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A potential role for the cyclin A2–cyclin-dependent kinase 2 complex

regulator S-phase cyclin A-associated protein residing in the endoplas-

mic reticulum (SCAPER) in human disease was first suggested by

Najmabadi et al. (2011), who identified a candidate homozygous

frameshift SCAPER variant as the cause of nonsyndromic intellectual

disability (ID) in a small Iranian family. We subsequently reported a

single patient with biallelic loss of function (LOF) SCAPER variants

associated with retinal disease (Carss et al., 2017). Biallelic LOF vari-

ants have since been associated with ID with or without retinitis

pigmentosa (RP) in seven individuals from five families from Spain,

Israel, and Iran (Hu et al., 2018; Tatour et al., 2017); in one individual

from a Jordanian Arab family, a homozygous SCAPER gene variant

was identified as the cause of nonsyndromic RP (Jauregui et al.,

2019). More recently, Wormser et al. (2019) described a SCAPER gene

variant associated with a Bardet–Biedl syndrome (BBS)-like presenta-

tion comprising of ID, RP, short stature, obesity, and brachydactyly in

eight individuals from two consanguineous Bedouin families belonging

to the same tribe in southern Israel, alongside preliminary functional

studies suggesting a possible role for SCAPER in ciliary dynamics and

disassembly. In the current study, we describe clinical and genetic

findings, including seven novel SCAPER variants, in six individuals of

Amish, Caucasian, and South Asian descent. Together with our molec-

ular data, our comprehensive phenotypic assessments enable a more

detailed clinical comparison to be drawn between the patient cohort

described here (including previously published individual G001284;

Patient 3 in this study, (Carss et al., 2017) with the 17 individuals in

whom SCAPER variants were recently defined (Hu et al., 2018;

Jauregui et al., 2019; Najmabadi et al., 2011; Tatour et al., 2017;

Wormser et al., 2019), permitting a more precise definition of the clin-

ical phenotype arising from pathogenic SCAPER variation.

Samples were taken with informed consent (study approved by

the Ethics Committee of Akron Children's Hospital, Moorfields Eye

Hospital and Baylor College of Medicine, in compliance with the

Declaration of Helsinki) for deoxyribonucleic acid (DNA) extraction.

Single nucleotide polymorphism (SNP) genotyping was performed

(Patients 1 and 2) using the HumanCytoSNP-12 v2.1 beadchip array

(Illumina, Cambridge, UK). In Patients 1 and 3–5, whole exome or

whole genome sequencing (WES or WGS), variant alignment, calling,

filtering, and prioritization was performed as previously described

(Carss et al., 2017; Rawlins et al., 2019; Xu et al., 2015). Allele-specific

primers were designed using Primer3 web software to evaluate segre-

gation of the candidate SCAPER gene variants identified via dideoxy

sequencing. Patient 6 underwent WES at GeneDx and was identified

via GeneMatcher (Sobreira, Schiettecatte, Valle, & Hamosh, 2015) as

part of the Matchmaker Exchange Repositories (Philippakis et al.,

2015). All variants identified in the study have been submitted to Clin-

Var (https://www.ncbi.nlm.nih.gov/clinvar/).

Patients 1 and 2 are Ohio Amish siblings. Candidate variants identi-

fied through WES of DNA from Patient 1 were cross-referenced with

regions of autozygosity common to both affected siblings, identified

through whole genome SNP genotyping. This identified only a single

plausible candidate variant, located within the largest (18 Mb) shared

region of autozygosity on chromosome 15 (rs1509805–rs4243078;

chr15(GRCh38):g. 60281446-78374545), a novel homozygous duplica-

tion in Exon 18 of the SCAPER gene, predicted to result in a frame-

shift (NM_020843.2: c.2236dupA, p.(Ile746Asnfs*6) Chr15(GRCh38):

g.76705914dupT; Figure 1). Dideoxy sequencing confirmed the pres-

ence and co-segregation of this variant in both siblings. This variant was

detected in heterozygous form in five unrelated individuals in a data-

base of 116 regional Amish controls, corresponding to an estimated

allele frequency of ~0.04, not uncommon for founder mutations within

this population. WES/WGS performed in Patients 3–6, identified com-

pound heterozygous SCAPER variants; c.1116delT, p.(Val373Serfs*21)

(Chr15(GRCh38):g.76771874delA) and c.2179C>T, p.(Arg727*) (Chr15

(GRCh38):g. 76705971G>A) in Patient 3, c.1495+1G>A (Chr15(GRCh38):

g.76765562C>T) and c.3224delC, p.(Pro1075Glnfs*11) (Chr15(GRCh38):

g.76434165delG) in Patient 4, c.829C>T, p.(Arg277*) (Chr15(GRCh38):g.

76775061G>A) and c.3707_3708delCT, p.(Ser1236Tyrfs*28) (Chr15

(GRCh38):g.76376309_ 76376310delAG) in Patient 5, and c.2377C>T, p.

(Gln793*) (Chr15(GRCh38):g.76702873G>A) and c.2166-3C>G (Chr15

(GRCh38):g.76705987G>C) in Patient 6. The SCAPER variants in each of

these patients were confirmed to be biallelic by familial segregation analy-

sis using dideoxy sequencing. None of these variants are present in the

genome aggregation (gnomAD) or 1,000 genomes databases and those in

Patients 1, 2, and 4–6 are novel.

Table 1 summarizes the core phenotypical features of individuals

not previously reported, aged between 18 months and 31 years

(Patients 1, 2, and 4–6), provides additional clinical details for Patient

3 (Carss et al., 2017), and compares these to the clinical features of all

SCAPER syndrome patients described to date. ID and developmental

delay was present in all six affected individuals, and four patients also

exhibited hyperactivity and attention deficit hyperactivity disorder

(ADHD). Autism and dyspraxia were each noted in one individual.

Neuroimaging performed in Patients 1, 3, 5, and 6 revealed no abnor-

malities. Additional dysmorphic features noted in both Amish siblings

(Patients 1 and 2) included inverted nipples, brachydactyly,

camptodactyly, proximally placed thumbs (Figure 1), and a characteris-

tic facial appearance with frontal bossing and almond-shaped eyes;

growth parameters were all normal. Patients 1, 3, and 4–6 all pres-

ented between the ages of 10–23 with a reduction in night vision and

visual field deficits; Patient 2 (18 months) described no visual symp-

toms at the time of presentation. Fundus examination in Patients 3–6

revealed findings typical of RP including optic disc pallor, attenuated

retinal vessels and intraretinal mid-peripheral bone-spicule pigmenta-

tion, and loss of photoreceptor outer segments with retained central

macular structure on optical coherence tomography imaging (Figure 1;

Table S1). Additional variable ocular features described in some

patients with SCAPER syndrome include cataracts (in two individuals)

and myopia and keratoconus in one individual each.

Our clinical and genetic studies in six affected individuals, includ-

ing additional new clinical details for Patient 3, (Carss et al., 2017) take

the total number of SCAPER syndrome patients described to date to

23. Although the extent for which clinical data is available for the pre-

viously reported patients is variable, our detailed clinical phenotyping

allows a more comprehensive clinical comparison to be made with

the previously reported cases, confirming the presence of a variable
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pattern of dysmorphic features associated with SCAPER syndrome.

It is now clear that the cardinal clinical features of the disorder include

mild/moderate ID and developmental delay particularly affecting

speech and language and motor milestones. Hyperactivity appears to

be a common feature, with some affected individuals receiving a for-

mal diagnosis of ADHD. Early adult onset RP is also a key clinical find-

ing, and the retinal phenotype appears remarkably consistent. In all

individuals for whom we have data, progressive loss of night vision

begins in first or second decade of life. Together with studies in mice

demonstrating expression of SCAPER in multiple retinal layers, partic-

ularly in the retinal pigment epithelium and photoreceptor inner and

outer segments, this supports a role for SCAPER in photoreceptor

function and/or maintenance (Tatour et al., 2017).

Tapering fingers, brachydactyly and proximally placed thumbs,

described in eight individuals from two consanguineous Bedouin fami-

lies of the same tribe in southern Israel, were also identified as a con-

sistent feature in the two Amish siblings, confirming the association of

this feature with the SCAPER syndrome. Short stature and obesity

were also a common feature amongst the affected Bedouin patients,

and this constellation of clinical features including RP, obesity, short

stature, ID, developmental delay, and brachydactyly has consequently

led to a suggested diagnosis of BBS in these individuals. Although

there is some overlap between the clinical features characteristic of

ciliopathies and those seen in SCAPER syndrome, the Amish siblings

(who are of normal height and weight for age) demonstrate that the

digital, retinal, and cognitive abnormalities may occur independently

of short stature and obesity. The other common primary features of

BBS, including renal anomalies, postaxial polydactyly, hypogonadism

(males), and genital abnormalities (females) have not been reported in

association with SCAPER mutation (Forsythe & Beales, 2013). The

dysmorphic facial features and inverted nipples, noted on examination

of both Amish siblings, have not been previously noted in other indi-

viduals with SCAPER variants.

Recently, a single individual homozygous for a c.2023-2A>G

SCAPER variant presenting with nonsyndromic RP and no evidence

of ID was reported in this journal (Jauregui et al., 2019). The same

c.2023-2A>G SCAPER gene variant has also been reported previ-

ously in association with RP, ADHD, and mild ID (Tatour et al.,

2017) indicating the variability in the presence and severity of

the extraocular features associated with the SCAPER syndrome

F IGURE 1 (a) Simplified pedigree of the Amish family investigated, with electropherograms showing the SCAPER c.2236dupT sequence variant
in all affected and unaffected individuals in generations VI and VII (black arrow identifies the duplicated nucleotide). (b) Pictorial representation of
the single nucleotide polymorphism (SNP) genotypes across the ~18.1 Mb chromosome 15q21-22 region identified in this family. (c–j) Clinical
features of SCAPER syndrome patients. (c, d) Brachydactyly, camptodactyly, and proximally placed thumbs identified on examination of patient 1. (e,
f) ocular imaging and investigations from patient 3 illustrating features of RP (e: Right eye, f: Left eye) fundus photograph (Optos plc, Dunfermline,
UK) showing optic disc pallor, attenuated retinal vessels and mid-peripheral bone spicule pigmentation (g: Right eye, h: Left eye) FAF imaging
showing mid-peripheral hypoautofluorescence with a central ring of hyperautofluorescence demarcating the surviving outer retinal structures. (i:
Right eye, j: Left eye) optical coherence tomography (Spectralis-OCT, Heidelberg Engineering, Heidelberg, Germany) of the central retina
demonstrating loss of photoreceptor outer segments with retained central macular structure corresponding to FAF findings. FAF, fundus
autofluorescence; OCT, optical coherence tomography; SCAPER, S-phase cyclin A-associated protein residing in the endoplasmic reticulum
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(Table 1). However, this may also be accounted for by the difficulties

in conclusively defining milder developmental delay in some situa-

tions, when more subtle clinical findings may not be identified if not

specifically assessed. Conversely, associated ocular pathology may

remain undetected or unrecognized in individuals with ID, as such

individuals often have difficulty recognizing or articulating their

visual symptoms. This highlights the importance of visual screening

and ophthalmological assessment in these patients. Other common

ocular features include cataracts (in particular posterior subcapsular

cataracts, which are commonly associated with RP; (Pruett, 1983)

and strabismus, with nystagmus and keratoconus noted in a single

patient. The high incidence of cataracts, a potentially treatable cause

of sight loss, again supports the case for screening in early

childhood.

The allele frequency (~0.04) of the Ohio Amish SCAPER founder

mutation suggests that, despite no previous reports, this disorder

represents an underrecognized cause of RP and mild ID within this

community. This further highlights the importance of careful clinical

evaluation in children and adults with ID and enables targeted

genetic testing for this SCAPER variant for Amish individuals with this

clinical presentation. Together with our clinical review of all previ-

ously published patients, this study expands the molecular spectrum

of disease-causing SCAPER variants and enables a clearer delineation

of the core (and variable) phenotypical features of SCAPER syndrome

to be characterized. Our findings also highlight the importance of

prompt visual screening and ophthalmic assessment in all individuals

with SCAPER-associated disease. Despite the increasing numbers of

individuals identified with SCAPER syndrome, the precise functions

of SCAPER in human growth and development are not fully under-

stood. Further studies to elucidate the precise molecular and devel-

opmental roles of this molecule in human growth and skeletal,

retinal, and brain development and function, will yield important

insights into the clinical heterogeneity increasingly observed in

SCAPER-associated disease.
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