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Evidential Inference in Activation Networks

Jerome A. Feldman and Lokendra Shastri
Computer Science Department
University of Rochester

Introduction

Psychological and biological results suggest that many cognitive tasks like visual
recognition, categorization and associative retrieval do not take more than 100
computational steps. This follows because typical neuronal firing rates are a few
milliseconds and the response time of cognitive agents during numerous
experimental tasks is a few hundred milliseconds. Given that most cognitive tasks
require access to a large body of information, the above observation imposes a major
constraint on the manner in which conceptual information may be organized and
accessed by cognitive processes. In particular it seems to preclude an interpreter that
examines the knowledge base. This paper briefly outlines a framework for organizing
and accessing conceptual information that appears to offer several advantages over
previous work [Fahlman 79). The proposed framework suggests an evidential
semantics for knowledge and describes how the above may be encoded as an active
and massively parallel (connectionist) network [Feldman & Ballard 82]. The resulting
system has been run on simple examples and is capable of supporting existing
semantic network applications dealing with problems of recognition and recall in an
uniform manner. The framework also provides a natural way of representing
"inconsistent” or conflicting information and using it in making inferences. It
embodies an important class of inference that may be characterized as working with
a set of competing hypothesis, gathering evidence for each hypothesis and selecting
the best among these. A detailed treatment of this framework appears in [Shastri &
Feldman 84].

Overview

[n the proposed framework, conceptual knowledge is organized as a network of
active elements which interact with one another via controlled spreading of
activation. The information encoded in the "memory"” network is accessed via other
network fragments, each of which is a connectionist encoding of a routine. We
present a simple example to introduce the notation and the overall framework.
Figure 1 depicts the interaction between a fragment of an agent's restaurant routine
and a part of his memory network. The routine fragment decides whether some food
goes well with red wine on the basis of the food’s taste. A routine is represented as a
sequence of nodes (units) connected so that activation can serve to sequence through
the routine. In the course of their execution, routines pose queries to the memory
network by activating relevant nodes of the memory network. The memory network
returns the answer by activating appropriate units in the routine. We depict action
steps as oval-shaped nodes, queries as hexagonal nodes and answer nodes as circular
nodes. In this routine fragment, the task of deciding on a wine results in a query to
the memory network about the taste of food and the decision is made on the basis of



the answer returned by the memory network. Answer nodes in a routine mutually
inhibit each other and the answer node receiving the maximum activation from the
memory network triggers the appropriate action. The memory network in the
example encodes the following information:

HAM and YAM are two concepts in the domain.

Concepts in the example domain are characterized by two properties, HAS-TASTE
and HAS-FOOD-KIND.

HAM is SALTY in taste and is a kind of MEAT, YAM is SWEET in taste and is a kind of
VEGETABLE.

Each arc in the network represents a pair of links, one in either direction. The
triangular nodes associate objects, properties and property values. Each node is an
active element and when in an "active" state, sends out activation to all the nodes
connected to it. A node may become active on receiving activation form another
node in the memory network or a routine node. Triangular nodes behave slightly
differently in that they become active only on receiving simultaneous activation from
a pair of nodes.

The crude deroutineion given above is sufficient to demonstrate how simple
recognition and retrieval tasks may be handled by such networks. To find the taste of
HAM a routine would activate the nodes HAS-TASTE and HAM. The triangular node
bl linking HAS-TASTE and HAM to SALTY will receive coincident activation along
two of its links and become active. As a result, it will transmit activation to SALTY
which will ultimately become active. Figure 2 shows the activation levels of various
nodes during the processing of the above query. If a routine needs to find an object
that has a salty taste it would activate the nodes HAS-TASTE and SALTY. This will
cause the same triangular node to become active and transmit activation to HAM.
Eventually, HAM will become active completing the retrieval. The two examples
roughly correspond to how retrieval and recognition may be processed by the
network. In the rest of the paper we will focus on representational issues and hope
that the example discussed above will give the reader an idea of the dynamics of
network operation.

Representational framework

The semantic information forms a conceptual structure defined over a space spanned
by conceptual attributes. All domain knowledge is defined in terms of these attributes
and their values. Examples of attributes are: has-shape (with values such as round,
triangular), has-color, is-an-instance-of and is-a-part-of.

The primary level of organization in the conceptual structure is in terms of Concepts.
These are labelled clusters of "coherent” <attribute, value> pairs. The value of an
attribute is also a Concept and hence Concepts may be arbitrarily complex. Concepts
may refer to different sorts of things in the domain such as individuals, categories,
events, properties, locations and relations. Attributes are classified into two broad
categories: PROPERTIES and structural links. Properties correspond to the intrinsic
features of Concepts and may vary from domain to domain. Thus, physical objects
may have properties like HAS-SHAPE and HAS-COLOR, while events may have
properties like HAS-LOCATION and HAS-DURATION. Structural links are fairly
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domain independent and define "inheritance-like" inference paths. The most
representative of these is the is-an-instance-of link that is used to organize
information in hierarchical structures in semantic networks. Our formulation employs
an extended notion of property inheritance and includes other structural links such
as the is-a-part-of and the occurs-during links [Allen 83] besides the is-an-instance-of
link.

Concepts are classified into Types and Tokens. Tokens refer to instances and Types
refer to abstractions defined over Tokens. Abstractions may in turn be defined over
Types to yield more abstract Types, or a Type may be differentiated to result in more
refined Types. In this framework, a Type is not viewed as a set and its structure is
similar to that of a Token viz. a labelled collection of <attribute, value> pairs. The is-
an-instance-of structural links encode the relation between a Token and a Type while
is-instantiated-by links encode the inverse relationship.

We use a graphical notation for the representational framework. Figure 3 displays a
sample network encoding the following information:

"Birds are a kind of Things, Swan is a kind of Bird, Hansa is a Swan, Things have
the property color, Swans are generally White and White is a Color.”

The representation uses three kinds of nodes: the Type node, the Token node and
the Binder node. Arcs in the network represent bidirectional links. Type and Token
nodes label clusters of <attribute, value> pairs, each of which is represented by a
Binder node. For instance, bl represents the fact: "Things have the property color”,
while b2 represents the fact: "Swans are generally colored white" i.e. "the value of
the property color for Swans is generally White". The framework permits associating
properties as well as property values with concepts. For example, we may represent
that fruits have color without specifying any particular color values.

A weight is associated with each link and these provide the basis for the evidential
semantics of knowledge. A link from node A to node B may be interpreted to mean
"A provides evidence for B". Consider the links from Type nodes to their Binder
nodes. The weights on these links provide a way of encoding the strength of
generalizations represented by a Type. Thus, the link from SWAN to bl in figure 3 is
a quantitative measure of the evidence provided by the assertion "x 1s a Swan" to the
assertion "the color of x is White". Cases with more than one typical value are easily
represented as shown in figure 4. If red i1s a more typical color of Apple than green,
the weight wl will be greater than w2. The use of weights has other interesting
consequences. For instance, if the node Apple is activated (the network is "imagining
an Apple") activation from the node Apple will drive the associated Binder nodes.
The Binder nodes corresponding to the most typical property values will receive the
highest activation resulting in the activation of what would amount to a virtual
Token corresponding to the most typical instance of the Type. Thus, the color of the
imagined Apple will more likely be red than green. In this framework, the
representation of a Type does double duty and acts as if it were a prototypical
representation [Rosch 75], besides being an abstract representation of a class of
Tokens.

The use of weighted links from a Type to its Binders provides a more natural
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interpretation of "exceptions” and "cancellations” and gives a clean semantics of the
is-an-instance-of link. In this framework, one cannot both say: "All Swans are White"
and "Gaselle is a Swan whose color is black". However, one may say: "Most Swans
are White" and "Giselle is a Swan whose color is black”. This is illustrated in Figure
5. The crucial point is that Giselle mav not be attached as an instance of Swan unless
the weight of the link from Swan to b2 is reduced to a value less than 1.0. In Figure
5 the link from Swan to b2 is a statement of typicality and hence has a weight less
than 1.0, whereas the link from Giselle to b3 encodes a definite statement and hence
has a weight of 1.0.

Just as weights on links from concepts to Binders were significant, the weights on
links from Binders to Concepts also serve an important function in categorizing an
instance (assigning a Type to a collection of <attribute, value> pairs). The weights on
links from Binders to Concepts can be used to assign a metric to the significance of a
match between the <attribute, value> of a Type and that of an instance. The process
of categorization easily translates into a "best fit" situation. Each Type receives
evidence from Binders that match the input data. Type nodes accumulate this
evidence and their level of activation provides a quantitative measure of the goodness
of match. The Type with the highest activation wins [Feldman 82]. Furthermore, this
also provides an interpretation of the notion of a prototypical instance of a category.
If the property values of an instance match the typical values of the Type then the
occurrence of this instance results in the higher activation of the Type node.
Consequently, such an instance appears to be more prototypical. Thus, a Robin

matches the properties in the representation of the Type Bird more strongly than a
Penguin.

Conclusion

The representation and use of conceptual knowledge remains a core issue in
cognitive science. This paper presents an approach to these problems that appears to
offer several advantages over previous work. The basic ideas of evidential reasoning,
multiple hierarchies and connectionist implementation fit together remarkably well
and could form the basis for a detailed modeling of how knowledge is handled in
natural systems.
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