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ArQTiC: A Full-stack Software Package for Simulating

Materials on Quantum Computers

LINDSAY BASSMAN, Lawrence Berkeley National Lab

CONNOR POWERS, University of Southern California

WIBE A. DE JONG, Lawrence Berkeley National Lab

ArQTiC is an open-source, full-stack software package built for the simulations of materials on quantum com-

puters. It currently can simulate materials that can be modeled by any Hamiltonian derived from a generic,

one-dimensional, time-dependent Heisenberg Hamiltonian. ArQTiC includes modules for generating quan-

tum programs for real- and imaginary-time evolution, quantum circuit optimization, connection to various

quantum backends via the cloud, and post-processing of quantum results. By enabling users to seamlessly de-

sign, execute, and analyze materials simulations on quantum computers, ArQTiC opens this field to a broader

community of scientists from a wider range of scientific domains.
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1 INTRODUCTION

Quantum computers are an emerging technology, which are poised to revolutionize the computa-
tional sciences [3, 13, 36, 43]. Using quantum bits, or qubits, as the units of information processing,
quantum computers can capitalize on purely quantum phenomena such as superposition and en-
tanglement to achieve exponential speed-ups and memory reductions compared to their classical
counterparts for some applications. Originally conceived of for the simulation of quantum systems
[20], quantum computers were later rigorously proven to offer a computational advantage in this
area [2, 35, 65]. Indeed, the simulation of quantum materials is seen as one of the most promis-
ing applications for quantum computers in the near term [9]. Quantum materials are materials
in which quantum effects at the microscopic level give rise to exotic phases or other emergent
behaviors at the macroscopic level [29]. An explosion of research into quantum materials over the
past decade suggests that such materials will be crucial for the development of next-generation
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Fig. 1. Programming layers for quantum (a) and classical (b) computers.

technologies [6, 23, 57]. Thus, elucidating the properties and dynamics of quantum materials
through simulation is a much-anticipated milestone for near-term quantum computers.

At present, the software available for designing and executing simulations of quantum materi-
als on quantum computers is in a nascent stage. At the most fundamental level, a program run
on a quantum computer is a sequence of physical operations performed on the qubits (e.g., elec-
tromagnetic pulses). However, much like writing code for classical computers in binary, writing
code for quantum computers in terms of pulses can be cumbersome and difficult. To alleviate this
burden, layers of abstraction can be sequentially added atop the pulse-level programming layer to
facilitate writing quantum programs.

The current hierarchy of abstracted programming layers for quantum computing is depicted
in Figure 1(a). At the bottom, the qubit implementation dictates which physical operations can
be applied to the qubits. Abstracting one layer above this involves representing the simulation in
terms of an optimized native-gate circuit, which is a serial list of quantum logic gates acting on the
qubits, with native gates having a one-to-one correspondence with implementable operations on
the qubits. Sitting a level above native-gate circuits are arbitrary-gate (i.e., any unitary matrix) cir-
cuits. Note that while native-gates are backend-dependent, arbitrary-gates are backend-agnostic,
allowing greater flexibility. Abstracting one layer above gates, simulations can be designed using
high-level programming models based on application-focused libraries. Finally, at the top resides
the algorithm that abstracts away all implementation details and solely describes the general pro-
cess by which the system of qubits should be manipulated. Figure 1(b) shows analogous program-
ming levels in standard classical computers for comparison.

In the noisy intermediate-scale quantum (NISQ) era [46], developing code to run on quan-
tum computers generally involves programming at the gate level, requiring a great deal of domain
knowledge in quantum computation. Furthermore, different quantum backends (either the real
quantum processors or quantum simulators, which simulate quantum computers with classical
computers) use their own hardware-specific language, making it difficult to port simulation code
written for one quantum machine to another. Together, this presents a large barrier to entry for
researchers from other relevant areas of science, such as materials science and condensed matter
physics, which can provide a wealth of new perspectives and insights for materials simulations on
quantum computers. To lower this barrier to entry, we have developed an open-source, backend-
agnostic, high-level programming library called Architecture for Time-dependent Circuits

(ArQTiC), to facilitate research into materials simulations on quantum computers for interested
researchers from a broad range of backgrounds.

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 17. Publication date: June 2022.
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As a full-stack software package, ArQTiC provides access to each of the programming layers
presented in Figure 1(a). At the top layer, ArQTiC implements two major algorithms for material
simulation: (i) Hamiltonian evolution based the Trotter decomposition [35, 58] and (ii) imaginary-
time evolution via the quantum imaginary time evolution (QITE) algorithm [42]. The former
is useful for studying the dynamic behavior of materials and their properties, while the latter can
be used to find ground- and excited-state energies as well as for generating thermal states, which
can be used to compute properties of materials at finite temperatures.

To aid the user in implementing these algorithms, ArQTiC provides a programming library spe-
cific to the application of simulating materials on quantum computers. By narrowing its scope,
ArQTiC is able to provide high-level functions for the automatic design of quantum circuits, en-
abling users to remain ignorant of the individual gates that comprise the circuits. Indeed, it broad-
ens access to performing materials simulations on quantum computers to users without extensive
knowledge about the construction of evolution operators from the material’s Hamiltonian and the
subsequent translation of such operators into gates, both of which are automated by ArQTiC.

This high-level programming layer characterizes ArQTiC’s main contribution to the landscape
of available quantum programming software, which includes Qiskit [1], PyQuil [50], Cirq [26],
Quantum Development Kit (QDK) [40], Qibo [18], Tequila [31], and XACC [37]. While these
general-purpose software platforms offer the ability to design quantum circuits for any application
(as opposed ArQTiC’s specialization to materials simulations), this comes at the cost of circuits
generally needing to be built gate-by-gate, which requires extensive domain knowledge in quan-
tum information and computation. In recent years, some high-level functionality has been added
to these platforms to ease programming for specific applications, such as quantum chemistry, fi-
nance, and optimization. Other domain-specific packages like ArQTiC, such as OpenFermion [39]
and PennyLane [12], provide higher-level programming above the gate level for quantum chem-
istry and machine learning, respectively. However, it should be emphasized that while simulations
for materials and quantum chemistry applications are similar, the Hamiltonians used in each do-
main differ in their comprising operators. Whereas materials Hamiltonians tend to contain very
local operators (usually operators acting only on nearest neighbor qubits), quantum chemistry
Hamiltonians can often contain more non-local operators. Furthermore, most high-level program-
ming libraries currently available for quantum chemistry rely on variational algorithms that are
hybrid quantum-classical in nature, such as the variational quantum eigensolver [38], which rely
on feedback loop of information between a classical and quantum processor. ArQTiC, by con-
trast, currently focuses on simulations of materials run purely on quantum devices. Therefore,
fundamentally different functions are needed to generate circuits for simulations in these differ-
ent domains. While high-level functions for designing quantum circuits for quantum chemistry
applications are largely available, the development of high-level programming for applications in
materials simulations had been lacking until the development of ArQTiC.

At the gate-level, ArQTiC provides automatic optimization of the quantum circuit using state-
of-the-art circuit compilation tools and can translate circuits into several different languages tar-
geting different quantum backends. Furthermore, ArQTiC can connect with the IBM and Rigetti
quantum computers via the cloud to execute the circuits. Finally, ArQTiC provides post-processing
and analysis of the raw data returned via the cloud from the quantum backend. This represents
the secondary main contribution of ArQTiC to the quantum software landscape. The majority
of currently available software platforms for executing quantum circuits will simply return the
results from the quantum computer as a list of 0’s and 1’s. However, deciphering how these 0’s
and 1’s correspond to the observable of interest again can require a great deal of domain knowl-
edge. ArQTiC aids in this post-processing by automatically computing the value of a user-defined
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Fig. 2. Blueprint diagram of the ArQTiC modules. The Simulation Generator is the central data structure,
containing all necessary information about the simulation. The Simulator Generator interacts with all other
modules of ArQTiC, including program generation, circuit optimization, connection to quantum backends,
and post-processing.

observable from the raw results of the quantum computer for a variety of dynamic observables,
such as energy and magnetization.

While many materials simulations that can be run with ArQTiC can be carried out using most of
the existing quantum software platforms (software for implementing real-time Hamiltonian evo-
lution is largely available, though implementations for imaginary-time evolution is still not widely
available), they would require a large amount of domain knowledge in quantum computing to per-
form separately all the individual steps of (i) Hamiltonian construction (possibly term-by-term),
(ii) circuit design (possibly gate-by-gate), (iii) optimization, (iv) execution, and, finally, (v) post-
processing of raw results. In contrast, ArQTiC fully automates the entire process, solely requiring
the user to input the system’s Hamiltonian parameters and a few other essential simulation pa-
rameters such as timestep and total simulation time. Furthermore, ArQTiC’s focused functionality
and minimal requirements of the user result in a quick learning time to fluency with the software.
While the larger-scale, general-purpose software platforms offer more varied functionality, this
comes at the price of a steeper and longer learning curve to get the materials simulations up and
running. ArQTiC’s full code, as well as an array of python notebooks demonstrating various sim-
ulation uses cases (including the illustrative examples given in Section 3), are available on GitHub
[11]. By giving users the ability to easily generate, optimize, execute, and post-process quantum
circuits simulating materials on quantum computers, ArQTiC, in essence, brings this important
class of simulations to the masses.

2 SOFTWARE DESCRIPTION

ArQTiC offers a full-stack solution for the simulation of materials on quantum computers. Once
the user defines all simulation parameters, ArQTiC can automatically generate, optimize, and exe-
cute quantum circuits, as well as post-process the experimental results with only a few high-level
function calls and without any consideration by the user of the quantum gates that comprise the
circuit. This enables researchers from a broad range of physical sciences to easily perform their
own materials simulations on quantum computers without needing to understand the low-level
mechanics and intricacies of quantum computation.

A blueprint of the ArQTiC programming library is shown in Figure 2, depicting the vari-
ous modules. The central data structure is the Simulation Generator, which contains all the

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 17. Publication date: June 2022.
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Fig. 3. ArQTiC workflow diagram. The top row of boxes summarizes the flow of information from the in-
stantiation of the Simulation Generator, through the high-level programming layer, to the gate programming
layer, down to pulse scheduling for circuit execution on the qubits. The bottom rows show optional outputs
at each stage of the workflow. The starred components denote the main contributions of ArQTiC.

information relevant for the simulation. It can be instantiated in two ways: experienced program-
mers can instantiate the Simulation Generator and assign its attributes within a Python script,
while those less familiar with programming may find it easier to pass an input text file containing
all parameter definitions as an argument to the Simulation Generator instantiation. The Simu-
lation Generator is what interfaces with all other modules of ArQTiC to perform a simulation,
including modules for program generation (ArQTiC’s intermediate representation for quantum
circuits), circuit optimization, connection to quantum backends via the cloud, and post-processing.

Figure 3 shows a workflow diagram, which illustrates how all the modules of ArQTiC come
together to seamlessly provide simulation results from a quantum backend. Note that the boxes
in Figures 2 and 3 are color coordinated to demonstrate the correspondence between modules in
ArQTiC and subsections of the workflow. Performing a simulation with ArQTiC begins with in-
stantiating the Simulation Generator, whose attributes are provided by the user either in a Python
script or via a simple input text file. Examples of instantiation of the Simulation Generator via
input text file or Python scripting are provided in the illustrative examples in Section 3.

Currently, ArQTiC can generate simulations for materials that can be modeled with a time-
dependent Heisenberg Hamiltonian in one-dimension of the form

H (t ) =
∑

i

Jx
i (t )σx

i σ
x
i+1 + J

y
i (t )σ

y
i σ

y
i+1 + J z

i (t )σ z
i σ

z
i+1 + h

x
i (t )σx

i + h
y
i (t )σ

y
i + h

z
i (t )σ z

i , (1)

where Jα
i is the time-dependent strength of the exchange interaction between nearest neighbor

spins i and i+1 in the α-direction, hα
i is the time-dependent strength of the external magnetic field

in the α-direction acting on spin i , and σα
i is the α-Pauli matrix acting on qubit i . The large amount

of freedom in defining the parameters in Equation (1) makes this Hamiltonian quite versatile in
its ability to model a wide range of systems including ubiquitous models such as the transverse

field Ising model (TFIM), the XY model, and the XXZ chain. The parity of the Jα
i parameters can

be chosen to simulate ferromagnetic or antiferromagnetic systems. Setting parameter values to be
uniform across all spin pairs versus randomly varied allows one to simulate ordered or disordered
systems (such as spin glasses [34]), respectively. Finally, specifying a time-dependent function for
the external magnetic field amplitude allows one to simulate laser pulses on material of interest
[8, 47].

While Hamiltonian 1 encapsulates a large variety of materials simulations, it is nonetheless
narrowed in scope; however, it is precisely this narrowing that enables ArQTiC to achieve such
high levels of automation in circuit design, lifting the user out of the tedium of gate-level circuit
generation. Furthermore, ArQTiC’s current limitation to Hamiltonians that adhere to the form of
Hamiltonian 1 allows the user to define their desired system Hamiltonian in an extremely concise
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manner: The user need only define the parameters Jx , Jy , J z , hx , hy , and hz . Each of these param-
eters can either be defined as (i) a single real number if the parameter is constant across all qubits
and timesteps, (ii) an array of real numbers (either defined explicitly or randomly selected from
a user-defined range) if the parameter is constant for all timesteps but varies between different
qubits, or (iii) a time-dependent function that is the same for qubits, but varies across timesteps.
To construct the same Hamiltonian in most other quantum software platforms requires every sin-
gle individual term to be defined explicitly. As the number of terms will grow with system size,
Hamiltonian definition on other quantum software packages can become extremely tedious as
system sizes increase.

Once the Simulation Generator object is instantiated, it can be used to generate “programs,”
which are ArQTiC’s native intermediate representation of the quantum circuit that performs the
simulation. A program is essentially a backend-agnostic, sequential list of arbitrary gates acting
on the qubits representing the system. The advantage of working with this intermediate repre-
sentation is that the gate-level circuit can be designed once and simply translated into any other
formats required by a specific backend. Currently, ArQTiC supports converting its programs into
Qiskit [1], PyQuil [50], and Cirq [15]. In particular, this makes it easy to run the same simulation
on multiple different quantum backends for comparison.

The creation of a new program relies on algorithms for either real-time or imaginary-time evolu-
tion under a given system Hamiltonian, and separate modules exist for each. Generating a program
for real-time evolution uses a first-order Trotter decomposition [35, 58] to approximate the time-
evolution operator. Since the form of the Hamiltonian is known a priori (given by Equation (1)),
ArQTiC can automatically decompose the Hamiltonian into groups of mutually commuting terms,
which in turn allows the time-evolution operator to be decomposed into a product of operators (via
the Trotter decomposition), each of which is straightforward to translate into a series of quantum
gates. The user is responsible for providing the timestep size for the Trotter decomposition.

Real-time evolution can be simulated under a time-independent or time-dependent Hamilton-
ian with ArQTiC. Time-independent Hamiltonians are generally used for simulating quantum
quenches, whereby the material system is initialized in the ground state of one Hamiltonian, but
is made to evolve under a different Hamiltonian [19, 41, 49, 52]. Quenching from one Hamiltonian
to the other can be viewed as instantaneously changing the environment of the material, thereby
altering its Hamiltonian. These types of simulations aim to answer fundamental questions about
many-body localization, the mechanisms and timescales of thermalization, the changes to or de-
velopment of collective order (e.g., ferromagnetism, superconductivity, topological order) under a
quench, the universality of the dynamics in quenches near critical points, and more [41].

Simulations under time-dependent Hamiltonians [44] can be useful within a few different
paradigms. First, they can be used to simulate dynamic processes, such as scattering [16]. Sec-
ond, they can be used to simulate materials in dynamic environments, such a time-dependent
external magnetic field [7, 8]. A third use-case is for finding the ground state of a material through
adiabatic quantum evolution [4]. Here, the material is initialized in the ground state of an initial
Hamiltonian HI , which is presumed to be easy to prepare on the quantum computer. The material
is then evolved under a parameter-dependent Hamiltonian H (s ) = (1 − s )HI + sHP , which slowly
(adiabatically) transforms from the initial Hamiltonian HI to the problem Hamiltonian HP as the
parameter s is varied from 0 to 1. The adiabatic theorem states that if the system is initialized in
the ground state of HI and s is varied from 0 to 1 slowly enough, then the system will remain
in the instantaneous ground state of the Hamiltonian H (s ). Thus, at the end of the protocol, the
system will be in the ground state of the problem Hamiltonian HP , which is, in general, difficult to
prepare. In this way, simulation with a time-dependent Hamiltonian within ArQTiC can be used
to generate the ground state and measure the ground-state energy of various Hamiltonians.

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 17. Publication date: June 2022.
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Generating a program for imaginary-time evolution uses the QITE algorithm recently proposed
by Motta et al. [42]. The difficulty with evolving a system through imaginary-time on a quantum
computer is this operation is not unitary (quantum computers can only perform unitary operators
on qubits). The QITE algorithm is able to generate a unitary approximation to this operator by
sequentially building up a quantum circuit with a set of sub-circuits. Each sub-circuit carries out a
unitary approximation of evolution through an imaginary timestep of size Δβ . The sub-circuit for
each subsequent timestep Δβ depends on measured expectation values from the total circuit up to
the previous timestep. Each sub-circuit further decomposes the total number of qubits into smaller
subsets of qubits of a given domain size. For example, a three-qubit system could have one subset
with a domain size of three (i.e., the whole system) or two subsets with domain size of two (one
subsystem qubits 1 and 2, and one subsystem with qubits 2 and 3). Given a domain size d , the QITE
algorithm will build up the sub-circuit for a given imaginary timestep from a set of smaller circuits
each acting on a particular subsystem of d qubits. For this algorithm to be feasibly executed, this
domain-size must be kept small. The user is responsible for providing the parameters required for
the QITE algorithm such as domain-size and imaginary timestep size.

Simulations of imaginary-time evolution are useful for two main applications. The first is for
computing the ground-state energy of a material. As a system is evolved in imaginary time, the
lowest energy states begin to dominate the system’s wavefunction. Therefore, simulating the evo-
lution of the material through imaginary time will cause measurements of the system’s energy to
result in the ground-state energy with higher and higher probability. The second application for
imaginary time evolution is for generating thermal states, which can be used to compute proper-
ties of materials at finite temperatures. In particular, two methods for thermal state preparation
involving imaginary-time evolution are (i) the minimally entangled typical thermal states

(METTS) protocol [62] and canonical thermal pure quantum states algorithm [53]. While most
quantum software platforms, such as Qiskit, PyQuil, and QDK, offer high-level functions to aid
with generating circuits for real-time evolution, very few offer such functions for imaginary-time
evolution. To the best of our knowledge, ArQTiC and XACC are unique in offering high-level
functions for automatic generation of circuits using the QITE algorithm.

Whether ArQTiC generates programs for real- or imaginary-time evolution depends on a
Boolean attribute of the Simulation Generator set by the user. Once a program has been created
by the Simulator Generator, it must be translated into an optimized, native-gate quantum circuit
targeting the quantum backend selected by the user. In the NISQ era, circuit optimization is equiv-
alent to circuit minimization. This is because currently available quantum computers suffer from
high gate-error rates and short qubit decoherence times, causing simulation results to lose fidelity
as the quantum circuit gets larger.

ArQTiC offers several choices for circuit optimization. The first option uses the native circuit
compiler of the chosen target quantum backend. For example, if the user wishes to run the sim-
ulation on the Rigetti quantum computer, then ArQTiC will translate the program into a PyQuil
circuit and call PyQuil’s native compilation function on the circuit. The second option is to use
a popular, state-of-the-art circuit optimizer called tket [48]. The final option is a domain-specific
option that can produce optimal constant-depth circuits for real-time evolution. Here, domain-
specific refers to the fact that this circuit optimization technique can only be implemented for
special subset of Hamiltonians, which are outlined in Reference [10]. For generic Hamiltonians,
circuits for real-time evolution are expected to grow at least linearly in size with simulation time.
Due to NISQ-era constraints on circuit size, this in turn limits the length of time that can feasibly be
simulated on quantum computers. The domain-specific constant-depth circuits, however, enable
simulations out to arbitrarily long times. In general, other quantum software platforms only offer
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their own native compilers for circuit optimization. ArQTiC enables the user to choose between
available state-of-the-art compilers or even compare results among the various compilers.

Once an optimized quantum circuit has been generated, the Simulation Generator can connect
via the cloud to either the IBM or Rigetti quantum computers and send the circuits for execution.
Upon job completion, results are sent back via the cloud and stored by the Simulator Generator for
post-processing. Raw results from the quantum backend are returned in the form of counts of the
number of times each qubit was measured to be 0 or 1. Thus, post-processing of the raw data is
required to deduce the observable of interest, such as the value of some time-dependent material
property. Post-processing of raw results in other quantum software platforms usually requires
the user to write an individual script for each desired observable, which necessitates considerable
programming fluency and domain knowledge in quantum computation. ArQTiC can automatically
perform post-processing of raw results for a number of commonly used observables, as defined
by the user. Furthermore, if requested by the user, then ArQTiC can also automatically plot the
results and save the figures to file.

3 ILLUSTRATIVE EXAMPLES

3.1 Dynamic Simulation

In this example, we demonstrate how ArQTiC can facilitate the simulation of Anderson localiza-
tion in a five-spin transverse field XY model when a transverse field is applied randomly across all
spins. The Hamiltonian for the system is given by:

H =
n−1∑

i=1

(
Jxσ

x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1

)
+

n∑

i=1

hzi
σ z

i , (2)

where n is the number of spins in the chain, Jx and Jy are the coupling strengths in the x- and
y−directions, respectively, σα

i is the α th Pauli matrix acting on spin i , and hzi
is the strength of the

external magnetic field acting in the transverse direction on spin i and is randomly selected for each
spin from a uniform distribution centered around zero. The system is initialized with an excitation
in the spin-chain, modeled by flipping the first spin to a spin-down while keeping the remaining
spins in the spin-up state. The system is then evolved through time according to Hamiltonian 2. To
track the displacement of the excitation through time, the excitation displacement [30] is measured
at each timestep, given by the observable

N =
n∑

i=1

(i − 1)
1 − σ z

i

2
. (3)

Figure 4 depicts how the Simulation Generator can be instantiated and used to easily run this
simulation within ArQTiC. A tutorial for performing this simulation end-to-end can be found on
GitHub [11]. To simulate the dynamics of the excitation displacement in this system, a separate
circuit must be generated for each timestep. Each circuit must prepare the initial state, simulate
the real-time evolution of the system from the initial state up through the given timestep, and
prepare to measure the observable of interest. ArQTiC begins by preparing sub-programs for each
of these steps, which will be combined into a final program. The sub-program for preparing the
initial state of the system can be automatically generated in ArQTiC by setting the initial_spins

attribute to “1 0 0 0 0,” which will flip the first qubit to simulate an initial state with one excitation.
Currently, ArQTiC only accepts product states as initial states, so this attribute can only be
assigned with a string of 0’s and 1’s, indicating whether each qubit should be initialized in a
spin-up or spin-down state, respectively. Due to ArQTiC’s modularity, future extensions can
expand the types in initial states that may be defined. Next, ArQTiC generates the sub-program
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Fig. 4. Instantiation of the Simulation Generator to perform a noiseless dynamics simulation of excitation
displacement within an XY spin chain with a randomized Z-direction magnetic field with strengths between
−3 and 3 applied to each spin. The first spin is flipped to create the single-spin initial excitation of this
example.

for the real-time evolution based on the definition of the parameters of the system Hamiltonian
(num_spins, Jx, Jy, and hz), the timestep size delta_t, and the total simulation time for the given
circuit (the first circuit simulates a total time delta_t, the second simulates a total time 2∗delta_t,
etc.). Here, a first-order Trotter decomposition is used to approximate the time-evolution operator
by a product of operators that are each straightforward to translate into a set of gates. Note that
ArQTiC defaults to preparing programs for real-time evolution; if imaginary-time is desired, a
Boolean flag must be set in the Simulation Generator (see the illustrative example in Section 3.2).
Finally, ArQTiC generates the sub-program to prepares the system for measurement of the
observable of interest, as defined by the observable attribute of the Simulation Generator, which
in this case is set to “excitation_displacement.” The three sub-programs are concatenated to create
a complete set of programs for this dynamic simulation. The total number of programs required
is given by the attribute steps, which defines a total simulation time of steps ∗ delta _t.

Once ArQTiC has automatically generated a complete set of programs, it will translate these into
circuits to run on the desired quantum backend, as defined by the user with the backend, QCQS,
and device_choice attributes. Currently, the user can select “ibm” or “rigetti” as the backend of
choice and dictate whether the simulation is run on the platform’s quantum simulator or real
quantum processor by setting QCQS to “QS” or “QC,” respectively. If “QC” is selected, then the
name of the desired processor must be supplied by defining the attribute device_choice. Finally, if
the user sets the compile attribute to “True,” then ArQTiC will automatically compile the circuits
according to the user-defined method. The default method is to use the native compiler of the target
backend. In this case, the Hamiltonian of interest falls into the special subset of Hamiltonians for
which a domain-specific compiler [10] can be used, which can generate constant-depth circuits.
The user may elect this compilation method by setting the constant_depth attribute to “True.”

ACM Transactions on Quantum Computing, Vol. 3, No. 3, Article 17. Publication date: June 2022.
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Fig. 5. Results of simulating a five-site transverse field XY spin chain with an initial single-spin excitation
with (a) no external magnetic field and (b) randomized transverse external magnetic fields applied to each
spin, resulting in localization of the initial excitation. Results from simulations performed on a noiseless
quantum simulator are plotted in solid black. Results from simulations run on IBM’s “ibmq_santiago” quan-
tum processor are shown for circuits compiled with IBM’s native compiler (red dashed-dot lines) and for
circuits compiled with the constant-depth compiler (blue dashed lines.)

Results from dynamic simulations on IBM’s “ibmq_santiago” device are shown in Figure 5 for a
system with zero external magnetic field (Figure 5(a)) and for a system with a randomized external
magnetic field drawn from a uniform distribution between −3 and 3 for each spin (Figure 5(b)). We
show simulation results for circuits compiled with IBM’s native circuit compiler (red dot-dashed
lines) versus simulation results for the constant-depth circuits compiled with ArQTiC’s domain-
specific circuit optimizer (blue dashed lines). For reference, the ground-truth is depicted with the
solid black lines.

As seen in Figure 5(a), when no external magnetic field is applied, the excitation is displaced
nearly the length of the spin chain before gradually settling towards the center of the chain.
However, when the hzi

coefficients are randomly selected from a uniform distribution between
−3 and 3, the excitation is confined to oscillating near the beginning of the chain, as seen in
Figure 5(b), demonstrating the Anderson localization mechanism [30]. Comparing the results
from the IBM-compiled circuits (red dashed-dot lines) to the results from the constant-depth
circuits (blue dashed lines) demonstrates the improvement in simulation fidelity achieved with
constant-depth circuits. Importantly, while results from the IBM-compiled quantum circuits do
not show significantly different behavior for zero versus random external magnetic fields, the
results from the constant-depth circuits do. Thus, while the constant-depth results may not be
exactly quantitatively accurate, they do demonstrate the trend of Anderson localization, while
the IBM-compiled results do not.

Figure 6 plots the total number of gates in the quantum circuit for each timestep for circuits
compiled with IBM’s native compiler (red dashed-dot line) versus using the domain-specific,
constant-depth circuit compilation technique [10] integrated into ArQTiC. While the circuits
to obtain similar results to the red dashed-dot lines in Figure 5 can be achieved with other
quantum software platforms, much greater efforts and domain-knowledge are required. For
circuit generation, many platforms do not offer the ability to construct the Hamiltonian in such
a concise manner, rather the user needs to define the Hamiltonian term-by-term, which becomes
extremely tedious as the system size grows. After Hamiltonian construction, in the worst-case
scenario, a user may be required to generate the time-evolution operator from the Hamiltonian
and convert this operator into gates manually, requiring substantial domain knowledge. While a
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Fig. 6. Comparison of total gate counts in quantum circuits for each timestep when using IBM’s native
compiler (red dashed-dot line) versus the domain-specific, constant-depth compiler included with ArQTiC
(blue dashed line).

handful quantum software platforms now offer some high-level functions for generating circuits
for real-time evolution operators, they are usually general-purpose and not optimized in terms
of how long they take to generate the output circuit or in terms of the size of the output circuit.
Furthermore, a steep learning curve may be required for the user to get these high-level functions
running for their particular problem. With ArQTiC, the user only needs to provide a set of
realnumbers corresponding to the Hamiltonian parameters, a few other essential simulation pa-
rameters, and call a few high-level functions from ArQTiC’s programming library. Obtaining the
blue dashed lines in Figure 5 is non-trivial with other quantum software packages, as the domain-
specific compiler ArQTiC uses to achieve these results is not yet integrated into other packages.
Users would need to integrate this special-purpose compiler with other software platforms
by hand.

Even when a user succeeds in generating analogous circuits with other quantum software pack-
ages, a secondary hurdle is the post-processing of the raw results generated from executing the
circuits on a quantum backend. ArQTiC can automatically post-process raw data from the quan-
tum computer or simulator to provide the time-dependence of a user-defined observable, and even
automatically generate plots of the dynamics. Other quantum software packages, however, will
generally only output the raw data. Users must then write their own post-processing scripts, which
can require significant domain knowledge.

Finally, this illustrative example demonstrates how easy it is to compare simulation results
across a variety of different parameters with ArQTiC. Comparing results from different compil-
ers, as demonstrated by the red dashed-dot and blue dashed lines in Figure 5, only requires the
user to change the attribute defining the compiler choice in the Simulation Generator between dif-
ferent runs of the simulation. It is also easy to compare results across different quantum backends
by simply changing the attributes defining the backend (IBM or Rigetti) and defining whether the
simulation runs on a real quantum processor or a quantum simulator (with the QCQS attribute).
Perhaps most significant is the ability to easily re-run the simulations with altered Hamiltonian
parameters. The different panels in Figure 5 are an example of the same simulation with two
slightly different Hamiltonians. Using ArQTiC, all that needed to be changed between the simula-
tions used to generate the results plotted in Figures 5(a) and 5(b) was adjusting the hz attribute of
the Simulation Generator. Changing code for simulating these two systems with other quantum
software packages is often much less trivial, as a whole new time evolution operator needs to be
constructed.
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Fig. 7. Instantiation of the Simulation Generator required to perform a ground state energy calculation with
QITE. These parameters can be used to generate the green curve shown in Figure 8.

3.2 QITE Simulation

In this example, we demonstrate how to use ArQTiC to find the ground state energy of a material
with imaginary-time evolution. For any initial state, evolving the system through an imaginary
time it ≡ β (by applying the evolution operator U = e−βH ) will eventually drive the system to
its ground state. Our system of interest is a three-spin TFIM with open boundary conditions. The
Hamiltonian for this system can be written as:

H = Jz

n−1∑

i=1

σ z
i σ

z
i+1 + hx

n∑

i=1

σx
i , (4)

where σα
i is the α th Pauli operator acting on spin i , Jz gives the strength of the exchange cou-

pling between nearest neighbor spins, hx gives the strength of the external magnetic field acting
uniformly on all the spins, and n gives the number of spins in the system. Figure 7 depicts how
the Simulation Generator can be instantiated to run this simulation within ArQTiC. A tutorial
for performing this simulation end-to-end can be found on GitHub [11]. To generate circuits for
imaginary-time evolution, the real _time attribute of the Simulation Generator must be set to
“False,” as ArQTiC defaults to real-time evolution. The Hamiltonian parameters are assigned with
the Jz, hx, and num _spins attributes. The initial _spins attribute can be set to any desired
product state, as the imaginary-time evolution will drive all systems to their ground states. In the
example, we demonstrate this for three different initial spin configurations. The total imaginary-
time through which to evolve the system is set by the attribute beta, and the imaginary timestep
is set by the attribute delta _beta. The domain size is set by the attribute domain, which can be
equal to or smaller than the system size. We choose to run this simulation on the IBM quantum
simulator by setting the backend attribute to “ibm” and the QCQS attribute to “QS.” We set the
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Fig. 8. Convergence to the ground state energy (black dashed line) of the three-spin TFIM spin-chain via
QITE. Different colored lines correspond to different initial product states of the systems.

compile attribute to “True,” which will automatically use IBM’s native circuit compiler, since this
was our selected backend.

Figure 8 shows how the measured final energy of the system (colored, solid lines) converges to
its ground state (black, dashed line) as the number of imaginary timesteps is increased. Different
colored lines correspond to starting the system in different initial product states. As shown, all
initial states converge to the expected ground state in about eight imaginary timesteps.

ArQTiC is one of a small number of quantum software packages to offer an implementation
of the QITE algorithm. Notably, XACC has an implementation, but none of the other major quan-
tum software packages yet offer high-level functions for imaginary-time evolution. Generating the
quantum circuits to perform this simulation with most other quantum software platforms (except
XACC) would involve a user writing their own circuit implementation, gate-by-gate, for the QITE
algorithm, which requires significant domain knowledge. At this point, ArQTiC’s (and XACC’s)
QITE implementation generates circuits that are too large to execute with high-fidelity on current
hardware; generating QITE circuits are on the order of hundreds of gates, even for very small sys-
tems. However, future releases of ArQTiC might take advantage of techniques for optimizing QITE
circuit depths [24, 59]. In the meantime, ArQTiC can at least provide QITE circuits for proof-of-
concept simulations run on quantum simulators. Indeed, ArQTiC could be used for the generation
of the QITE circuits used for thermal state preparation in several recent works [7, 45, 55].

4 CONCLUSION

We have presented ArQTiC, an open-source, full-stack programming library for performing sim-
ulations of materials on quantum computers. By simply providing the material’s Hamiltonian
parameters and a few other simulation parameters, the user can rely on ArQTiC to seamlessly
generate, optimize, and execute materials simulations on various quantum backends, as well as
post-process the raw simulation results. The full code, as well as tutorial-style demonstrations of
a number of various example simulation use cases, can be found on GitHub [11]. The current re-
lease is focused on the real- and imaginary-time evolution of the one-dimensional, time-dependent
Heisenberg model, which, by constraining certain parameters, can represent various paradigmatic
materials Hamiltonians including the TFIM, the (transverse) XY model, the XXZ chain, and more.
This encapsulates most of the materials simulations that have been demonstrated on quantum hard-
ware to date, including simulations of quantum criticality [17], scattering [25], non-equilibrium dy-
namics [8, 19, 32, 49, 66], and confinement and entanglement dynamics [60, 61], mesonic masses
[60], thermal properties [7, 55], and magnon spectra [21].
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In its current form, ArQTiC could be used to program most of these simulations, demonstrating
its versatility, despite its narrowed scope. This scope, however, could be expanded in future releases
to accommodate more systems and methods. Indeed, the modularity of ArQTiC facilitates adding
a variety of new functionalities to the code without a massive reorganization of the software.
Modules for handling new models, such as the Hubbard model, could be added, extending the
kinds of materials that can be simulated. Modules for implementing circuits for real-time evolution
with alternative methods, such as higher-order Trotter decompositions or variational approaches
[5, 14], could be added. Modules for implementing imaginary-time evolution with alternative meth-
ods, such as those using block encoding [22] could be added. Modules generating hybrid quantum-
classical execution flows, such as those using novel embedding theory techniques [28, 54], could
also be integrated. Additional modules incorporating more advanced circuit compilation engines,
such as QFast [64], could be added. It would also be possible to integrate modules to automatically
perform various quantum error mitigation techniques, such as zero-noise extrapolation [33, 56].
Finally, for future releases, it would also be useful to capitalize on insights from the design automa-
tion community. Indeed, researchers are beginning to look at how to apply knowledge from the
rather mature field of design automation for classical computation to quantum computation [27, 51,
63]. By allowing a broader community of scientists to easily perform simulations of materials on
quantum computers, ArQTiC paves the way towards accelerated progress in both learning more
about quantum materials as well as designing new quantum algorithms for materials simulations.
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