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Abstract

Free-energy-based simulations are increasingly providing the narratives about the structures, 

dynamics and biological mechanisms that constitute the fabric of protein science. Here, we review 

two recent successes. It is becoming practical: (i) to fold small proteins with free-energy methods 

without knowing substructures, and (ii) to compute ligand-protein binding affinities, not just their 

binding poses. Over the past 40 years, the timescales that can be simulated by atomistic MD are 

doubling every 1.3 years – which is faster than Moore's law. Thus, these advances are not simply 

due to the availability of faster computers. Force fields, solvation models and simulation 

methodology have kept pace with computing advancements, and are now quite good. At the tip of 

the spear recently are GPU-based computing, improved fast-solvation methods, continued 

advances in force fields, and conformational sampling methods that harness external information.

Introduction

Increasingly, our understanding of the properties and actions of proteins depends upon 

physics-based molecular simulations. It is of interest to model the folding of proteins into 

their stable structures, the binding affinities and selectivities of ligand-protein and protein-

protein assemblies, as well as the solubilities and partitioning of biomolecules. The 

principled way to predict either static properties, or nanosecond-by-nanosecond and 

Angstrom-by-Angstrom detailed narratives of these actions is to utilize techniques that 

sample from the free energy surface and reflect thermal populations.

Different approaches can be taken to model biomolecules. Much can be inferred about 

protein structures by purely comparative modeling using the known structures in the PDB. 

Often, however equilibrium and kinetic information is desired. These can be inferred within 

a single framework using force fields and solvent models combined with sampling methods 

such as molecular dynamics (MD) or Monte Carlo (MC). While direct application of such 

methods can, in principle, properly sample populations and identify stable states, MD or MC 
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simulations alone are usually not capable of traversing barriers and sampling rare events 

sufficiently to quantify the free energy differences among states. Molecular simulations can 

be coupled with specialized techniques for enhancing sampling or extracting information 

from multiple equilibrium states for this purpose, and these are often referred to as “free-

energy calculations.” Here we take the view that all methods that sample the free energy 

surface are “free-energy-based simulation,” ranging from “brute force” MD to methods that 

better facilitate barrier crossings such as replica exchange MD, to techniques such as free-

energy perturbation or umbrella sampling.

The obstacles to free-energy modeling have been its high computational cost and some 

physical inaccuracies in the energetics. However, our current opinion is that free energy 

methods have become powerful both rapidly and recently. First, Figure 1 shows that 

advances in computers, force fields, and methodology over the past 40 years have led to 

faster-than-Moore's-Law increases in the timescales that are now accessible to simulation. 

Second, here we review progress on two key problems – predicting protein native structures 

and ligand-binding affinities. These are but two examples and there are many others we do 

not have the space to cover here.

Atomistic simulations are now folding small proteins and predicting their 

native structures

There are recent successes in computing the native structures of small proteins by physics-

based methods, for diverse folds, without direct inputs from structural databases or the need 

for structural alignments. DE Shaw Research (DESRES) showed that a single atomistic 

force field can give folding trajectories for 12 small proteins over long-time simulated 

trajectories in explicit water on Anton, a special purpose supercomputer [6] [7]. This was an 

important milestone in proving the power and transferability of a current force field, and in 

computation of the folding pathways, some of which have been confirmed experimentally 

[8] [9]. However, their goal was not so much to obtain accurate populations, as it was to 

sample multiple folding events, so their simulations were performed near the melting 

temperature.

A complementary study by Nguyen, et al. was aimed at detecting native structures starting 

from fully extended conformations. Nguyen et al. used implicit-solvent and required only 

lab-sized computer clusters [10]. They attributed their successes to the use of GPU-based 

computing, and to good implicit solvent [11] and force field models [12]. Native structures 

were found reliably for proteins up to 50 residues, but predictions were not as consistent for 

longer proteins (up to 92 residues in the study). The main challenge with larger proteins was 

shown to be limitations of the sampling, not the force field. And, importantly, their implicit-

solvent performed as well in this test as previous, more expensive, explicit modeling, 

implying the adequacy of fast solvation models for some protein modeling previously 

thought to require more computationally expensive models.

A huge challenge for finding native structures by atomistic MD is that folding times increase 

sharply with protein size. Experiments show that the folding time increases exponentially 

with the square root of the number amino acids [13]. Force field limitations and sampling 
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inefficiency make the problem more daunting for simulation. This challenge motivates a 

need for free-energy methods that can search efficiently to find basins of important states, 

and that can sample well the populations within those basins.

Recently, an approach called MELD (Modeling Employing Limited Data), has been 

developed to find and sample important states efficiently by “melding” structural or 

heuristic information into MD simulations [14,15]. MELD is able to use combinatorically 

vague and generic instructives such as: “make a hydrophobic core” or “make secondary 

structures that are consistent with those provided by webservers” or “make a compact 

structure.” MELD accelerates conformational searching substantially, while at the same time 

preserving its critically important ability to give free energies. For example, MELD finds 

and samples well native structures (better than 4 Å RMSD) for 15 out of 20 small proteins, 

up to 92-mers, starting from fully extended states [15]. The speed advantage of MELD over 

brute-force MD is shown in Figure 2A.

Figure 2B shows the implication for computational structure prediction going forward: Even 

with future Moore's-law-like advances, the severity of the exponential search problem 

means that pure MD will not be folding proteins bigger than 140-mer proteins for another 25 

years. But, when MD is combined with external information, as is done in MELD with 

generic instructives, Fig 2B projects that free energy methods will give native structures of 

those sizes within just 4-5 years. This protein size covers a large fraction of single domain 

proteins, including many biologically relevant ones like ribonuclease (134 residues), 

lysozyme (129), calmodulin (148) or myoglobin (154).

Free-energy methods are predicting the binding affinities of small ligands 

to simple proteins

Computational drug discovery is also poised to benefit from advances in free-energy 

methods. A traditional method for computational drug discovery has been DOCK and 

related algorithms [16-18]. Docking methods are fast and are often able to find correct 

binding site and ligand poses, but they rarely give accurate binding affinities.

Although more expensive than docking, physics-based methods have long promised to 

predict more accurate binding affinities, because of their better potentials and more complete 

conformational sampling and solvation. In a recent advance, DESRES [19] [20] and others 

[21] have run long MD simulations, and observed the ligand seeking and finding its binding 

site on the protein. Such work highlights the ability of atomistic simulations to identify 

stable states given no prior knowledge of the binding site or pose.

Even so, it is not yet possible to sample enough unbinding events to determine rates or 

affinities by direct MD. Specialized free energy methods are used to enhance or accelerate 

sampling, sometimes using “alchemical” pathways that transform one species to another. 

Techniques such as free energy perturbation [22], umbrella sampling [23], and the multi-

state Bennett acceptance ratio [24] have been used to determine free energy differences. The 

goal is usually to compute one of two quantities: (i) The relative binding free energy 

(RBFE), which is the affinity of a ligand, given experimental knowledge of a similar 
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reference ligand, or (ii) The absolute binding free energy (ABFE), which is the free energy 

of binding a ligand, without knowledge of any experimental reference compound. Although 

the latter requires less prior added knowledge, it is computationally more expensive to 

evaluate. Early studies have shown that free energy methods can be used to compute 

solvation free energies [25] and relative ligand binding free energies [26-29]. More recently, 

absolute binding free energies have been computed by methods of mean force or alchemical 

transformation [30-33].

Recently, systematic improvements in force fields and free energy techniques have begun to 

pay off and more diverse sets of systems can be treated accurately. Fig. 3A shows RBFE 

simulations of 8 proteins bound to nearly 200 different ligands, where the RMS errors are 

less than 2 kcal/mol [34]. Fig. 3B shows ABFE computations of Cyt C Peroxidase bound to 

19 different ligands [35]. These, too, give RMS errors within about 2 kcal/mol. There are 

also recent successes using the sampling methods of metadynamics [36] and accelerated MD 

[37]. An unexpectedly welcome finding [38] is that implicit solvation may be sufficient for 

computing binding free energies – as we noted above that it may be for protein structure 

prediction – promising significant speed improvements going forward.

Another important application of simulation techniques is to compute ligand-binding off 

rates. A ligand's off rate (the inverse of its residence time on the protein) is sometimes better 

correlated with drug efficiency than binding affinities are [40,41]. For Mycobacterium 

tuberculosis enoyl-ACP, MD simulations and free energy calculations have identified the 

transition state to slow-onset inhibition. Such calculations now enable the rational 

modification of inhibitors or proteins based on their desired residence time [42,43]. Tiwary, 

et al. have computed the rate of unbinding of a trypsin-benzamidine complex using 

“infrequent metadynamics” techniques [44]. Theory and simulation have also illuminated 

the role of solvation and desolvation in ligand binding kinetics [45,46].

Challenges remain in calculating binding affinities. For example, when ligands cause 

induced fit in the protein, small changes can sometimes be sampled [34,47], but larger ones 

usually cannot. In addition, despite some encouraging results (Fig. 2b), charged ligands and 

charged binding sites remain a major challenge in general [35].

Force fields continue to improve, but still have limitations

Force fields and solvent models are advancing by bootstrapping. As they get better and 

faster, they are tested on larger databases and on systems that are bigger, more challenging, 

and more biological, which, in turn, leads to further improvements. Force fields advances 

are driven by increased computer power, particularly GPUs; the use of training against 

higher levels of QM; the inclusion of more conformational diversity in training sets; the use 

of bigger peptide-sized molecules, rather than just small organics; and the use of better 

databases for testing, such as of NMR scalar couplings [48] and amino-acid helical 

propensities [49,50]. In earlier protein-folding modeling, force fields were systematically 

unbalanced between different types of secondary structures. Newer models have much better 

balance, as shown by recent studies where a variety of protein structures can be folded with 

a single force field [51,52] [6,10,15]. There remain challenges in capturing the secondary 
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structure propensities of different amino acids and accurately modeling unfolded or 

disordered proteins [53,54] – a research area receiving recent attention [55,56,57]. And, it 

remains challenging to model disordered proteins, because of the extensive sampling 

needed.

Although most current MD force fields are purely physics-based, some force fields, such as 

CHARMM[58], also include empirical fitting against experimental data in the final stages of 

their development. This kind of adjustment can help offset weaknesses in the force field 

functional form and improve the accuracy of the physics. Although the Amber force fields 

have not typically included such empirical adjustments, several groups have found that they 

improve agreement with experiments [59,60]. The need for empirical adjustments may 

indicate that force fields are reaching the limits of their simple functional forms, as 

compared to more computationally demanding models that include explicit polarizability 

[61,62]. For example, it was shown that polarizable models can give a better description of 

the cooperativity of α-helix formation [63]. These subtle effects can be difficult or 

impossible to include in simpler models, even with empirical modifications. As an 

alternative to empirical adjustment, other studies have suggested more fundamental 

revisions of additive force fields, such as new charge models [64], or using aqueous solvent 

in the QM fitting data [65]. However, these developments remain relatively untested.

Our Current Opinion: the power of free-energy simulations continues to 

grow

Free-energy computer simulations are giving increasing insights into proteins through the 

modeling of the populations, stable states, dynamics, motions, binding and partitioning that 

provide the language for how we understand protein machines. Over the past 40 years, 

atomistic simulations have progressed faster than Moore's Law in the timescales they can 

simulate, and they have also advanced in accuracy and narrative power. Some of this 

progress is attributable to advances in computers – IBM Blue Gene, the Anton 

supercomputer [7], and Folding@Home and other distributed grid systems [66], and more 

recently to GPU technology. However, much credit is also due to improved MD force fields, 

methods and solvation models [67,68], and to new types of sampling that harness external 

information within atomistic simulations. MD is now predicting small protein structures, 

without the assistance of structural databases, as well as the affinities of ligands binding to 

simple proteins. A remarkable bit of good fortune is that implicit-solvent models, which are 

computationally inexpensive, appear to be sufficient in some of these applications.

The systematic progress in computational biophysics is beginning to pay off in increasingly 

bigger ways for structural biology. As the time and length scales that can be simulated 

continue to grow, so does our ability to tackle more challenging problems. The current 

frontier includes modeling protein-protein and protein-DNA binding affinities, the behavior 

of ATPases [69-71], aggregation and amyloid formation [72], and the cytoplasm of a 

bacterium cell [73].
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Highlights

Molecular dynamics is reaching longer timescales faster than Moore's law's rate.

Improved sampling algorithms, force fields and computers drive advances.

At current rate of advance, many single domain proteins will be foldable in 5 years.

Computed ligand binding affinities can be accurately compared with experiment.

Force fields have improved to make prediction, and not only postdiction, possible.
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Figure 1. 
The accessible time scale for computational biology has grown faster than Moore's law of 

semiconductors and computing. [1] [2-6].
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Figure 2. 
A. Simulation times for finding native states as a function of protein size, by unrestrained 

MD, and by MELD, which uses generic directives as restraints. Data from [10,15]. Figure 

2B. When will MD find protein native structures of size N? Extrapolations by combining the 

data in Fig 1 and 2A. The slope for the two lines is calculated as the ratio of the slopes for 

the biological “law” and the slope for increase in simulation time with protein size. The 

ordinate in the origin is set to be what simulations can accomplish as of today starting from 

fully extended chains.
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Figure 3. Binding free energy calculations correlate with experiments
Computed RBFEs [34] (A) and computed ABFEs [35] (B) compared to experimental values. 

While the RMS errors are still relatively large (around 2 kcal/mol), nevertheless, it shows 

that it is becoming possible to calculate approximate binding affinities. [39]

Perez et al. Page 13

Curr Opin Struct Biol. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript




