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v IABSTRACT

An experiment was performed+ at the_Bevatroh to measure the polari-
zation in the reaction m p ~ m°n from a pélarized target; at beam momenta
between 1 and 2 GeV/c. As anfadjunét to that éxperiment,lproportional wire
chambers were mounted to detect m p elastic scattering from the same target,
with the folldwing purposes:

. First, to better understand the systematical errors affecting the
data oﬁtgined with the LBL Polarizeé Targét;

. Second%“to improve the knowledge of n'p-elastic amplitudes.

We set for ourselves a more long-term objective:
. To improve the analysis of polarized target ”experimeﬁts in order
to gét'.'better’aécura¢ylat ~ low computing cost.
This.report_coﬁcentratesbon the original aéﬁécts of our analysis,
iﬁ particularé I o
* The geometrical reconstruction of the elastic events;
. The_use.éf the high analyzing power of the reaction studied to
probe the pblariiation of the target in magnitude and distribution; ’

- A study of the statistical estimation of the_pblarization parameter;

. A detailed study of'thé quasielastic baékground;

-

The reader who'wishes to know the details of‘thé experimental apparatus
may.find them in several publications. In particulaf, Stephen R. Shannon's
thesis (LBL—2607) has deséribed ﬁpst of the apparatus used in the experiment,

except for the four wire chambers used to detect the scattered and recoiled

*s. R. Shannon et al, Phys. Rev. Lett. 33, 237 (1974).

EF ol opE0C00
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particles. More information on the polarized target and associated problems
exist in Charles C. Morehouse's thesis (UCRL-19897) and Peter R. Robrish's

(LBL-1334).
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CHAPTER I. THE RECONSTRUCTION OF THE ELASTIC EVENTS

A. A HIGH SPEED CALCULATION
| We built our.method of reconstruction of the elastic m N scattering
events in order to meet two requirements: |
« The highest accuracy for reconstructihg the three‘tracks of
each elastic event; | | |
* The féstest pqssible computation in order fo afford high statistics.
The réconstruction algorithm is mﬂch,ébnstrained-byathese Trequire-
ments. It proceeds in two stéps. | |

1) A first program computes a given set of trajectories through

the magnet and the detectors.and yields some tables of coefficients to be

used by the next program.

2) The second program knows nothing directiy.about'the magnetic

. field and thé_position of the detectors, but uses the tables of coefficients
constructed by'the first program to transform'"very_quickly” the éoordinatés
of each event (wire numbers) into the relevant physical quantities. "Very
quickiy" means that it is allowed to perform only simple algebraic manipu-
lations, mostly.by use of interpolation polynomials, and no transcendental
functions. | |

In the_following_pages we shall forget about_ﬁhis‘operating-
procedure, to give a more physical presentation of the facts.- Parf B
(""The Geometry'') will focus on the properties of a'given track-*beam track,
scattered or recoil particle. Part C ("The-Kinematics") will-show how to
use the constraints conneéting the three tracks of ‘a single event, to get

1) a clean signal from elastic events, and 2) a better knowledge of the

4
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kinematical parameters (fitting procedure) Part D (""The Results”) will
apply the above methods to a large sample of events in order 1) to obta1n
a very prec1se allgnment of our detectors, and 2) to check that the

resolution of our apparatus is exactly as predicted.

B. THE GEOMETRY.

1. Description.of.the Tracks

The magnetic field Surrounding the target has an aiis of symmetry,-
our axis oy, and'a plane of symmetry, our xoz plane._:It is known to us by
its intensities B(r) at the distance r from the axis'oy; 'The shape of
the function B(r)-is shown in Fig. 1. Any trajectory y can be given by
the following parameters: an initial point P(xo=0;y0;zo) in the yoz plane;
~ the direction of the tangent PT(6,¢) at the point P, and the radius of
curvature p at the or1g1n The magnetic fleld be1ng cylindrically symmetrlc
"-to a good approx1mat10n, we are interested only in the trajectories vy
contained in the plane xoz, i.e. with .¢=0, from which all the others are
~ deduced. Such a. trajectory y is shown :in Fig. 2 together with its ”shadow"
Yo which is just made of:' a) the circle of radius o, 1dent1ca1 to the
real trajectory_y in the region around the target where the field is highly
uniform. b) The.tangent to this circle, which is paraliel to the asymptotic.
“direction of Y.- One can check that Yo is a trajectory'in an "effective'
magnetic field constant for’ T < RY 1; ggrg ds and null for >R . This
trajectory Yo is helpful in visualizing the real one.

The information coming from our wire chambers W1 and w2 consists of

the coordinates of their intercepts M and N withpthe'trajectory y. This

means that we are recording the chord MN of vy, which is very close to the
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asymptote AY,'because the chambers are outside'the magnet. For this reason
we shall.conicentrate our.effort on the description of the beam of straight

lines Ay, as a function of the various parameters describing vy.

2. -Specification of an Elastic Event

Thé traékslcoming from én’elastic event are characterized by the
fact that, when the scattering angle is fixed, the mdﬁentum is known, so
that the trajéétory is almost known and will suffer only small variations
when the position of the apex is moved inside the“tvax"gét, or when the
azimuthal angle varies. - ‘This leads us to choose a set of convenient
- parameters for the trajectory Abdéppeéring in Fig. 3; 6g 1is the lab
scattering ang"l‘e projected on xoﬁ plane; ¢ is the angle between thé tangent
to AM and the xoz'p1ane;.g_and B are two angles defining the beam track
A'A, by the direction of ifs tangent A'T drawn atlﬁhe'point A'; and f}is

the vector made of the coordinates x, y and z of the épex A.

3. Introducing the 'Magic Curves"

The complexity introduced by the various shapes of the trajectories in

a non-uniform magnetic field can be overcome by simple geometrical considerations.

a) The ”point'targét, pencil beam and single detector' approximation.

-In this approximation, schematized below, a sihgle array of detector

“is needed,. each one counting all the scattering that happens at a_giVeh angle

. Detector

Beam ~ Target :
e , '-TM_M‘E e e o TV ﬁX85 7511-8692
: 3 S A S DOk



es. How falée'is this approximation when the target has a finite size, is
surrounded by a magnetic field, and when the beam has a certain angular
apeffufe? Terrible; becaﬁSe all the perturbationsvmentioned above induce

a variation of a few degrees in th¢ angle of the asymptote Ay bf the trajec- .
tory (see’Fig; 2), to which a big lever amm is applied. For insténce, if the
detector shown on Fig. 4 is at a distance of 1 meter from the target, particles

at the same angle may create a spot 10 cm in d1ameter on the detector.

However, if we fix the direction of the beam track, we may observe -
a convergence of all the particles scattered under the same angle 6,
- through a given point I(GS). When 65 varies, I(es) moves along the "magic

curve'' as shown below. To give a more intuitive feeling of what the

"magic curve"

Fig. §

beam target

~ . XBL 7510-4184

"magic curve" is, one can imagine returning to the single detector experiment,
by positioning our array of detectors along the magicicurve. Each detector
would be sensitive to a single scattering angle.

b) The justifications of the "magic curve'.

Empirically, a simple way of testing the concept of the magic
curve is to compute it, then to reconstruct several trajectories at
various angles and positions in the target and to compare the angle es as

determined from the intersection point I(es),,with its,real value. For this



‘experiment we obtain an excellent agfeeﬁeﬁt: the éiror'on the angle is of
the ofder..o'i:"l()‘-3 degrees. It is‘obviousvthatwfhe sources of error that we
are oBliged.to neglect, such as errors in the'magnéti&'fieid‘and various
muitipie:Scétférings,éére much larger. Théorefically,vthé validity of the
method reiiés.oﬁ the‘hypothesis thaf the . radid of curVaturerbf the'tracks,
are lafge cohpafed to the mean radius of the magnétic field. It has since
‘béen shown to Wka even for the recoil proton of a fbrﬁard.scattering,down
 to 100 MeV by M. Urban:' In this case I°(eg) just gives a first approximationv

Gg of the angle és, which is then corrected as indicated in Fig. 6b.

. ”Magic" -

o)

Caustic

XBL 7511-8691
Fig. 6a : ‘ : .~ Fig. 6b

Figﬁré 6a remiﬁdélusvof the basic‘ingredients of geométriCal optics in the
" small éngle apﬁrokimatioﬁ that we just translated iﬁfd OQr context. .Thé
rays emitted at an angle 6 from the two‘extremés of fhe target (z==zmin,
z= Zmax) and from. thhe. center z=0 are tangent to a "¢austic,".' v"Magic:'_' is
the iocus of the caustic points for z=(L': | |

REMARK: The distribution of the,interCepts of ‘the magic curve'by-thé‘rays
‘has a sharp peak.on the éauStié’(z= 0) so that in most cases the first

is very good.

. . 0 .
order approximation, es = es,

TEE et nE k0000
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4, Practical Use of the '"Magic Curve"

It is very practical to represent the magic Curve-by a polygonal 1ine. .
(a sé?iéé'bf straight-light segments). In the present experiment a simple
straiéhflliné was enougﬁ. The intersection of this straight line with the
chord MN éf the_trajectory (see Fig.Z), determinéd by the two planes of wire
chambers of our feiescope, gives the point I(6.). The value of esis given as
a functioﬁ_qf the abscissa of the point'I by an interpolation polynomial of
the third degree;in our cése.. The overall accuratyibf the computation is bet-
ter than or equal to .03°, which is more than enough. To get such preciSion '
with smaller‘momeﬁta, M.‘Urban has sﬂown that onetcan use'thé second order
approximation suggested above. One canﬁot imagine é faster way to compute the
scattering angle 6 (10 operations). However, in.practice we have to perform

a few corrections to this computation, namely:

a) The curvature of the beam: this very important effect, is taken
into_accouht'when‘computing the magic curve and then automatically corrected.

b) The curvature of the magic curve: as we choose a linear approx-

imation of the magic curve, we are introducing a bias which is automatically
corrected as shown in Fig. 7. The intersection of the straight line deter-
mined by chémber cqordinateS‘xi and'x2 with thefétfaightfiine version of the
magic curve -occurs at_I', whose x’coordinate'is.xi.'»By means of a third-

degree polyndmial 6 is calculated

Linear Approx. 1 B ~ Interpolation
- A\ y “Polynomial
“Magic”’ 8
|
€ Fig. 7
" Target B ‘ > O

XBL 7511-8690
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Even when the distance S between the magic curve and its 1inear approxima-
tion is no‘longer negligible, the intercept I' is defined well enough
because'the‘angle‘e under which the target is seen is small. Then when
we represent the'ordinate_x'(es);as'a fUnction of es,”instead of y, we
introduce no bias at all. | |

c) The pro;ected angle o of the beam track on the xoz plane (see

Flg 3). The angular spread of the beam is 2.5° (max1mum cone aperture)

But two beam hodoscopes define it to a 0.6° accuracy We figure out the
angle o and then prlor to using magic curves, rotate the secondary tracks
as deflned by the1r 1ntercepts by the same angle. The result is equivalent

~ to having a beam with 0.6° angular spread.

d) The effects of azimuthal,angle ¢ come from the projection of
momentum and scattering angle; The_overall correction is linear in ¢? for
a given es,'and therefore is‘negligible except for the 1arger'accepted value
of ¢ = .2 Radrv It is easy to compute this correction.as being a(es)>«¢2;

where a(es):ie given:by‘a second degree interpoiationfpolynomial.

e) The effect of the position of the apex inside the target: the x
effect. The target being elongated in the z direction (beam direction),
the z dependence is the most important effect, and had been‘taken into
account by the magic curve. There_is'no y dependence, as long as the
magneticvfield iS'vertical.' But the_)< dependence is real and can be
corrected only if the apex hae been.reCOnstructed by ‘intersecting the three
| 'tracks.of_the.event."Thechrrection procedure is suggested in Fig. 8. The
scattering angle-determined by the‘magic curve corresponds to x=?0 So it
is almost the: angle 6 made by the trajectory vy and the axis z at thelr

intersection. A If the real apex is A the real scatterlng angle 6 is

891 0okt 0roD
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Fig. 8

XBL 75118697

obtained by subtractlng from e the small curvature € of the A A arc.

5. E;perlmental Test of the Maglc Curves”

The above ideas have been tested by reconstructlng some fake events
generated by a sort of Monte Carlo Method However the experlmental data
proyide usvﬁithvan independenf check:of-the whole'method, which uses the
_ 1kinematica1heonstraints of the elastic eVehts. This‘is'ehown in Fig. 9
where the differenee between_the pioh scattering angle in the léboratory
frame as measgfed from the pion frack itéelfnﬁgﬁ),5fr6m that'predicted from
measurements{on the recoil profon'track, is plottedeaé a function of the
scatteringfangle Op. It should Be constantiy null, if our.reconstruction
is correct. '- - |
o{r) -0,(P)

4 4 Quadratic Interpolation’

02—  .' s ¢ Cubic Interpolation

Predicted Correction of 3rd Degree

0'o

- 50° e 70° 0
' XBL 7511-8698



The figure cléérly shows that the quadrétic interpolation .of the curve 6y

vs y', (Fig. 7 on page 10) is not enough, while the cubic one is satisfactory. ;u.
" The smallhesé of the statistical error comes from the fact that we include |
more than 10% events in each angular bin. 'Therefore.the experimental
G'resolution; of_fhe ordér of + 1°, is divided by 100,

The:above example shows us that it is’very_éasy to use the experi-
mental data to support the theoretical computationS'which may be 6thprwise
hazardous. This allows us to decide whether or not a given correction is
meaningful. JFor"inétancé we have verified our'assuhption that energy loss

has a negligible effect.

C.  THE KINEMATICS

1. The Different Constraints

We firs; need to have in mind the basic layout of the experiment:

: Pion
1 ’ Mg beam
. ?\Downstreom I ol ’
hodoscope M, “Upstream
OB hodoscope .

ST T A
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This is a sort'of optimal configuration; a couple of detector planes fix
the trajectory of each of the three tracks of an elastlc reaction, as
visualized by the magic curve method. We may clarlfy the resulting constralnts

in the follow1ng way:

a) - The angle-angle constraint, relating the (beam,proton) angle
ep.to‘the (beam,pion) ahgle‘eﬁ.

b) The‘coplanarity constraint saying that the-beam,is in the plane

formed by pioh and proton. Let us remind ourselvés that the enormous
advantage ofAfhis convéntional distinctioﬁ-of.ang1e¥ang1é and coplanarity
constraints relies on the relative disposition of tﬁe;wire chambers.

They éll provide us with a y coordinate péfpendicular to the average
scattering.plané, and an X coordinate parallel to it. Conseduently the
angle—angle constraints relate only 3c'coordinate§ because the ¢ correction
to the scattefing angle is,sﬁall. ,Moreovef, fhe scattering angle being’
approximately'known, the cépianarity constraint reiaﬁés only the y coordi-

nates in a linear way.

c) 'Theﬁtwo intérse¢tioh constraints expreSsing the faét that the
three tracks‘have a’ common apex A. One of them fikes'fhe y coordinate of -
the apex. It ié almost satisfied by non-elastic events and therefore of
little interest. The other one, determining the projectioh of A on the xoz
plane, is much more intefesting: it acts as-a homentum anélysis of the
tracks inside the ﬁagnetic field of the target.

d) The position of the apex: a pseudo-constraint. Unexpectedly

this non-constraint turned out to be more efficient than all the other

constraints together. It consists in that the reconstructed apex should be

inside the physical target.
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The events eliminated by this criterion must have a curvature of
their tracks very different from the elastic ones. We identified most of
them -as being.the quasi-elastic scattering from bound protons, at small angle,
and with m 'ﬁisidentified as pt (and vice versa). Théir apex is recon- -
structed syétematically 6 to 7 cm downstream oflité real position. That
explains the-dbserved distribution of réconstructed apices projected on the
z axis, in Fig. 11. We shall hereafter systematically impose this target
‘cut oﬁ all the data presented. We shall check that it provides us with avpure

sample of elastic and quasi-elastic events (scattered on a bound proton).

No. of events

| Tl |
I<_Target—>{

rong

-3. 0 3. . Z(cm) 3. ; Z(cm)
All Events | : * Elastic Ca_ndidates
Fig. 11 S ‘XB157622185
2. . The Best Fit Procedure

This procedure is well known for Gaﬁssian variables. We have to
extend it to our'problem wheré variables are hot Gaussiah at all but rather
héve trapezoidal distributions. Howéver,.a great simblification comes from
the fact that our constraints act independently on.the different combinations

of coordinates, as mentioned in the last paragraph. In other words, the

- N It AR A I Y
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covariance matrix of the four constraints mentioned above is almost diagonal.

This allows us to deal with each constraint separatély.

~a) The treatment of the resolution functions. In this experiment
the resolution is due entirely to the finite size of our detectors. Let
us call xl,vxz,... X the coordinates of the intercept of a track with a

given wire chamber. The resolution functidn'corresponding to these variables

are obviously adjacent rectangles. X, Fig.12a
Any measurable quantity is a function of somé_intercepts. Let us
consider huantities into which a different number of coordinates enter.

Their resolution functions are characteristic

Parabolas . ‘ . Cubics
Q,-= flxq) ' Q, = flxq.x,) Q3 = flxq.x0x3) ' | Q= f(x 1. x9,x3.X4)
Fig. 12b . XBL762-2183

The above curves are made of segments of polynomials of degree n - 1, where

n is the number. of variables. . They are easy to compute and are of practical use.

b) Best fits with trapezoidal variables. To fix ideas we shail
treat the case of the angle-angle constraint. We can write this conétraint
as ew(ﬂl,WZ) = eﬂ(pl,pZ). By that we mean that the pidn scattering angle
can be measured independently from the proton track-and the pion traék by
use of mégic.curves. Each of them depends only on two.wire_chamber
x -coordinates and therefore are trapezoidal.

If wevlook at the ew(wl,nZ) versus én(pl,pzj plane in the next
figure, we see that the resolution function corresponding to a set of ml,

2, pl, p2 Wire numbers)is a truncated pyramid with rectangular base. The
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whole plane is paved by such overlapping pyrami'dsﬁ._

97,,('7'r|','n'2)
T ,
M
2o, A4 Nl F
B 2 ___r -
[I | I
’ AF - Fig. 13
~N I IH | | _
K 1 by S
8 | : :
@ | : L
' 'l |

9(p

e

XBL 7510 4181

The fitted point F must satlsfy the constralﬁt, i.e. belong to the first
diagonal Gﬂ(wl,'nz) = e“(pl,pz)-.- Tts most probable position is near F, on
the mtersection of the diagonal MS »o,f tﬁe rectangle and the 6,.=6, line.
The maximum fi'ttéd.errorr t*GF is determined by the segment of 6, =6, line
intercepted by the rectangle. »Thé”, eqﬁivaleﬁt of the )(2 of the fit is given by
the distance x.ffom the center M of the rectangle to the straight line 6,.=0.»
- taken along the direction of one of the axes of coordinates. The absolute
max imum bf‘th'is_lx-l =M is A; +4,. With the resolution of eaéh wire chamber
known, the basis of each parallelogram 2A1 and Z_AZ has been computed
beforehand as a function of 6Tr by an interpolation formﬁla: One can then
Véry rapidly compute for each event:

+ the fitted value of the angle 85

-+ the max1mum error on this angle aeﬂF
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. the Teduced x of the fit, i.e. x/(8;+8,)
The cbplanarity and.the y coordinate of the apex have been fitted similarly.
The (x,z) coordinates of the apex are a 1itt1e more difficult to fit.v We
shall just giye_é hint at our method. .

Thefcoordiﬂates X énd z are determined asxshown in Fig. 14 by thebinter-
section of‘thréé-zones coifespondihg to a couple of-detectors fired by each bf
the three’parficles. The errors.on the fitted quanfities have been carefully
determined, and the results are very Satisfactoryfi_ |

| The;motivations,for doing so ére related tQ.one of the aims of this
experiment{,,to:measure the variation of the polariiafion with the location

inside the target.

Fig. 14

- XBL 7511-8687

3. * Conclusion: The "Extraction' of the Signal .
Returning to Fig. 13 on page 17, we understand that an elémentary |
cell, defined by a combination of detectors has counted durihg the experiment

‘.a number N, of elastic events depending only on its peduced X, and a number

N

b of "background" events merely proportional to the size:of the cell.
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The ratio NS/N: of signal over background is frozen. . No further analysis
can change“it We Just have 6 check that the observed number- is. correct,
and to choose a set of elementary cells produc1ng a good sample of elastic

events with a low background

D. THE RESULTS
1. The Shape of the "Elastic Peak'

For each constraint one may plot the dlstrlbutlon of the reduced ¥
introduced_above. The elastic events are distributed in sharp peaks that
are shown in Flg 15. We shall later need to understand the exact shape

of these peaks This can easily be done by u51ng the concepts presented
above: returnlng to page 17, we see that the pyramldal cell of Fig. 13
contributes .-;to the elastic peak by a given x = MH(A 14 A 2),with a weight
proportional to the area A(x) of the section of»thg'llttle pyramid by the
6Tr;=e1T plane. _lhis area A(x ) is nothing else butvtheiresolution function
Q introduced on page 16. O |
CONCLUSION The shape of the elastic peak is glven by the product of

the resolutlon functlon and the distribution of the dlstances of elementary
cells;from the constraint curve. This latter’ d1str1but10n being discrete,
we expect to see and do see often, a signal'consisting of several spikes
(F1g 16a). Flgure 16b represents what happens when a lot of unrelated
velementary cells are added ThlS is the case of the histograms presented
in Fig. 15, where all the scatterlng angles have been added together

The right hand curve shows what happens when we: add some small corrections

- depending on a lot of different variables (remember pages 10 to 12: this

blurring yields a smoother distribution.
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———
~Coplanarity [%\

X, X

XBL76I-2136

4

‘Fig. 15
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~Dotted curve = resolution function

Plain curve = observed peak
] ' :

: |
-1 0 1y -1 0 =1x

(a) (b) - (c)
- ) S . fig.'ls o XBL 762-2184

Important Result: We cotild prove that forfany shape of the signal

presented above, the center of gravity of the distribution is at the origin.

In other words, the mean value of (x,’, (x,>, {(x,) and {(x,> are null.
, X7 T Xp7s FX37 ANC T Xy

2. 'The Alignment of the Detectors

As long.as the position of the detectors is not known perfectly,
the center ef gravity of the elastic peaks are'shifted. Conversely, the -
value of these ehifts i.e. the value of (y), perm1ts a very good determina-
tion of the relatlve p051t10ns of the detectors

a) The use of straight tracks. Durlng a part of the experiment

the magnetlc field was turned off. If we rememberhthe picture of page 13
it is tr1v1a1 to 1mag1ne how one can, by moving only the plane ml, fecrce
the three straight tracks to intercept at the same po1nt A

b) The use of the curved tracks. Coming back to the four constraints

characterizing the elastic events (see Fig. 16), we observe that the x apex
and y apex peaks are well centered. This comes from the fact that these
two'constraints ere almost identical to the ones imposed by fixing the
straight tracks events. But the coplanarity and angle-angle constraints

bring new information permitting us to fix four other parameters related
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to the position of the detectors:
The coplanarity constraint: The coplanarity variable C is a
Zlfhear combination of the y coordinates relative to the w1, w2, pl and
_ﬁZiplanes:
C = KO0 - Ve + K0 Oy - Y1) -

C should be null if the y coordinates are not biased. If. they exist, the
biases are the mean values (y) of the quantities y. Now, if we transform

the above relation into

, _ c _ i ] V
¢ o= O] = Y2 " Vm * X(6) (sz 'ypl)' ’

we can compUté the bias on the quantity C' as a fUnctiQn of the bias on the
y's: _ » |
€1y = Lypp) = Cypg) KO (ypp) - Cypp?)

Now for different values of the scattering angle 6 we have different values
" of the bias (C') of the coplaharity peak; which cén_be correlated to the
value of X(6) ih Fig. 17.  This graph shows that one linear combination of
the biases is well known: (y,, - ¥pq) + (KXy ) ‘_—'ypv2v> with (K = 1.3,
while the orthdgonal combination, because it depends on the slope, is badly

determined. :
<C™> Coplanariyy bias
1. '

Fig. 17

K(g)

XBL 7511-8693
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The angZeAanQZé conStrdint . The coplanarlty has allowed us to fix
the relative p051t10ns of the wire chambers in the dlmen51on perpendicular
to the scatterlng plane. The angle-angle constralntuw111 permlt us now to’"
~ fix their reiative position inside the scattering plane. TFor that we .
remember that:for'the eiaStic events, the prOtou ahd_the'pion scattering
angles are related: 6, = F(ep). Thevahgle-ahglehoonetraint is:

| | A= o - o) = 0
The bias affeCtingvthis‘constraint A is immediateiy related to the biases
affecting the‘direction of the‘pion and proton telescopes with‘respect to
the incident beam, namely (6“) and <ep>,
| (A = <en> - F'(ep)cep>
- Therefore <6:5 And TR are-determined by a regression method identical to

P
the one used for the coplanarlty constralnt

) The,geometrlcai.constants,. They have been computed automatlcally

'by_a program; for each of the beam.energies-(1180,'1250 and 1360 MeV/c). An -
iterative proeedure is required for the following reason: we have to compute
~ the mean value of the x variables for the coplanarity and the angle-angle
| peaks. Butibefore that we-have to establish a cut on thevbackground for
|x| >1. When the peéks are not centered on zero-theée cuts are cutting
the tails of the 51gna1 asymmetrlcally and therefore produc1ng a secondary
b1as. Here are the results ' |

_. The vertzcal coordinates: the constants determlned at 1360 MeV/c
fit perfectly welluto the other energles. The method glves reproduc1b1e
results accurate to better than 0.6 mm, startlng w1th a detector size of

about 1 cm.

o
10
.

-

6k B D00



-24-

. The horizontal coordinates: at first glance the results are
. startling: the following table implies that we should rotate the telescopes
by. angles as large as 3° from their positions determined”in situ by a

mechanical survey.

1360 MeV/c | 1250 MeV/c | 1180 MeV/c_
eyl 3.10°0 1 20350 |0 2.33°
(o) -3.05° -2.32° -2.15°
| Opeam | 3:07¢.1° | 235 110 | 2.22% .10

But we can look at these results from a different point of view: they
express a rotation of the average angle made by the beam tracks at the
center of the target'bwifh the different telescopes. It is possible to-
check this.hypqthesi$ fdrther{ o

We can reconstruct théfaverage'tréjéctory of the beam at the three
' diéfefenf‘énergiéé'and verify that they are compatible with our numbers.
This'givés usﬁconfidenééito introduce a correction egéam, figured in the
table, on the ihcidént beém'andﬂdepénaing ofi its energy, the quoted error

" is systematical.

B, CONCLUSTON

| We ﬁave ﬁroVed"fhat we are éble'towfeconsthCt'an.elastic event
more accurately than will ever be needed (rémémbef ﬁage 12)." The systematical )
errors due to fﬁé‘misélignﬁent‘of the detectors can be corrected internally.
'_Théﬁresidﬁal‘effofs 6h the ﬁositibn of thé"detééto}s,'expreSSed in parts

of a miliimefer,-will fix a 1limit to thé‘?ccUrééy of our anguiar measure-

ments.



=25~

Our vpro'gram is able to treat more than 10% ‘events ‘per compﬁting

-uhit (which 15 .'a fraction of a second on the CDC-;76OO computer). .In case
of necessity, we think that thisvfigure could be improved by a factor of = -
10. ’Iheref_dr:e our method could be used_ for the next generation of -

experiments.
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Gﬂ“ﬂER IL; THE EXTRACTION OF THE POLARIZATION DATA‘

A. ° THE PRINCIPLES OF THE MEASUREMENT

g

1. The Reduction of the Expgrimental Data
The_geometrical reconstruction described in the first chapter yields

many parameters for each event. We don't need all that information to

" compute the.polafization parameter. We just have fo keep track of the

monitor counf;-the averagé polarization of the target and a few histograms.

To formaliie'thisvprocedure one has to go through three steps:

a). Consider the expression relating thé'expeéted number of elastic
events dn, for which the parameters'};a,e,t,e, and ¢ defined dn_pége 5 fall
with a cerfain interval, to the differential cross section do/dw, the polariza-
tion P, thé'background B, the acceptance functiéﬁ M and the local target polar-

ization T.

dn = M(i—‘:o_n,Bv,t,e.,q)) {g% (cose)'[l + T(i",t)cosd) P(cosé)]fB(c'osG) }
' | | dB?da dg dcos6 d¢
. - (1)
In this formula we have neglected the four constraint parameters X, xz,'
XS and x4,'which are not allowed to vary much around zero.

b) Integrate the number of events dnof Eq.tl) in the domain chosen

as a "bin”:of the scattering angle histogram, during a cértain period of
time — a burst, a run ..... This integral?li is the expected value of the
number ofveventé N; to be counted in the given angular bin during the

' pefiod ”i“.considered, during which the monitor count was'NE and the

average target polarization was Ti' The result is of the following form:
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The quantltles I and I1 being roughly proportlonal to gg- and ]?g%‘,
equatlon (2) ylelds a rough asymmetry A:
A =1 / I

which is roughly equal to the polarization. o .

c) AReview'the whole inteération process Ieading from;Eqaf (1) to
(2), in order_to e&aluate the corrections;needed'tovtransform the Tough
asymmetry'iﬁtotthe.true polarization parameter. This will be done in the
last SectionvtE)‘of this chapter after Stﬁdying in Section B, C.and D the

main effects contributing to these corrections.

2. Statlstlcal Estimation of the Asymmetry

The effort that has been devoted” tx)optlmlzlng the determlnatlon
of I, and I in Eq. (2) has led to some. relatlvely complex formulas. After
a review of thls problem presented 1n the Appendix, we came to the conclusion
that- the 51mp1est formulas are the most advantageous. 1In these formulas

the est1mat1ons of I, and I1 are given by Yo and yl

. 0+ e o '

JT - x
Yo = x/ VX T - - (3)

1T - 1T N

with x* =X

X"',- x . o . M .
v . = X . N I 4
1 ™ _ T ®

“where the quant1t1es w1th a+ (or -) superscrlpt are computed by the

folloW1ng sums running only on the data with up (or down) target |

polarization. -

* : S .
See P. R. Robrish Thesis p 44-49 (LBL-1334). '
99 i 0 bk b OO
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+ _ 1 '
T = — z Mi Ti

M-
The intuitive_ meaning of theee_fomn;las is. founded on the asSumbtiOn that
the target peiarization has been constantly eciual.to it.s mean value T'
during the positive runs (or T during the negativve'runs)._ It can be
proved also that y_ and y{ have almost Gaussian'fluctuations, and that
" their covariance matrix can be ‘written | |

I T2 +1, T'TF

S _ M +M 0 1 _ :
O = ‘ v a2 o -6
Yo . MM (T -
P I+ 1, TT 17
C - M +M o 1 ( .‘T) : (6)
i W LM -1
. ’ o~ C -
c MM T+, T'T | o
NYe ML M (Tt - 1)? : '

. where the symbol stands for the welghted average between p051t1ve and

- negative runs

Mx +Mx
M+M

X =

Now if we remember that the asym_metry,A is the ratio_'il/Io, the usual

linearization method yields the mean square deviatiohs of A as beingf

2 1 2 - |

gy m = (C,+A"C_ -2AC__) : - (8)
A‘ 2 2 . 2 .

| REERRA Y YOYI,

- Carrying Eq's.‘ (5), (6) and (7) into (8), we get thg general a‘ns‘w_er:'.

2 _ M oeM 1+A[T+(T +T)]+A[TT + ¥t +T)]+A3’I"TT

A MY M | Y (T ] T)
- : o (9
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If T = ;I““=_T, which is often thé,case, the formula (9) simplifies:

2 M eM (a+ADQ - AT
A ww 41T

(10).

REMARK: We observe that the error is very small for both target polarization

-and asymmetry close.to one.

B. THE CALIBRATION OF THE POLARIZED TARGET

1. . Motivations

The'pSers of polarized targets dispose of twbbbasic tools against
'false‘asymmetries:' periédically‘fiip the directionnof the polarization,
and monitorkfhe variations of tﬁe polarization via the NMR technique.

. There is an independent way to study the éffécts generating the
false.asymmetries by using the scattering data by_itéelf.'This consists of
computing‘the'average asymmetry over a lafge range of'cénter of mass angles.
- This quantity is fixed by the property of the nuclear interactions. Its.ap—
parent variations.will réflect all the possible causes of false asymmetry,

- in particular;

~.a) The fluctuations in the detection efficiency with time. They

are very impértant in_thié experiment: -on the ayerage of 10%, in some
cases as high as 50%. They affect the asymmetry.in_a drastic way, that
we have studied. Moreovei; the best way to study this effect is to use
the unpolarizéﬁ,.baCkground eventsﬁrather than the elaStiC ones. This will

be shown later.

b) The fluctuations (possible drift) of the readings of the NMR

probe.

299 i npb0r 00
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¢) The inhomogeneity of the polarization inside the target.

- We shall now preSent-our results on these last twolpoints;

it

2. Callbratlon of the NMR Probe

The functlonlng of this NMR.probe has been abundantly described
elSewhere (see Charles C. Morehouse Thesis UCRL-19897) For our purposes
we have only to know that 1ts three basic 1ngred1ents are:

. The thermal equ111br1um (TE) polarlzatlon signal measured every
day oT so.
._The temperature of the sample, measgred f;Om:a carbon resistor,
at the eame moment as the TE signal.
. The enhanced polarization signal,'or "dynamic'', measured for

each burst of the accelerator. | o

‘Both signals are treated to give the measurements of the area under
the Signal-curve. The first two measurements give the‘calibration factor C,
the ratio of fhe Beltzmanh factor giveh by the temperature of the sample to
the TE signal afea. Then the ''dynamic" sighal areaviéjmultiplied by the

factor C, for every burst. We observed the following facts:

a) The measurement of the calibration factor is not reproducible;
The measurement of the calibration-factor is done by averaging several
~ readings to get rid of the 1%.f1uctuatiens due to noise. Figure 18 shows
the three histegrame of these readings for three different calibrations
téken at three tiﬁes during the 1360 MeV/c run. The'arrows indicQte the
average calibration factor fetained by the on-line program in eaeh.ease.
The second calibration differs froh the other two by more than 2.5%, while

the statistical error is more like .5%. This irreproducibility is more
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Second' Calibration

1%

Yo%

~Third Calibration

rather than a real modification of the target or of the NMR probe.

b)  ‘The -NMR polarization measurement is reproducible to better

likely to be'due to the calibration'process, maybe the carbon resistor,

y

XBL 7511-8696

Relative variation of the calibration
factor C in percent.

Fig. 18

than 1%. This is expected because the polarization readout electronics has

- been carefully designed against long term drifts,,and that the structure of

" a target does not change once it has been frozen. However, we checked that

point.by'subdividingvthe 1360 MeV/c data into several parts and noted that

the average asymmetry doss not change from one to the other. For example, if

we compare the data coming after the first calibration and after.theiseCond

one and assume that the calibration factor does not

1st calibration Average asymmetry

2nd calibration Average asymmetry

thange we get:

-

75.6%.
76.8%.

5
8

o

o

whereas -if we had believed that the second calibration factor were really

different from the first as'sﬁggested by"Fig. 18, the second number

o
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would be 79.2+.8%, i.e., four standard deviations away.

3. The Map of the Polarization Inside the Target

We have drawn a 3-dimensional map of thé ﬁolarization inside'the.
target Shéwing that it is uniform up to the statistical errors. For that
purpose;vthe target was divided into an array of 3?%3><5 cells. This choice
was made to match the resolution of the reconstruction of the épex, and to
give sufficient‘statiStics per cell. As the distribuﬁion of the beam is
narrow in the transverse dimension, the statistical error varies from 2%

‘at the center to 7% at the periphéry. In Fig. 19 wé shall‘show this
result in two different ways: | | |

| ﬁa) The distribution 6f the differentv(‘si = (ésymmetry observed
in cell (i)‘- average asymmetry)/error.. It is compatible with a normalized
Gaussian. :That_means that the hypothesis of unifofmity.inside the target |
is statistically proven. |

b) -Thefhistogram of the deviations from homogeneity for‘each
-celi, in percent of thevaverage asymmetry. It showé that the maximum_
possible'deviation from.homogeneity is 10% (it means of course a smaller
standard deviation = 7%; the four points outside this fange correspond to
“some cells withivery poor statistics). |

Number
of celis

‘Fig. 19

| nln an

—

3 2 1 0 1 2 3 0% o0 10%
Deviation from Homogeneity : XBL 7‘_511_9694
‘(Asymmetry (cell) - Average)/error Polarization (cell) - Average

statistical error . average
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4. " The Absolute Calibration of the Target

?Besides'the fiuctﬁations affecting the measuremént of the calibration
factor of the NMR signal, discussed‘pege 30-31, there is‘a'very'lafge
-systematical.ertor often quOted to be around 10%, but no one‘really’knows
It comes malnly from the assumptlon that the polar1zat10n readout is linear
vthrough the enormous dynamlc range, 1 to 300, between TE signal and enhanced
;dynamlc’51gnal._ It is temptlng to use the very spec1a17p01nts, prov1ded by
‘the nature of strong interactions, where the polarization parametet is
sure to be one, in order to calibrate the_target. This was one purpose
of the experiment, but we convinced ourselves, aftef a detailed study that -

it had failed, because we missed such a point.

C. '/.. THE CALIBRATION OF THE DETECTORS

1. . The Beam anltors

This experlment was'equipped'With scyeral_seintillators, entering
in.diffexent 1egica1 combinations, to monitor the number of events, or the
beam intensity.. However, due to the poor efficiencies'of the wire chambers
entering in the triggering scheme, we have not been able to get a honitoring
,of the elastlc events better than 10% 5, even by recouplng the different
counts. The flrst consequence of these high 1neff1c1enc1es is to invalidate
any attempt to determine the d;fferentlel Cross sectlons. The second is

that we have to find. another type of monitor to determine the polarization.

2. The Background Monitor
" For each elastic event recorded on the magnetic tapes there are

ten inelastic events, mainly quasi-elastic scattering on the protons inside

RN O G 1
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the carbon and oxygen nuclei. The characteristic of this.backgr0und is
that it yields_noeasymmetry._ Furthermore, we cheekedvthat there is no
.apparent variation of the background asymmetry from.the region of phase
.space whete itvis_predominantlyuquasifelastic, to the regions where it is .
not.. We ehall;assume hereafter that the_effective hackground pelariza-
tion is negiigible, .. |
Therefore the'number ofrbackgrpund counts in-one detector monitors
exactly'what we need, i.e.,thenproduct of the beam intensity by'the'effi-
ciency of the detector. Let us remember that the 51mp11f1ed polarlzatlon
formula depends just on the ratio Ny of the total number of monitor counts
for the runs ‘with an upward target polarization to the downward ones. We

see that for each detector (i), we can compute such a number:

_ flg _ Number of background events in (i) for up runs
nj o Number of background events in (1) for down rums °

We new’have"two optiens:

a).iTe'treatveachidetectorvindependently'When computing'the elas-
 tic polariiation'parameter P(cos8). |

- b)_ To make the hypethesis that all theewireé yield the same num-

ber ni=fn;'.This is true, either»if theif efficiencies are constant, or if
they.varyAélomly enoﬁgh with'time'to be averaged out by the periodical
fllpplng of the target polarlzatlon |

Our attltude was:

a) First to check that this latter hypothesie is Valid in general:

this is done by histogramming the following quantity
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' where a5 is the‘statistical error-on.the numerator Its distribution must
be Gau551an 1f our hypothesis is correct, because n obeys a b1nom1a1 law.
Flgure 20 shows that it is indeed the case, except for two wires, which
give a 15 standard deviations asymmetry These w1res are known to have

been dead dur1ng a part of the experlment and were handled separately.

4

Fig. 20

XBL 7511 8695

Asymmetry observed for the background in each of the
200 detectors in standard dev1at10n unit.

b)--Then.we’can use a11 the wires tOgetherjwith a common up/down
: ratio n withdut.adding any'systematic error to theﬂstatistical ones. ' The
statistical acenraey on n is good, 2.10'3,'because'the background is more
‘abundant thanethe»elastic events.

: The'above process had, of conrse, to be repeated for eaeh beam
' momentum.v_Furthermore, we had for each run a $ubstantia1 mqnitor count,
and a measure of the polarizatien‘of the target. ,Thie allowed US.tQ
compute the average values T+ and T of the upwardyand.downward polari-

zation which enters into. the polarization formulas. .
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D. THE SEPARATION OF ELASTIC EVENTS FROM THE BACKGROUND

1. The Selection of Elastic Events-

The“first condition to, get a good "elastic signal" is to have an
optimum reébiution'on each constraint (by "constraint' we mean the Quantities
"Y' which must be null for the elastic. events) We hare seen on pege 17
and fOllOWlng that this is the case |

The second condition is to- -find an optlmum comb1nat10n of these
c¢onstraints, that we shall call x2 by analogy w1th the case of Gau551an
.veriables. |

Among our four constraints, we shall use Only the angle-angle and
‘the coplanarity‘ Aitheuéh wetantonstﬁmténi'cefx2 from the two other
constraints, we have seen ‘that its distribution is. very similérly peaked
for elastic ahd'fer background events and therefore will bé useless for
background rejection. The general method for bu11d1ng a x? with the angle-
angle and coplanarlty constralnts works very well. We drew the 2-dimensional
‘hlstOgram-Qf x—angle-angle versus x—coplanarlty, checked that they present
no ebrreletiengéhd thet the centour iines oftthe 2-dimenSienal elastic peak

are circles. Then the x2 is simply
o, | 2 2
+ x° = (x-angle-angle)” + (x-60p1anar1ty)

In order to dlStlnghlsh between p051t1ve and negative values of the X
angle angle var1ab1e we gave to the x? the same p051tlve or negative sign.
"This ylelds a x? d15tr1but10n centered on zero if, and ‘only if, our angular
" corrections erebcorrect (see page 24). The backgrouhd below this peak is

relatively flat. It will be described precisely in the next Section.

In Figs. (21) and (22) we present two histograms of Xé, both
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obtained at 1360 MeV/c by giving successively to each event of the run the

two Weights that they have in the formulas (3) and'(4j of page 24. This

means that one 1is proport10na1 to ng, while the other is proportional
to g% +Background

In the first one it is easy to check that the background has been
subtracted out and 1ndeed we see no trace of elastlc events for |x?| >2
This reflects the fact that for the elastlc events y angle angle and x
coplanarity'arevsmaller than one. This proves alsotthat there is-
no radiative cbfrection or multiple ééattering cdfreétion tq_cbnsider; in
fact, less than 4 X 1074 |

The sécondAhistogram'invites,us_to compare»thé ratio of the elastic
peak to thevbéckground. At'the top Of the peak it is 43 to i. - After
introducing a conservative |x?|< .5 "signal cut" fér the elastic events,
we keep a 21 to 1 signél to background While losing less than 15% of the

statistics. .

2. ‘The Evaluatlon of the Background

What is the background? It consists malnly of quasi-elastic
scattéring on thé bound protons inside carbon and oxygen nuclei (the target
being made'offpropanediol) The‘cross éection for this process is impor-
tant and it is the only one to be klnematlcally identical to the elastlc
scattering. we estlmate it to be at least 90% of the total.

~ We see three ways of computlng the fraction of backgrouhd_in the
elastic peak: | |

a) A linear extrapblétion of the backgfdund from the regioh where

‘there is no signal (x?>2) to the region of our signal cut.
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b) - The use of a dummy target, containing the same amount of

. carbon but»né hydrogen. The data taken with this target can be treated

exactly like the real target.

‘¢)  Using a theoretical model of quasi-elastic scattering to

predict the background.

We have used and evaluated the three methods and have come to the

following conclusions::

« The linear extrapolation method is simple, self-sufficient, and

precise due to the sharp edges of the signal. Its main systematical
error is to ignore the real shape of the backgfound. It is smaller
than 10%, thus amounting to only 0.5% of the signal as defined by

* our signal cut. This is negligible.

The carbon dummy target is-of ‘1little use. In principié we don't

. expect to learn from it the exact level of the background, due to
the ndrmalizatidn‘prbblem, but rather its shape. Then we could use
an extrapolation procedure more precise than the linear one. This
' failed,for an unsuspected reasonfappearing in Fig. 23. There seems
to be an anomaly in the background at the small values of *2 which
interests us. This could be-due to some traées (0,5><10'3) of
-hydrogeﬁ in the carbon dummy target. This.would lead td a 25%

| error in the>eva1uation of background, instead of 10% for a simple
linear extrapolation of the background. Moreover, the whole

- procedure 1is Véry costly, as we need a similar statistic in both
real and dummy targets.

s A Fermi‘modei for quasi-elastic scattering is surprisingly good.

It does not pfovide us with a precise normalization of the background,
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but when we fix a single normaliiation factor, the'screening factor, it
predicts for all scattering angles‘and energies covered by the experiment
the correct x? distributions for the background Moreover the same model
applied to the conflguratlons where the 7 and the proton are exchanged,
allowed us to reproduce exactly the huge background eliminated by the target
cut (see page 12).
Let us describe the elementary'modeifwe used:  we characterized

the bound protons as hav1ng a ‘Fermi momentum pF dlstrlbuted unlformly in
”the sphere [pFl<:200 MeV/c The1r effective number in the target is the
real number d1v1ded by a screenlng factor, which we determine experlmentally:

effective ' true .

. Number (bound protons) = Number(bound protons)/Z 6
Note that if_Wedtake z;trcrlvide'Al/'3 estimate of the screening factor, we get
2.4 instead of[256. .The_differential CTOSS sectionvon the bound protons
‘is the same.aé on the free proton§ The combination‘of these'hypotheses
allows us to predlct any characterlstlc of the background. For'example
- of we look at the X- coplanarlty dlstrlbutlon which is- proportlonal to the

transverse component py of Ferml momentum, its distribution should be:

e@@sﬂsmwfnﬁ
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)

X Xc

Geometrlcal cons1derat10ns g1ve the value of .the coplanarity variable Xo
correspondlng to. ‘the maximm Fermi momentum py = 200 MeV/c it is Xo = 3.92.
We plotted in Flg 24 the particular parabola g1ven by our model Its |
agreement w1th the data is very good part1cu1ar1y if one remembers that

the parabola'had to be folded with the resolution curve (identical to the.

signal peak) to'be_compared_to the histogram.

S _ o 1 Xcoolanarity Xg

' XBL 7511-8686
Fig.'24 |

The same k1nd of computat1on allows us to reproduce precisely the
X- angle angle dlstrlbutlon of the background This allows us to say that
the background is purely;qua51-e1ast1c,_and that most of the»quasi-elastic'
events - have been accepted by the trigger. We can also‘figure;out in what
part of the Fermi momentumvspacebare'the quasi-elastic events perfectly
ambiguous with the elastic events: it is'the diameter of the Fermi ephere

inside the scattering plane (x,z) making a 72° angle with the beam. The
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elastic cut defines a cylinder of 35 MeV/c diameter afound»the-region of

perfect ambiguity;

35 MeV/c
SN

Ambiguous

= 200 MeV/c
Region ] :

P_Fermi

© XBL 7511-8688

Fig. 25

vThe-conclusion:of our study of the background is: the linear

extrapolatlon of background under the peak is suff1c1ent1y prec1se How-
ever, the 1dent1f1cat10n of the backgroumd as pure Fermi-like, quasi-
.elastlc scatterlng is 1nterest1ng by 1tse1f and could be used to reflne
the extrapolation method. The carbon dummy target experlment ‘gave us nQ

useful information,'but only how much contamination by hydrogen there is,

E. THE RESULTS

1. The Rough Asymmetry

We can now assemble all the elements of the pelarization measurement
discussed above. We shall proceed by integrating all the variables success- _
“ively (in mind) in Eq. (1) on page 26.

e) The beam variables o and B. ‘Their integration just helps in

getting smooth,icontinuous'distribution of the other variables instead of
the discrete structures due to the coarse resolution. It does not bring up

‘any’ problem worth mentlonlng

b) The a21muthal angle ¢ . Due to the'cos¢:£actor, the,poiarization

term has a dlfferent a21muthal distribution than the unpolarized term.

69 ¢t ok PF OO0



-44-

This difference is very small because .93 < cos¢ < 1. Therefore, as we
measure 1t for each elastic event and neglect is polarization dependence,
the ¢ angle can be histogrammed for different values of cos8. It is easy

then to compute the mean value of the cos¢ term: -

(cos) =~ 1 -
¢. 2

This term depends on the scattering angle 6, as the geometrical acceptance
does. After the integration of the variable ¢, it factors out in the

polarization term of Eq. (1) of page 26 and beéomes: -

eff

dn = M! (?,t,co__se) [% v'(cése) (l*T(.i",t)p (‘c_osé)) + B-(cose)] a® Tdt dcosh .
_ _ o N A an
The true polafiiatibn pérameter P(cos8) is obtained by correcting the

effective one which 1is:

peftf

(cos8) = (cosp)g P(cosQ)Q

This yields -

o ARt S
Plcost) = P (cosn) x <1‘} -2_Q> .

| Figﬁre~26 below shows that this correction is of the order of 1% and can
be represented empirically by a straightlline, excépt.forAthe-two right-

most points (this is an end effect):

<f2 ) - (0.9 + 0.1 x cosb)%.
This figure corresponds to the 1360 MéV/t run. -The other yields similar

numbers.
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<ji> (Rad)? [ +1380mevie 0 ]
~ o 1180 MeV/c :
— ¢ 1250 MeV/c o]
0.01}- °]
- w
oL L1 1 | 1 Lo ]

-04 (8] +0.4

' " cos §* 4

_ XBL 7511-8689
" "Fig. 26 o

c) The apex coordinates. To integrate these variables we have to

remgmber the study of the polarization map, page 31. If we believe, and it
s corfect within statistical errors, that the targét is uniformly. polarized,
then the variable T just disappears from Eq. (1') without leaving any

tracé. We canﬁot go much further because of a lack of a model for the possi-
ble deviafioné from uniformity. However, it is possible to understand what
kind of effect an inhomogeneity would have: the geometrical acceptance of
the detectors favors the front end, or the back end of the target, for

certain scattering angles.

The following figure shows how much of the target is used for the
different scattering angles (lower curve), and tentativelyfwhat would be
the resulting error on the polarization parameter, if the inhomogeneity of
the target polarization was the worst qompatible with the statistical errors
on the polarization map (upper curve). To be conservative, one could raise

the errors on the leftmost and rightmost points by 50%, but we believe

that it 1s not necessary.
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0%l — — _& Max. error due to inhomogeneity B
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‘ _ Fig. 27 : |

d) The time Variable. Wevvremember that the time variable is, in

reality, a number 1, corresponding to a given Bevatron pulse during a
- given run. Therefore we can rewrite the formula (1') of page 44 after |

the integration of T variable;

dn; =. M'" (cos6,i) {gw_o (CQSG) ('1 + Ti P.eff(cosej> + B(cose)] x d cos@
with Ti = Cti;:. C being the calibration factqr known to 10%, and ts the
‘Menhanced" NMR signal. | |
o The cenclusi'on of our study of the background Monit.or, page 30
and following.,» Was' that it co_uld acn_i_eve an apparent time independence of

the detection..efficiency. This allows us to write
M'" (cos6,i) = Mi A(cosb)

where M. is this background monitor, thus the integration of the time

variable is no.thing' else than summing the i index separately for the
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positive and negative runs as we did to establish the simplified polariza-
tion formulas of page 27.

+

»dn Nf.A(cose) [gg-(cosel(} + T+P¢ff(cose)) + B(cose)] d coso
A ’ (1m)'

dn

: Mf A(cose) [gﬁ-(ébse)(l + T—Peff(COSG)) ¥'B(cose)] d cos®

‘e) The scattering angle variable. The integration of the cos®

variablevis done when‘we choose a given set of angular bins. :For each
bin "k corresponds to a given acceptance function Ak(COSG) which is peaked
around the center cos6; of our bin. We define an angular bin by a histo-

gram of the fitted value of cos6, i.e. by a condition such as
cosek_— h <:(Cose)fitted < cosek + h

- The choice of the fitted variableg as defined on pége 15 and fbllowing,
is of\prime importance becauée '

* It'ié not biased as both unfitted values of the scattering

~ angle afe._ | |
- This. can be uﬁderstood by looking at Fig. 13 on page 17. The acceptance
of -any combination of detectors gives a pyramidal cell in this angle-angle
plot. The prbjection:of‘thé*centerfM.offthis'celljon;eitheraof.the axes -
is‘vefy differént from thé_projection of the‘fittedvpoint F which is the
center of the distribution‘of‘the elastic events acéepted by this.cell.

® The error,on the fitted variable is smaller than on the

unfifted one. |

It varies from 0;012,to 0.016 (R,M.S.),vbut we shail write

_S(cose)fitted = 0.014

b et ok b OG0T 00
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The acceptance function Ak(cose) is obtained by a convolution product of

the interval ICOSGk-h, cos6, +h] and the error function.
P 2h g E _ , 128

" | Folded with ‘26.(cdsvo)f @ . f

cos Gk

cos.Bk o . —

Fig. 28 | . © XBL 7511-8684

- The r.m.s. A of the resulting distribution Ak(coss)}is given by:

h2
3

A 5+ 8°(cos8) g veq

+ (0.014)% (17)

REMARK: . It will be shown later that we don't need to know more

about the acceptance function Ak(cose) corresponding to each angular bin.

| CONCLUSION: After integfating'the cosé variable in Eq. (1™), we
now reached a finite probability.P; (and Pi) which éorrespbnds to a given
number of events N; (and Ni) which, Carriéd in our polarization formﬁlas,
allowé us to éstimate the.ésymmetry A and its error'gA as indicatéd by
Eq;*(sj‘and‘(sj, page 25.
R .rAk(cose)P(cose) gg~(cose)d cos® . '
A.k = — — e _ - (18)
.I;k(cose) gg-(cose) + B(cos6) { d cos6 '

This asymmetry is represented as a function of cos® in Fig. 29, for the

three energies of the experiment.
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2. The LaSt Corrections

a) - The blnnlng error. Let us remember that the binning error .

'1ntroduced by Eq. (18), page 48, depends. Just on the r.m.s. A of the bin

_acceptance k(cose): let us compute ‘the integral

/ Ay (cose) f(cos8) dcose
where f(cos6) is a slowly varying function in the domain of integration,
which can beldeveieped into o

SRR ' " (cos® - cos6;)?
f(cose) = f(cosek) + f'(cose ~ cosek) + f + ...

2

Then supposing fAk(cose)dcose =1,

- ' 1 AZI
y = f(cosek) + " x >

This formula allows us to transform Eq. (18) into

B O o
Cpeosyy | V(D) O up) | e |
S hin: SR (PP B TV A (&°?) Ll a9
S - B do do -
1 D ” . P e— .
T e @

We‘Cen new return to Eq.'(17)von.page 43 and choose the value.of }g‘ i.e.
the‘eize of the bin. We have.figured outvthet if h==0'the maximﬁm value
of the btnnzng error would be 0.2%. We decided in;tead to have h=.,025

which 1is practlcal and just doubles the binning error accordlng to Eq. (17).
We d1d not attempt to correct the data for the b1nn1ng error. First it is
small compared to the stat15t1ca1 error, then it 15 much easier to do it

in the fitting of the data when' one knows the differential cross section.

‘Moreover, at this stage one is always compelled to take into account .some
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quadrature errors similar to Eq. (19), as we have shown it in a previous .

report.

b) The background correction. It has been shown to be remarkably

independent of the scattering angle. !Equétion (19) shows clearly that it

consists in multiplying the rough asymmetry by

N = 1.048 for 1360 MeV/c

N o= 1+ ?dw with N = 1.049 for 1250 MeV/c
g .

- N = 1.053 for 1180 MeV/c

c) The azimuthal angle correction. It has been explained on

| pages 43-44, .It'ranges from 0.5% to 1.2%.

3. The Tables
1360 MeV/c 1250 MeV/c | 1180 MeV/c
a : .
cosd _ 3| P(cose ) *oP P(cosd_ ) * 6P P(cos_) * 6P
-0.375 | -0.260 + 0.045 -0.091 + .058 -0.046 + 0.064
-0.325 | . -0.436 * 0.033 -0.324 + ,043 | -0.257 * 0.052
-0.275 -0.603 * 027 -0.518 * .038 -0.436 * .045
-0.225 -0.685 * .026 -0.531 * .037 | -0.599 * 041
-0.175 -0.769 - = 025 -0.696 * .035 | -0.744 * 041
-0.125 . -0.849 * 025 -0.761 * 035 | -0.744 * .040
-0.075 | -0.863 * .025 |- -0.862 * .034 - | -0.823 * .040
-0.025 -0.852 * 026 -0.917 * .035 -0.859 * 045
+0.025 -0.825 * 028 -0.880 * .035 -0.908 * .048
0.075 -0.810 *+ .028 | -0.882 * ,036 -0.921 * .045
0.125 -0.816 * .030 -0.943 * 036 | -0.894 * .042
0.175 -0.753 -+ .032 -0.893 * .039 | -0.891 * .044
0.225 | -0.731 * .035 | -0.955 * 041 -0.902. * .047
0.275 -0.677 * .040 -0.828 * .047 -0.822 + .052
0.325 -0.706 * .050 -0.825 * .053 -0.726 * .058
0.375 -0.685 * .071 -0.669 * .072 | - -0.664 * .074

a) A (cos6 Cm)'= 0.020 (RMS)
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CONCLUSION

‘The initial objective of the ekperimentvdeseribed here was to
make an iﬁdependent_calibration of the polerizagion of the LBL Polarized
Target and to determine how ﬁniformly the polérization is distributed
throughout the target. It has thus been fully fulfilled: we have drawn
a map of the polarization inside the target with a iesolution smaller than
1.cm.' The hypothesisvof uniformity of the target‘ﬁas tested successfully.
The maximum ppssible error On'fhe golarization parameter due to the tar-
u get inhomogeneity haé been eqmpeted:and iS.negligibie.

Subsequently we realized that measurements of this type should
provide some useful information relating to the amplitudes themselves.

In particular-this experiment covers, with a precision eeperior fo the
previous dnes{f an angular range where the polarization is peaked toward
-1. The energy dependence of such a peak is known‘fo'Carry informé~;_
tion necessary to solve one of the discrete ambiguities-affecting the
ampliﬁude ahalysis (the'notion of zero trajectory introduced in a previous
article helps to understapd ﬁhis effect). vHoweVer it turns outvthat in’
this particular.case of m p scattering around 1.2 GeV/c, the polarization
‘peak yields two independent ambiguities. Our conclusion is that, al-
though the idea of ﬁéking a local measurement of'peiarization and cross-
section is yalid, it Shduld_extend to more energies, and a 1arger angular

”v:range than was the'ease in this experiment (méybe -.6 < cos® < +.6

TAlbrow et al., NP, B37,596 (71).
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instead 6f,“—.4 <cosp < .4).

Further, this"idealof high precision‘measufeménts in wé11 de—
fined regionS of energy and angle seems Very‘prdmisihg to us, becéugg of
itSvpotentiallforLelucidating'the structure of thé iéros of the felevant

" amplitudes. As it has been pointed out,

the behavior of such zeros is
'ldirectly felated to the'underlying dynamics of'the ihteraction; " This
motivates the'effort described in this repdrtvaiming at.improviﬁg the
‘precision of'?olaiized target experiments. This effort went beyond our
actual needé;  We consider that the methods presented heré can accommo-

5 events/second and hopefully 104, whereaste“had only 10 event

date 10
'per second. . Therefore we offer a solution to the problems of computing
casts and of déta bottleneck,venCountered when trying to reduce signif- '
icantly the statistical errors. The reduction of the stafistical errors
to a féw per thousand would yield some new problems;fﬁat>we have;equally
~ studied. -

‘Many-5ystematic errors, once negligible, become impoftant at this
' lévei of pfecision. They'afe due more to the complexing of the analysis
than to thé detector efficiencies. We have shown in this report how to
cérrect the main errors;'and how these éorrections can be vérified exper-
imentally by using the high preéision obtained in the réconstiﬁctionEof
the tracks, jbined to the use of'best fit methods for éach kinematical
constraint. We-realiie that'some’biasés Woﬁ't be'réduCed very easily to
.a few per th0u$and—e.g., the geomefriéél accepténce'of detéétors, the

. ¥ .
calibration of the target -- however we have shown that an amplitude

+Study of-ﬂ—d_scattering, to be published soon.
*E. Barrelet, NC-8A,331 (72).

bPiLG I OEEO0OD
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analysis_oased on the method of zeros ie_almost unaffected by these biases.
In our op1n10n as far as systematlc errors are concerned it is‘preferable
to measure 51mu1taneously, with the same target and detectors the dlffer-
ential cross -section and the ~polarization parameter |

Some other specifications concerning the de51gn of such exper-
vimentsvcome out of our analysis. One is the need of determlnlng two points
on each of the three tracks-of the elastic events, each of them with the
same pretision.. Thisvrequirement may be difficult'to aéhieve for.the
beam track:because-of the intense rates we have in.mindr Another is the
use of-a magneti&efield‘uniform around‘the target and approxinately cyl-
indrical in ehape. ,Mbreover_the azimuthal‘angle;'nade by each track with
the planeiof'symmetry of the magnetic field, shonld"be restricted to the
[-0.3, +0.3] radian-interval, A careful monitoring of the detector effi-
ciencies muSt be done in real time. In particular the on-line‘computer
should be able to reconstruct elastic events. The alignment of the de-
vtectors, the,magnet; and the:target must be done.rery precisely. This
‘enggests some runs with special, thin targets. It-is noteworthy that the
magnetic anaiysis performed by the magnet surrounding the target ie gen-
erally suffioient_and_that_particle identification,is.required only‘in
very‘speciai'cases e.g.‘ n and proton with equalisoattering angles in
the iab None of these requlrements seems to us partlcularly drastlc
_ we therefore hope that such a new breed of ne/¢yacatter1ng experlments

l w111 be reallzed in a near future
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APPENDIX: POLARIZATION FORMULAS

Wé eﬁcountefed in Chapter II, section A,vthe_pfobleonf determin-
,ing the bgst way ;o'qaléulate the a§ymmetry. Statistics'tell'us to look
. for an "estimator" having the following qualities:
a) B¢ing'gnbiaSed, i.e. having-an expected valué_equai to the
v} qugﬁtity to be measured. - o
b)-ﬁéing efficient, i.e. that the.statistiCal.fluétuétions around
:thé'expected'value are as small as possible.

“The Véry_peculiar nature of our problem has'allowed us to study
this problemlrigorously, 1eading‘to some conclusions differing ffom,those
of a previous study by P. R. Robrish.- o o

The basic formula is formula (2) of page 26:
Py »Jé{;: o+ LT | (2)
‘”It'exbresses thevexpected number of eVentsg4g? coﬁntéd in.a given angular bin,
when the monitor has regiétered Mi particles and the farget polariiation
is Ti.v The'index i can be considered as the number of the accelerator :
pulse (6r_thé frun“.ﬁumber); " The pafameters'IO land‘I1 are the ones we

want to calculate.

1. The Binomial Law of the Counts Nj

The statiStical fluctuations of the mumber of events Ni counted
in a given bin follows a binomial law, i.e.,
oo N NN Mi N
Probablllty (MI = CMi P 1-p) T

which includes the Poisson law in the special case_Pi <<1. We shall intro-

duce the convehtional variable:
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5 -
1l

- N. /M. T (3)
Equation (2) yields:

<xi>=._10 $ LT | (4)

‘where the symbol ( ) means "expected value." Moreover the binomial law

gives the mean squared fluctuations of X;:

- L x (Ix) ) .

2 _ _ il i

ox‘-—((xi-(xi))z)————M_——— | (5)

i - i

In our case equation (5) can be simplified because (xi)<<1, and becomes:
P (x.) I, + I.T. :
Gt = 1 _ 0 113 6)

2. The Weighted Averages of Counts

We shail now consider all the unbiased esfimators'YO and Yy for

' the quantities IO and Ii, which are a-linéér function of the different
counts Nl’ NZ"" Ni“" which have been recorded in the same angular bin,
for successive accelerator pulses. .They;éré equaii} linear in'xi due to

the definition (3) and therefore can be written:

Yo=1la x; = with Yy = I (7
_‘Y1=2bixi - with KYp=1) . (8)

Given any set of weights w;j, such as:

L ow, =1 R )
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we can build two'estimators such‘as (7) and (8) (and'reciprocally)

'Thls theorem is proven ea511y by taklng the welghted average of ‘equation
4 once and agaln after multlplylng both members by T ~ These two oper—_
ations yleld the two follow1ng_fbrmulas. ’

(X) =L+, T : (10)

T =1.T+ L T2 . -
AT =TT+ T2 (D

where the‘weighted'éverage symbol X = I W, Xy has been used systematically.

3. The General Polarlzatlon Formmlas

Equatlons (10) and (11) can be solved, y1e1d1ng

L2 T®-T® ‘ |

0 — - )
TZ - (T)? - |

=X -TC0 g

) - T2-(T)?

Let us introduce two variableS'YO-énd Y;:

5 . - |
2 - (T)2 o
Y1f=>;?§——4l::£g_' S o (15)

The mean value of Y0 and Y1 can be identified with fheeright hand side of -
equations (12)»and (13). Therefore (Y0>= I0 and.<Y1)='Il, whiCh:meaﬁs that
they are the unbiased 1inear estimators of I0 and»I1 introduced in (7) and

(8). We can easily transform equations (14) and (15) in order to make
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explicit'the coefficients a; and bi of (7) and (8):

ey R iy S |
1o (LT ) = apm oy, LT a6)
22 L. 1= 2
T (T) T - (T)
Y, ='<T_:.L__X> =>b.= W. T3 =T (a7
w2 2 e R
ATE- (T) ™ - (T)

All unbiased linear estimators of Iy and Iy can be expréssed by

equations (14) and (15) or (16) and (17). Ih partigular; we shall con-
sider 3 typical estimators that have been used in this context. All three
are of the'formﬂ(14) and (15) and therefore are équally unbiased:

2

a) The "X“" estimators (introduced in P. R. Robrish thesis, p. 45,

formula (4)): both Y0 and Yl,correspond to the samevweight»
W, Mi/(I0 + IlTi);
B)- The conventional estimators:(Ibid; p.'46, formula. (6)): both '

~

i
c) The simplified estimators used in this work correspond to more

complex weights but lead to simpler formulas:

Y. » w,o~ 1 if T.>0; w.~ —  if T, <0
0 i Mt : i i M i
Mo 4 M, o
Y1 oW, N — if Ti >0 W, ® — it T. >0
- MT, | oMT, t

1 ) 1.
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where
M= 7 M and MT = ) M.T.
T.>0 ' T.>0 * 1
M=7 M and  MT = J MT.
T.<0 = ' o T<0 b

Intrqducingvthese.weights in (14) and (15), we may simplify the
expressions Of‘YO and Yl’very eésily, because in both cases T = 0. This
leads to what we call throughout this report the '"simplified formulas"
(see equations (3 and 4), page 27): |

+ -

N

o Ny s Mgt o
Y, - M _ M _ . )
, T+ (1) |
NN
. . -
| | T + (-T)) '

These fdrmulas,can be found easily by supposing that there are
Jonly two Valuesxof thé-target polarization, T" and T", in the whole exper-

- iment.

4. Comparison of the Efficiency of the Different Estimators
We haVe found that all the polarization formulas considered are
unbiased and therefore quite satisfactory. However, we'need to compare

2 estimators which are

their efficiencies, in particular those of the "X
optimal under certaih conditions, to those of the simplified estimators
~which are the most practical. This is done easily.by comparing the covar-

iance matrices of the two-variablos»Y“ and Y] obtaincd for dif(eTent values
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of the,cqéfficients :ai'ahd-bi in'(?) and (8). The general covariance

‘matrix ICI isgiven by:

: \
- ] 2 o2 2
Cy02 = ((.Yov (Y5 = ] 33 %,
. o | _ _ 2 . '
”Cyoyl = ((YO (YO))(Yl. -CYpP» = | ab, cxi , } o)
S 2. _ 2 2 .
Gz S0 )T L b; %k, )

 where OXZ is given by (6).
i .

a) The case of the‘"XZ" Estimators

It is characterized by a weight W, inversely proportional to GX?

i
as seen above:
_ . M. '
. 1 i '
W, = = . - (21)
1 N 2 - N(Id+IlTi)_ : _ :
X.
i : :
_ ' _ 0 171

If we Cérry in (20) the expression of ox? given by (21)"
o . |

2
Oxi - I/Nwi

..and if we use the expression of" a; and ’bi given by (16) and (17), we

get a very simple'expfession of the covariance:

@ /01l abb0rDO



-62-

g — . A
Kool T
Va2 N 2 Y42
0 o !
ol T ot Yy (22)
Yo N 7 2 Y12 .
2 SR N |
y.2 N — .
e )

b) The Case of the Simplified Estimators

A similar calculation yields the following covariance:

S - M R M YIA.oTZ‘”_IlTJ(T_fT_ “ )
Yo MM (T-1)?
o o~ + - -
S oM L TLTT o ? (23
Yo MM (t-T)? R
. C o
S o MM Io‘“IlT T wn-

ooy at)? )
where the t11de means averaglng over ‘the. 2 51gns of the polarlzatlon for

example T = o ; +MM T
+

2

c) Comparlson of the X and the Slmpllfled Estlmators

They turn out to be almost equal when the dlstrlbutlon of the polar-
_ ization of the target is peaked around two different values. This is in-
- deed the case ‘in our experiment where the polarization distribution for

' one:typical measurement (1360'MeV/c overall statistics) is:



-
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48.0 + 1.7%

+
i

T *o.- = 47.6 * 1.6%

The polarization is monitored during each run, not to vary by more than
10%. But the effective deviation (r.m:s.) is only 3.5%. This allows us

to conclude that there is no visible difference of efficiency between the

simplified'and the X2 estimators, because this'differenée is of the order

\

1%. A tedious but straightforward computation allows us to

(o /1)’ 1%
express thls difference under the following form: .

X S 2 : ;

C - C = a..C O . 24
Yiy in' 1) yiyj v T o (24)
Let us just.outline the the methods. We note §(T), the distribution of

target polarization during an éxperiment, made of a positive and a negative

part
| s = M+6+(T2 +‘M:a‘(T)
M+ M
with | ' "fa t(T)dT.= 1, | [T s (DT =
and e -T-t)_é 8(T)dT = o

Then the X2 weight function entering in fOrmulaé (22) is

o 8(m
. -W(T) =
MO T T
o sm
N = f dT
| T, T |
| C1-IN
- T8 (T) 0
T = f TFLT i
| ~ 2
1 I
2 8T 4o - 1T "otV

1
%«f} B b PN E a0
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we can form-the common denominator Of.(ZZ):

. NI +,T) -1
_ ‘ NI,

Carrying‘these results in (22) we get simpler exptessions, for instance:

; 2
sz ~ NI,

Y12 N(IO+11T) -1

Now we shall compute a zero order approx1mat10n N of N We checked

0

N that carrylng No. instead of N in the expressions of C? y. yields CS
717 _ i’
The dlfference as announced in. (24), depends on the second order correc-
tion that we shall compute now. The Taylor exPansiOn of the integrandvin

the integral expression of N yields:

_ o ‘ L , _ 2(1-1%2 \
N = f —_-%I_- X Mi (T) (.__!'___i_ + () (T-Ti) + (I-l___—/.
MM % 10+11T 0 I.T)*
(NS .
N= N, + c + ...
0 . <10+11T ,tnj

The second order term is of the order of 0% . That leads directly to the

form of the second member of (24).

5. Conclusion-
There is no reason whatsoever to use any polarization formula but
the simplified one. This can be made intuitively evident, by looking at

the following figure:
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-

]

-1 T o T +1

Target Polarization

XBL 762-2186

- Fig. 30

The simplified formula ébnéists in détermining the straight line IO + IlT
passing thfough the twoﬁaverage'points A* and A”. The information added
_by the X2 formula conSists.in makinglan independent fegressionvanalysis of
each cloud, the one with‘bositive'target polariiatibn, énd the one with

negative target polarization.
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