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RESEARCH

Cytomegalovirus infection disrupts 
the influence of short‑chain fatty acid producers 
on Treg/Th17 balance
Ning Chin1,2, Nicole R. Narayan2, Gema Méndez‑Lagares1,2, Amir Ardeshir1, W. L. William Chang1,2, 
Jesse D. Deere1,2, Justin H. Fontaine1,2, Connie Chen2, Hung T. Kieu1,2, Wenze Lu1,2, Peter A. Barry3, 
Ellen E. Sparger4 and Dennis J. Hartigan‑O’Connor1,2,5* 

Abstract 

Background:  Both the gut microbiota and chronic viral infections have profound effects on host immunity, but inter‑
actions between these influences have been only superficially explored. Cytomegalovirus (CMV), for example, infects 
approximately 80% of people globally and drives significant changes in immune cells. Similarly, certain gut-resident 
bacteria affect T-cell development in mice and nonhuman primates. It is unknown if changes imposed by CMV on the 
intestinal microbiome contribute to immunologic effects of the infection.

Results:  We show that rhesus cytomegalovirus (RhCMV) infection is associated with specific differences in gut 
microbiota composition, including decreased abundance of Firmicutes, and that the extent of microbial change was 
associated with immunologic changes including the proliferation, differentiation, and cytokine production of CD8+ 
T cells. Furthermore, RhCMV infection disrupted the relationship between short-chain fatty acid producers and Treg/
Th17 balance observed in seronegative animals, showing that some immunologic effects of CMV are due to disrup‑
tion of previously existing host-microbe relationships.

Conclusions:  Gut microbes have an important influence on health and disease. Diet is known to shape the microbi‑
ota, but the influence of concomitant chronic viral infections is unclear. We found that CMV influences gut microbiota 
composition to an extent that is correlated with immunologic changes in the host. Additionally, pre-existing correla‑
tions between immunophenotypes and gut microbes can be subverted by CMV infection. Immunologic effects of 
CMV infection on the host may therefore be mediated by two different mechanisms involving gut microbiota.

Keywords:  Host-microbe interactions, Microbiome, Cytomegalovirus infection, Immunophenotype, Elastic net, 
Rhesus macaque, 16S analysis
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Background
Cytomegalovirus (CMV) is a β-herpesvirus that 
infects an estimated 80% of the global population [1] and 
drives significant changes in immune-cell phenotypes 
and functions [2]. Despite an arsenal of host immune 
responses against CMV, the infection is never cleared; 
instead, the virus establishes latency and can reactivate 
and cause disease when the host is immunocompro-
mised, such as in cases of congenital infection, organ 
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transplants, or acquired immunodeficiency syndrome 
(AIDS) [3]. Throughout the course of asymptomatic and 
predominantly latent infection, periodic viral reactiva-
tion can occur and stimulate the immune system, result-
ing in up to 10% of both CD4+ and CD8+ memory T-cell 
populations having specificity for CMV [4]. A large effect 
of persistent viral infection on the adaptive immune com-
partments might be expected, but surprisingly, CMV has 
equally substantial, durable effects on innate immune 
cells. Despite relative infrequency of CMV infection 
among antigen-presenting cells (APC), for example, 
the phenotype of these cells is transformed after infec-
tion [5]. Similarly, natural killer (NK) cells are impacted, 
and the imposed changes appear lifelong [6]. The virus’s 
natural ability to promote large expansions of adaptive 
immune cells prompted investigations into using rhesus 
CMV (RhCMV) as a vaccine vector to protect against 
the simian immunodeficiency virus (SIV), a model for 
human immunodeficiency virus (HIV) [7, 8]. We showed 
that vaccination with RhCMV-vectored vaccines is asso-
ciated with IL-15-dependent expansion of innate-mem-
ory cells with SIV killing function [9].

Other environmental factors such as the gut microbi-
ome have been shown to interact with the host to modify 
cytokine production capacity [10], potentially modify-
ing vaccine responses. We demonstrated that infant diet 
and associated gut microbiota differences significantly 
impact immune development over the first 3–5 years of 
life [11, 12]. Additionally, type-1 diabetes onset in geneti-
cally predisposed infants was associated with decreased 
alpha diversity of the gut microbiome [13]. Inoculation of 
germ-free mice with segmented filamentous bacteria was 
shown to be critical for the development of Th17 cells 
[14], which are important for maintenance of the intesti-
nal barrier and robust mucosal immunity [15]. Given the 
importance of microbes in shaping the host immune sys-
tem, it is not surprising that certain constituents of the 
gut microbiota, including members of the phyla Actino-
bacteria and Firmicutes, have been associated with better 
vaccine responses, while Proteobacteria and Bacteroi-
detes have been associated with poor responses [16].

Interactions between viral infections and the com-
mensal microbiota further complicate their relationships 
with host immunity. The gut microbiota can promote 
viral infection in some contexts but suppress viral infec-
tion in others [17]. For example, short-chain fatty acids 
(SCFAs) produced by commensal bacteria have been 
shown to reactivate latent herpesviruses such as Epstein-
Barr virus and Kaposi’s sarcoma-associated herpesvirus 
[18], but lactic acid and Lactobacillus cell-wall compo-
nents have been shown to inhibit herpes simplex virus 
activity [19, 20]. The persistence of murine norovirus dif-
fers per gut microbiota composition [21]. Another mouse 

study found that previous infection with murine CMV 
altered responses to yellow fever vaccination [22]. More-
over, mice latently infected with murine CMV exhibited 
greater resistance to sublethal doses of Listeria mono-
cytogenes and reduced Yersinia pestis replication and 
spread [23]. Subclinical infections with RhCMV in adult 
macaques have been shown to induce changes in the 
gut microbiota and result in reduced immune responses 
to influenza A vaccination [24]. Since both CMV and 
the gut microbiota induce signaling cascades that con-
trol immune responses, it is reasonable that the affected 
pathways may overlap and interact [25, 26].

Nonetheless, interactions between the gut microbiota 
and chronic viral infections have only been superficially 
explored. Rhesus macaques represent a particularly use-
ful model for studying how chronic viral infections alter 
relationships between gut microbiota and host [27]. 
Rhesus immune cells and many features of the adap-
tive response are similar to those found in humans [28]. 
Studies of RhCMV have demonstrated effects on host 
immunity similar to those apparent after human CMV 
(HCMV) infection [29]. The pathogenesis of fetal infec-
tions with RhCMV and HCMV are similar, making 
RhCMV an ideal model for study of HCMV pathogen-
esis, vaccines, and effects on the immune system [30]. 
To investigate the impact of RhCMV on gut microbe-
host relationships, we studied the gut microbiotas and 
immune systems of RhCMV-seropositive and -seronega-
tive infant macaques. We found that RhCMV infection 
had a direct effect on abundance of certain bacterial taxa 
in the gut and altered relationships between gut micro-
bial taxa and immune-cell subsets.

Methods
Study design
Rectal swabs and blood samples were collected from 5- 
to 11-month-old infant rhesus macaques that were sero-
positive (RhCMV+, n = 29) or seronegative (RhCMV−, 
n = 38) for RhCMV. Animals were co-housed in outdoor 
corrals; samples were collected from all available animals 
in the correct age range at the time of sampling, without 
selection. Rectal swabs were stored in RNAlater™ Storage 
Solution (Sigma-Aldrich) at −70 °C until DNA extrac-
tion. Peripheral blood mononuclear cells (PBMCs) were 
isolated by gradient density purification using Lympho-
cyte Separation Medium (MP Biomedicals, LLC), and 
then washed in medium containing fetal bovine serum 
and 10% dimethyl sulfoxide (DMSO) before cryopreser-
vation in liquid nitrogen prior to analysis. Stool samples 
were also collected from a separate longitudinal study 
in which 24 adult female indoor-housed RhCMV-neg-
ative rhesus macaques were vaccinated with a RhCMV 
68-1-based vaccine vector [31]. Baseline samples were 
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collected 2 weeks prior to vaccination, and post-vaccina-
tion samples were collected 3 weeks post vaccination.

DNA extraction and 16S rDNA sequencing
DNA from rectal swabs and stools was extracted using 
the MoBio PowerSoil kit (Qiagen). Amplicon librar-
ies were generated by amplifying the V3-V4 or V4 vari-
able region of 16S rRNA genes using primers 319F and 
806R or 515F and 806R, respectively [32]. Both forward 
and reverse primers contained a unique 8-nt barcode, a 
primer pad, a linker sequence, and the Illumina adaptor 
sequences. Each sample was barcoded with a unique for-
ward and reverse barcode combination. PCR reactions 
contained 1 unit KAPA2G Robust HotStart Polymer-
ase (Kapa Biosystems), 1.5 mM MgCl2, 10 μmol of each 
primer, 10 mM dNTPs, and 1 ul of DNA. PCR conditions 
were as follows: an initial incubation at 95 °C for 2 min; 
30 cycles of 95 °C for 15 s, 50 °C for 20 s; 72 °C for 20 s, 
and a final extension at 72°C for 3 min. The final product 
was quantified on the Qubit instrument using the Qubit 
High Sensitivity DNA kit (Invitrogen), and individual 
amplicon libraries were pooled, cleaned by AMPure XP 
beads (Beckman Coulter), and sequenced using a 250 bp 
paired-end method on an Illumina MiSeq instrument in 
the Genome Center DNA Technologies Core, University 
of California, Davis. The quality of sequencing reads was 
checked using FastQC. Sequences were trimmed and 
annotated to the genus level using the DADA2 package 
[33] to Greengenes database version 13_8 [34] within the 
R 4.1.1 software [35] using RStudio [36]. The numbers of 
reads per sample per bacterial feature were stored in a 
matrix and used in downstream statistical analysis.

Immune‑cell phenotyping by flow cytometry
Immune cells were stained and analyzed as described 
in previously published paper using samples from the 
same animal cohort [9]. Distribution of innate cells and 
T-cell subsets in peripheral blood samples and their acti-
vation status were determined by flow cytometry using 
freshly isolated PBMC samples. The following antibodies 
were used: anti-CD3-Alexa 700, anti-CD95-APC (clone 
DX2), anti-CD28-APC-H7 (clone CD28.2), anti-CD8–
PE-Cy5.5 (clone 3B5), anti-CD4–BV650 (clone L200), 
anti-HLADR-ECD (clone Immu-357), anti-CD14-Qdot 
605 (clone TüK4), anti-CD16-PacBlue (clone 3G8), anti-
CD20-ECD (clone B9E9), anti-CD11c-AF700 (clone 3.9), 
anti-CD123-PerCP-Cy™5.5 (clone 7G3), anti-CD80-
FITC (clone L307.4), anti-CD83-PE (clone HB15e), and 
anti-CD86-APC (clone FUN-1). A cell viability dye (Inv-
itrogen Aqua LIVE/DEAD Fixable Dead Cell Stain) was 
included to discriminate live from dead cells. Cells were 
washed and permeabilized using a Fix/Perm kit (Bio-
Legend) according to the manufacturer’s instructions, 

intracellularly stained with anti-Ki67–Alexa 488 (clone 
B56) and fixed in phosphate-buffered saline containing 
1% paraformaldehyde. Data were acquired on Aria or 
Fortessa cytometers (BD Biosciences) and analyzed using 
FlowJo software version 10.3 (BD Life Sciences).

Intracellular cytokine immunostaining
Immune cells were stained and analyzed as described in 
previously published paper using samples from the same 
animal cohort [9]. To measure the level of cytokine pro-
duction in response to mitogenic stimulation, PBMC 
(1 million cells) were incubated for 4 h at 37 °C with 
phorbol 12-myristate 13-acetate (50 ng/ml) and iono-
mycin (1 μg/ml) in complete RPMI 1640 medium and 
with GolgiPlug (5 μg/ml). Cells were washed and immu-
nostained with anti-CD3-PacBlue (clone SP34-2), anti-
CD8–PE-Cy5.5 (clone 3B5), anti-CD4–BV650 (clone 
L200), anti-CD95-APC (clone DX2), and anti-CD28-
APC-H7 (clone CD28.2) and a stain reagent (Invitrogen 
Aqua LIVE/DEAD Fixable Dead Cell Stain) to exclude 
dead cells. Cells were washed and permeabilized using a 
Cytofix/Cytoperm kit (BD Biosciences) according to the 
manufacturer’s instructions and intracellularly immu-
nostained with anti-IL-17–PE (clone eBio64DEC17), 
anti–IFN-γ-PE-Cy7 (clone B27), and anti-TNFα-Alexa 
Fluor 700 (clone Mab11). Cells were finally washed and 
fixed in phosphate-buffered saline containing 1% para-
formaldehyde. Data were acquired on Aria or Fortessa 
cytometers (BD Biosciences) and analyzed using FlowJo 
software version 10.3 (BD Life Sciences).

Statistical analysis
R-4.1.1 in RStudio was used for all statistical analysis [35, 
36]. R packages phyloseq [37], vegan [38], limma [39], 
glmnet [40], and pROC [41] were used to filter taxa with 
< 5% prevalence, calculate distance matrices, perform dif-
ferential abundance analysis, perform elastic-net logistic 
regression, and assess robustness of elastic-net algorithm, 
respectively. When assessing relationships between bac-
terial taxa and immune parameters (Table 2), residuals of 
each model were checked for homoscedasticity (Breusch-
Pagan test) and normal distribution (Shapiro-Wilk test). 
P-values were adjusted for multiple testing using false 
discovery rate estimation with the qvalue package [42]. 
All the data were analyzed, without elimination of any 
outliers.

Results
Gut microbial communities of RhCMV+ and RhCMV− 
animals are similar at the phylum level but cluster 
separately at the genus level
To test the impact of RhCMV infection on gut microbi-
ota, we performed 16S ribosomal RNA gene sequencing 
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on rectal swabs from 67 macaques aged 5 to 11 months, 
housed outdoors, and screened for anti-RhCMV antibod-
ies. 29 seropositive animals and 38 seronegative animals 
were sampled (Table 1). An average of 81,000 raw reads 
were acquired per sample; an average of 65% ± 8% were 
retained after processing with the DADA2 pipeline [33], 
resulting in a mean of 52,000 analyzed reads per sam-
ple. We used Greengenes database version 13_8 [34] for 
taxonomic assignment. Bacterial sequence counts were 
agglomerated to the genus level, and reads not classified 
to the genus level were assigned to the lowest taxonomic 
assignment. Taxa that were not present in at least 5% of 
the samples were filtered, resulting in 92 bacterial taxa for 
downstream analysis. Bacteroidetes and Firmicutes were 
the most abundant phyla in all samples, accounting 
for 49% and 47% of reads, respectively (Fig.  1A). Alpha 
diversities within RhCMV+ and RhCMV− animals were 

assessed using Shannon’s diversity index, evenness, and 
richness, and no significant differences were seen (Wil-
coxon rank-sum test P > 0.05). Beta diversity at the genus 
level was assessed using complete-linking clustering and 
principal component analysis (PCA) with Aitchison dis-
tances. In this analysis, animals were shown to cluster by 
RhCMV serostatus (Fig. 1B, P = 0.01).

RhCMV‑seropositive animals and those experimentally 
infected with RhCMV68‑1 vaccine vector had significantly 
decreased abundances of bacteria from phylum Firmicutes
To detect specific differences in microbial communities 
associated with RhCMV infection, we analyzed genus-
level data (86% of total reads) using linear modeling of 
abundances with variances moderated by an empirical 
Bayes procedure (limma-voom, ref. [39, 43]). We found 

Table 1  Study groups

Group No. of animals Mean ± SD (range) Sex (male:female) Housing

Age (months) Weight (kg)

RhCMV seronegative 38 8.5 ± 1.2 (5.7–11.1) 1.8 ± 0.3 (1.3–2.4) 22:16 Outdoor

RhCMV seropositive 29 8.6 ± 0.9 (6–10.8) 1.8 ± 0.2 (1.4–2.2) 18:11

RhCMV seronegative, RhCMVvec‑
tored vaccine recipient (strain 68-1)

24 51.3 ± 13.1 (39–87) 6.1 ± 1.8 (4.0–11.4) 0:24 Indoor

Fig. 1  Gut microbial communities of RhCMV+ and RhCMV− animals are similar at the phylum level but cluster separately at the genus level. A 
Relative abundance of microbiota for each animal at the phylum level. Samples are ordered by complete-linkage clustering based on Aitchison 
distance. Animals are color coded as RhCMV− (red) and RhCMV+ (blue) on top of the bar graph. B PCA plot of all samples analyzed at the genus 
level, based on Aitchison distance
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that 11 of 62 detected bacterial genera, six of which were 
Firmicutes, had different abundance in animals infected 
with RhCMV (Fig. 2A, unadjusted P < 0.05). Four genera 
were determined to be significantly changed (adjusted 
P < 0.1) after adjustment for multiple comparisons. 
Butyrivibrio, Sarcina, and Blautia, all known short-chain 
fatty acid (SCFA) producers [44–46], were less abundant 
in RhCMV+ animals; Streptococcus was more abundant.

We used elastic-net logistic regression to attempt bet-
ter modeling of the RhCMV-associated microbiota 
despite multicollinearity in the dataset [47, 48]. A 10× 
cross-validation was performed on a grid of alpha values 
to determine the optimal alpha (mixture between ridge 
and lasso) and lambda. Eighteen bacterial genera were 
found to contribute to an optimal ensemble associated 
with RhCMV infection (Fig. 2B). Streptococcus, Aggregat-
ibacter, Lachnospira, YRC22, Treponema, RFN20, Fibro-
bacter, and SMB53 had positive coefficients, signifying 

that they have positive correlations with RhCMV infec-
tion, while Campylobacter, Bacteroides, Parabacteroides, 
Dialister, Blautia, Ruminococcus, Lactobacillus, Suc-
cinivibrio, Faecalibacterium, and Butyrivibrio had nega-
tive coefficients. As expected, when abundances of these 
18 genera were reduced to two principal components, 
plotting demonstrated substantial separation of the 
RhCMV-seronegative vs. -seropositive animals (Fig. 2C). 
To determine if RhCMV infection itself was the cause 
of such associations, we performed 16S rRNA sequenc-
ing of stool samples taken 2 weeks before vs. 3 weeks 
after administration of an RhCMV68-1 vaccine vector 
[7]. The elastic-net model that had been trained using 
samples from animals with natural infection (“training 
set,” above) was applied to the cohort of vaccinated ani-
mals (“testing set”) to determine if the 18 selected gen-
era were good identifiers of previous RhCMV exposure 
via vaccination. The area under the receiver operating 

Fig. 2  RhCMV-infected animals had significantly decreased abundance of bacteria from the order Clostridia. A Differentially abundant bacterial 
genera analyzed using the limma-voom pipeline with P < 0.05 (*adjusted P < 0.1). B Features selected by elastic-net regression to differentiate 
between RhCMV− and RhCMV+ animals. C PCA plot generated using log-transformed counts of genera selected by elastic net within the 
training set. D ROC curve to assess the robustness of elastic-net output. E Summary score for each animal generated by the elastic net. F PCA plot 
generated using log-transformed counts of genera selected by elastic-net within the testing set (RhCMV-vectored vaccine recipients)
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characteristic (ROC)  curve was 0.87 with a confidence 
interval of 0.766–0.973, showing that the method was 
robust in differentiating RhCMV naïve vs. RhCMV-
infected or -vaccinated animals (Fig. 2D). The application 
of elastic net resulted in a summary score calculated by 
the model to describe the degree of “RhCMVness” in the 
microbiota of individual animals (Fig. 2E), which showed 
clear separation between RhCMV− vs. RhCMV+ and 
pre- vs. post-vaccinated animals. The results were fur-
ther confirmed by examination of a principal-component 
plot of the log2-transformed counts of important taxa 
as determined by elastic-net regression, in which pre- 
and post-vaccinated animals (“testing set,” Fig.  2F; PER-
MANOVA P = 0.001) clustered separately from each 
other.

Bacterial features were correlated with immune 
phenotypes
We described immunologic changes resulting from CMV 
infection in a previously published paper whose experi-
ments were performed in parallel with the microbiome 
investigation [9]. Animals were seen to cluster accord-
ing to RhCMV serostatus on a PCA plot summarizing 
immune-cell frequencies, demonstrating the large and 
consistent immunologic change imposed by this infec-
tion (Fig. 3A, PERMANOVA, P < 0.05; see ref. [2]). Spe-
cific differences in immune-cell populations between 
RhCMV+ and RhCMV− animals were consistent with 
those previously reported, including lower frequency of 
naïve and greater frequency of memory/effector CD4+ 
and CD8+ T cells (Fig.  3A; ref [23]). Proliferation of T 

cells, marked by Ki-67 expression, was also highly corre-
lated with RhCMV infection (Fig. 3A).

To test for a possible association between immunologic 
and microbial changes, we used the CMV-microbe score 
from Fig.  2E as a summary score for microbial change 
and then searched for associations between these scores 
and circulating immune cells. Frequencies of 48 out of 84 
(57%) immune subsets examined were significantly asso-
ciated with the CMV-microbe score (Spearman rank test, 
adjusted P < 0.05; Table S1 and examples in Fig. 3B), sug-
gesting an important relationship between CMV serosta-
tus, the gut microbiota, and immune markers.

Cytomegalovirus subverts relationships between gut 
bacteria and immunophenotypes
We hypothesized that the immunologic impact of 
RhCMV infection would be strong enough to swamp 
many preexisting effects of commensal gut bacteria 
on immunity, subverting existing gut microbiota-host 
relationships. We searched for features of the host 
immune system whose relationship to specific bacterial 
taxa was modified by RhCMV infection (indicated by 
a significant interaction term in a multivariate analysis 
accounting for age). To avoid spurious significance due 
to sparse read counts, we further filtered taxa not rep-
resented in at least 50% of samples, resulting in 2905 
total comparisons between 35 bacterial genera and 83 
immune markers. Sixty-seven comparisons were statis-
tically significant for both the overall F-test (P < 0.05) 
and the interaction term (P < 0.05) while also passing 
basic model checks (Table  2; see “Methods”). Most of 
the significantly altered relationships detected (44 of 

Fig. 3  Immune cell types correlated with microbiome constituents. A PCA plot of immune markers. Loadings of important differences associated 
with RhCMV infection are shown. B Immune cell subsets correlated with the CMV-microbe score shown in Fig. 2E
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Table 2  Results of multiple linear regression resulting in significant interaction due to RhCMV infection

Bacterial genus Immune marker RhCMV- RhCMV+ Pinteraction Adjusted R2 Significance in group

P Coef. P Coef.

Bacteroidesb CD4 memory 0.0158 0.41 0.4790 −0.12 0.0265 0.21 RhCMV− only

CD4 naïve 0.0169 −0.39 0.4661 0.12 0.0280 0.26

Bulleidiaa CD25+, CD127lo, CD4 0.0263 0.28 0.4804 −0.18 0.0302 0.33

Catenibacteriuma HLADR+, CD38+, CD8mem 0.0063 0.41 0.0690 −0.36 0.0025 0.23

Coprococcusa KI67+, CD8mem 0.0054 −0.35 0.1863 0.31 0.0076 0.21

KI67+, CD8eff 0.0011 −0.38 0.3944 0.14 0.0093 0.49

KI67+, CD4eff 0.0248 −0.35 0.2477 0.22 0.0244 0.18

TNF+, CD8mem 0.0116 −0.29 0.2993 0.23 0.0261 0.29

TNF+, CD4 0.0002 −0.52 0.9832 0.00 0.0290 0.25

CD4 naïve 0.0036 0.40 0.7718 −0.06 0.0482 0.29

Dialisterb IL17+, CD4mem 0.0041 −0.53 0.1723 0.29 0.0005 0.22

IL17+, CD4 0.0168 −0.48 0.1954 0.29 0.0021 0.11

Doreaa KI67+, CD4eff 0.0215 −0.54 0.6508 0.06 0.0200 0.17

IFN+, CD8mem 0.0454 −0.42 0.3354 0.05 0.0494 0.28

Faecalibacteriuma TNF+, CD8 0.0012 −0.41 0.0529 0.34 0.0006 0.37

IFN+, TNF+, CD8 0.0019 −0.38 0.0523 0.34 0.0008 0.36

IL17+, CD4 0.0123 −0.44 0.2114 0.29 0.0036 0.10

IFN+, CD8eff 0.0131 −0.43 0.1782 0.25 0.0038 0.21

TNF+, CD4 0.0063 −0.46 0.2805 0.21 0.0057 0.19

KI67+, CD4eff 0.0046 −0.50 0.6184 0.08 0.0142 0.21

Flexispira TNF+, CD4 0.0018 0.56 0.6954 0.07 0.0406 0.20

IFN+, CD4mem 0.0233 0.35 0.8025 −0.03 0.0490 0.48

Lachnospiraa TNF+, CD8mem 0.0196 −0.29 0.1668 0.25 0.0155 0.30

TNF+, CD4 0.0391 −0.32 0.3635 0.18 0.0416 0.14

Oribacteriuma IL17+, CD4 0.0255 −0.45 0.0767 0.37 0.0008 0.14

TNF+, CD4 0.0027 −0.52 0.4137 0.13 0.0053 0.20

KI67+, CD8 0.0063 −0.20 0.2347 0.15 0.0204 0.66

IFN+, CD4 0.0318 −0.43 0.6682 0.08 0.0212 0.25

CD4 memory 0.0304 −0.37 0.2192 0.15 0.0265 0.19

CD4 naïve 0.0239 0.36 0.2736 −0.12 0.0329 0.25

IFN+, TNF+, CD8mem 0.0448 −0.23 0.0639 0.22 0.0433 0.25

p-75-a5 KI67+, CD8mem 0.0259 0.29 0.1945 −0.30 0.0217 0.18

Prevotellab KI67+, CD4eff 0.0070 −0.45 0.9735 0.00 0.0470 0.20

Roseburiaa TNF+, CD8eff 0.0018 −0.39 0.0737 0.42 0.0024 0.29

IFN+, CD8 0.0231 −0.24 0.1001 0.40 0.0104 0.36

KI67+, CD4eff 0.0073 −0.39 0.1415 0.31 0.0126 0.21

IFN+, CD8eff 0.0148 −0.37 0.3144 0.26 0.0231 0.21

KI67+, CD8 0.0184 −0.14 0.2526 0.23 0.0396 0.66

Ruminococcusa B cells 0.0004 0.68 0.6608 −0.07 0.0038 0.15

Sutterella CD4 memory 0.0003 0.60 0.5867 0.07 0.0196 0.29

CD4 naïve 0.0002 −0.59 0.4672 −0.09 0.0234 0.35

YRC22 CD4 memory 0.0094 0.50 0.3128 −0.14 0.0059 0.23

CD4 naïve 0.0108 −0.47 0.3415 0.13 0.0075 0.28

CD8 memory 0.0072 0.50 0.6365 −0.09 0.0163 0.12



Page 8 of 14Chin et al. Microbiome          (2022) 10:168 

63) reflected significant correlations in the RhCMV-
seronegative animals that were not observed in the 
seropositive cohort, suggesting destruction of a preex-
isting relationship by RhCMV, confirming our hypoth-
esis (Table  2, marked “RhCMV− only” at right, and 
examples in Fig.  4A, top section). Many such cases 
involved CD4+ and CD8+ T-cell populations known 
to be highly impacted by RhCMV. Specifically, among 
RhCMV-seronegative animals, cytokine-producing 
T-cell subsets were negatively correlated with genera 
from the Lachnospiraceae family (Roseburia, Oribac-
terium, Coprococcus, Lachnospira, and Dorea), often 
short-chain fatty acid producers [44, 45], but these 
relationships were diminished in seropositive animals 
(Table  2 and examples in Fig.  4A, top section). Addi-
tionally, in seronegative macaques, SCFA produc-
ers were associated with Th17/Treg balance through 
positive correlations with Tregs (marked “CD25+, 

CD127lo, CD4”) and negative correlations with Th17 
cells (“IL17+, CD4”; Fig. 4A, top section, and Fig. 4B). 
In rarer cases, relationships not seen in seronegative 
macaques were present in seropositive macaques (16 of 
67 interactions; Fig. 4A, middle section). Genera from 
the Veillonellaceae family (Veillonella, Megasphaera, 
and Anaerovibrio) were seen to have more impact on 
the immune system in seropositive macaques (Table  2 
and examples in Fig.  4A, middle section), suggest-
ing that in CMV infection, there is a shift within class 
Clostridia from dominant effects of Lachnospiraceae 
on immunity to greater impact of Veillonellaceae. 
Seven of 67 interactions were significantly corre-
lated in both RhCMV− and RhCMV+ animals, but 
with opposite polarity (Table  2; Fig.  4A, bottom sec-
tion; and Fig.  4 B–C). Oribacterium, Roseburia, and 
Faecalibacterium are all known short-chain fatty acid 
producers. As expected, these genera have negative 
correlations with cytokine-producing CD8+ T cells in 

a Gram-positive and bgram-negative bacterial genera known to produce SCFA

Table 2  (continued)

Bacterial genus Immune marker RhCMV- RhCMV+ Pinteraction Adjusted R2 Significance in group

P Coef. P Coef.

[Prevotella] TNF+, CD8 0.1985 −0.18 0.0424 0.38 0.0131 0.30 RhCMV+ only

TNF+, CD8mem 0.1972 −0.21 0.0401 0.32 0.0187 0.29

Anaerovibriob KI67+, CD8 0.5872 0.03 0.0074 0.41 0.0111 0.70

CD8 memory 0.1324 0.26 0.0206 −0.38 0.0124 0.11

KI67+, CD4eff 0.7736 −0.05 0.0079 0.45 0.0470 0.15

Catenibacteriuma B cells 0.8095 −0.04 0.0036 0.69 0.0073 0.13

KI67+, CD8mem 0.5884 −0.07 0.0077 −0.62 0.0303 0.22

Megasphaerab IFN+, CD8 0.9447 0.01 0.0166 0.44 0.0425 0.36

Oribacteriuma TNF+, CD8 0.0720 −0.21 0.0331 0.33 0.0139 0.30

Prevotellab TNF+, CD8 0.3131 −0.12 0.0292 0.37 0.0220 0.30

TNF+, CD8mem 0.6065 −0.05 0.0061 0.39 0.0417 0.29

Roseburiaa IFN+, TNF+, CD8mem 0.0519 −0.19 0.0238 0.48 0.0115 0.28

Streptococcus CD4 0.5786 0.04 0.0383 0.83 0.0097 0.32

Veillonellab CD4 0.0677 0.19 0.0183 −0.33 0.0144 0.30

TNF+, CD4 0.3040 −0.19 0.0418 0.32 0.0305 0.13

IFN+, CD8eff 0.3388 −0.19 0.0420 0.30 0.0364 0.15

Faecalibacteriuma TNF+, CD8mem 0.0010 −0.44 0.0273 0.32 0.0004 0.37 Both RhCMV− and RhCMV+
IFN+, TNF+, CD8mem 0.0085 −0.36 0.0264 0.33 0.0019 0.32

IFN+, CD8mem 0.0221 −0.36 0.0179 0.28 0.0035 0.33

Oribacteriuma IFN+, CD8 0.0197 −0.29 0.0296 0.34 0.0023 0.38

TNF+, CD8mem 0.0299 −0.25 0.0471 0.23 0.0293 0.28

Roseburiaa TNF+, CD8 0.0166 −0.24 0.0284 0.53 0.0028 0.34

TNF+, CD8mem 0.0311 −0.21 0.0222 0.47 0.0092 0.30
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RhCMV-seronegative animals; however, the opposite is 
true for seropositive animals (Fig. 4 B–C).

Discussion
We found that CMV infection is associated with altera-
tions in both gut microbes and relationships between 
microbes and host immunity. A substantial literature 
demonstrates the effects of both human and rhesus cyto-
megaloviruses on host immune function [4, 9, 24, 29, 49, 
50]. Brodin and colleagues showed that HCMV infec-
tion impacted more than 50% of the immune param-
eters examined [2]. Our data suggest the possibility that 

altered host sensitivity to microbial constituents forms 
part of the mechanism of these CMV effects—that is, 
CMV may act partly via changed sensitivity of the host 
to its own microbiota. Thus, understanding the effects of 
CMV on host immunity requires full understanding of 
interactions between chronic viral infections, microbes, 
and the immune system.

While previous studies did not find drastically changed 
host microbiota during RhCMV infection as assessed by 
beta diversity measures [24, 51, 52], we found significant 
differences between seronegative and seropositive micro-
biotas using methods for compositional data analysis 

Fig. 4  RhCMV subverts relationships between immune-cell subsets and gut bacteria. A Significant associations between immune cells and 
gut bacterial abundance that were changed by RhCMV infection, as indicated by a significant interaction term in regression. The significance 
of interaction term was indicated by different sizes (largest have P < 0.05, medium have 0.05 ≤ P < 0.1, smallest have P ≥ 0.1). Top panels show 
significant bacterial-immune correlations within RhCMV− animals only; middle panels show significant bacterial-immune correlations within 
RhCMV+ animals only; bottom panels show significant bacterial-immune correlations in both RhCMV+ and RhCMV− animals. Red signifies 
negative correlations, while blue signifies positive correlations. aGram-positive and bgram-negative bacterial genera known to produce SCFA. B 
Significant correlations between Treg (CD25+CD127lo CD4+ T cells) or Th17 (IL17+ CD4+ T cells) and known SCFA producers Bulleidia, Dialister, 
Oribacterium, and Faecalibacterium in RhCMV− animals but not RhCMV+ animals, also shown in the top panel of Fig. 4A. C Significant immune 
correlations detected in both RhCMV− and RhCMV+ animals with Oribacterium, Roseburia, and Faecalibacterium, also shown in the bottom panel of 
Fig. 4A
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[53], albeit with some overlap between the two groups 
(Fig.  1B). RhCMV-seropositive animals demonstrated 
increased abundance of Streptococcus and decreased 
abundances of Blautia, Butyrivibrio, and Sarcina—con-
sistent with a previous report of decreased Firmicutes 
abundance in CMV-infected human infants [52]. We 
used different methods to identify differentially abundant 
individual taxa (limma-voom) vs. compositionally altered 
microbial communities (elastic net). Elastic-net regres-
sion identified an additional 15 genera that were associ-
ated with RhCMV seropositivity, while agreeing with 
many individual results from the limma-voom analysis, 
e.g., Streptococcus and Butyrivibrio. A separate longitudi-
nal cohort of macaques administered RhCMV-vectored 
vaccines was used to test the machine-learning results; 
these experimentally infected macaques demonstrated 
similar changes in their microbiotas, indicating a causal 
relationship between RhCMV infection and microbiota 
changes.

All taxa that declined in abundance during RhCMV 
infection are SCFA-producing genera [44–46]. Changes 
in abundances of SCFA producers in the gut are com-
monly associated with altered diets, with higher fiber 
intake resulting in greater abundance of SCFA produc-
ers and increased host health [54, 55]. All animals in our 
study were fed the same diet, however, likely increas-
ing sensitivity of the experiment to RhCMV-imposed 
changes. Previous research has demonstrated reduced 
abundance of SFCA producers in people suffering from 
inflammatory bowel disease, especially Crohn’s disease 
[56, 57], suggesting that reduced abundance of these taxa 
is a correlate of systemic inflammation. In a parallel line 
of experimentation, we demonstrated that RhCMV infec-
tion induces outgrowth of innate-memory CD8+ cells 
through an IL-15-dependent pathway [9]. While IL-15 
may be important for protection against SIV, the cytokine 
has also been shown to promote intestinal dysbiosis, 
manifesting as reduction in SCFA producers [58], similar 
to the finding in this study (Fig. 2 A–B). We hypothesize 
that the changes in bacterial abundance reported above 
are due to altered host-gene expression, including IL-15 
expression, in gut tissue that is caused by the immune 
response to RhCMV.

Interruptions of microbial influence on the host 
immune system due to RhCMV infection were observed 
mostly in T-cell subsets. Previously, the microbiome has 
been implicated in the development of mucosal Th17 
cells and Tregs [59, 60]. Th17 cells and Tregs, present 
ubiquitously at the mucosal surface, are both induced 
by TGF-β signaling during activation. In the presence 
of IL-6, naïve CD4+ T cells commit to the Th17 lineage, 
while in the absence of IL-6 and other pro-inflammatory 
molecules, to the Treg lineage [61]. A study in mice found 

that supplementation with Faecalibacterium significantly 
decreased both IL-17A expression and levels of IL-17 in 
the plasma [62]. We similarly observed inverse correla-
tions between abundances of Faecalibacterium, Dialister, 
and Oribacterium and the frequency of circulating Th17 
cells among RhCMV-seronegative (but not -seropositive) 
animals. Another SCFA-producing genus, Bulleidia [63], 
positively correlated with Tregs in RhCMV-seronegative 
animals but not RhCMV-seropositive animals (Fig.  4 
A–B). RhCMV infection therefore disrupts the relation-
ship between SCFA producers and Th17/Treg balance, 
supplanting a homeostatic mechanism that controls this 
balance in seronegative macaques.

While in this example RhCMV infection subverts a 
preexisting gut microbe-immune system relationship, 
in other instances, RhCMV appears to sensitize its host 
to microbial influence: Anaerovibrio, Megasphaera, and 
Veillonella are important correlates of certain immu-
nophenotypes only in RhCMV-seropositive macaques. 
While previously classified in the Clostridiales order 
based on 16S rRNA gene sequences and metabolic char-
acteristics (all are SCFA producers) [46], these genera are 
gram negative in contrast to other members of Clostrid-
iales and have been reclassified to a novel bacterial 
order, Negativicutes [64]. Among RhCMV-seropositive 
macaques, Anaerovibrio positively correlates with T-cell 
proliferation, while Megasphaera and Veillonella posi-
tively correlate with T-cell effector functions. Lipopoly-
saccharide (LPS), a key component in the cell wall of 
gram-negative bacteria, stimulates T cells via engage-
ment of toll-like receptor 4 (TLR4) within innate immune 
cells [65, 66]. In addition, studies have shown that LPS 
promotes immediate-early gene expression of HCMV 
[67] and reactivation of latent CMV in mice [68]. Thus, 
CMV and the altered microbiota may synergistically pro-
mote T-cell activation, which in turn promotes further 
CMV replication.

Surprisingly, RhCMV infection inverts the relation-
ship between abundance of SCFA producers and effec-
tor CD8+ T cells that is seen in RhCMV-naïve macaques. 
Oribacterium, Roseburia, and Faecalibacterium nega-
tively correlate with the frequency of effector CD8+ T 
cells in seronegative macaques but positively correlate 
in RhCMV-seropositive animals (Fig.  4A). SCFA are 
thought to reduce inflammation via blockade of NF-κB 
activation [69–72] and inhibition of histone deacety-
lase [73–77]. However, SCFA can also cause inflamma-
tion when other TLR agonists are present [78] and cause 
inflammation when interacting with different G protein-
coupled receptors [79, 80], suggesting that the net effect 
of SCFA partly depends on microenvironmental factors. 
In fact, SCFA has been shown to enhance the suscepti-
bility to and induce the replication of CMV in human 



Page 11 of 14Chin et al. Microbiome          (2022) 10:168 	

cell lines [81–84]. Therefore, CMV infection may com-
promise the anti-inflammatory signaling normally gen-
erated by the host’s endogenous microbiota and harness 
the SCFA produced by these bacteria to enhance its own 
survival.

In summary, we found that RhCMV infection was 
associated with a profound change in the relationship 
of an infected host to its microbiota. The methods we 
employed likely limited sensitivity of our study to other 
examples of altered host-microbe relationships, as 16S 
rRNA sequencing surveys bacterial taxonomy but not 
bacterial functions. A future study using metagenomic 
techniques would better resolve functions between bac-
teria and would possibly reveal more bacteria-immune 
system relationships that were impacted by RhCMV. Bac-
teria within a genus, or even within a species, maybe have 
different functions and consequently different effects 
on the host [85]. Additionally, gut-specific immune and 
transcriptomic data would provide mechanistic insights 
into the local interactions occurring between microbi-
ome and host during RhCMV infection. Previous stud-
ies have shown that depleting Tregs in the salivary gland 
but not in the spleen resulted in CMV reactivation at one 
site but not the other [86], so profiling the gut immune 
system would likely reveal other interactions with CMV 
that are not seen in circulating cells. Nevertheless, our 
work provides a framework for discovering interactions 
between chronic viral infections and gut commensal 
microorganisms in vivo. Our future studies will use this 
framework to understand the importance of RhCMV for 
adaptive immune responses to infection or vaccination.

Conclusions
RhCMV infection is associated with a profound change 
in the relationship of an infected host to its microbi-
ota. SCFA-producing genera are found in lower abun-
dance in RhCMV-infected macaques. Furthermore, 
relationships between gut bacteria and host immune 
functions are disrupted. We observed inverse correla-
tions between abundances of SFCA producers and the 
frequency of circulating Th17 cells among RhCMV-
seronegative—but not -seropositive—animals. Another 
SCFA-producing genus, Bulleidia [63], positively cor-
related with Tregs in RhCMV-seronegative but not 
RhCMV-seropositive animals. In addition, RhCMV 
infection inverts the relationship between abundance of 
SCFA producers and effector CD8+ T cells that is seen 
in RhCMV-uninfected macaques. Oribacterium, Rose-
buria, and Faecalibacterium negatively correlated with 
the frequency of effector CD8+ T cells in seronegative 
macaques but positively correlate in RhCMV-seropos-
itive animals. RhCMV infection thus compromises the 
anti-inflammatory signaling normally generated by the 

host’s endogenous microbiota and harnesses the SCFA 
produced by these bacteria to enhance its own sur-
vival. Thus, part of the mechanism of vast CMV effects 
on host immunity is alteration of the host-microbiome 
relationship.
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