte  to  modern maize
(Fig. 2).  This trend was observed for bacteria/archaea
and fungi under both soil management legacies, but the
effect of maize genetic group was
not statistically significant (p > 0.05).

The composition of prokaryotic and fungal
communities varied with  soil management legacy and
maize genetic group (all PERMANOVA p < 0.001), with
no significant interaction (Supplementary Fig. S2, Sup-
plementary  Table  S3).  Soil  management  legacy
explained a greater proportion    of    variation    in
community    composition    (10% for

prokaryotes, 20% for  fungi)  than genetic  group (6.1%
for prokaryotes, 5.3% for fungi).

The distance between group centroids was calculated
for rhizobiome samples from each pair of maize genetic
groups in each soil management  legacy  (Fig.  3).  For
prokaryotic  communities,  the  greatest  distance  be-
tween centroids was observed between teosinte and
inbred lines and the  smallest  distance  was  observed
between  inbred  lines  and  modern maize  in  both  soil
management legacies (Fig. 3a). In contrast, the greatest
distance between centroids for fungal communities was
between  teosinte  and  landraces  and  the  smallest
distance was between inbred lines and modern maize in
both  soil  management  legacies  (Fig.  3b).  However,
distances were non-additive, i.e. the distances between
ge-  netic groups adjacent on the maize evolutionary
timeline did not sum to  the  distance  between  non-
adjacent groups. For prokaryotic commu- nities, in fact,
the distance between teosinte and modern maize was
smaller than the distance between teosinte and inbred
lines for both soil management legacies.

Fig.  2.  Beta  diversity  of  maize
rhizobiome sam- ples. Within-group beta
diversity  of  A)  prokaryotic  and  B)  fungal
rhizosphere  communities  was calcu-  lated
for  each  combination  of  maize   genetic
group  and soil management legacy as the
mean  distance   from  each  rhizobiome
replicate to the centroid of all replicates for
that  group  x  soil  management  legacy
combination.  A  trend  towards  decreasing
beta  di-  versity  over  maize  evolutionary
time  was  observed, although  it  was  not
significantly different at the p
0.05 level.
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Fig.  3.  Distance  between  centroids
and  shared  indicator  ASVs.  Distance
and  similarity  metrics  were  calculated  to
investigate  the  dynamics  of  rhizobiome
shifts  during   maize   evolution   for   A)
prokaryotes and
B) fungi in conventional and organic legacy
agricul-  tural  soils.  The  distance  between
centroids  of  rhizo-  biome  samples  was
calculated for each pair of genetic  groups
in each soil management legacy. Indicator
species  analysis  identified  thirty-six
prokaryotic  and  fungal  ASVs  uniquely
associated  with  a  pair  of  genetic  groups,
and the number of indicator ASVs unique to
each pair is shown below the corresponding
con-  necting  line.  Non-additive  distance
between  centroid  values  and  numbers  of
shared  indicator  ASVs  suggest  that
changes   in   rhizobiome   structure   and
plant-  microbe  interactions  during   maize
evolution   have   not  been  linear.
Differences  in  distance  and  similarity
metrics between soil management legacies
show a  genotype-by-environment  (G  x  E)
interaction.



(Fig.  3).  However,  the  most  distantly  related  maize
genetic groups, teosinte/modern, still shared 4 indicator
ASVs. 58% of the prokaryotic indicator ASVs belonged to
the  phylum  Proteobacteria  and  15%  to  the  phylum
Bacteroidetes (Supplementary Table S4). 67% of fungal
indi-  cator  ASVs belonged to  the phylum Ascomycota
(Supplementary Table S4).

3.4. Co-occurrence network analysis

Co-occurrence  networks  (with  nodes  representing
ASVs  and  edges  representing  positive  co-occurrence
relationships, as described in the Material and Methods)
were  constructed  to  investigate  the  effects  of  maize
evolution  and  soil  management  legacy  on  potential
microbe-  microbe  ecological  interactions  in  the
rhizosphere.  Prokaryotic  co-  occurrence  network
structure varied by soil management legacy and genetic
group  (Fig.  4,  Table  1).  All  rhizosphere  networks  had
464-465  nodes,  but  the  number  of  edges  differed
according  to  soil  management  legacy  and  genetic
group. Prokaryotic rhizosphere networks of plants grown
in the conventional legacy soil (Fig. 4a) had 7–9% fewer
edges than networks from the organic legacy soil (Fig.
4b) for all genetic groups except for modern maize. In
that  case,  the  prokaryotic  rhizo-  sphere network of
modern maize in the conventional legacy soil had 5%
more edges than the prokaryotic rhizosphere network of
modern  maize  in  the  organic  legacy  soil.  Teosinte
networks had the highest number of edges and mean
degree,  and  modern  maize  networks  had  the  lowest
values for these parameters in both soil management
legacies. However, the trends did not progress in one
direction along the evolutionary transect, as values for
inbred  networks  were  higher  than  for  landraces.
Teosinte  networks  were  slightly  less  modular  than
networks  from  other  genetic  groups  in  both  soil
management legacies (Table 1).

Fungal  networks  were  similar  in  size  in  both  soil
management leg-

acies, but structural properties varied by genetic group
(Fig. 5, Table 1).  Number of  edges and mean degree
were highest in teosinte rhizosphere networks in both
soil  management  legacies,  followed by modern maize
networks. Landrace and inbred networks tended to have
the highest modularity values.

3.5. Relationship between rhizobiome composition and plant 
parameters

Mantel tests were used to test correlations between
dissimilarity  matrices  for  prokaryotic  and  fungal  ASV
abundances and  dissimilarity  matrices  for  plant  shoot
nutrient composition. Rhizosphere prokaryotic
and  fungal  communities  were  each  correlated  with
shoot nutrient composition (both p < 0.05).

3.6. Abundance of N-cycling genes

To  determine  whether  domestication  and  selection
have  shifted  rhizosphere N cycling in soils with
contrasting agricultural management  legacies,  we
quantified the abundance of microbial genes related to
N2 fixation,  nitrification,  and  denitrification  in  teosinte
and  modern  maize  rhizosphere samples in both soil
management legacies. Soil manage-
ment legacy influenced the abundance of bacterial
amoA and nosZ, with higher abundances in the organic
legacy soil (p < 0.05), but maize ge- netic group did not
affect the abundance of any of the genes (p > 0.05, Fig.
6).

4. Discussion

In  partial  support  of  our  hypothesis  of  decreased
rhizobiome  di-  versity  over  the  course  of  maize
evolution,  we  found  a  trend  towards  decreased
dispersion of rhizobiome samples within genetic groups
(β  diversity),  but  equivalent  species  richness  and
evenness  within  indi-  vidual  rhizobiome  samples  (α
diversity).

Supporting  our  hypothesis  of  shifts  in  rhizobiome
composition,  prokaryotic  and  fungal  rhizobiome
composition  differed  among  maize  genetic  groups  in
both  soil  management  legacies.  Genetic  group
explained a relatively small proportion of rhizobiome
variation (5–6%),  in  accordance  with  other  studies
showing  that  effects  of  host  genotype  on  the  maize
rhizobiome  are  significant  but  weaker  than  those  of
loca- tion or soil type (Peiffer et al., 2013; Walters et al.,
2018). Substantial variation remained after accounting
for  the effects  of  soil  management  legacy  and maize
genetic group (Supplementary Table S3), as has been
noted elsewhere (Edwards et al., 2015). Factors not
accounted for in the model, such as variation in initial
colonizing  communities  due to  soil  heterogeneity  and
subsequent  divergence  due  to  microbe-microbe  in-
teractions and stochastic processes (Adair and Douglas,
2017),  likely  contributed  to  the  observed  rhizobiome
variation among genotype replicates.

Both community- and taxa-level analyses
supported this hypothesis  of  shifts  in  maize
rhizobiome  composition.  Distances  between group
centroids, numbers of indicator ASVs, and changes in
the relative abundance of taxa responsive to maize
genetic group were non-additive,  showing  no
progressive  divergence  of  rhizobiomes  (Fig.  3,
Supplemen-  tary Fig. S3, Supplementary Fig. S4,
Supplementary Fig. S5 and Sup- plementary Fig. S6).
A  greater  impact  of  domestication  than modern
breeding is suggested by a) a decrease in distances
between group centroids for genetic groups adjacent
on  the  evolutionary  timeline  (teosinte/landrace  to
inbred/modern), and b) more prokaryotic and fungal
indicator taxa shared between the inbred and modern
maize  rhizobiomes than between other genetic
groups (Fig. 3). This concor-  dance  between
community-level analyses and taxa-level analyses could

Fig.  4.  Prokaryotic  co-occurrence
networks.  Rhizosphere  co-occurrence
networks in A) a conven- tional legacy soil
and  B)  an  organic  legacy  soil.  Nodes
represent  ASVs,  with  node  size
corresponding  to  betweenness  centrality
and color   corresponding  to phylum, and
edges  represent  Spearman  correlations
between  ASVs.  Data  were  filtered  to
remove  ASVs  present  in  fewer  than  10
samples  and  networks  were  constructed
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from positive significant correlations (r

0.75 and p 0.01). (For interpretation of
the  ref-  erences  to  color  in  this  figure
legend, the reader is referred to the Web
version of this article.)
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Table 1
Selected properties of rhizosphere co-occurrence networks.

Legacy

Fig. 5. Fungal co-occurrence networks.
Rhizo- sphere co-occurrence networks in A)
a  conventional  legacy  soil  and   B)  an
organic  legacy soil. Nodes represent ASVs,
with  node  size  corresponding  to
betweenness  centrality  and  color
corresponding  to  phylum,  and  edges
represent  Spearman  correlations  between
ASVs.  Data  were filtered  to  remove ASVs
present  in  fewer  than  10  samples  and
networks  were  constructed  from  positive
significant correlations (r

0.75 and p 0.01). (For interpretation of
the  ref-  erences  to  color  in  this  figure
legend, the reader is referred to the Web
version of this article.)

suggest that maize evolution has impacted both plant
root  and  rhizo-  sphere  traits  favoring  strategies  for
rhizosphere competence (e.g.  root  exudation,  nutrient
uptake)  and  taxon-specific  host-microbe  signaling
mechanisms.  Notably,  while  a  greater  impact  of
domestication  than  modern  breeding  was  found  for
emmer wheat (Iannucci et al., 2017), a study of these
maize genotypes in a nutrient-depleted agricultural soil
found evidence for a stronger effect of breeding (Brisson
et  al.,  2019b).  This  discrepancy  highlights  the
dependence  of  rhizosphere  recruitment  on  bulk  soil
management, which establishes the microbial pool from
which the rhizobiome is selected.

Microbial  co-occurrence  network  analysis  revealed
different  effects  of  maize  evolution  on  potential
microbe-microbe interactions, repre- sented by positive
co-occurrences, than on rhizobiome composition. The
number of co-occurrences, which are thought to indicate
ecological  re-  lationships  including  mutualisms,
predator-prey interactions, and niche overlap (Faust and
Raes,  2012),  is  a  form  of  biodiversity  termed
“interaction  diversity”  (Tylianakis  et  al.,  2010).
Decreased interaction diversity can occur even with no
reduction of species richness and can affect ecosystem
service  provisioning  and  resilience  (Tylianakis  et  al.,

2010;  Valiente-Banuet  et  al.,  2015).  Here,  prokaryotic
networks of modern hybrid rhizobiomes had far fewer co-
occurrences than those of other genetic groups in both
soil  management  legacies  (Table  1),  consistent  with
findings for these genotypes in a nutrient-depleted soil
from the same experiment (Brisson et al., 2019b). The
distinct structure of modern hybrid prokaryotic networks
suggests that while

Network Soil Management Group Nodes Edges Mean degree Modularity

Ecological 
interpretation

# of
ASV
s

Positive co-occurrence 
networks

Mean connections of one 
node to other nodes

Existence of sub-communities 
within the network

CT Conventional Teosinte 465 18520 79.66 0.74
CL Conventional Landrac

e
465 14796 63.64 0.82

CI Conventional Inbred 465 15850 68.17 0.82
CM Conventional Modern 465 14388 61.88 0.82
OT Organic Teosinte 465 20119 86.53 0.71
OL Organic Landrac

e
464 15862 68.37 0.77

OI Organic Inbred 465 16949 72.90 0.75
OM Organic Modern 465 13743 59.11 0.86
CT Conventional Teosinte 114 1067 18.72 0.70
CL Conventional Landrac

e
114 841 14.75 0.82

CI Conventional Inbred 114 801 14.05 0.85
CM Conventional Modern 114 929 16.30 0.77
OT Organic Teosinte 114 1055 18.51 0.71
OL Organic Landrac 113 669 11.84 0.82



domestication may have had more profound effects on
plant-microbe  interactions  (Fig.  3),  subsequent
agricultural intensification has had greater impacts on
potential  microbe-microbe  interactions.  In  fungal  co-
occurrence  networks,  in  contrast,  network  size
decreased  from  teosinte  to  landraces  but  increased
from inbreds to hybrids (Table 1). Unique responses of
bacteria/archaea  and  fungi  were  observed  in  most
analyses  of  rhizobiome  composition  in  this  study,
perhaps  because  rhizosphere  recruitment  of
prokaryotes  and fungi  could  be governed by distinct
mechanisms that  respond differently  to shifts in host
genotype and environment. As with prokaryotes, fungal
co-occurrence networks showed different patterns than
rhizobiome  composition.  Direct  recruitment  of
microorganisms  to  the  rhizosphere  may  thus  be
partially  decoupled  from  indirect  plant  influence  on
microbe-microbe  in-  teractions  through  rhizodeposits
and physicochemical  modification  of  the rhizosphere.
Networks  were also affected by a  G x  E  interaction:
While  most  prokaryotic  networks  had  more  co-
occurrences  in  the  organic  legacy  soil,  the  modern
hybrid  network  had  more  co-occurrences  in  the
conventional legacy soil. In contrast, the fungal modern
hybrid  network  had  more  co-occurrences  in  the
conventional  soil  than  fungal  inbred  or  landrace
networks  (Table  1).  Organic  amendments  such  as
compost  have  been  shown  elsewhere  to  increase
positive co-occurrences (W. Yang et al., 2019), but our
results show that  plant  adaptation  to  specific
agricultural  management  systems  may  interact with
the effects of management itself on co-occurrence
network structure (Schmidt et al., 2019).
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Fig. 6. Abundance of nitrogen-cycling genes. We quantified
the abundance of microbial  genes related to N fixation (nifH),
ammonia  oxidation  (archaeal and  bacterial  amoA),  and
denitrification  (nirK,  nirS,  nosZ)  in  modern  maize hybrid  and
teosinte rhizosphere samples in both soil management legacies.
The abundance of  nitrification genes and some denitrification
genes tended to be higher in the rhizosphere of modern maize
hybrids than the teosinte rhizo- sphere. Soil management legacy
influenced  the  abundance  of  bacterial  amoA  and  nosZ  (*
indicates  statistically  significant  difference  between  soil
manage- ment legacies at α 0.05. Values are reported as copies
per  ng  DNA  and  error bars  represent  standard  error.  C
conventional legacy soil; O    organic leg-    acy soil.

In accordance with our third hypothesis, prokaryotic
and fungal rhizosphere communities were significantly
correlated  with  plant  nutrient composition. Our
hypothesis of decreased adaptation to organic
agroecosystems seems to have been supported by the
proportionally higher biomass in the organic legacy soil
of  teosinte/landrace  than  inbred/hybrid  genotypes,
although other interpretations are possible. This G x E
interaction  could  suggest  decreased  adaptation  to
organic  management  or,  alternatively,  increased
adaptation to lower-nutrient conditions over the maize
evolutionary  timeline (Fig.  1b). Whether similar G x E
interactions have impacted harvest index and allocation
to grain among post-domestication genotypes should be
investigated,  although  this  question  was  beyond  the
scope of the present study as the plants were not grown
to maturity. Greater differences among genetic groups
in rhizosphere recruitment (as quantified by number of
indicator  ASVs)  were  observed  in  the  lower-nutrient
conventional legacy soil, which may indicate increased
reliance on rhizosphere interactions when resources are
more limited (Kiers et al., 2002; Wissuwa et al., 2009).

To  identify  potential  loss  or  gain  of  beneficial
associations  during  maize evolution, we sought
agriculturally relevant taxa among indicator  ASVs
associated  with  the  teosinte/landrace  and
inbred/modern pairs.  Only one prokaryotic ASV (order
Bradyrhizobiales) and one fungal ASV (Absidia koreana
sp.) were indicators of the teosinte/landrace pair, both
of  which  were  found  in  the  conventional  legacy  soil
(Supplementary Table  S4).  The  Bradyrhizobiales  are
composed of plant-associated commensalists, some of
which promote root  growth and/or fix N2 in-  side root
nodules (Garrido-Oter et al., 2018), but evidence for
benefits to

non-leguminous  hosts  is  limited  (Antoun  et  al.,  1998;
Pr�evost  et  al.,
2000). Absidia koreana was only recently isolated from
soil and little is known about the physiology and ecology
of this zygomycete (Ariya- wansa et al.,  2015).  The 11
prokaryotic and 7 fungal ASVs associated with the inbred/
modern pair, which could represent associations gained
during modern breeding, belonged predominantly to the
common soil phyla Proteobacteria and Ascomycota.



Finally, we found no difference between teosinte and
modern hybrid  rhizobiomes  in  the  abundance  of  six
genes  related  to  N2 fixation,  nitri-  fication,  and
denitrification. While maize evolution has altered rhizo-
biome  diversity,  structure,  and  potential  microbe-
microbe interactions, it appears to have had negligible
impacts on these N-cycling genes.

Still,  many  questions  remain.  First,  practical
application  of  these  results  to  the  design  of  more
sustainable  agroecosystems  will  require  improved
mechanistic  understanding  of  the  genetic  basis  for
observed  shifts  in  the  maize  rhizobiome.  Root  traits
and exudates are key drivers of rhizobiome assembly
and  have  likely  been  affected  by  maize  evolu-  tion
(Schmidt et al., 2016). Direct evidence for changes in
root exudates  is  lacking  in  maize,  but  exudate
composition  has  been  affected  by  domestication  in
other cereals (Iannucci  et  al.,  2017).  Variation in rhi-
zobiomes associated with su/sh genotypes (differing in
kernel sugar/- starch content) may provide support for
the  role  of  root  exudates  via  shared  carbohydrate
metabolic  pathways  (da  Fonseca  et  al.,  2015).
Exudates may also explain observed G x E interactions,
in  light  of  the plasticity  of  root  exudate  composition
across  soil  environments  (Badri and  Vivanco,  2009);
metabolomics would be a valuable tool in testing this
hypothesis.

Significant genetic group effects were observed
even in this relatively  small evolutionary transect,
indicating the need for future studies with a far greater
number of  Zea mays  genotypes. Using genotypes for
which  full  genomes  are  available  would  enable
exploration of potential host- microbiome phylogenetic
correlations  and  investigation  of  how  host  diversity
within maize genetic groups may affect calculations of
beta  diversity  such  as  those  conducted  here.  Host-
microbiome genome-wide association studies  (GWAS)
(Awany  et  al.,  2019)  of  well-characterized  maize
genotypes could help  pinpoint  the timing of  shifts  in
rhizo- biome composition and identify genes controlling
rhizobiome  in-  teractions.  Finally,  metagenomic
sequencing could vastly improve our understanding of
whether  maize  evolution  has  impacted  agriculturally
relevant functions that might affect plant productivity
in contrasting agroecosystems.  Our  findings highlight
the  need  to  better  understand  plant  adaptation  to
contrasting  agroecosystems  and  integrate  G  x  E  ef-
fects into existing models of rhizobiome assembly.

4.1. Conclusions

We show significant and ecologically relevant effects
of maize evo- lution on rhizobiome structure, with no
loss  of  species  richness  and  evenness  but  a  trend
towards  decreased  variability  among  rhizobiome
samples  within  maize  genetic  groups.  Domestication
(teosinte to land- races) appears to have had greater
effects than modern breeding (in- breds to hybrids) on
rhizosphere recruitment and individual plant- microbe
interactions,  despite  stronger  apparent  impacts  of
modern  breeding  on  potential  microbe-microbe
interactions. Crucially, rhizo- biome differences among
genetic  groups  are  strongly  shaped  by  soil
management  legacy.  A  G  x  E  interaction  negatively
impacted modern maize biomass in the organic legacy
soil in comparison to teosinte and landrace genotypes,
and  plant  nutrition  and  biomass  were  significantly
linked to rhizobiome structure. Nonetheless, our
analyses do not provide conclusive evidence that the

lower  relative  productivity  of modern  maize  in  the
organic legacy soil is due to loss of beneficial taxa or N-
cycling  functions  of  its  rhizobiome,  and  any
extrapolation  of  these  re-  sults  to  performance  in
agroecosystems should be tested with field studies.

The  implications  of  a  G  x  E  interaction  in  maize-
rhizobiome  re-  lationships  without  maladaptation  to
organic agroecosystems are encouraging. An improved
understanding of the underlying mechanisms  through
host-microbiome  GWAS  could  aid  plant  breeding
programs  emphasizing rhizosphere engineering
(Dessaux et al., 2016; Ryan et al., 2009) in developing
novel maize genotypes that maximize beneficial plant-
rhizobiome interactions.  Interest  is  already growing in
using  wild  germplasm  to  enhance  maize  productivity
(Hake  and  Richardson, 2019), and including genes
related to beneficial rhizobiome interactions



would  be  a  useful  extension  of  these  efforts.  Such
microbiome-based  approaches  have  the  potential  to
improve  plant  health  and  productiv-  ity,  decrease
reliance on chemical fertilizer and pesticide inputs, and
create  more  sustainable  agroecosystems  to  feed  a
growing population.
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Supplementary Table S1
Soil physicochemical

properties.
Conventional Organic Analysis Method

Texture Clay loam Clay loam Sheldrick and Wang (1993)
pH 7.015 7.41 U.S. Salinity Laboratory Staff (1954)
% OM 2.57 3.5 Nelson and Sommers (1996)
CEC (meq/100g) 22.2 24.8 Thomas (1982)
% N 0.098 0.175 “AOAC Official Method 972.43, Microchemical Determination of Carbon, Hydrogen, and Nitrogen, 
Automated Method,” 1997
% C 0.985 1.52 “AOAC Official Method 972.43, Microchemical Determination of Carbon, Hydrogen, and Nitrogen, 

Automated Method,” 1997 NH
þ

4   (ppm) 3.785 26.23 Hofer (2003)
NO

-
3   (ppm) 30.755 38.78 Knepel (2003)

Olsen P (ppm) 20.2 49.7 Olsen and Sommers (1982); Prokopy (1995)

K
þ 

(ppm) 202.5 337 Thomas (1982)

Kþ (meq/100g) 0.52 0.86 Thomas (1982)

Na
þ 

(ppm) 41 132 Thomas (1982)

Naþ (meq/100g) 0.18 0.57 Thomas (1982)

Ca
2þ 

(meq/100g) 8.565 10.46 Thomas (1982)

Mg2þ (meq/100g)12.95 12.9 Thomas (1982)

Supplementary Table S2
Genetic material

Group ID Source Era

Teosinte PI 566688 Mexico Pre-domestication

Landrace
PI 566691
Ames 19897
PI 629258

Mexic
o 
Mexic
o
Mexico

Pre-domestication
Early 
domestication
Early domestication

Inbred B73 (PI 550473) USA Parents of modern germplasm

Mo17 (PI 558532) USA Parents of modern germplasm
OH43 (Ames 19288)

Hybrid 322HYB
USA
USA (Pioneer ERA)

Parents of modern germplasm
Released 1936; double cross 
hybrid

354HY
B

USA (Pioneer ERA) Released 1953; double cross 
hybrid

3382 USA (Pioneer ERA) Released 1976; single cross 
hybrid

3489 USA (Pioneer ERA) Released 1994; single cross 
hybrid

DKC64-69 USA (DeKalb) Released 2013; transgenic

Supplementary Table S3
Sources of variation for rhizosphere microbial communities

Prokaryotes

Df SS F R
2

P

Soil legacy 1 0.70 7.7
8

0.10 0.001***



Genetic group 3 0.40 1.5
0

0.061 0.001***

Group:genotype 8 0.71 0.9
8

0.11 0.520

Residuals 54 4.87 0.73

Total 66 6.69 1

(continued on next page)



Supplementary Table S3 (continued )

Prokaryotes

Df SS F R
2

P

Fungi
Df SS F R2 P

Soil legacy 1 2.21 16.35 0.200 0.001***
Genetic group 3 0.59 1.45 0.053 0.001***
Group:genotype 8 1.09 1.01 0.099 0.388
Residuals 53 7.15 0.648

Total 65 11.04 1

Supplementary Table S4
Indicator ASVs

Environment
1

Kingdo
m

Phylum Class Order Family Genus Species

CL-CM Bacteria Actinobacteria Actinobacteria Micrococcales Micrococcaceae Arthrobacter NA
CL-CM Bacteria Actinobacteria Thermoleophilia Gaiellales Gaiellaceae Gaiella NA
CL-CI Bacteria Proteobacteria Alphaproteobacter

ia
Rhizobiales MNG7 NA NA

CL-CI Bacteria Proteobacteria Gammaproteobact
eria

Xanthomonadales Xanthomonadales_Incertae
_Sedis

Steroidobacter NA

CL-CI Bacteria Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae NA NA
CL-CI Bacteria Proteobacteria Betaproteobacteri

a
Nitrosomonadales Nitrosomonadaceae NA NA

CL-CI Bacteria Planctomycetes Planctomycetacia Planctomycetales Planctomycetaceae Pirellula NA
CL-CI Bacteria Proteobacteria Gammaproteobact

eria
Xanthomonadales Xanthomonadales_Incertae

_Sedis
Acidibacter NA

CL-CT Bacteria Proteobacteria Alphaproteobacter
ia

Rhizobiales Bradyrhizobiaceae NA NA

CM-CI Bacteria Proteobacteria Betaproteobacteri
a

Burkholderiales Oxalobacteraceae Massilia NA

CM-CI Bacteria Proteobacteria Alphaproteobacter
ia

Sphingomonadale
s

Sphingomonadaceae Sphingobium NA

CM-CI Bacteria Proteobacteria Betaproteobacteri
a

Burkholderiales Comamonadaceae Caenimonas NA

CM-CI Bacteria Bacteroidetes Sphingobacteriia Sphingobacteriale
s

Sphingobacteriaceae Pedobacter NA

CM-CI Bacteria Proteobacteria Alphaproteobacter
ia

Sphingomonadale
s

Sphingomonadaceae Sphingobium NA

CM-CI Bacteria Proteobacteria Betaproteobacteri
a

Nitrosomonadales Nitrosomonadaceae NA NA

CM-CI Bacteria Proteobacteria Alphaproteobacter
ia

Rhodospirillales Rhodospirillaceae NA NA

CM-CI Bacteria Bacteroidetes Cytophagia Cytophagales Cytophagaceae Chryseolinea NA
CM-CI Bacteria Gemmatimonade

tes
Gemmatimonadete
s

Gemmatimonadal
es

Gemmatimonadaceae NA NA

CM-CI Bacteria Proteobacteria Alphaproteobacter
ia

Rhizobiales Rhizobiales_Incertae_Sedis Nordella NA

CM-CI Bacteria Proteobacteria Alphaproteobacter
ia

Sphingomonadale
s

Sphingomonadaceae Sphingomonas NA

CM-CT Bacteria Proteobacteria Betaproteobacteri
a

Burkholderiales Oxalobacteraceae Janthinobacterium NA

CM-CT Bacteria Bacteroidetes Cytophagia Cytophagales Cytophagaceae Rhodocytophaga NA
CT Bacteria Proteobacteria Alphaproteobacter

ia
Caulobacterales Caulobacteraceae Phenylobacterium NA

OL Bacteria Actinobacteria Actinobacteria Corynebacteriales Mycobacteriaceae Mycobacterium NA
OM Bacteria Acidobacteria Subgroup_6 NA NA NA NA
OI Bacteria Bacteroidetes Sphingobacteriia Sphingobacteriale

s
Chitinophagaceae Flavisolibacter NA

CL-CM Fung
i

Ascomycota Sordariomycetes Glomerellales Plectosphaerellaceae Gibellulopsis piscis

CL-CM Fung
i

Ascomycota Sordariomycetes Hypocreales Bionectriaceae NA NA

CL-CM Fung
i

NA NA NA NA NA NA

CL-CT Fung
i

Mucoromycota Mucoromycetes Mucorales Cunninghamellaceae Absidia koreana

CM-CI Fung
i

Ascomycota NA NA NA NA NA

CM-CI Fung
i

Ascomycota Sordariomycetes Hypocreales Hypocreales_fam_Incertae_s
edis

Acremonium NA

CM-CI Fung
i

Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae Exophiala pisciphila

CM-CI Fung
i

Ascomycota Sordariomycetes Sordariales Cephalothecaceae Phialemonium globosum

CM-CI Fung
i

Ascomycota Leotiomycetes Leotiomycetes_ Pseudeurotiaceae Pseudogymnoascu
s

appendiculatu
s

ord_Incertae_sedis

CM-CI Fung
i

Ascomycota Dothideomycetes Venturiales Sympoventuriaceae Ochroconis tshawytschae

CM-CI Fung
i

Ascomycota Sordariomycetes Hypocreales Stachybotryaceae Sirastachys phyllophila

CM-CI Fung
i

Aphelidiomycota Aphelidiomycetes GS16 NA NA NA

CM-CT Fung
i

Mortierellomycot
a

Mortierellomycetes Mortierellales Mortierellaceae Mortierella elongata

CM-CT Fung
i

Ascomycota Sordariomycetes Coniochaetales Coniochaetaceae NA NA

CT Fung
i

Ascomycota Sordariomycetes Melanosporales Melanosporaceae Melanospora damnosa

OL Fung
i

Basidiomycota Agaricomycetes NA NA NA NA

OL Fung
i

Ascomycota Eurotiomycetes Onygenales NA NA NA

OL Fung NA NA NA NA NA NA



i
1An environment is defined here as a combination of soil management legacy and single genetic group or pair of genetic groups. NA 
indicates that the ASV could not be identified at that taxonomic level. C ¼ conventional legacy soil, O ¼ organic legacy soil, T ¼ 
teosinte, L ¼ landrace, I ¼ inbred, M ¼ modern.
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