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ABSTRACT 

Functional optical characterization of disease progression and response to therapy suffers from loss of spatial resolution 

and imaging depth due to scattering, impacting the ability of researchers to localize and quantify molecular processes.  

Here we report on the ability of dimethyl sulfoxide (DMSO) to reduce temporarily the optical scattering of skin.  Data 

collected from in vitro phantom images and in vivo fluorescence images demonstrate the potential of this simple method 

to mitigate the blurring effects of scattering with topical application, which we expect will improve the accuracy and 

localization of in vivo molecular imaging studies. 

INTRODUCTION 

Light-based therapeutic and diagnostic techniques currently employed in the biomedical field suffer from a loss 

of spatial resolution and imaging depth due to the scattering and absorption events intrinsic to biological tissues. At the 

visible and near-infrared wavelengths critical to many optical imaging modalities, scattering dominates over absorption 

and is thus the primary contributor to the reduction of light penetration into biological tissues. If the optical scattering 

events of biological tissues at these wavelengths of light could be reduced or minimized, it is reasonable to expect that 

the potential applications of imaging modalities would expand in scope. In fact, many studies have already demonstrated 

that an overall reduction in the number of scattering events within a biological tissue can lead to increased penetration 

depth and contrast in a number of optical imaging techniques [1–8]. 

Optical clearing is a method for inducing a transient reduction in the scattering properties of a tissue using an 

optical clearing agent (OCA) [1]. Although it has been concluded that a myriad of chemical agents possess appreciable 
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optical clearing potential (OCP), many of these agents possess hydrophilic properties which prevent them from 

penetrating the lipid-rich stratum corneum. Without bypassing this hydrophobic region of the tissue, most known OCA 

are incapable of inducing optical clearing unless the stratum corneum is bypassed. An OCA which cannot be applied 

topically is severely limited in its potential applications to most imaging modalities. Thus, the focus of our research has 

been to induce optical clearing using an OCA which can be applied topically yet still achieve a meaningful reduction in 

the degree of tissue scattering.  

Due to the known ability of DMSO to penetrate intact skin and its known OCP with dermal application (4, 11), 

we set out to study the potential of using DMSO as a simple and effective OCA.  Collectively, our recently published in 

vitro and in vivo results provide compelling evidence that DMSO by itself is an effective topical OCA and is capable of 

inducing a three-fold reduction in skin optical scattering as well as improved visualization of subsurface blood vessels 

(25). The focus of the preliminary data presented herein summarizes our recent efforts to expand upon these results. 

Specifically, we have focused on experiments designed to demonstrate the ability of DMSO to improve resolution and 

imaging depth in imagining modalities used routinely by other research scientists. To achieve this objective, a silicone 

tissue phantom with mock vasculature was employed to study the expected improvements in imaging depth and 

resolution following DMSO application to in vitro human skin. Furthermore, we present an in-vivo demonstration of 

improved fluorescence signal strength in a mouse model which has undergone DMSO-mediated optical clearing. 

MATERIALS AND METHODS 

In Vitro Flow Phantom Experiments: 

Skin Preparation: Cryo-preserved, dermatomed human skin (Science Care, Phoenix, AZ) was thawed to room 

temperature (~26°C). With a single-edged razor blade, the skin was cut into ~2.5 cm x 2.5 cm samples. The thickness of 

each sample was measured by placing it between two glass slides, clamping the preparation with binder clips to provide 

consistent compression and uniform thickness, and measuring the preparation thickness with a micrometer (Mitutoyo, 

City of Industry, CA). Sample thickness ranged between 1.2 and 1.5 mm. To minimize systematic error and maximize 

repeatability of the measurement method, we recorded the preparation thickness after one click of the fine adjustment 

screw on the micrometer. By calculating the difference between the thickness of the preparation and the slides, we 

determined thickness of each sample. 
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Silicone Phantom: A silicone phantom was synthesized with dimensions 9cm x 9cm x 1.5cm in a Petri dish.  A 

1:10 ratio of P-4 Curing Agent (Eager Plastics)/P-4 translucent silicone rubber (Eager Plastics) was used during phantom 

preparation.  To achieve a reduced scattering coefficient of 4 mm-1, titanium oxide (SiO2, TI602, Atlantic Equipment 

Engineers) was mixed by multiplying the total volume of the silicone rubber and curing agent by 0.002656 g/ml.  Prior 

to phantom solidification, four flexible plastic tubes  (Tygon® formulation S-54HL) with an inner diameter of  250 μm 

were embedded within the phantom in a staggered conformation, separated by 5 mm and embedded at depths of 1, 2, 3, 

and 5 mm.  We focused on absorption contrast in this set of experiments, using nigrosin as a biological marker at a 

concentration of 300 mg/mL.   

Experimental Protocol: For each experiment, a freshly thawed skin samples was placed on top of the phantom 

to insure the tubes were covered.  To collect reflectance images, a 12-bit thermoelectrically-cooled CCD camera 

(QImaging 2000R) equipped with a macro lens was used.  A low-coherence 785-nm laser diode (B&W TEK) was used 

as an excitation source.  The skin samples were treated either with 14M DMSO (experimental condition) or isotonic 

saline (negative control). A total of six experiments was performed.  Images were taken at 0, 20, 40, 60 min after agent 

application, in addition to baseline images of the phantom alone to serve as measures of the actual tube width and 

reflectance of nigrosin.   

Image Analysis: Prior to agent application, we identified regions from which pixel-intensity line profiles were 

extracted.  Due to the rigid positioning of both the camera and phantom, the same regions were analyzed in all 

subsequent images. 

In-Vivo Fluorescence Imaging: 

For these experiments, adult (~25 g) male C3H mice were used.  Each animal was anesthetized with isoflurane 

gas followed by injection of a ketamine/xylazine (4:3 ratio, 0.4 mL/100 g mass) cocktail.  The animal was placed on a 

custom stage with the dorsum facing upwards.  A modified Hilltop chamber with a 7-mm-diameter hole removed from 

its center was placed over two adjacent regions on the mouse dorsum to hold the solutions of interest (see below).   A 

multispectral imaging camera (Nuance, CRI, Woburn, MA) was used to collect fluorescence images with the liquid 
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Furthermore, widely accepted OCAs such as glycerol, propylene glycol, and glucose, have been shown to improve the 

contrast and imaging depth for confocal as well as multi-photon microscopy (17-19). Lastly, improvements in other 

imaging modalities such as optical coherence tomography have also been witnessed following an optical clearing 

protocol (10, 20, 21). The potential benefits of optical clearing to laser therapy of subsurface targets such as tattoo 

pigments and microvasculature have also been demonstrated by a number of researchers (22-24). From the evidence 

presented, we conclude that an optical clearing protocol should be developed to enhance the functionality of these 

imaging modalities.   

If a standardized optical clearing method is to be implemented with optical imaging protocols, topical 

application is a highly desirable feature of the chosen OCA. To the best of our knowledge, DMSO is the only individual 

agent which possesses an appreciable OCP (a three-fold reduction in reduced optical scattering, according to our recent 

data with topical application (25). Furthermore, the preliminary data presented herein (Figures 1 and 2) and in our recent 

publication indicate that DMSO can induce a reduction in optical scattering within 15 min after topical application (25). 

Collectively, our data provide compelling evidence which warrants further study of DMSO as an OCA for in vivo 

applications. 

Finally, if DMSO proves to be a viable OCA for the variety of imaging techniques mentioned, it is imperative 

to discuss the issue of acute and systemic toxicity. We believe that the stigma derived from claims of the purported 

systemic toxicity of DMSO have overshadowed its potential clinical applications. Interestingly, a comprehensive 

literature review to date has confirmed only localized erythema as a ubiquitous side effect of DMSO application (25). 

Studies investigating claims of serious systemic effects are contradictory.  Such side effects are associated with chronic 

DMSO application, and hence should not be cited as conclusive evidence against the occasional use of DMSO for 

therapeutic and diagnostic biophotonic applications.   

 The application of optical clearing is expected to enable clinicians and scientists employing optical methods to 

interrogate and target previously unattainable biological tissue features in situ, extending the range of suitable 

applications for biophotonics. The short time frame needed to induce DMSO mediated optical clearing, combined with 

DMSO’s ability to be applied topically to the skin are two very persuasive reasons why DMSO should be strongly 

considered as a potential OCA for extending research in biophotonics. We postulate that the expected benefits of using 
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DMSO as an OCA to studies employing molecular sensing of subsurface events outweigh the current concerns of 

toxicity and thus future research into DMSO mediated optical clearing is warranted. 
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