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Imaging of a fluid injection process using geophysical
data — A didactic example

Michael Commer1, Steven R. Pride1, Donald W. Vasco1, Stefan Finsterle2, and
Michael B. Kowalsky1

ABSTRACT

In many subsurface industrial applications, fluids are in-
jected into or withdrawn from a geologic formation. It is
of practical interest to quantify precisely where, when, and by
how much the injected fluid alters the state of the subsurface.
Routine geophysical monitoring of such processes attempts to
image the way that geophysical properties, such as seismic
velocities or electrical conductivity, change through time
and space and to then make qualitative inferences as to where
the injected fluid has migrated. The more rigorous formu-
lation of the time-lapse geophysical inverse problem forecasts
how the subsurface evolves during the course of a fluid-in-
jection application. Using time-lapse geophysical signals as
the data to be matched, the model unknowns to be estimated
are the multiphysics forward-modeling parameters controlling
the fluid-injection process. Properly reproducing the geo-
physical signature of the flow process, subsequent simulations
can predict the fluidmigration and alteration in the subsurface.
The dynamic nature of fluid-injection processes renders im-
aging problems more complex than conventional geophysical
imaging for static targets. This work intents to clarify the re-
lated hydrogeophysical parameter estimation concepts.

INTRODUCTION

There are many scenarios in which the earth’s subsurface is being
altered by anthropogenic activity. Our focus will be on processes that
involve the injection of fluid into the subsurface such as that which

occurs during wastewater storage, hydraulic-fracture generation,
CO2 sequestration, enhanced geothermal-energy generation, enhanced
oil recovery, groundwater remediation, and underground gas or liquid
storage. Any of these applications involve (hydrologic) state changes in
some subsurface system due to fluid injection. Understanding and pre-
dicting its impact requires quantitative estimates of not only where the
fluids went once they were injected but also how they altered the state
of the subsurface. As will be outlined in detail, these concepts and
overall goals are distinct from those underlying time-lapse geophysical
monitoring approaches such as crosswell seismic (e.g., Landrø and
Stammeijer, 2004; Daley et al., 2008; Marchesini et al., 2017), seismic
codamonitoring (e.g., Kanu et al., 2014; Obermann et al., 2016), cross-
well electromagnetics (EM) (e.g., Binley et al., 2001; Day-Lewis et al.,
2003; Marsala et al., 2008), and crosswell electrical resistivity tomog-
raphy (ERT) (e.g., Daily et al., 1992; Bergmann et al., 2012).
In this tutorial, we elaborate on the concepts around estimation of

parameters that control the migration of injected fluids. Despite our
specific application, we suggest a broader point of view, called “im-
aging a subsurface process.” The main distinction of the process-
imaging approach presented here is in the definition of the forward
model that simulates how time-lapse geophysical signals vary dur-
ing the course of fluid injection. In conventional formulations
of geophysical-monitoring inverse problems, the unknowns are
the time-varying geophysical properties such as seismic velocities,
electrical conductivity, or the dielectric constant, in which the for-
ward model only simulates the corresponding geophysical signals
(seismic traces, electrical voltages, etc.). The process-imaging for-
mulation entails modeling of geophysical signals as one component
of a larger coupled multiphysics forward model.
Our reasoning for the process-based perspective is that geophysical

observations have found their way into a range of subdisciplines that
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involve various flow processes, an early one being reservoir engineer-
ing (e.g., Nolen-Hoeksema, 1990; Pagano et al., 2000), followed by
the vast field of hydrogeophysics (e.g., Rubin and Hubbard, 2005a;
Vereecken et al., 2006; Binley et al., 2015); soil moisture studies
(e.g., Samouëlian et al., 2005), biogeophysics (e.g., Atekwana and
Slater, 2009), agricultural geophysics (e.g., Allred et al., 2010), and
geothermal exploration (e.g., Bromley, 2018).
The trend of geophysical inquiry of hydrologic systems has given

rise to a variety of deterministic and stochastic hydrogeophysical
parameter estimation schemes, along with a variety of classification
attempts (Linde et al., 2006a; Ferré et al., 2009; Hinnell et al., 2010;
Herckenrath et al., 2013; Liang et al., 2014; Camporese et al., 2015;
Linde and Doetsch, 2016). Here, we will follow the simple distinc-
tion between (fully) coupled and uncoupled hydrogeophysical in-
version methods (e.g., Hinnell et al., 2010) because we will show
joint inversion examples that are closely related to the coupled
method. Further explanation and more related methodological
reviews are given below.
Our didactic treatment of the subject also tries to bridge a possible

conceptual gap that may exist when practitioners transition from con-
ventional (often large-scale) geophysical inversions for static targets
— common in exploration and reconnaissance problems — to
imaging of dynamic flow systems. Hence, we will first lay out
the overall concepts in a way that is applicable to any imagined
fluid-injection process as constrained by geophysical data. After-
wards, we make the ideas definite by giving a particular example
of a multiphysics forward model, namely, the injection of salt water
into a permeable formation with time-lapse electrical data gathers
used to image the process. The last portion of the paper presents
a numerical approach for performing multiphysics inverse modeling
for process-driving parameters. Again, mainly for didactic purposes,
these demonstrations attempt to be distinct from the hydrologic lit-
erature by using techniques that are more common to conventional
deterministic geophysical imaging on rectangular parameter grids.
Finally, in discussing this particular forward-modeling application,

we attempt to be self-contained. Excursions into related hydrogeo-
physical aspects are interspersed throughout on a contextual basis,
assuming some textbook-level background of basic hydrogeology
(e.g., Helmig, 1997; Hiscock and Bense, 2014). In discussing the
inverse problem, we also assume that the reader has some familiarity
with least-squares inverse modeling concepts as presented, for exam-
ple, by Menke (1984) and Tarantola (2005). Vasco and Datta-Gupta
(2016) cover imaging and subsurface fluid flow principles with a fo-
cus on trajectory-based flow modeling.

PART 1: IMAGING A SUBSURFACE
FLUID-INJECTION PROCESS

By “imaging the process” of fluid injection, we mean that we have
the ability to simulate numerically how the injected fluid, along with
the solute and heat it carries, enters the subsurface, migrates from the
borehole, and changes pertinent subsurface properties. To be success-
ful, we must have confidence that such simulations represent, to a
reasonable approximation, what actually has occurred in the subsur-
face. The ability to simulate a process and have the simulation be
realistic has two equally important components.
First, we need forward models of the fluid-injection process that

appropriately represent the pertinent physics and chemistry that take
place during the fluid-induced subsurface alterations. They typically
come in the form of sets of coupled partial differential equations

(PDEs) that are solved numerically. Such multiphysics forward mod-
eling is also referred to as THMC (for thermal, hydraulic, mechani-
cal, and chemical) models (e.g., Taron et al., 2009). If necessary,
models are also provided for how the coefficients of the PDEs —
or material properties such as permeability and porosity — evolve
over time. Bromley (2018) alludes to this aspect while discussing the
role of geophysical monitoring of THMC processes. The dependent
variables of the PDEs will be called here the “primary fields”; they
are fields such as fluid pressure, Darcy velocity, chemical concentra-
tion, temperature, stress, particle displacement (or particle velocity),
and electric fields.
The forward models involve voxel resolution that is appropriate

to the fluid-injection application and always use voxels that are
much larger than the grain sizes of the material. Hence, simulations
of the fluid-injection process use a macroscopic “porous-
continuum” description of the physics and chemistry. Much of
the basic research surrounding the overall topic of imaging subsur-
face processes is in improving the porous-continuum forward mod-
els that describe the fluid-injection process, including the associated
subsurface property changes.
Second, in order for such forward modeling to be a useful repre-

sentation of reality, wemust know the initial conditions of all fields in
the forward model throughout the portion of the subsurface that will
be affected by the fluid injection. These initial conditions include not
only the spatial distribution of the primary fields of the process being
simulated but also the spatial distribution of the various material
properties that are the coefficients in the PDEs governing the fluid-
injection process. These material properties are quantities such as
Darcy permeability, porosity, thermal conductivity, thermal capacity,
solute dispersivity, and fluid-storage capacity.
We will refer to the material properties pertinent to the forward

modeling of the fluid injection process as hydrologic properties. In
contrast, geophysical (material) properties refer to the forward-
modeling PDE coefficients that define how time-lapse geophysical
signals vary during the course of fluid injection. Examples are elec-
trical conductivity or elastic moduli. In addition, to distinguish from
geophysical forward-modeling processes, we will consistently use
the adjective “hydrologic” when referring to any aspect related to
the fluid injection process.
The process-imaging inverse problem is to obtain all relevant ini-

tial primary fields and material property fields, as well as any other
process-relevant parameters that are required to simulate how physi-
cal properties evolve through time. All three groups define the set of
input parameters that need to be calibrated through some parameter
estimation scheme, i.e., inversion procedure.
Once all input parameters have been properly calibrated through

the inverse analysis, the forward model’s output matches given
observations. We can then say that we are imaging the subsurface
process given the observational database. Note that in addition to
time-lapse geophysical signals, the observations can include mea-
surements of the hydrologic primary fields (e.g., fluid pressure, tem-
perature, or chemical concentration measurements in boreholes), as
well as samples of material properties from well logs or core data.

Formulating the process-imaging inverse problem

Geophysical imaging commonly refers to the procedure of ana-
lyzing recorded geophysical signals to obtain maps of the spatial
distribution of geophysical properties such as seismic reflectivity,
seismic velocity, or electrical conductivity. If time-lapse collection

W2 Commer et al.
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of geophysical signals is taking place, one can monitor how the geo-
physical properties vary through time in the subsurface. One then
qualitatively associates a changing geophysical property at a voxel
with the arrival of injected fluid or altered stress at that voxel. In the
seismic industry, such time-lapse 3D imaging over petroleum res-
ervoirs is also known as 4D monitoring (e.g., Fanchi et al., 1999).
The coupled (hydrologic and geophysical) forward problem sim-

ulates the fluid-injection process in conjunction with induced time-
lapse changes of seismic or electrical properties and corresponding
changes of artificially sourced geophysical signals. Geophysical
data gathers serve to constrain the unknowns in the corresponding
parameter estimation process. Therefore, we have one large coupled
multiphysics forward model that is predicting, among many things,
how measurable geophysical signals are changing as the fluid in-
vades the subsurface.
The overall inverse workflow can then be summarized as (we

assume the geophysical data to be the only given observations):

1) Forward-model the entire fluid-injection process from the begin-
ning of fluid injection through the latest time-lapse geophysical
data. The forward modeling includes how the geophysical prop-
erties and geophysical time-lapse signals are being altered by the
fluid injection. Rock-physics models for how the pertinent
material properties are being altered by the fluid injection are part
of this multiphysics forward model.

2) Evaluate the difference between the recorded and simulated time-
lapse geophysical signals. If a satisfactory data fit is achieved,
stop. Otherwise, adjust the forward-modeling input parameters
with an influence on the observations.

3) Return to step 1 and repeat until an optimal estimate of the input
parameters is obtained throughout the region being affected by
the fluid injection at the current time-lapse geophysical data
gather.

This scheme follows the general framework of the coupled hy-
drogeophysical inversion approach described by numerous authors,
which we want to recount in the following section.

Excursion: Coupled versus uncoupled hydrogeophysical
inversion

Step 1 in the parameter estimation workflow outlined above tightly
couples the geophysical signal simulation to the fluid-injection for-
ward model. One could say that the geophysical (material) properties
from which data are predicted are constantly being updated internally
through the fluid injection process. This workflow is also known as
(fully) coupled hydrogeophysical inversion, with its counterpart often
referred to as an uncoupled (also decoupled or sequential) approach.
In uncoupled approaches, the geophysical properties pertinent to a
fluid-injection process are obtained via stand-alone geophysical
inversion.
Numerous uncoupled approaches have been reported in the liter-

ature (e.g., Hyndman and Gorelick, 1996; Binley et al., 2002; Kemna
et al., 2002; Lambot et al., 2004; Singha and Gorelick, 2005;
Vanderborght et al., 2005; Linde et al., 2006b). Their commonality
is that standalone geophysical data inversions, whether with one or
more data types, are part of the workflow. Resulting tomograms can
be converted to hydrologic properties and/or spatial plume delinea-
tions. The linkage is typically given by established rock-physics (or
petrophysical, where we use both terms interchangeably) relation-

ships, or through structural similarity constraints. Subsequent hydro-
logic model calibrations use the converted tomograms in the form of
a priori information and/or hydrologic proxy data.
Few studies compare the uncoupled against the coupled approach

(Sicilia and Moysey, 2007; Hinnell et al., 2010; Camporese et al.,
2015). The main drawback of coupled approaches is a bias from
incorrect rock-physics assumptions, whereas the decoupling allows
for alternatives through more forgiving ways such as structural joint
inversion (e.g., Linde et al., 2006a; Lochbühler et al., 2013). The
main argument in favor of coupled approaches is that they enforce a
quasi regularization through the conservation and transport laws of
the fluid-injection process itself, thus avoiding the need for other
regularization such as smoothing (Hinnell et al., 2010; Camporese
et al., 2015). In other words, the uncoupled geophysical inversion is
not regularized by the physics posed by the fluid-injection process,
thus needing regularization to mitigate its ill-posed nature. It is typ-
ically given through smoothing or other a priori information, which
may not always be based on physical principles or site-specific
characteristics and thus may introduce unwanted biases. Therefore,
diffuse tomograms due to excessive smoothing, or other inversion
artifacts, can adversely affect the final hydrologic image of un-
coupled inversions (e.g., Hinnell et al., 2010).
Our didactic purpose calls for some clarification on the regulari-

zation aspect because the argument that coupled inversion overcomes
the ill-posed nature of smoothness-constrained geophysical inverse
problems may lead to confusion. The reason is that this argument
is somewhat inessential because the inversion for geophysical
material properties is absent in a coupled inversion for the underlying
(process-defining) hydrologic material properties. In the presence of
insufficient data, every overparameterized inverse problem becomes
ill-posed.Whether imaging a spatially complex hydrologic state (e.g.,
tracer concentration) through uncoupled resistivity inversion or im-
aging a spatially complex distribution of underlying hydrologic prop-
erties that control the state (such as permeability) through coupled
inversion, both cases will require regularization. In other words,
although the evolution of resistivity is controlled by the physics of
the flow system, the distribution of permeability is not. A dedicated
numerical example below will support this clarification.
Thus far, the high computational demands have rendered the

regularization in coupled inversions less of a pressing need because
most demonstrations have involved only few parameters. They de-
scribe homogeneous models (Rucker and Ferré, 2004; Sicilia and
Moysey, 2007; Lehikoinena et al., 2009), horizontally layered (1D)
models (Looms et al., 2008; Hinnell et al., 2010; Irving and Singha,
2010; Kowalsky et al., 2011; Scholer et al., 2011; Busch et al.,
2013; Tran et al., 2014; Vilhelmsen et al., 2014), or preset facies-
like or dike structures (Huisman et al., 2010; Rings et al., 2010).
Geostatistical methods permit more spatial variability through
structural and stratigraphic information (Kowalsky et al., 2004,
2005; Finsterle and Kowalsky, 2008; Jardani et al., 2013; Ahmed
et al., 2014, 2016; Camporese et al., 2015), also using a handful of
forward-modeling input parameters numbering several orders be-
low that of typical large-scale geophysical 3D imaging problems.
Calculating large parameter sensitivity matrices for Gauss-Newton

style coupled inversions becomes computationally feasible when
certain simplifying assumptions can help accelerate the forward mod-
eling for either the fluid-injection process or the geophysical signal
evolution process. Faster flow simulation can, for example, be
achieved through trajectory-based modeling, sometimes also referred

Hydrogeophysical imaging — A didactic case W3
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to as streamline simulation, which basically resembles ray-based seis-
mic imaging (Vasco et al., 2004). On the other side, ERT sensitivity
calculations can be somewhat condensed through the use of temporal
moments of electrical potential perturbations, which essentially lets
one invert mean arrival times of ERT signals, instead of full time
series of voltages (Pollock and Cirpka, 2010; Pollock and Cirpka,
2012). We note that the latter three references present coupled inver-
sion studies in which the objective functions have regularizing terms
that penalize large spatial parameter fluctuations.

Fluid-injection effects on material properties

The above inversion workflow is based on the notion that the
injected fluid is altering the state of the subsurface, which in turn
alters a geologic media’s material properties and thus geophysical
signals that are being recorded during the course of the application.
The fluids being injected into the subsurface are out of equilibrium
with the in situ fluids. They will necessarily be at a higher fluid
pressure, may be at a different temperature, and will typically be
out of chemical equilibrium, that is, the solutes and water will have
different chemical potentials compared to the in situ fluids.
There are four main ways that injected fluids alter the material

properties of rock. First, fluid substitution is the process of an in situ
fluid being replaced by the injected fluid. The latter usually has dif-
ferent physical properties, caused by differences in chemistry, tem-
perature, and pressure. Focusing specifically on seismic rock
properties, the tutorial by Smith et al. (2003) details how to quantify
fluid substitution effects. The second way involves stress-induced
changes to rock properties. Here, the injected fluid provokes defor-
mation and stress change, sometimes at a considerable distance
from where fluid substitution is occurring. As a consequence, pre-
existing cracks and fractures can close or open, further altering
the mechanical and transport properties (e.g., Pride et al., 2017b).
Third, fluid injection may induce rock damage. Corresponding
stress changes can provoke the creation of new grain-scale cracks,
larger scale fractures, or slip on preexisting faults, which can further
alter the elastic and transport properties. Finally, chemical nonequi-
librium introduced by an injected fluid may infer precipitation or
dissolution of minerals, also altering the elastic and transport prop-
erties (e.g., Kang et al., 2003).

PART 2: A SPECIFIC EXAMPLE OF A PROCESS-
IMAGING FORWARD PROBLEM

The following specific example involves a higher salinity solution
that is injected from a well into a heterogeneous geologic formation
initially saturated with a lower salinity solution. We assume that a
background flow field exists in addition to the flow created by the
injection of the saline solution. To keep the example simple, we as-
sume that the porous continuum is isotropic, though heterogeneous,
and that there is a single in situ fluid that fully saturates the pore space.
The time-lapse geophysical data acquisition used in this example is an
ERT survey carried out across a group of monitoring wells.

Modeling the fluid injection and associated salt
dispersion

In the following particular example, fluid substitution is the sole
mechanism for provoking changes to the pertinent geophysical
property, which is electrical conductivity.

The saline solution, injected and in situ, is assumed to be an NaCl
solution in which the Na+ and Cl− ions are completely dissociated in
solution, a so-called strong electrolyte. We quantify the salt concen-
tration in each voxel of porous material using the mass ratio c, which
is defined as the total mass of Na+ and Cl− ions in the voxel divided by
the total mass of solution (Na+, Cl−, and H2O) in the voxel.
The solute mass balance in a porous material is given by (e.g., a

recent first principle derivation is given by Pride et al., 2017a)

ϕ
∂c
∂t

þ q · ∇c ¼ 1

ρf
∇ · ðρfD · ∇cÞ

þ ðcs − cÞQsðtÞδðr − rsÞ; (1)

where q is the Darcy filtration velocity, ρf is the total solution mass
density of the fluid, D is a dispersion tensor, and ϕ is the porosity
so that q∕ϕ is the average speed that the fluid is moving through
the pores relative to the solid grains. The advective derivative on the
left side largely represents solute accumulation due to the average
advection of solute, that is,

q · ∇c ¼ ∇ · ðcqÞ − c∇ · q (2)

with ∇ · q corresponding to the total fluid density changes and
∇ · ðcqÞ corresponding to the solute accumulation due to the aver-
age advection. The first term on the right side of equation 1 repre-
sents solute accumulation due to the diffusive and dispersive solute
transport. The source (second) term on the right side corresponds to
solution of concentration cs being injected at the volumetric rateQs

(m3∕s) at the point rs in the subsurface. Note that this source term
can have a nonconstant time history.
For isotropic materials, the second-order dispersion tensor D of

equation 1 is often modeled as (e.g., Scheidegger, 1961)

D ¼ Dm

F
Iþ γl

jqj
ϕ

x̂qx̂q þ γt
jqj
ϕ

ðI − x̂qx̂qÞ; (3)

where x̂q is a unit vector in the direction of fluid flow defined as
x̂q ¼ q∕jqj and F is the formation factor, which is commonly mod-
eled using Archie’s (1942) law as F ¼ ϕ−m, where the so-called
cementation exponent m depends on the grain shape. In what fol-
lows, however, we elect not to use Archie’s law and will treat the
formation factor as an independent unknown property to be inverted
for as it influences the electrical conductivity of the rocks.
In equation 3, γl and γt are called the longitudinal and transverse

dispersivities that have units of length and have been measured in a
host of laboratory experiments as being proportional to grain diam-
eter d (e.g., Delgado, 2007), although they are often thought to in-
crease with the increasing size of the plume (e.g., Gelhar et al., 1992).
Furthermore, in equation 3, the solute molecular diffusivityDm is

given by (e.g., Cussler, 2009)

Dm¼
�

1

νþjzþj
þ 1

ν−jz−j
��

1

νþjzþjkBTbþ
þ 1

ν−jz−jkBTb−

�
−1
;

(4)

where z� are the ionic valences that are the number and sign of
fundamental charges on each ion (so zþ ¼ 1 and z− ¼ −1 for
NaCl), ν� are the numbers of cations and anions in each salt mol-
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ecule (so νþ ¼ ν− ¼ 1 for NaCl), and kBTb� are the ionic diffu-
sivities of the individual Na+ and Cl− ions. The form of equation 4
is derived from the requirement of charge neutrality during diffu-
sion. Its other quantities are kB, Boltzmann’s constant; T, the tem-
perature in Kelvin; and b�, the mobilities of the cations and anions
as given by the Einstein-Stokes relation:

b� ¼ 1

6πηfR�
: (5)

Here, the effective ion radius for Na+ is Rþ ¼ 1.63 × 10−10 m and
Cl− is R− ¼ 1.07 × 10−10 m, while ηf is the solution viscosity.
To address the importance of diffusion to the evolution of the

salinity plume, Appendix A contains further details on a means of
quantifying the ratio of advection to diffusion through a local Péclet
number.
For the flow in the porous material, we combine the fluid mass

balance with the compressibility law for the fluid in the porous
material to obtain the rule for fluid-pressure change (see Pride, 2005)

ϕ
∂P
∂t

¼ −Kf½∇ · q −QsðtÞδðr − rsÞ�; (6)

which is complemented by Darcy’s law for the fluid flux through the
porous material,

q ¼ k
ηf

ð−∇Pþ ρfgÞ: (7)

It is the heterogeneity of the permeability field across the modeling
voxels that dominates the shape and evolution of the solute plume
cðr; tÞ of interest. In the above, P is the fluid pressure, k is the per-
meability, g is the acceleration of gravity, Kf is the fluid bulk modu-
lus, and QsðtÞ is the volumetric rate that electrolyte is being injected
into the subsurface at point rs. These laws for fluid flow assume that
the fluid pressure changes are sufficiently small. Hence, permeability
and porosity are not changing; that is, poroelastic deformation can be
neglected. Otherwise, if the fluid injection is responsible for signifi-
cant poroelastic deformation, then the laws of poroelasticity must
also be included in the forward model.
The above transport equations are solved numerically with a fi-

nite-volume approach realized in the flow and transport simulator
TOUGH2 (Pruess, 2004). The fluid properties that are influencing
the above transport are the fluid density ρf, the fluid viscosity ηf,
and the fluid bulk modulus Kf . The fluid properties ρf , ηf , and Kf

vary with concentration c, fluid pressure P, and temperature T.
TOUGH2 includes empirical relations for such state dependence
of the fluid properties. In the present modeling example, the fluid
injected into the subsurface is taken to be the same temperature as
the subsurface, which we assume has the uniform value of T = 25°C.

Modeling the geophysical signals

The set of equations 1–7 describe the transport of the injected
electrolyte through porous rocks, which has the effect of changing
the rock’s electrical conductivity. To establish the link to geophysi-
cal measurements of this effect, we introduce the expression for
the electrical conductivity of the electrolyte, which is given in SI
units as

σf ¼
1000N Aρfc

ðνþμþ þ ν−μ−Þ
e2ðz2þνþbþ þ z2−ν−b−Þ; (8)

where μ� are the atomic masses of cations and anions (given in grams
for one mole of these ions) so that νþμþ þ ν−μ− ¼ 58.44 gmol−1

for NaCl, N A is Avogadro’s number (6.022 × 1023 objects mol−1),
ρf is the solution mass density, and e ¼ 1.60 × 10−19 C is the fun-
damental charge. The factor of 1000 converts grams to kilograms so
that σf is given in SI units. The ratio on the right side of equation 8
converts concentration c as expressed as a mass ratio to concentration
as expressed in terms of numbers of NaCl molecules that went into
unit volume of solution.
The time-lapse increase in electrolyte concentration c in a given

porous voxel creates an increase in σf , further causing the bulk rock
conductivity σR to vary through time according to the model

σR ¼ σf∕F: (9)

Equation 9 provides the geophysical material property input σR to
our geophysical forward simulator.
The formation factor F in equation 9 depends only on the pore-

space topology, and it is independent of the changing salinity field.
If the framework of grains is highly deformable, the formation fac-
tor could vary with the pore pressure associated with the fluid-in-
jection process. However, this effect is small for normal injection
scenarios at depth (Pride et al., 2017b) and will be ignored here.
Equation 9 is valid whenever electrical conduction along the surface
of the grains of the rock is negligible. In this case, bulk ionic mi-
gration through the pores of the rock is the sole contributor to elec-
trical conduction.
The geophysical signals due to changes in σR are recorded by

means of a predefined array of ERT source and receiver electrodes,
here given by a crosswell survey configuration. The source electro-
des inject a current I (measured in Cs−1) into the geologic media,
usually in a time-harmonic manner so that overvoltages at the sen-
sor electrodes do not have sufficient time to build up. Such electrode
impedances are associated with the conversion from ionic conduc-
tion in the earth to electronic conduction in the electrodes. However,
the frequency of the applied current is sufficiently small that the
associated EM diffusive skin depth is much greater than the depth
of investigation so that the response is quasistatic in nature. The
electric field in this case is expressed in terms of an electric potential
as E ¼ −∇φ where the electric potential φ (the voltage) is the sol-
ution of the quasielectrostatic problem

∇ · ½σRðrÞ∇φðrÞ� ¼ IðtÞ½δðr − rþÞ − δðr − r−Þ� (10)

with rþ being the electrode position where the possibly time-vary-
ing current IðtÞ is being injected and r− being the position where the
same amount of current is being extracted. Further details on the
simulation of ERT data acquisition are given, for example, by Sin-
gha and Gorelick (2005), Vanderborght et al. (2005), and Pollock
and Cirpka (2010).
Equation 10 is the final component of our multiphysics forward

model in this example. One may note some conceptual similarity
between the two interacting physical systems, one describing fluid
injection (equation 1), while here (equation 10) it is an injection of
electrical current. Both of their responses depend on their particular
material properties.
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Every time that we gather electrical data during the course of the
fluid-injection experiment, we model the evolving rock conductiv-
ities due to fluid injection according to the above salinity model and
its petrophysical link (equations 8 and 9). We then numerically
solve for the voltages φ, which become data predictions to be com-
pared against actual voltage measurements during the process-im-
aging workflow.
The fundamental difference to more traditional geophysical in-

version, where one would solely estimate σR, is that the parameters
adjusted in each subsurface voxel to match the voltage measure-
ments are those that influence the transport of salinity, namely,
the permeability kðrÞ and the formation factor FðrÞ. Note that
the formation factor is influencing the evolution of salinity through
equation 3 and the rock’s electrical conductivity through equation 9.
The spatial variation of porosity ϕðrÞ will always be much

smaller in a percentage sense than the spatial variation in permeabil-
ity kðrÞ and formation factor FðrÞ. The places where porosity
explicitly enters the above formulation, as a factor multiplying the
time derivatives, are shown in equations 1 and 6. Note that the oc-
currences in equation 3 are neglected (Appendix A). So even if the
porosity goes through a small but sharp contrast at an interface, the
porosity is not explicitly acted upon by a spatial derivative. As such,
we will take the porosity to be a uniform constant in the inverse
modeling, which is an approximation that can be tested.
Therefore, the spatial distributions of the material properties kðrÞ

and FðrÞ represent the parameter space in the process-imaging in-
verse problem discussed next. All of the other fields are simulated
through time and space according to the above multiphysics for-
ward model. The initial condition for the fluid pressure prior to the
start of electrolyte injection should also, formally, be a target of the
inversion, but in the present example we assume that it is estimated
prior to the tracer injection from well measurements. Similarly, the
initial salinity field is assumed to be uniform throughout the subsur-
face and known prior to the start of fluid injection from well mea-
surements. Due to such a priori information, the initial conditions of
primary fields in the present model are assumed known.

Excursion: About petrophysical relations

Equation 9 constitutes the crucial coupling between two different
physical systems, one describing the flow of injected fluid, and
the other describing the flow of electric current. It is an essential
element linking two different physical systems through a petrophys-
ical relation between the evolving hydrologic primary fields and the
evolving geophysical properties.
Most hydrogeophysical inverse modeling of ERT data assumes a

linear relation between (electrical) rock conductivity and fluid con-
ductivity (e.g., Singha and Gorelick, 2006a, 2006b), as is also as-
sumed here. However, if conduction along the grain surface is
allowed for in rocks with significant clay content and therefore a large
grain surface area, the relation between σR and c (equations 8 and 9)
becomes nonlinear. This can be addressed by additional terms in the
petrophysical relation, which introduce additional material properties
beyond the formation factor (e.g., Johnson et al., 1986; Pride, 1994).
For uncoupled inversions, alternatives have been suggested that

replace potentially erroneous petrophysical assumptions by mere
correlations. One approach replaces the petrophysical relationship
by a correlation operator, the latter based on the assumption of a
strong correlation between geophysical and hydrologic property
changes (Johnson et al., 2009). Lochbühler et al. (2013) use spatial
correlations between hydrologic and geophysical properties by
enforcing structural similarity constraints.
To account for spatially changing petrophysical relationships, we

choose to include petrophysical function parameters in the inver-
sion, a common practice for coupled inversions (Hyndman et al.,
2000; Kowalsky et al., 2005; Linde et al., 2006b, 2006c; Hinnell
et al., 2010; Vilhelmsen et al., 2014).

PART 3: THE PROCESS-IMAGING INVERSE
PROBLEM IN PRACTICE

The following synthetic data inversion examples involve the in-
jection of a nonreactive saline tracer into a permeable formation that
is bounded above and below by impermeable aquitards. Injection
occurs from a single borehole over a period of 161 days with in-
jection perforations located between a depth of 3.2 and 5.4 m below
the upper aquitard.
Our goal is to simulate how the salinity within the heterogeneous

confined aquifer evolves in space and time without having a priori
knowledge of the heterogeneity of kðrÞ and FðrÞ present at the start
of injection. A 2D model is considered here for didactic and com-
putational simplicity. In addition, note that many tracer experiments
of this kind involve only one well pair, making 2D models a first
choice (e.g., Kemna et al., 2002; Vanderborght et al., 2005). The first
inverse-modeling example considers a model with heterogeneous
permeability and uniform formation factor. Afterward, we consider
a second model in which permeability and formation factor are
heterogeneous. The demonstration uses the inverse flow-modeling
tool MPiTOUGH2 (Commer et al., 2014), which combines the in-
version tool iTOUGH2 (Finsterle et al., 2017) with geophysical for-
ward-modeling modules.

The geophysical model and data

The geophysical data portion is given by an ERT cross-borehole
configuration. Figure 1 illustrates the flow domain that has dimen-
sions of 3 m in height × 14 m in width. The in situ fluid is assumed

Figure 1. Hydrogeophysical modeling domain. The flow model is
embedded into a layered background electrical conductivity model.
Brine is introduced through the injection interval (the white line).
The flow model domain exemplifies the electrical conductivity dis-
tribution after brine injection of 19 days.
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to have an initial NaCl concentration of c ¼ 0.01, which corre-
sponds to a molarity of approximately 0.1 M. Within the flow do-
main, the background electrical conductivity is altered over time
due to the brine infiltration. Figure 1 shows a snapshot of the rock’s
electrical conductivity due to elevated brine levels 19 days after in-
jection began.
The geophysical data are given by three sets of ERT data, taken at

30, 70, and 110 days. The borehole array has 30 electrodes distrib-
uted over four wells. Each ERT data set contains 270 dipole-dipole
configurations that are switched across the wells, generating 270
borehole-to-borehole ERT data points and totaling 810 points over
the three data gathers. The electric potentials are modeled as having
zero voltage along the domain boundaries.

The hydrologic model and data

The vertical plane of the flow domain is aligned with the direction
of the background groundwater flow, and it spans 14 m in the hori-
zontal direction and 3 m in the vertical direction (Figure 1). A total of
5098 grid blocks form the Cartesian forward-
modeling domain. Grid intervals average 0.1 m
in the zone between the injection and monitoring
wells and 0.25 m near the left and right model
boundaries. For the sake of this illustrative exam-
ple, no fluid flow is assumed to occur across
the top and bottom boundaries. Fixed pressure
profiles are given to the vertical boundaries to im-
pose a groundwater gradient of 56Pa∕m in the lat-
eral direction. Amended groundwater having
c ¼ 0.1 (or a NaCl molarity of 1 M), which acts
as an electrically conductive tracer, is injected uni-
formly throughout a well at x ¼ 3 m, indicated by
the white line in Figure 1. Its density is higher than
that of the resident groundwater due to the en-
hanced NaCl molarity of the injected electrolyte.
Subsequent density-dependent effects are ac-
counted for in the hydrologic simulations.
Figure 2a shows the actual heterogeneous per-

meability distribution, with values ranging from
4.77 E−13 to 1.90 E−10 m2. The heterogeneity
is obtained through unconditional sequential
Gaussian simulation (Deutsch and Journel, 1992)
with an exponential semivariogram model for the
logarithmic (log10) permeability with a sill of 0.26
and integral scales of 2.2 and 0.44 m in the hori-
zontal and vertical directions, respectively. The
permeability distribution influences how the in-
jected brine spreads spatially over time.
In the following, we also refer to the field of

brine concentration (the salinity field) as the C
field. To see the effect of additional hydrologic
data on the inversion, we assume that salinity
measurements are made at four wells in the flow
domain (Figure 2b). These measurements are re-
ferred to as C data and are assumed to correspond
to the spatially averaged salinity that is predicted
by the flow forward model in the heterogeneous
aquifer traversed by each monitoring well.
Figure 2b shows the C field after 19 days of brine
injection. Concentration data (C) are given as a

time series of tracer (brine) concentration measured over flow time.
Our simulations assume that such measurements are acquired every
two days in the four monitoring columns marked in Figure 2b as “C
data.” Thus, the inverse problem includes a total of 219 C data
points.

Levenberg-Marquardt algorithm for parameter
estimation

Our parameter estimation uses the Levenberg-Marquardt modi-
fication of the Gauss-Newton algorithm (Levenberg, 1944; Mar-
quardt, 1963). This optimization method is based on minimizing
the quadratic approximation of the regularized objective function:

θ ¼ ðzo − zðmÞÞTC−1
zz ðzo − zðmÞÞ þ λmTWm: (11)

Our implementation follows that of Finsterle and Kowalsky (2011),

where in the first term zo ¼
� zo;C

zo;ERT
�
is a stacked vector of total

Figure 2. (a) True permeability model for inversion demonstration. (b) True (brine) con-
centration field after 19 days of injection. Overlain are the well intervals for the injector,
concentrationmeasurements (C data), and electrodes of the ERT crosswell array (ERT data).
(c) Permeability field from flow data (C data) inversion. (d) Permeability field from geo-
physical (ERT) data inversion. (e) Permeability field from joint (C and ERT data) inversion.
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size N, combining hydrologic (C data) and geophysical (ERT data)
observations. Furthermore, Czz is the a priori covariance matrix that
is a diagonal N × N matrix containing the observation errors, m is
the vector ofM model parameters, to be regularized by λ andW, as
will be detailed shortly.
Minimizing equation 11 involves constructing the N ×M

Jacobian matrix

J ¼ ∂z
∂m

¼

2
664

∂z1
∂m1

· · · ∂z1
∂mM

..

. ..
.

∂zN
∂m1

· · · ∂zN
∂mM

3
775 (12)

by repeated calculation of the composite vector of forward-modeling

responses, zðmÞ ¼
�

zCðmÞ
zERTðmÞ

�
. For a given model parameter j, we

obtain the corresponding matrix column ð∂z1∕∂mj; · · · ; ∂zN∕∂mjÞT
of J through perturbation of mj by a small quantity Δmj, thus,
approximating each element through ∂zi∕∂mj ≈ ðziðmj þ ΔmjÞ−
ziðmjÞÞ∕Δmj. Let us assume, permeability is our parameter of inter-
est, so mj ¼ kj. To quantify the effect of the perturbation kj þ Δkj
on the flow state, we recalculate the hydrologic forward-modeling

problem given in equations 1–7. As it alters the Darcy filtration veloc-
ity q (equation 7), the perturbation of kj effects the distribution of
solute concentration c (equations 8 and 9), which in turn will lead
to perturbed electric fields E in the coupled geophysical forward-
modeling problem (equation 10). The entries of the geophysical
data portion of J thus take the form ∂zERTi ∕∂mj ≈ ðEiðkj þ ΔkjÞ−
EiðkjÞÞ∕Δkj, where Ei is the one electric-field datum of our ERT
survey array.
In equation 11, the regularization is provided by the second term,

where λ is the damping parameter and W is a diagonal M ×M
weighting matrix that, for simplicity, we take to be the identity
matrix. In principle, the regularized inverse modeling attempts to
avoid high contrasts between adjacent model parameters, under the
assumption that high contrasts are geologically less reasonable. In
practice, we use differential smoothing by splitting up the smoothing
term in equation 11 into one for horizontally and one for vertically
connected model parameters. Thus, the smoothing term becomes
λhmTWhmþ λvmTWvm. Differential smoothing allows for the fact
that horizontally stratified geologic media often exhibit larger vertical
property variations, which can be accommodated by setting λh > λv.
Our numerical examples will involve a mapping of material prop-

erties between two different grids; that is, the vector m involves a
distribution of parameters on a coarser (rectangular) grid than the

grid underlying the actual flow-process forward
modeling. The primary reason for such model
scaling is typically for computational efficiency
(e.g., Salazar and Piamo, 2007). For the inter-
ested reader, Appendix B provides more details
about the property-mapping procedure used here.

Excursion: Deterministic versus
stochastic parameter estimation

The minimization of the objective function, as
given in equation 11, defines a class of parameter
estimation methods referred to as deterministic.
Its counterpart is the group of stochastic inver-
sion methods. They complement each other in
that deterministic methods have the primary
purpose of determining model parameters that
produce a single best-fitting model. Stochastic
inversions, on the other hand, produce many pos-
sible or plausible solutions, with the primary pur-
pose of obtaining uncertainties associated with
the inversion process. Most of stochastic inver-
sion approaches operate on the basis of Bayesian
statistics, in which Markov Chain Monte Carlo
sampling has proven to be robust. Good over-
views of this vast field including many further
readings are given by Gelhar (1986), Vrugt et al.
(2009), Rubin and Hubbard (2005b), Scholer
et al. (2011), and Binley et al. (2015).
The increasing tendency of fluid-flow model-

ing toward forecasting has given importance to
uncertainty quantification and thus stochastic ap-
proaches. Moreover, the petrophysical link in the
joint inversion framework presented here intro-
duces an additional layer of uncertainty, together
with a higher degree of nonlinearity. Thus, sto-
chastic methods are naturally suited because of

Table 1. Input (lines 4–8) and output (lines 9–19) quantities for synthetic data
inversion examples. Inversion names K( : : : ) denote the inversion for
permeability and KF( : : : ) denote the inversion for permeability and formation
factor. The letters in parentheses represent the inverted data types, where C
and ERT denote the concentration and ERT data, respectively.

1 Inversion name K(C) K(ERT) K(C+ERT) KF(C+ERT) K(C+ERT),
without 
regularization

2 Inversion for material 
property

Permeability Permeability Permeability Permeability 
and formation 

factor

Permeability

3 Inversion input data Concentration ERT Concentration 
and ERT

Concentration 
and ERT

Concentration 
and ERT

4 Number of C data 219 219 219 219 219

5 Number of ERT data — 810 810 810 810

6 Number of k parameters 328 328 328 328 328

7 Number of F parameters — — — 328 —

8 Model smoothing parameter 
(λh, λv)

10, 1 10, 1 10, 1 1,1 0.0001,  
0.0001

9 Inversion iterations 19 14 11 25 7

10 Initial C data rms (δ=0.01) 18.33 — 18.33 18.42 18.33

11 Final C data rms (δ=0.01) 0.47 — 0.80 0.88 1.41

12 Initial ERT data rms
(δ=0.0001)

— 46.00 46.00 56.34 46.00

13 Final ERT data rms
(δ=0.0001)

— 0.99 1.47 1.64 4.24

14 Initial k model rms (δ=0.12) 4.04 4.04 4.04 4.04 4.04

15 Final k model rms (δ=0.12) 4.54 3.75 2.88 5.15 3.90

16 Initial F model rms (δ=0.08) — — — 202.76 —

17 Final F model rms (δ=0.08) — — — 75.66 —

18 Initial C field model rms
(δ=0.01)

17.80 17.80 17.80 18.17 17.80

19 Final C field model rms 
(δ=0.01)

17.96 2.69 3.36 8.01 5.24
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their greater exploration of the model space and their avoidance of
potential problems due to difference calculations in the presence of
nonlinear functions. Most coupled hydrogeophysical works dis-
cussed above build on the stochastic approach, whereas a few
use deterministic methodologies (e.g., Kowalsky et al., 2011; Vil-
helmsen et al., 2014), or a hybrid (e.g. Finsterle and Kowalsky,
2008; Busch et al., 2013).
Computationally though, the stochastic method is typically or-

ders of magnitude more expensive. Hydrogeophysical inversion ap-
plications have thus been limited to models described by only a few
parameters. Because estimating complex hydrologic property dis-
tributions in a large-scale imaging style will remain a challenge
to the kind of process imaging considered here, deterministic meth-
ods are likely to play an important role in the foreseeable future.
Attempts at improving the efficiency of deterministic methods in-
clude the adjoint method. Under certain assumptions, it allows cal-
culating the gradient of the cost functional in equation 11 to perform
a nonlinear conjugate gradient model update (Santos et al., 2006), or
the sensitivity matrix for a Gauss-Newton type of inversion (Pollock
and Cirpka, 2010).
Strongly related to stochastic methods, we

want to briefly allude to data assimilation, a set
of statistical techniques including Bayesian sta-
tistics aimed at state forecasting by combining
(assimilating) observational data and a priori
knowledge (Evensen, 2009). Data assimilation
methods have found their way from atmospheric
forecasting into predictive surface-subsurface
modeling (e.g., Houser et al., 1998), then into
petroleum reservoir variable estimation (e.g., Gu
and Oliver, 2007) and hydrogeophysics (e.g.,
Chen et al., 2012). A powerful data assimilation
method, the ensemble Kalman filter (EnKF), was
reviewed by Aanonsen et al. (2009) for history
matching. Camporese et al. (2015) use EnKF
to compare uncoupled against coupled hydro-
geophysical inversion using ERT data, where
they aptly use the term “imaging a process”
because EnKF solves the combined parameter
and state estimation problem.
Finally, recent hydrogeophysical model esti-

mation efforts involve combinations of statistical
methods referred to as machine learning (e.g.,
Friedel, 2016). Note that learning types of stat-
istical algorithms have been around for a long
time; only ever-increasing computational abil-
ities are making them available for complex res-
ervoir engineering problems. Examples are fuzzy
clustering techniques (e.g., Paasche et al., 2006),
artificial neural networks (e.g., Karahan and Ay-
vaz, 2008; Karimpouli et al., 2010), and
support vector machines (Al-Anazi and Gates,
2010). See also Karpatne et al. (2018) for a general
discussion on machine learning in geosciences.

Estimating permeability

We go back to our inversion demonstration,
where we first estimate only the permeability
field kðrÞ. Porosity is assumed constant with

ϕðrÞ ¼ 0.25. Together with a constant cementation exponent
mðrÞ ¼ 1.5, the formation factor is thus constant at FðrÞ ¼ ϕ−m ¼ 8.
We compare three end images in Figure 2c–2e. These result from
inverting the, respectively, salinity data (C data), ERT data, and joined
(C + ERT) data. For brevity, these inversions are called K(C), K(ERT),
K(C + ERT), where K indicates the inversion for permeability. All
inversions use a uniformly distributed permeability of 10−11 m2 as
the initial model guess. Table 1 summarizes noteworthy input and
output for these three inversions in the columns under their respective
names.
The preferential flow path that becomes visible in Figure 2b

causes tracer accumulation due to reduced flow in the upper model
region. However, Figure 2c reveals that the overall permeability
structure cannot be discriminated by inverting the C data alone.
The fact that the C data are depth averaged, that is, calculated from
vertical column averages, explains the lack of sensitivity to property
variations in the vertical direction. In contrast, the ERT electrode
array geometry has the spatial resolution that is necessary to
discriminate between the two major permeability regions, as can

Figure 3. Actual C field (brine concentration) at the four flow times 30, 70, 110, and 161
days (top row) in comparison to C fields calculated from three inversions for the hetero-
geneous permeability field of Figure 2a. The C fields in plot rows 2, 3, and 4 result from
the permeability fields obtained from inversions K(C) (Figure 2c), K(ERT) (Figure 2d),
and K(C + ERT) (Figure 2e), respectively.
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be seen from inversion K(ERT) using only ERT data (Figure 2d).
The joint inversion (Figure 2e) yields no significant qualitative im-
age improvement over Figure 2d, whereas a slight quantitative im-
provement can be measured by means of a model root-mean-square
(rms) error applied to the permeability results (as will be further
explained below). Line 15 in Table 1 shows that this rms decreases
from 3.75 for K(ERT) to 2.88 for K(C + ERT).
Viewing this example in a process-imaging context, we want to

verify whether the tracer spreading based on the estimated per-
meability model compares to the actual case. Figure 3 captures the
C field at selected times of 30, 70, 110, and 161 days, where the true
C field snapshots in the upper row compare against those calculated
from the three inversions (one per row). We can verify qualitatively
that inversions K(ERT) and K(C + ERT) are able to reproduce the
main permeability structures sufficiently well because correspond-
ing preferential flow paths lead to a good approximation of the
actual C field at the selected flow times.
For this scenario, the results demonstrate that the ERT data would

provide a certain forecasting capacity. This shows in the good C
field comparison at 161 days, which is 51 days after the last ERT
survey time at 110 days.
To quantify the inversion performance, we first calculate the rms

errors for each data component in Table 1 (rows 10–13). Comparing

initial to final rms values, the fits improve by roughly an order of
magnitude. However, owing to the nonuniqueness problem in inver-
sions with insufficient data, one may end up with good data fits,
whereas the model outcome differs profoundly from the true geol-
ogy. Hence, synthetic inverse-modeling studies, in which the true
model is known, should also supply appropriate misfit measures
for the estimated parameters.
Figure 3 already indicates that the permeability models obtained

through the two inversions K(ERT) and K(C + ERT) lead to a rea-
sonable C field prediction. For a more quantitative performance mea-
sure, we use an rms measure calculated between the properties of the
true model mtrue and the estimated properties mest, specifically,

rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
i¼1

ðmtrue
i −mest

i Þ2
δ2i

vuut ; (13)

where δi denotes a standard deviation. Appendix C contains more
details on the implementation of this error measure. Table 1 summa-
rizes these rms error measures for the three inversion results of Fig-
ure 2, in which the rms calculated from the initial parameter guess
(line 14: initial k model) can be compared to the end result (line 15:
final k model).

Estimating permeability and formation factor

Our second study investigates inverting simultaneously for
heterogeneous permeability kðrÞ and heterogeneous formation
factor FðrÞ. This example demonstrates a possible approach of
addressing petrophysical heterogeneity, that is, allowing for a non-
uniform petrophysical parameter distribution in the inversion.
Parameter sensitivity studies usually precede inversion experi-

ments to investigate the effect on the forward-modeling response
zðmÞ with respect to input parameter changes. A quantitative mea-
sure is given by the scaled sensitivity matrix, which consists of the
elements (Finsterle, 2015)

Sij ¼
δmj

δzi

∂zi
∂mj

: (14)

Element Sij is the partial derivative of the calculated system re-
sponse zi with respect to parameter mj, scaled by the respective
standard deviations (we use the symbol δ to avoid confusion with
electrical conductivity σ) δzi and δmj

.
We combine the scaled sensitivity coefficients of all available

observations to get the relative measure

Sj ¼
Xi¼N

i¼1

δmj

δzi

∂zi
∂mj

(15)

for a given parameter jðj ¼ 1; : : : ;MÞ. In Figure 4, the measure Sj
is calculated for each cell parameter of the imaging mesh for kðrÞ
(Figure 4a) and for FðrÞ (Figure 4b). To highlight the relative sen-
sitivity difference between these types, Sj is not weighted, so
δzi ¼ δmj

¼ 1. The comparison reveals a sensitivity difference of up
to three orders of magnitude; that is, the formation factor has a far
smaller influence on the flow field evolution than does permeability.
Figure 5 shows actuals and estimations of an inversion for kðrÞ

and FðrÞ. This model also assumes a constant homogeneous poros-

Figure 4. Inversion parameter sensitivity map for (a) permeability
parameters and (b) formation factor parameters. Parameter sensitiv-
ity is calculated using equation 15.
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ity of ϕðrÞ ¼ 0.25; thus, the variation in FðrÞ is
only due to the cementation exponent mðrÞ. Ta-
ble 1 summarizes its input and output under the
name KF(C + ERT), where F stands for the for-
mation factor. The underlying true permeability
model is the same as shown in Figure 2a. For
creating the heterogeneous model for the forma-
tion factor, we used the same unconditional se-
quential Gaussian simulation parameters as for
permeability, yet inverting the outcome; that is,
high permeability corresponds to a low F, and
vice versa, as shown in Figure 5a and 5b. Further-
more, the relationship between k and F was per-
turbed by spatial random noise Δk with a 5%
maximum amplitude, specifically, F ∼ 1∕log10
ðkþ ΔkÞ.
Qualitatively comparing the inversion outcome

for kðrÞ and FðrÞ (Figure 5c and 5d) against the
true case (Figure 5a and 5b) shows that the main
model structures can be reproduced. However,
compared to the case with known and constant
F, a slightly deteriorated permeability image re-
sults leading to a deteriorated reproduction of
the C field as shown in Figure 6.

Estimating permeability with the
smoothing regularization term inactive

Finally, Figure 7 addresses the regularization
aspect mentioned above under the comparative
discussion of coupled and uncoupled inversion
schemes. To recall, we want to clarify the fact
that the quasiregularization imposed on the geo-
physical property evolution through the physics
of the fluid-injection process does not extend to
the permeability parameter grid in this frame-
work of coupled processes.
To demonstrate the necessity for regulariza-

tion, we repeat the joint inversion for permeabil-
ity, which was called K(C + ERT). Now, the
regularization parameter λ (equation 11) is set
to a very small value (λ ¼ 10−4), thus essentially
deactivating the spatial smoothing effect on the
permeability parameter grid. Figure 7a compares
the original result (this is the same as shown in
Figure 2b), against the nonregularized outcome
(Figure 7b), showing that the general permeability
structure is still visible; however, it is more frag-
mented. The corresponding C field predictions in
Figure 8 (Figure 8a–8d: true, Figure 8e–8h: calcu-
lated from the inversion result) also reveal the
deteriorating effect.
The last column in Table 1 further quantifies

the effect on the data and model rms measures.
Compared to its regularized counterpart, all rms
measures reveal less of an agreement with the
true case. These results indicate the stabilizing
nature of the smoothing term when inverting
for a heterogeneous permeability distribution.

Figure 5. True model for (a) permeability and (b) formation factor and estimated model
for (c) permeability and (d) formation factor.

Figure 6. Actual C field (brine concentration) at the four flow times (a-d) 30, 70, 110,
and 161 days resulting from the true models for permeability k and formation factor F
(the true k and F properties shown in Figure 5a and 5b). (e-h) The C fields calculated
from inversion KF(C + ERT), which inverted for k and F (estimated k and F properties
shown in Figure 5c and 5d).
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CONCLUSION

Given their more economic nature and larger volume coverage
over in situ borehole observations, remote-sensing geophysical meth-
ods are likely to become increasingly important in understanding and
monitoring anthropogenic subsurface alterations due to fluid injec-
tion. This didactic paper attempts to broaden the view of how to use
geophysical data to image the fluid-injection process. Conventional
geophysical inverse modeling does not include the forward modeling
of the fluid injection and associated subsurface alterations. In contrast,
the process-imaging approach put forth here inverts for the underlying
process-driving (hydrologic) properties. We have demonstrated how
estimates of permeability kðrÞ and formation factor FðrÞ can be
obtained from a coupled inversion framework exploiting the informa-
tion content of time-lapse geophysical measurements.
Estimating model parameters relevant to the flow process starts

with properly forward modeling the various interactions of coupled
physical systems. Owing to complex and yet to be fully understood
process interactions and corresponding rock-physics relations, in-
verse modeling for the range of parameters involved is a highly non-
trivial task. Under several simplifying assumptions, we show that
time-lapse ERT data alone are sufficient for properly reproducing
a salinity-injection scenario. Specifically, it was not necessary to
have additional borehole measurements of salinity (what we called
C data) to obtain an accurate estimate of how the salinity plume
evolves through time and space.
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Figure 7. Comparison of the joint (C and ERT data) inversion result
(called “K(C + ERT)” in Table 1) for different degrees of regula-
rizations. (a) The joint inversion result K(C + ERT) as shown in
Figure 2e, where λh ¼ 10 and λv ¼ 1. (b) Joint inversion with
greatly decreased λ factors, now using λh ¼ λh ¼ 10−4. This inver-
sion is called “K(C + ERT), without regularization” in Table 1.

Figure 8. Actual C field (brine concentration) at
the four flow times (a-d) 30, 70, 110, and 161 days
in comparison to (e-h) reproduced C fields calcu-
lated from an inversion for permeability. The true
heterogeneous permeability is shown in Figure 2a.
The regularization parameter in this inversion is
deactivated (λh ¼ λv ¼ 10−4), with its resulting
permeability distribution shown in Figure 7b.
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APPENDIX A

QUANTIFYING DIFFUSION

To address the importance of diffusion to the evolution of the
salinity plume, we return to equation 3 for the dispersion tensor
D. We note that the first term on the right side corresponds to solute
diffusion, whereas the second and third terms are due to pore-scale
advection processes (those occurring within the voxels of the mod-
eling grid) that correspond to perturbations from the average advec-
tion throughout a voxel of porous material. One can quantify the
ratio of advection to diffusion by means of a local Péclet number
Pe 0. Essentially, Pe 0 reflects the ratio of the second to first terms in
the dispersion tensor (equation 3), that is,

Pe 0 ¼ jqjγlF
ϕDm

≈
jqjdF
ϕDm

; (A-1)

where γl ≈ d and d is a characteristic grain diameter. Now for the
ratio of the mean advection to diffusion at the macroscopic scale L
of the plume (say meters or larger), we obtain a macroscopic-scale
definition of the Péclet number Pe 0 0. The latter is the ratio of the
advective derivative (the second term on the left side of the solute
balance equation 1) to the first term on the right side, using only the
diffusion contribution to the dispersion tensor, resulting in

Pe 0 0 ¼ jq · ∇cj
jρ−1f ∇ · ½ðρfDm∕FÞ∇c�j

≈
jqjLF
Dm

: (A-2)

Then, the ratio of the two Péclet numbers,

Pe 0

Pe 0 0
¼ d

ϕL
; (A-3)

defines the importance of local solute dispersion, as controlled by
length d, in comparison to macroscopic plume-scale dispersion, as
controlled by length L, through the heterogeneity in the Darcy flow
q in the advective derivative of the solute balance. Our numerical
examples assume that the local dispersion associated with disper-
sivities γl and γt in the dispersion tensor are negligible relative to
the macroscopic dispersion, that is, Pe 0∕Pe 0 0 ≪ 1. We will keep the
diffusion term Dm∕F in the dispersion tensor to allow for those por-
tions of the modeling domain that have very slow flow and, therefore,
an important diffusion contribution. However, through most of the
domain, wewill always have Pe 0 0 ≫ 1. Thus, diffusion, and therefore
the formation factor, will have minimal influence on the plume evo-
lution.

APPENDIX B

MAPPING PROPERTIES BETWEEN DIFFERENT
DOMAINS FOR FORWARD MODELING

AND INVERSION

Equations 1–8 describe a system where hydrologic state changes
result from the increased flux of dissolved ions caused by electro-
lyte injection. Forward modeling of the evolving concentration field
cðr; tÞ involves a (hydrologic) finite-volume mesh, ΩH, with 5098
elements, with Figure 2a indicating its mesh fidelity. The inversion
domain comprises a subset of 3627 elements. To reduce such an

overly fine parameter grid, the inversion parameters involve a
coarser imaging mesh, Ωi

H, with M ¼ 328 rectangular cells. Each
cell parameter encompasses an average of 11 ΩH elements. The dis-
cretization difference between ΩH and Ωi

H can be seen by compar-
ing Figure 2a against the coarse-mesh images in Figure 2c–2e.
Each coarse-mesh cell holds a voxel value of the properties that

are to be estimated, kðrÞ and FðrÞ. After a model update of the iter-
ative inversion process, these properties are mapped fromΩi

H toΩH.
The changes in σf, discretized onΩH, infer changes in the bulk rock
electrical conductivity σR, calculated from equation 9. The geo-
physical property σR resides on another mesh ΩG, so the petrophys-
ical transform involves a mapping from ΩH to ΩG. We use a simple
nearest-neighbor scheme for this operation. All forward modeling
and mesh mapping operations are modularized components of the
MPiTOUGH2 software (Commer et al., 2014).
Finally, forward modeling of the ERT method is carried out on

ΩG. The corresponding finite-difference Poisson-type equation and
its 3D solver are described in detail by Commer et al. (2011). This
ERT solver mimics a quasi-2D case by using a very coarse finite-
difference grid perpendicular to the flow direction (y-axis) com-
pared to the (x) axis of the flow direction. Preceding tests confirmed
the accuracy of this approach by comparing against the 2D simu-
lator used by Kemna et al. (2002).

APPENDIX C

ASSESSING PROCESS-IMAGING PERFORMANCE

When applying the rms norm of equation 13, different options
exist for treating the scale differences between the true model grid
ΩH (Figure 2a) and the coarser grid of inversion parameters Ωi

H

(Figure 2c–2e). We choose a cubic spline interpolation to map prop-
erties from the coarse inversion parameter grid to the finer topology
of the true model grid. The latter defines the summation in equa-
tion 13, amounting to M ¼ 3627 fine-grid differences.
Using equation 13 for our permeability outcome, we get the rms

between the true (ktrue) and the estimated (kest) logarithmic (base-10)
permeability field,

rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
i¼1

ðlog10ktruei − log10kesti Þ2
δ2i

vuut . (C-1)

Table 1 summarizes these rms errors for the three inversion results of
Figure 2, where the starting model rms (initial K model) can be com-
pared to the end result (final K model). These calculations assume a
constant standard deviation of δ ¼ 0.12, which is 1% of 1 darcy in
log10-space.
Given that permeability has the dominating influence on prefer-

ential fluid flow pathways, the next step is to quantitatively assess
the forecasting accuracy of the estimated permeability fields. The
step involves forward modeling the brine injection process over
the whole flow time range of 161 days. For all inversion results, we
interpolate the estimated k and F fields (Figures 2c–2e, 5c, 5d, 7a,
and 7b) from the coarse-grid (Ωi

H) onto the fine-scale grid (ΩH) used
for true-data calculation (Figure 2a). Performing an outer summa-
tion over equation 13, where the variable m is now replaced by the
concentration C, extends our C field imaging quality measure over
the whole fluid-injection period (161 days),
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rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

161M

X161
j¼1

XM
i¼1

ðCtrue
i − Cest

i Þ2
δ2i

vuut : (C-2)

Again, δ is chosen to be constant and is 1% of C ¼ 1, the maximum
concentration, thus, δ ¼ 0.01. Table 1 lists all rms values calculated
in equation C-2, referred to as “C field model rms,” where each
initial rms (calculated from the starting model guess) can be com-
pared against its final counterpart.
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