Lawrence Berkeley National Laboratory

Recent Work

Title
SPECIFIC HEAT OF YBA\[SUB]2\] CU\[SUB]3 \ O\[SUB]7

Permalink
https://escholarship.org/uc/item/28s132ht

Authors
Fisher, R.A.
Gordon, J.E.
Kim, S.

Publication Date
1988-02-01
Materials & Chemical Sciences Division

To be presented at the International Conference on High-Temperature Superconductors and Materials and Mechanisms of Superconductivity, Interlaken, Switzerland, February 29–March 4, 1988, and to be published in Physica B

Specific Heat of YBa$_2$Cu$_3$O$_7$

February 1988

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SPECIFIC HEAT OF YBa$_2$Cu$_3$O$_7$*

R. A. FISHER, J. E. GORDON†, S. KIM, N. E. PHILLIPS AND A. M. STACY

Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, USA

The specific heats of five YBa$_2$Cu$_3$O$_7$ samples were measured in the range 0.4-100K in fields of 0, 3.5 and 7T. For two samples Cr was partially substituted for Cu. This produced only a small decrease in T_C (0.35 K/mole % Cr) but a strong suppression of the Meissner effect and $\Delta C/T_C$, which provided a basis for estimating the normal-state specific heat near T_C. A third sample had Cr present in an impurity phase. Two undoped samples showed evidence of fluctuation effects near T_C. A comparison of these results with other work is given.

Of the 5 samples of YBa$_2$Cu$_3$O$_7$ (YBCO) studied, one, Y1, was accidentally contaminated with Cr, and had a composition corresponding to YBa$_2$Cu$_{3-x}$Cr$_x$O$_7$, with $x \approx 0.08$. The specific heat (C) of this sample, which was measured only below 30K, showed clear evidence of localized magnetic moments that ordered in zero magnetic field near 1.5K (1). On the assumption that the Cr had substituted on the Cu sites, it was decided to investigate the effect of varying x on the Cr ordering and other features of the specific heat, and Y4 and Y5 were made with $x = 0.015$ and 0.040, respectively.

All samples were characterized by Meissner effect measurements and the values obtained for the onset T_C and ΔC (10 to 90%) are reported, along with other experimentally determined parameters, in Table I. $\gamma(0)$ is the coefficient of the zero-field linear term in C, $\partial \gamma/\partial H$ is the field dependence of the linear term measured directly at low temperatures, γ is the value deduced from $\Delta C(T)/T$, θ_D is the Debye temperature, and B_3 and B_5 are the coefficients of the T^3 and T^5 terms in the lattice specific heat.

Specific heat data for Y3 are shown in Fig. 1. The data near T_C are more precise than for other samples, and are shown for that reason, but this sample is also unusual in showing structure in C that is suggestive of a (broadened) step-wise transition. The upturn in C/T at low temperature is typical of that observed for the other samples (and also for YBCO samples studied elsewhere) except that in Y1 the upturn is larger, occurs at a higher temperature, and peaks near 1.5K. This difference between Y1 and samples Y4 and Y5, the fact that T_C for Y1 was not depressed by the Cr, and also the fact that Y1 exhibits a Schottky anomaly in 7T consistent with the value of x and the occurrence of localized moments on the Cr ions, suggest that in Y1 the Cr was in an impurity phase, and that the ordering of the Cr was not associated with Cr substituted on the Cu sites.

The analysis of C into its components -- lattice, C$_L$, electronic, C$_e$; impurity, C$_I$; and hyperfine, C$_H$ -- is shown for Y3 in three magnetic fields in Fig. 2. The low temperature up-turn in C, $C(0)$, can be fitted by the high-temperature tail of a Schottky anomaly. In 3.5 and 7T, C$_e$ could also be fitted by a Schottky anomaly by adjusting the spin (S) and g values (but not the entropy). This adjustment presumably made a crude allowance for the effects of internal fields, which are clearly not negligible. The impurity concentration, n_I, (see Table I) was derived from the $S=1/2$, g=2.3 Schottky anomaly fitted to
the data in 7T. The linear, electronic term in C, \(C_e(H) = \gamma(H) T \), is adequately defined by the data between 1 and 5K, and was found to be linear in H, as observed for conventional type II superconductors.

The field dependence of C near T, is shown in Fig. 3 for sample 3. The behavior differs from that of conventional type II superconductors in that the anomaly is diminished with increasing field but neither the temperature of the maximum in C/T nor the temperature of the onset of superconductivity is substantially affected. These features, which may reflect the importance of fluctuation effects, are similar to those observed in a single crystal (2) that showed a much sharper transition. The solid curve in Fig. 3 represents data for Y5, which shows no observable anomaly or field dependence in this temperature region, and which are therefore assumed to represent the normal state. Both the data for Y3 by themselves and the comparison with the curve for Y5 suggest that earlier estimates (3) of \(\Delta C(T_c) \) for Y2 from the difference between the zero field and 7T data are low. Here \(\Delta C(T_c) \) was estimated from the entropy conserving construction for Y3 shown in Fig. 4c, and the values of \(\gamma \) deduced for the weak-coupling limit, \(\Delta C(T_c) = 1.43 \gamma T_c \), are given in Table I, along with corrected values for Y2.

Parameters derived from other specific heat measurements on YBCO are listed in Table II. The quantity \(\gamma(0) \) is of particular interest and it is interesting to note that many of the reported values fall in the range 6-9 mJ/mole K². Furthermore, the lower values may well arise from an extrapolation of C/T vs T² from a temperature that is too high -- the effects of phonon dispersion are significant at 5K and in combination with the T² term in C they tend to produce such an error, in a simple analysis. This suggests that a \(\gamma \) value of the order of 6-9 mJ/mole K² is an intrinsic property of YBCO, and not just a measure of the amount of nonsuperconducting material. Since \(\gamma(0) \) is not very dependent on oxygen content (4,5), it seems unlikely that it arises from two-level systems associated with oxygen vacancies, leaving an intrinsic electronic contribution such as that predicted in the RVB (6) model as the most probable origin.

* Supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract DE-AC03-76SF00098. Additional support for J. E. G. was provided by an Exxon Education Grant from the Research Corporation and the Associated Western Universities - Department of Energy Sabbatical Participant Program.

Permanent address: Physics Department, Amherst College, Amherst, MA 01002, USA

REFERENCES

(2) S.E. Inderhees et al., submitted to Phys. Rev. Lett.
(4) A.P. Ramirez et al., Nov. 1987 MRS Conference, Boston, MA and to be published by the Mat. Res. Soc.
(5) S. von Molnar et al., submitted to Phys. Rev. B.
(15) G. Panova et al., JETP 46 (1987) 79.
(20) T. Laegreid et al., submitted to Physica Scripta.
(21) T. Laegreid et al., submitted to Phys. Rev. B.
(22) S.J. Collocott et al., submitted to Phys. Rev. B.
(23) M.B. Salamon et al., submitted to Phys. Rev. Lett.
(25) W. Brill et al., submitted to Europhys. Lett.
(31) M.B. Maple et al., in: Novel Superconductivity, eds. S.A. Wolf and V.

TABLE I. Parameters characterizing $YBa_2Cu_3O_7$. [All units are in mJ, mole, K and T.
 n_i is moles/mole YBCO.]

<table>
<thead>
<tr>
<th>n_i</th>
<th>$-4\pi x_V$</th>
<th>T_c</th>
<th>ΔT_c</th>
<th>$\gamma(0)$</th>
<th>$\partial \gamma/\partial H$</th>
<th>$\Delta C/T_c$</th>
<th>γ^c</th>
<th>H_{c2}/T_0</th>
<th>θ_D</th>
<th>B_3</th>
<th>B_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>0.08</td>
<td>0.28</td>
<td>91</td>
<td>9</td>
<td>−20</td>
<td>−0.3</td>
<td>433</td>
<td>0.311</td>
<td>0.0012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y4,*f</td>
<td>0.007</td>
<td>0.11</td>
<td>91.5</td>
<td>5</td>
<td>8.75</td>
<td>0.16</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y5,**f,g</td>
<td>0.014</td>
<td>0.11</td>
<td>91</td>
<td>6</td>
<td>9.3</td>
<td>0.17</td>
<td>−0</td>
<td></td>
<td>432</td>
<td>0.313</td>
<td>0.0014</td>
</tr>
<tr>
<td>Y2</td>
<td>0.005</td>
<td>0.23</td>
<td>92</td>
<td>8</td>
<td>6.8</td>
<td>0.20</td>
<td>52</td>
<td>36(43)</td>
<td>150(180)</td>
<td>452</td>
<td>0.273</td>
</tr>
<tr>
<td>Y3</td>
<td>0.004</td>
<td>0.20</td>
<td>92</td>
<td>5</td>
<td>6.95</td>
<td>0.16</td>
<td>47</td>
<td>33(40)</td>
<td>160(210)</td>
<td>457</td>
<td>0.264</td>
</tr>
</tbody>
</table>

(a) All of the samples had hyperfine components A_n with A_n ranging from 0.2 to 0.3.
(b) $\Delta C/T_c$ is the ideal entropy discontinuity for a sharp transition using
the solid curve shown in Fig. 4 for Y5 for which $\Delta C/T_c$ was completely suppressed.
(c) Values of γ in parentheses were calculated from $\Delta C/T_c = 1.43 f_s$ assuming that $\gamma(0)$ is a
measure of the fraction of normal YBCO, $f_n = 1 - f_s$.
(d) $H_{c2}/T_0 = [(1 - f_s)/(\partial \gamma/\partial H)]$ where $N_D = 1.944 \times 10^9$.
(e) $\theta_D = 3(1.944 \times 10^9 N_D/B_3)$ where $N_D = 13$.
(f) Samples Y4 and Y5 had the composition $YBa_2(Cu_{98.5}Cr_{0.015})O_7$ and $YBa_2(Cu_{2.960}Cr_{0.040})O_7$. respectively, as determined from standard spectroscopy.
(g) Y5 was prepared by a different method which gave $T_c = 92.5$, $\Delta T_c = 5$ and $-4\pi x_V = 0.40$ for an
undoped sample.
TABLE II. Comparison of parameters derived from specific heat measurements on YBa$_2$Cu$_3$O$_7$. [Units are K, T and mJ (for a gram formula weight--666g/mole YBCO). $\Delta C/T_C$ is the ideal sharp entropy conserving discontinuity at T_C, equal to 1.43γ in the weak coupling limit. At T=0K $\theta_D=3/(1.944\times10^5 N_D/B^2)$ where $N_D=13$. Blanks indicate that the property was not determined while a + for $C_i(0)$ indicates detection.]

<table>
<thead>
<tr>
<th>T_C</th>
<th>H</th>
<th>$C_i(0)$</th>
<th>$\gamma(0)$</th>
<th>$\Delta C/T_C$</th>
<th>γ</th>
<th>θ_D</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>0</td>
<td>+</td>
<td>3.5</td>
<td>39±8</td>
<td>27±6</td>
<td>378</td>
<td>7,8</td>
</tr>
<tr>
<td>92</td>
<td>0,12</td>
<td>+</td>
<td>4.2</td>
<td></td>
<td></td>
<td>390</td>
<td>4</td>
</tr>
<tr>
<td>94</td>
<td>0</td>
<td>0</td>
<td>7.3</td>
<td></td>
<td></td>
<td>434</td>
<td>9</td>
</tr>
<tr>
<td>96</td>
<td>0</td>
<td></td>
<td></td>
<td>55</td>
<td>38</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0,0,22</td>
<td>+</td>
<td>-8</td>
<td>53</td>
<td>37</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>0</td>
<td></td>
<td></td>
<td>22</td>
<td>15</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>46</td>
<td>32</td>
<td>13,14</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>0</td>
<td></td>
<td></td>
<td>42</td>
<td>29</td>
<td>14(a)</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>0,8</td>
<td></td>
<td>7.8</td>
<td>-26</td>
<td>-18</td>
<td>384</td>
<td>15</td>
</tr>
<tr>
<td>93</td>
<td>0,8</td>
<td>+</td>
<td>-12</td>
<td>69±15</td>
<td>48±10</td>
<td>380</td>
<td>16,17</td>
</tr>
<tr>
<td>92</td>
<td>0</td>
<td></td>
<td></td>
<td>33±16</td>
<td>23±4</td>
<td>400</td>
<td>18</td>
</tr>
<tr>
<td>92</td>
<td>0</td>
<td></td>
<td></td>
<td>37</td>
<td>26</td>
<td>19-21</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>0</td>
<td>0</td>
<td>-9</td>
<td></td>
<td></td>
<td>420</td>
<td>5(b)</td>
</tr>
<tr>
<td>92</td>
<td>0</td>
<td>+</td>
<td>11.4</td>
<td></td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>0</td>
<td></td>
<td></td>
<td>16±3</td>
<td>11±2</td>
<td>2(b)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0,6</td>
<td></td>
<td></td>
<td>42±2</td>
<td>29±1</td>
<td>2,23(b)</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>0</td>
<td></td>
<td></td>
<td>43±7</td>
<td>30±5</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>0</td>
<td></td>
<td></td>
<td>44±11</td>
<td>31±8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td></td>
<td></td>
<td>40±3</td>
<td>28±2</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>0</td>
<td></td>
<td></td>
<td>59</td>
<td>41</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>0,5</td>
<td>+</td>
<td>5.5±0.5</td>
<td>48±2</td>
<td>34±1</td>
<td>389</td>
<td>28,29</td>
</tr>
<tr>
<td>94</td>
<td>0</td>
<td>+</td>
<td>8.21</td>
<td></td>
<td></td>
<td>383</td>
<td>30,31</td>
</tr>
<tr>
<td>91</td>
<td>0</td>
<td>+</td>
<td>12</td>
<td></td>
<td></td>
<td>390</td>
<td>32(c)</td>
</tr>
<tr>
<td>91</td>
<td>0</td>
<td>+</td>
<td>19</td>
<td></td>
<td></td>
<td>371</td>
<td>32(c)</td>
</tr>
<tr>
<td>91</td>
<td>0</td>
<td>+</td>
<td>20</td>
<td></td>
<td></td>
<td>368</td>
<td>32(c)</td>
</tr>
<tr>
<td>92</td>
<td>0,7</td>
<td>+</td>
<td>6.95</td>
<td>47</td>
<td>33</td>
<td>457</td>
<td>(d)</td>
</tr>
<tr>
<td>92</td>
<td>0,7</td>
<td>+</td>
<td>6.8</td>
<td>52</td>
<td>36</td>
<td>452</td>
<td>(d)</td>
</tr>
</tbody>
</table>

(a) Gd substituted for Y.
(b) Single crystal.
(c) Three samples made by oxalate coprecipitation, solid state and organometallic precursor decomposition, respectively. $\gamma(0)$ for a thick film was 73 and for a powdered sample 34. For a sample which was not superconducting above 70K $\gamma(0)=53$.
(d) This research.
Figure 1. C/T vs T for Y3.
Figure 2. Analysis of C for Y3 into component contributions.
Figure 3. Field dependence of C for Y3 near T_c. The solid curve represents the field-independent data for Y3.
Figure 4. Estimation of $\Delta C(T_c)$ for Y3. The solid curve represents the difference between the zero-field data and the data for Y5 (see Fig. 3). The dashed curve is the entropy conserving estimate of ΔC. The open circles give, for comparison, $[C(H=0)-C(7T)]/T$.