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A B S T R A C T

Background and purpose: Adaptive radiation planning for pancreatic adenocarcinoma (PA) relies on accurate
treatment response assessment, while traditional response evaluation criteria inefficiently characterize tumors
with complex morphological features or intrinsically low metabolism. To better assess treatment response of PA,
we quantify and compare regional morphological and metabolic features of the 3D pre- and post-radiation
therapy (RT) tumor models.
Materials and methods: Thirty-one PA patients with pre and post-RT Positron emission tomography/computed
tomography (PET/CT) scans were evaluated. 3D meshes of pre- and post-RT tumors were generated and re-
gistered to establish vertex-wise correspondence. To assess tumor response, Mahalanobis distances (Mdist|Fusion)
between pre- and post-RT tumor surfaces with anatomic and metabolic fused vectors were calculated for each
patient. Mdist|Fusion was evaluated by overall survival (OS) prediction and survival risk classification. As a
comparison, the same analyses were conducted on traditional imaging/physiological predictors, and distances
measurements based on metabolic and morphological features only.
Results: Among all the imaging/physiological parameters, Mdist|Fusion was shown to be the best predictor of OS
(HR = 0.52, p = 0.008), while other parameters failed to reach significance. Moreover, Mdist|Fusion outperformed
traditional morphologic and metabolic measurements in patient risk stratification, either alone (HR = 11.51,
p < 0.001) or combined with age (HR = 9.04, p < 0.001).
Conclusions: We introduced a PET/CT-based novel morphologic and metabolic pipeline for response evaluation
in locally advanced PA. The fused Mdist|Fusion outperformed traditional morphologic, metabolic, and physiolo-
gical measurements in OS prediction and risk stratification. The novel fusion model may serve as a new imaging-
marker to more accurately characterize the heterogeneous tumor RT response.

1. Introduction

Pancreatic adenocarcinoma (PA) has one of the worst outcomes of
all solid tumors with a 5-year survival rate of 7% [1,2]. At the time of
diagnosis, only 10% − 15% of patients are eligible for resection, which
is the only therapy offering potentially prolonged survival [1]. A major
contraindication for surgery is vascular involvement by primary tumor,
which precludes a margin-negative resection. As a result, approxi-
mately 40% are considered borderline resectable or locally advanced
(BRPA, LAPA). Following aggressive multiagent chemotherapy and
radiotherapy, only < 30% of patients are downstaged [3]. However, an

accurate post-radiotherapy assessment with computed tomography
(CT) remains challenging and may not accurately reflect tumor re-
sponse [4].

To assess tumor treatment response, size-based criteria, such as
Response evaluation criteria in solid tumors (RECIST) and World Health
Organization (WHO), have been widely adopted in current clinical
practice [5,6]. While easy to implement and generalize, these uni-di-
mensional measurements inaccurately characterize tumors with com-
plex geometry (Fig. 1 (A)) and are insensitive to tumor heterogeneity,
which is particularly important for dense stromal tumors such as PA
[7]. For example, in a study investigating the association between
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RECIST response and overall survival (OS), similar median OS dura-
tions were observed in patients who underwent resection and had no
radiographic evidence of response to neoadjuvant therapy and patients
who did respond [4]. In addition to size-based criteria, F Fluorodeox-
yglucose (FDG) positron emission tomography (PET) has been com-
monly used to quantify tumor metabolic activities [8,9,10]. However,
basic PET values, such as the maximum or mean FDG uptake, is in-
adequate to describe the heterogeneous tumor metabolism (Fig. 1 (B),
P5).

Moreover, not all tumors present with increased FDG uptake com-
pared to surrounding normal parenchyma [8] and comorbidities such

as hyperglycemia and diabetes, which are common in PA, can disrupt
tissue FDG uptake leading to false-negative results [11]. Therefore,
traditional assessments based on current standard of care functional
(SUVmax, SUVmean, etc.) and structural imaging (RECIST, WHO cri-
teria) are inadequate to evaluate treatment response in PA. Integrated
anatomic and metabolic assessment may provide a more comprehensive
and accurate indication of tumor response [10]. In this study, we in-
tegrate morphologic and metabolic metrics of LAPA and BRPA using
CT/PET to assess treatment response and clinical outcomes using
multivariate distances between the resulted 3D pre- and post- RT tumor
surfaces. Our aims are: first, to develop a combined 3D anatomic and

Fig. 1. A: Representative tumor short and long axes on axial CT images and the corresponding 3D constructions for a 64-year-old female (P1), a 76-year-old male (P2)
and a 77-year-old female pancreatic adenocarcinoma (PA) patient (P3). All 3 patients show similar values of tumor short and long axes [5,6], while their 3D tumor
constructions revealed varied shape features. B: Representative PET/CT fusion images of PA patients with varied SUV distributions within tumors. Boundaries of
tumors are circled in red. P4, Axial (left column), coronal (middle column), and sagittal (right column) views of a 77-year-old female patient with low SUV PA tumor.
P5, a 61 years old male patient with heterogeneously distributed SUV within PA tumor. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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metabolic pipeline; second, to test the efficacy of this pipeline as a
quantitative survival predictor for patients with LAPA or BDPA.

2. Materials and methods

2.1. Subjects and data

With Institutional Review Board approval, 31 patients with biopsy-
confirmed PA were retrospectively selected from our institutional da-
tabase between 2011 and 2017. All patients had LAPA/BRPA treated
with radiotherapy and received both pre and post-RT PET with diag-
nostic CT scans. The post-RT PET/CT was taken 6–8 weeks after
radiotherapy.

Patients were instructed to fast for a minimum of 6 h and then un-
dergone skull to thigh imaging with a PET/CT scanner. Three scanners
were included in this study: one Discovery 710 (64-slice PET/CT,
General Electric Healthcare, Boston, Massachusetts, U.S), one Biograph
(64-slice TruePoint PET/CT, Siemens Healthcare, Erlangen, Germany)
and one Gemini (64-slice PET/CT, Philips Healthcare, Amsterdam,
Netherlands). All PET/CT scans were obtained approximately 50 mins
after injection of F-FDG (5 MBq/kg). All the acquired PET images were
constructed using CT-based attenuation correction. Quality assurance
was routinely performed to maintain consistent calibration on all PET/
CT. In addition, all patients had carbohydrate antigen 19-9 (CA 19-9)
values – the most extensively studied and validated physiological bio-
marker in PA prognosis [12] - measured pre-RT, and twenty-nine of
them had CA 19-9 collected post-RT.

2.2. Data preprocessing

On attenuation corrected PET scans, standardized uptake values
(SUV) were calculated and normalized to the patient’s body weight as:

=SUV
C
D BW

(T)
/BW

img

A (1)

where Cimg(T) is the radioactivity concentration measured at time T, DA

denotes administrated dose [MBq] at the time of injection, and BW
represents patient’s body weight [kg] on the day of imaging. For sim-
plicity, SUVBW will be shorted as SUV in the remaining text. To trans-
form the PET indices into the CT space, SUV maps were up-sampled to
the resolutions of respective CT images and used as the main source of
metabolic inputs in later steps.

For each patient, boundaries of baseline and residual primary pan-
creatic gross tumor volumes (GTV) were manually defined by a single
experienced gastrointestinal radiation oncologist on pre- and post-RT
diagnostic CT images. To assist tumor definition, the contrast CT scans
were registered to the corresponding PET/CT using a commercial B-
spline based deformable image registration software (Velocity AITM

Varian, Palo Alto, CA). The intra-observer reproducibility was eval-
uated with the same radiation oncologist contouring the tumor twice
for four patients at two different time points eight weeks apart. The
mean Jaccard index (intersection over union) was used to compare
intra-observer variability. Pre- and post-RT CT images were rigidly re-
gistered to align the tumor orientation. The resultant transformation
matrices were propagated to the corresponding PET images and tumor
segmentation. This step enables following regional tumor surface
matching. The propagated pre- and post-RT tumor segmentations
(GTVpre and GTVpost) were binarized and assessed using the pipeline
illustrated in Fig. 2.

2.3. Surface measurement generation

As shown in Fig. 2, a 3D surface mesh was generated from GTV
segmentation using the matching cube algorithm [13]. To obtain a re-
gional correlation of pre- and post-RT tumor surfaces, GTVpre and

GTVpost were matched using surface-based constrained harmonic re-
gistration [14,15]. As such, shape changes were tracked within the
structure-of-interest, excluding the influence of surrounding par-
enchyma [16]. For each surface vertex, a multivariate vector was
formed using both the anatomic and metabolic components.

The anatomic component consisted of two geometrical features
based on the same surface model: the normal direction, represented by
the midline to surface radius , and the surface area, represented by the
Jacobian of the transformation (J) from surface registration [16,17].
Two Jacobian derived metrics were used: the determinant of Jacobian
(detJ) and the log-Euclidean projected deformation tensor (log JJ T ).
detJ indicates the extent of warping needed to deform a surface to
match its target, and log JJ T further encapsulates directional in-
formation in the deformation [15,16].

To characterize the surface vertices using tumor metabolism, the
midlines of all the 3D tumor volumes were first determined. In CT-
aligned SUV maps, SUV measurements within the 3D tumor mesh were
then sampled as surface vertices along the corresponding radius to
midline, as illustrated in [19]. Specifically, using [18,19]:

×X M P M
X M

D( ) ( )
(2)

and

X P P M( ) ( ) 0 (3)

where X , M, P denote the (x, y, z) coordinates of a vertex in the
surface, the corresponding point of the vertex in the midline, and a
voxel within the 3D representations, respectively. A pre-defined dis-
tance (D = 1.2) were chosen to ensure necessary voxel assignment
while minimizing the overlap with neighboring vertices.

2.4. Statistical analysis

Paired Mahalanobis distance (Mdist), a dissimilarity measurement of
observations in multivariate space, was used to assess tumor response.
Specifically, for each tumor, given p-dimensional pre-RT surface ob-
servation =X X X X[ , , ]prei pre pre prep

T
1 2 , and the corresponding post-RT

observation =X X X X[ , , ]posti post post postp
T

1 2 , the sample covariance ma-
trix was calculated as:

=
=

S
n

X X X X1
1

( )( )'
i

n
di d di d1 (4)

where n is the number of surface vertices, Xd denotes the difference
between Xpre and Xpost, and Xd represents the arithmetic mean vector of
Xd over the surface vertices.

For each patient, Mdist of pre- and post- RT surfaces was obtained
using:

=M X S Xdist d d
1 '

(5)

Surface variables were analyzed accordingly: 1) metabolic features
only - the surface projected SUVmax and SUVmean; 2) morphological
features only – radius and log JJ T ; 3) combined metabolic and
morphological features – , detJ, and SUVmax. While log JJ T adds di-
rectional information in surface warping, it also increases the noise
when combined with other metabolic and morphological features [16].
As a result, we chose detJ over log JJ T in the combined metrics. Mdists
were calculated based on these three combinations and denoted as
Mdist|SUV, Mdist|Shape, and Mdist|Fusion, respectively.

The prognostic values of the three Mdist metrics were evaluated
using Cox proportional hazards regression with OS. OS was defined as
the time span from the time of diagnosis to the time of patient death or
last encounter. Correlation analyses were performed between OS and
baseline (B) measurements of serum CA19-9, GTV, global SUVmax,
global SUVmean, as well as post-RT versus pre-RT ratios (R) of the above
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four measurements. The enrolled subjects in our study were gender-
matched (52% male and 48% female) but had a wide range of age. As a
result, we also investigated the prognostic value of age as an OS pre-
dictor.

To evaluate the classification capacity of each risk predictor, all
patients were stratified into two risk groups based on the three Mdist

metrics. The low versus high-risk populations were determined ac-
cording to 2 methods, M1 and M2. M1 first sorted each of the above
metrics and then grouped the lower half subjects as a low-risk group
(LG) and the upper half subjects as high-risk group (HG). M2 used k-
means clustering algorithm to automatically separate LG and HG based
on multivariate data, consisting of the tested metric and patient’s age at
diagnosis. The inclusion of age in the analysis was again due to the wide
range of age presented in this study and the significant association
between age and OS, as revealed by our data. Log-rank tests were
performed between LG and HG stratified patients using both M1 and
M2, respectively. As a comparison, log-rank statistics of Mdist derived
metrics were also compared with widely used imaging metrics (post- to
pre-RT ratios of global SUVmax, global SUVmean, and GTV). Additionally,
because the enrolled subjects were heterogeneous in terms of gender,
resectability (BRPA versus LAPA), RT methods (SBRT versus CRT), and
post-treatment resection (unresected versus resected), survival differ-
ences between subgroups were also examined by log-rank tests.

3. Results

Patient demographics and disease characteristics are listed in
Table 1. The age of the enrolled subjects ranged from 45 to 84 years

with a mean of 69.2 ± 9.5 (standard deviation) years. The mean Jac-
card index of intra-observer GTV contour variability was 0.89. Results
of univariate Cox regression analyses of all predictors are shown in
Table 2. Among all the imaging parameters, Mdist|Fusion - the extent of
tumor response considering both the morphologic and metabolic image
information, was the best predictor of OS (p = 0.008) with a hazard
ratio (HR) of 0.52 (95% CI, 0.19–0.78). Post-RT versus pre-RT ratio of
SUVmax was associated with OS with borderline significance
(HR = 3.89, 95% CI, 0.94–16.02, p = 0.060). All other imaging metrics
(baseline or ratios of global SUVmean, GTV, as well as Mdist metrics that
based on morphologic or metabolic information alone) were not asso-
ciated with OS. Additionally, patient’s age at diagnosis was significantly
associated with OS, (HR = 1.14, 95% CI, 1.04–1.25, p = 0.004), while
traditional physiological biomarker CA19-9 did not present significant
association with OS in our small cohort of patients.

The capability of each measurement to classify patients is more
evidently reflected in risk stratification analysis. Patients presented no
survival differences between genders (female vs. male, p > 0.1), re-
sectability (BRPA vs. LAPA, p > 0.1), treatment methods (SBRT vs.
CRT, p > 0.1), and post-treatment surgery (unresected vs. resected,
p > 0.1). Kaplan-Meier plots of risk groups stratified using M1 and M2
are shown in Fig. 3, respectively. Results of log-rank tests comparing
each pair of the survival curves can be found in Table 3. Evidently, from
Fig. 3, the survival risk of patients was best stratified by Mdist|Fusion,
either alone or combined with patients’ age. Using sorted levels of each
parameter (M1), Mdist|Fusion successfully classified an HG group with a
mean of 0.57, and LG with a mean of 4.65, the former has a hazard ratio
almost twelve times higher than the latter (p < 0.001). Mdist|SUV, the

Fig. 2. Illustration of our pipeline. Processing steps represented in numbers are: a) 3D construction; b) Surface-based registration; c) PET indices sampling; d)
Anatomic parameter (detJ) calculation; e) Anatomic parameter (Radius) calculation; f) Multivariate surface vertex cloud assembling; g) Mahalanobis distance
calculation on multivariate surface vertex ouds.
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surface based distance measurement based on metabolic features only,
also classified two groups of patients with significantly different risks
(p = 0.021), while all other parameters failed in classifying survival
risks using M1. Using unsupervised clustering (M2), a combination of
Mdist|Fusion, and age significantly partitioned two risk groups
(p < 0.001), with the HG having a nine-fold hazard risk than the LG.
Mdist calculated on metabolic features alone (Mdist|SUV), and post- to
pre-RT ratio of SUVmax also significantly classify HG and LG, with re-
spective p values equal to 0.015, and 0.008. Other combinations were
unable to stratify the patient cohort.

4. Discussion

Accurate response assessment during and after radiotherapy for
LAPA and BRPA is critical to clinical decision making as it may help
identify radioresistant versus radiosensitive tumors and influence the
decision for definitive resection. Although single dimension tumor
measurements using abdominal CT remains the primary criteria for
assessment of treatment response, a number of studies have shown the
synergistic role of PET to abdominal CT in response evaluation. As with
other neoplasms, FDG uptake was found to significantly differentiate
responders and non-responders and predict survival in patients with PA
[8,20,21]. While the FDG uptake promisingly depicts tumor malig-
nancy, rudimentary analyses, typically global SUVmax, and SUVmean,
have limited accuracies in assessing the biologically complex PA tumors
(Fig. 1). As demonstrated by genomic sequencing analysis, multiple
tissue samples taken from the same tumor displayed a wide variety of
cytogenetic differences [22,23]. Therefore, quantitative imaging
methods describing the intra-tumor heterogeneity are needed.

In the past decade, fused PET/CT has become the standard imaging
modality localizing FDG-intense foci. At the same time, more sophisti-
cated PET/CT analysis algorithms have been developed to describe
intra-tumor spatial heterogeneity. In particular, Tixier and colleagues
calculated textural features, such as homogeneity and entropy, on
baseline esophageal tumors and successfully predicted response to RT
in 41 patients [24]. Yue and colleagues further compared pre- and post-
RT intra-tumor PET textural features in 26 PA patients, and identified 3
borderline-significant prognostic variables, including homogeneity,
variance and cluster tendency [25]. Instead of focusing only on FDG-
avid regions, textural features describe the distribution of FDG uptake
in the entire tumor region, which improved the characterization of
tumor metabolic heterogeneity. However, in these PET textural studies,
tumor volumes were only served as a binary mask for textural feature
extraction, without contributing morphological information into the
analyses. New alternatives that integrate both anatomic and metabolic
information of tumor may provide a more complete picture of tumor
response.

Tumors exhibit heterogeneity not only in space but also across time.
In one hand, some PA cells grow faster than others, for instance, tumor
cells in close proximity to pancreatic stellate cells have accelerated
proliferation [26]. On the other, certain PA tissues, such as tumorigenic
cancer cells defined by the CD133 expression, are more treatment-re-
sistant than others [27]. Collectively, targeting the tumor micro-
environment variations and probing into spatial-temporal coincidence
in longitudinal imaging data may provide valuable insight of tumor
treatment response [25,28]. In this study, we developed a 3D tumor
surface based pipeline combing both the metabolic and morphological
features to quantify tumor variations between pre- and post-RT. The
tumor surface model characterizes the 3D tumor with regional spatio-
temporal features. Comparing to univariate shape descriptors over the
entire GTV, the use of 3D surface model facilitates comparisons of re-
gional morphological features on locally aligned surface vertices, thus
are sensitive to small shape alterations from tumor responses [13,14].
By projecting the SUV onto the tumor surface, regional metabolic fea-
tures were integrated into the 3D model, and the intra-tumor metabolic
heterogeneity was largely preserved in the response evaluation.

Our results showed that the combined morphological and metabolic
metric, Mdist|Fusion, significantly predicted OS and stratified risks for our
PA patients, and outperformed traditional CA19-9, global SUV, and
GTV based measurements. Furthermore, using the same 3D surface
model, the morphological and metabolic fused metric Mdist|Fusion were
superior to morphological or metabolic features alone (Mdist|Shape, and
Mdist|SUV) in OS predicting and risk stratification. This, in turn, indicates
the more accurate characterization of tumor response using the com-
bined model. In addition to the PA patients, the presented pipeline may
be applicable to other solid tumors for response evaluation.

There are several limitations in this study. First, in this pilot study,

Table 1
Patient characteristics.

Characteristics Patients (%) (N = 31)

Gender
Male 16 (52%)
Female 15 (48%)
Age at Baseline Scan
Median 69
Mean 69.2
Std 9.5
Range 45–84
Clinical Tumor Stage
Stage I 1 (3%)
Stage II 1 (3%)
Stage III 7 (23%)
Stage IV 21 (68%)
Unknown 1 (3%)
NCCN1 Resectability
Locally Advanced 23 (74%)
Borderline Resectable 8 (26%)
Primary Tumor Location
Uncinate, head, and neck 23 (74%)
Body and tail 4 (13%)
Combined 4 (13%)
Scan and Treatment Time Interval
Pretreatment (w) 4.54 (3.76)
Posttreatment (w) 7.14 (4.28)
RT Type2

SBRT 6 (19%)
CRT 25 (81%)
Resected3

Yes 11 (35%)
No 20 (65%)

1 National Comprehensive Cancer network.
2 RT types include stereotactic body radiation therapy (SBRT) and chemor-

adiotherapy (CRT).
3 This refers to the resection after RT.

Table 2
Results of univariate Cox proportional hazards regression between OS and 12
predictors. Four traditional prognostic measurements (serum CA19-9, global
SUVmax, global SUVmean, and GTV) are categorized as baseline measurement (B),
and post-RT versus pre-RT ratio (R). Surface measurements based on metabolic
features only, anatomic features only and combined anatomic and metabolic
features are indicated as Mdist|SUV, Mdist|Shape, Mdist|Fusion, respectively. Statistical
significance are marked as * for p-values < 0.05, and ** for p-values < 0.01.

Mean Std HR/exp( ) (95% CI) p values

Age 68.20 9.52 1.14 (1.04–1.25) 0.004**
CA19-9 (B) (k) 2.62 11.8 0.99 (0.99–1.00) > 0.1
CA19-9 (R) (n = 29) 0.68 0.66 1.63 (0.70–3.77) > 0.1
SUVmax (B) 6.00 2.37 0.90 (0.72–1.13) > 0.1
SUVmax (R) 0.81 0.39 3.89 (0.94–16.02) 0.060
SUVmean (B) 2.41 0.63 0.81 (0.32–2.04) > 0.1
SUVmean (R) 0.91 0.31 1.75 (0.45–6.75) > 0.1
GTV (B) (cc) 51.71 35.60 1.00 (1.00–1.00) > 0.1
GTV (R) 0.90 0.38 3.01 (0.57–15.71) > 0.1
Mdist|SUV 3.25 4.87 0.39 (0.24–1.13) > 0.1
Mdist|Shape 0.70 0.77 1.22 (0.69–2.14) > 0.1
Mdist|Fusion 2.68 4.62 0.52 (0.19–0.78) 0.008**

Y. Lao et al. Physics and Imaging in Radiation Oncology 9 (2019) 28–34

32



the enrolled participants were retrospectively solicited from our ra-
diation oncology practice. The small sample size limits the power of
statistical tests, and preclude the possibility to reliably remove the in-
fluence of all confounding factors. The comparisons between new
multimodal based metric to traditional imaging metrics were made in
the same condition and thus less biased by the heterogeneity of patient
characteristics (tumor stage, radiotherapy fraction, censorship, etc.).
However, the use of multiple PET/CT scanners may have led to some
inconsistency in metabolic metric calculations despite our best effort to
calibrate these scanners to be consistent. A calibration comparison

study on 11 regularly maintained PET/CT scanners observed good re-
producibility and accuracy of all dose calibrators and reported no major
deviation across different PET calibration systems [29]. Nevertheless,
many quantitative descriptors draw from GTVs, for instance, textural
features, have been reported to have limited robustness against multi-
scanners [30]. Future larger cohorts preferably scanned in the same
PET/CT scanner with high-resolution PET protocols, are needed to
validate our method and findings. Additionally, segmentation accuracy
is paramount to quantitative imaging analysis. A previous study in-
vestigating the reproducibility of PET radiomic features against GTV

Fig. 3. Kaplan-Meier plots of OS for 31 patients stratified by post- versus pre-RT ratios of Global SUVmax, GTV, and the new Mdist|Fusion, using M1, the evenly dividing
method (a-c) and M2, the k-means clustering method (d-f). Censored observations are marked by black circles.

Table 3
Results of log-rank tests for patient risk groups stratified by 6 imaging based metrics, using M1 and M2. Surface measurements based on metabolic features only,
anatomic features only and combined anatomic and metabolic features are indicated as Mdist|SUV, Mdist|Shape, Mdist|Fusion, respectively. Log-rank statistics of groups
stratified using M1 and M2 are displayed in white and gray rows, respectively. Significance are marked as * for p-values < 0.05, and ** for p-values < 0.01.

LG HG HR (95% CI) p values

N Mean (Std) N Mean (Std)

SUVmax (R) 16 0.51 (0.19) 15 1.12 (0.29) 3.11 (1.06–9.11) 0.073
20 0.58 (0.22) 11 1.22 (0.27) 6.97 (1.94–25.07) 0.008**

SUVmean (R) 16 0.68 (0.12) 15 1.16 (0.27) 2.78 (0.93–8.27) > 0.1
18 0.71 (0.14) 13 1.19 (0.27) 2.40 (0.80–7.24) > 0.1

GTV (R) 16 0.63 (0.23) 15 1.19 (0.28) 2.78 (0.88–8.78) > 0.1
13 0.57 (0.22) 18 1.14 (0.28) 1.47 (0.50–4.34) > 0.1

Mdist|SUV 16 5.33 (6.13) 15 1.03 (0.44) 4.30 (1.42–13.02) 0.021*
15 5.50 (6.32) 16 1.15 (0.54) 4.89 (1.56–15.29) 0.015*

Mdist|Shape 16 1.18 (0.81) 15 0.17 (0.10) 1.90 (0.66–5.52) > 0.1
20 0.24 (0.15) 11 1.52 (0.76) 1.04 (0.35–3.08) > 0.1

Mdist|Fusion 16 4.65 (5.82) 15 0.57 (0.35) 11.51 (3.48–38.02) < 0.001**
13 5.37 (6.27) 18 0.73 (0.50) 9.04 (2.89–28.33) < 0.001**
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delineation has reported increased robustness of derived radiomic de-
scriptors when using semi-automated segmentation over manual slice-
by-slice delineation [31]. Same concerns also apply to the presented
method, as it is sensitive to tumor volume segmentation errors that are
prominent with less conspicuous tumors. With recent developments of
deep learning, several automated tumor segmentation studies have
shown promising results [32,33]. While accurate pancreatic tumor
delineation leads to ongoing research, semi-automated or automated
segmentation tools may be integrated into our pipeline to improve
consistency and accuracy.

In conclusion, based on PET/CT, we introduced a novel combined
morphologic and metabolic pipeline for treatment assessment of locally
advanced or borderline resectable PA. The fused Mdist outperformed
traditional morphologic, metabolic, and physiological measurements in
OS prediction and risk stratification. The presented fused model shows
the promise to be a new imaging-marker capable to improve char-
acterization of tumor response and personalized PA care. Future large-
scale studies will be needed to validate the capacity of the combined
metric generated here.
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