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Abstract

Simple stochastic models for phylogenetic trees on species have been
well studied. But much paleontology data concerns time series or trees
on higher-order taxa, and any broad picture of relationships between
extant groups requires use of higher-order taxa. A coherent model for
trees on (say) genera should involve both a species-level model and a
model for the classification scheme by which species are assigned to
genera. We present a general framework for such models, and describe
three alternate classification schemes. Combining with the species-level
model of Aldous-Popovic (2005), one gets models for higher-order trees,
and we initiate analytic study of such models. In particular we derive
formulas for the lifetime of genera, for the distribution of number of
species per genus, and for the offspring structure of the tree on genera.

∗Research supported by NSF Grant DMS-0704159
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1 Introduction

This paper provides some mathematical details of part of a broader project
we call “coherent modeling of macroevolution”. The focus here is on a novel
mathematical framework and on analytical results for a model of macroevo-
lution which is possible within this framework. We give only a very brief
sketch of the motivation for the project in section 1.1 and then proceed to
outline (section 1.2) the specific results of this paper. A future paper [8]
addressed to less mathematically-focused biologists will provide more de-
tailed background, motivation, relation with previous biological literature,
and discuss the “bottom line for biology” of such mathematical models.

1.1 Background

Stochastic models for time series of species numbers within a clade and for
phylogenetic trees of extant species in a clade can be traced back to Yule
[14]. Such models treat speciations and extinctions as random (in some way).
In studying such models one is not asserting that real macroevolution was
purely random; rather, one wishes to compare real data with the predictions
of a random model to see what patterns require biological explanation (e.g.
adaptive radiations [7]), or to make inference about unobservables (e.g. the
time of origin of the primates [13]).

One aspect of this subject is where the data consists of time series or
phylogenetic trees on some higher-level taxa (genera or families, say) in-
stead of species. In the fossil record of the distant past it is difficult to
resolve specimens to the species level, and the species-level data is liable
to be incomplete, so that statistical analysis of time series (relying e.g. on
the celebrated compendia of Sepkoski [12]) is in practice done at the level of
genera or families. In discussing phylogenies within large extant groups such
as birds or mammals, it is impractical to show all species, so one shows trees
indicating how major subgroups are related. And the same holds for extinct
groups (see e.g. the fascinating tree [11] on dinosaur genera). In looking at
such data and asking the basic question – what patterns imply biological
effect rather than being consistent with “just chance” – two extra difficulties
arise. First, the classification into genera or families involves human judge-
ment which is inevitably at least somewhat subjective. Second, while one
could just take genera (say) as entities in themselves and apply species-level
models directly to genera [6], this seems conceptually unsatisfactory: genera
are sets of species and so, as part of “coherent modeling of macroevolution”,
one would like genus-level models to be based upon underlying species-level
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models. While these difficulties are certainly mentioned in the biological
literature, we have not seen any very thorough mathematical study. Our
purposes in this paper are to lay out a conceptual framework for studying
such questions, and then to give mathematical analysis of the predictions of
a particular probability model.

1.2 The two topics of this paper

The first topic concerns methodology of classification (without any involve-
ment of probability models). Suppose we know the true phylogenetic tree on
a clade of species, that is on some founder species s (typically extinct) and
the set of all descendant species (extant and extinct) of s. How might one
assign species to genera? (From now on we write genus, genera for concrete-
ness to indicate any higher level of the taxonomic hierarchy). Suppose we
distinguish certain species as “new type” due to some characteristic judged
biologically significant which persists in descendant species. Then it seems
sensible to use these as a basis for classification – very roughly, a “new type”
species is the founder of a new genus. This set-up ignores various practical
problems (one seldom has the complete tree on extinct species; which char-
acteristics should one choose as significant?) but does lead us to a purely
mathematical question:

Consider a classification scheme which, given any phylogenetic
tree in which some species are distinguished as “new type”, clas-
sifies all species into genera. What desirable properties can such
schemes have?

Section 2 gives our answer. One might hope there was some single mathe-
matically natural scheme, but it turns out that different desiderata dictate
different schemes. We pick out three schemes which we name fine, medium,
coarse and describe their properties.

Studying to what extent actual taxonomic practice resembles one of these
theoretical schemes would make an interesting project in statistical analysis,
but this is not our purpose here. Instead, as our second topic we use these
theoretical classification schemes to consider the questions:

• In what ways might phylogenetic trees on genera, or time series of
genera, differ from those on species?

• In what ways might phylogenetic trees on species in the same n-species
genus differ from phylogenetic trees on species of simply an n-species
clade? (Section 3.3 amplifies the issue here.)

• How does the choice of classification scheme for determining genera
affect such differences?
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We study these questions under a certain probability model for the under-
lying phylogenetic tree on species. This model, described in section 3.2 and
studied in detail in [2], is intended to formalize the idea of “purely random”
history subject to a given number n of extant species. Section 4 investigates
the statistical structure of phylogenies on genera obtained by combining the
species-level model with the genera classification schemes, and this combina-
tion is the conceptual novelty of the paper. In particular we derive formulas
(Theorem 4) for the lifetime of genera and for the distribution of number
of species per genus, and formulas (Propositions 7 and 8) for the offspring
structure of the tree on genera, both of these results in the (mathematically
easier) case of extinct clades; and (for extant clades) the number of species
per genus (Proposition 9). As noted in section 4 there are many more cal-
culations one might attempt to perform, and we invite interested readers to
extend our calculations.

2 Phylogenetic trees and genera classification schemes

2.1 Cladograms

For good reasons, both practical and theoretical, phylogenetic relationships
are usually presented via a cladogram, a binary tree (cf. Figure 4) with-
out time scale and without identifying branchpoints with explicit taxa. A
mathematical discussion of genera classification schemes would be simpler
if it were based only on the reduced information provided by cladograms on
species. But our goal is to see how phylogenies on genera emerge from some
complete underlying process of macroevolution at the species level in which
species originate and go extinct at particular times. This requires using
a species-level model on phylogenetic trees as defined below, even though
ultimately one may choose to express relationships between genera using
cladograms.

2.2 Phylogenetic trees

Our basic assumptions about macroevolution in a clade of species are logi-
cally simple, although oversimplified in reality.

• Each species has a “time of origin” and either is extant or has a “time
of extinction”;

• Each species (except the founder of the clade) originates as a “daugh-
ter” of some “parent” species in the clade, not simultaneously with
any other daughter.
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A phylogenetic tree records all this information (birth and extinction
times; parent-daughter relationships). There are many different ways to
draw such a tree. Figure 1 (top left) uses one convention, explained further
in Figure 2: time increases downwards, a species is indicated by a vertical
line from time of origin to time of extinction or the present time, and parent-
daughter relationship is indicated by a horizontal line with the daughter on
the right.

For later use in proofs we state some language for discussing this par-
ticular representation of phylogenetic trees. Given a parent-daughter pair,
there is a branchpoint on the parent’s line, from which a right edge leads
to the daughter and a continuing edge leads down to another branchpoint
or the leaf representing extinction time of the parent species or the current
time. See Figure 2.

parent

daughterright edge
branchpoint

continuing
edge

leaf

Figure 2. Terminology for edges of phylogenetic trees.

Any species determines a subclade consisting of itself and all its descendant
species. Similarly a continuing edge determines a subclade (consisting of the
species whose line contains the continuing edge, and later daughter species
and their descendants).

2.3 Discussion

Of course the “basic assumptions” above represent one extreme of the vari-
ous mechanisms of speciation discussed by biologists – that speciation typi-
cally arises from innovation, in such a way that there is a new lineage split-
ting off from an old lineage which continues unchanged. This type of lineage
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splitting is generally considered plausible for fast-evolving organisms such as
viruses and bacteria, but its plausibility for macrofauna is more debatable.
We chose this both for definiteness and because it seems most amenable to
mathematical modelling.

This paper is framed in the context of phylogenetic tree structure as-
signed to traditional rank-based taxa. But one could alternatively frame
it within the proposed Phylocode [10] conventions for naming the parts of
the tree of life by explicit reference to phylogeny. While Phylocode pro-
vides a logical representation of the fine detail of relationships between all
species, the high-level structure – what we want to teach, starting in grade
school with the relationship between mammals, birds and fish – requires us
in practice to distinguish some clades as important and then to exhibit trees
showing their relationship. So in the sequel one can interpret “genus” as
“clade distinguished as important for the purposes of exhibiting high-level
structure of the tree of life”.

2.4 Desirable properties for genera classification schemes

As mentioned earlier, the question we study in section 2 is:

given a phylogenetic tree and a subset of its species designated
as “new type”, how can one classify all species into genera?

We start by considering three desirable properties for classification schemes.
For all our schemes we require the following weak formalization of the idea
that “new type” species should initiate new genera.
Property 1. A genus cannot contain both a species a which is a descendant
of some “new type” species s and also a species b which is not a descendant
of s.

Here “descendant” includes s itself, so in particular a “new type” species
and its parent must be in different genera.

Next note that if we required every genus to be a clade (monophyletic)
then we could never have more than one genus, because otherwise some
parent-daughter pair {a, b} would be in different genera and then the genus
containing a is not a clade. We will consider a weaker property. Any two
distinct species a, b have a most recent common ancestor MRCA(a, b), which
is some species (maybe a or b). Given three distinct species {a, b, c}, say
(a, b) are more closely related than (a, c) if MRCA(a, b) is a descendant of
MRCA(a, c). Here again we allow MRCA(a, b) = MRCA(a, c).
Property 2. Given three distinct species {a, b, c}, with a and b in the same
genus and c in a different genus, then (a, b) are more closely related than
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(a, c).
As another kind of desirable property, one would like to be able to draw

a tree or cladogram on genera is some unique way, and the next property
(for a classification scheme) provides one formalization of this idea.
Property 3. Choosing one representative species from each genus and
drawing the cladogram on these species gives a cladogram which does not
depend on choice of representative species.

2.5 Three genera classification schemes

The properties above are always satisfied by the trivial scheme in which
each species is declared to be a separate genus. Roughly speaking, such
properties become easier to satisfy if one uses more genera, so one should
consider schemes which produce the smallest number of genera consistent
with specified properties. More precisely, if (Gi) and (G′

j) are two different
classifications of the same set of species into genera, say (G′

j) is coarser
than (Gi) if each G′

j is the union of one or more of the Gi. Our main result
in section 2, Theorem 1, gives explicit constructions of the coarsest genera
classification schemes satisfying various properties.

Observe that any way of attaching “marks” to some edges of the phy-
logenetic tree (in the representation of section 2.2) can be used to define
genera, by declaring that species {a, b} are in the same genus if and only if
the path in the tree from the leaf a to the leaf b contains no marked edge.
Here are three ways one might attach marks to edges.

(a) At each parent-daughter branchpoint where the daughter is “new
type”, mark the right edge (from parent to daughter).

(b) At each parent-daughter branchpoint where the daughter’s subclade
contains some “new type” species, mark the right edge (from parent to
daughter).

(c) At each parent-daughter branchpoint where the daughter’s subclade
and the continuing edge subclade both contain some “new type” species,
mark both the right edge and the continuing edge.

Now define three genera classification schemes as follows.
Coarse scheme: create marks according to rule (a).
Medium scheme: create marks according to rules (a) and (c).
Fine scheme: create marks according to rules (a) and (b).

In each case the marks define genera as above. Figure 9 provides a visual
catalog of these rules.

Theorem 1 (i) The coarse scheme defines genera with Property 1, and is
coarser than any other scheme satisfying Property 1.
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(ii) The fine scheme defines genera with Properties 1 and 2, and is coarser
than any other scheme satisfying Properties 1 and 2.
(iii) The medium scheme defines genera with Properties 1 and 3, and is
coarser than any other scheme satisfying Properties 1 and 3.

This is proved in the next section. Section 2.7 contains further discussion,
in particular on the paraphyletic property of these genera.

Remarks Recall that, in these classification schemes, the data we start
with is a phylogenetic tree with certain species distinguished as “new type”.
The marks described above are artifacts used in the algorithmic construction
of genera and in their analysis. In particular, in Figure 2 the continuing
edge (representing a continuation of the same species) cannot represent a
new type species, even though (in the medium scheme) it may be given a
mark. Unlike in cladograms, the two edges following a branchpoint in the
underlying phylogenetic tree are not interchangeable.

One may well object that these classification schemes do not correspond
to the ways in which systematists actually assign taxonomic ranks; but we
do not know any discussion of the latter in the biological literature which
is amenable to mathematical modeling. Recall that our ultimate goal is to
compare real evolutionary history to the predictions of some “pure chance”
model to see what differences can be found. Having several alternate choices
for the genera classification part of the model seems helpful, in that a dif-
ference in consistent direction from all the models seems more worthy of
consideration.

2.6 Proof of Theorem 1

Showing that the schemes define genera with the stated properties is straight-
forward, as follows.

Case (i). The marks from rule (a) ensure Property 1.
Case (ii). Consider genera defined using marks from rules (a) and (b).

Suppose {a, b} are in the same genus and c is in a different genus. We’ll
prove by contradiction that (a, b) are necessarily more closely related than
(a, c). If (a, b) are not more closely related than (a, c), there exist a species
s such that both a and c are in the subclade of s, while b is not (it’s possible
that a = s or c = s). But the path from a to c contains a marked edge,
meaning that there is at least one new type species in the subclade of s.
According to rule (b), the edge between s and its parent s′ is marked, and
because b is not in the subclade of s, it cannot be in the same genus as a.
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Case (iii). Let {a, b, c, . . .} be representatives of the different genera,
and let a′ be in the same genus as a. We need to show that the cladograms
on {a, b, c, . . .} and on {a′, b, c, . . .} are the same. Consider the cladogram
on {a, a′, b, c, . . .}. In this cladogram consider the branchpoint above the
leaf a and the branchpoint above the leaf a′. If these branchpoints are the
same or or linked by an edge then the two cladograms are indeed identical.
Otherwise we have a cladogram as in Figure 3.

�
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�
�

�
�

�
��

@
@@

@
@

@
@@

@
@

@
@

@
@@

a b c a′

×

×
×

Figure 3. Cladogram arising in the proof of case (iii).

Edges in the cladogram can be identified with paths in the phylogenetic
tree. Because a and a′ are in the same genus, there is no mark on the path
from a to a′. Because b and c are in different genera, there is a mark on
the cladogram edges to b and to c. But then by examining rules (a) and
(c) we see there must be a mark on the cladogram edge from MRCA(a, b)
to MRCA(a, c), contradicting the assumption that a and a′ are in the same
genus. This verifies case (iii).

We now need to prove the “coarser than” assertions. In each case, it is
enough to show that if G is a genus in some scheme satisfying the relevant
properties, then it is part of a genus in the specified scheme (coarse, medium,
fine). In other words, we need to show that if a and b are in the same genus
in some scheme satisfying the relevant properties, then the path from the
leaf of a to the leaf of b in the phylogenetic tree does not contain any marks
of the relevant kind. We will argue by contradiction, supposing that some
edge (c, d) on the path does have a mark.

Case (i). Here (c, d) is a parent-daughter edge and d is a “new type”.
One of {a, b} – say b – is in the subclade of d, and so a is not in that subclade.
But this violates Property 1.

Case (ii). Again (c, d) is a parent-daughter edge, and we may assume b
is in the subclade of d, and so a is not in that subclade. Also some species
f in the subclade of d is a “new type” species. By Property 1 f is in a
different genus from a, then by Property 2 MRCA(a, b) is a descendant of
MRCA(b, f). But this is impossible, because MRCA(b, f) is in the subclade
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of d whereas MRCA(a, b) is not.
Case (iii). As in case (i) we cannot have (c, d) being a parent-daughter

edge and d being a “new type”. An alternate case is that (c, d) is a parent-
daughter edge and some g 6= d in the subclade of d is a “new type”, and
also there is some “new type” species f in the subclade determined by
the continuing edge at c. By Property 1, the three species {f, d, g} are in
different genera and their cladogram is as in Figure 4 (left side).

�
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�
��

@
@

@
@@

�
�

�
�

�
��

@
@@

@
@

@
@@

f d g f c g

α α

Figure 4. Cladograms arising in the proof of Theorem 1(iii).

As before, assume species b (which might coincide with d or g) is in the
subclade of d and species a is not. Then species b must attach to the
cladogram somewhere to the lower right of α, and species a must attach to
the cladogram on one of the other edges at α. Whether or not the genus
containing {a, b} is one of the genera containing f or d or g, this violates
Property 3.

The final case is where it is the continuing edge at c that is in the path
from a to b. But in this case the same argument gives the Figure 4 (right
side) cladogram; now a must attach to the branch to the lower left of α while
b must attach to one of the other two branches from α. Again Property 3 is
violated.

2.7 Further results for the genera classification schemes

These further results are intended to elucidate properties of the genera clas-
sification schemes, but (aside from Lemma 3) are not needed for our analysis
of the probability model.

Figure 1 illustrates the typical behavior of the schemes. If one knew the
true phylogenetic tree then the coarse scheme is clearly unsatisfactory (it
puts g and r into the same genus despite the fact that g is more closely
related to the {i} genus than to r while r is more closely related to the
{stuv} genus than to g). But one can imagine settings where an unknown
tree is in fact the Figure 1 tree but, based on fragmentary fossil data, one
assigns the coarse genera. The other two schemes seem more reasonable
when one does know the correct tree on species.
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Recall that a genus is paraphyletic if it includes its MRCA. Proposition
2 will show that genera produced from the coarse scheme or the fine scheme
are always paraphyletic, and genera produced by the medium scheme are
paraphyletic except in one atypical case. From Theorem 1 it is clear that the
coarse scheme is coarser than (or the same as) the medium scheme and the
fine scheme. Proposition 2(iii) will show that, except for the same atypical
case, the medium scheme is coarser than (or the same as) the fine scheme.
Figure 5 illustrates what makes the case atypical: there must be some species
with at least four daughter species.

a

b

c

d

e

f

•
•

ab

c

d ef abef

c

d

species medium genera fine, coarse genera

Figure 5. An atypical tree and its genera. There are two “new type” species,

{c, d}. Note that the coarse/fine genus {abef} is paraphyletic while the medium

genus {ef} is not.

Proposition 2 (i) Genera in the coarse scheme or the fine scheme are
always paraphyletic.
(ii) If a medium genus G with MRCA a is not paraphyletic, write (a, b) for
the last right edge for which some species in G is in the subclade of b. Then
subsequent to daughter b, species a has at least two other daughters whose
subclades contain “new type” species.
(iii) Let G be a fine genus which is not a subset of (or equal to) some medium
genus. Let a be the MRCA of G, so a ∈ G by part (i). Let b be the first
daughter of a for which the subclade of b contains some species in G. Then
the conclusion of part (ii) holds for this pair (a, b).

Proof. Consider a genus G whose MRCA a is not in G, and let (a, b) be
the edge specified in (ii). The path between the leaves of some two species
of G must go along the edge (b, a) and upwards along the species line of a
from this branchpoint β. Because that path contains no marks, to have a
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in a different genus there must be a mark on the upwards path from the
leaf of a to the branchpoint β. This cannot happen with the coarse or fine
genera, where there are no marks on upwards edges. With medium genera,
there cannot be a mark on the continuing edge at β (because (a, b) has no
mark). So there must be a mark on some subsequent edge of the species a
line, which implies the stated conclusion in (ii). For part (iii), let G and a
be as in the statement. Because G is not a medium genus, there is some
species f in G which is in a different medium genus from a; let c be the
first daughter of a such that the subclade of c contains such a species f .
The path from the leaf of a to the leaf of f contains some mark of type (c).
This mark must be somewhere between the leaf of a and the branchpoint of
edge (a, c) (otherwise there would be a mark of type (b) on edge (a, c)) The
argument in part (ii) can be repeated to obtain the stated conclusion with
c in place of b, which implies the conclusion for b.

Numbers of marks and numbers of genera In the coarse and the
fine schemes, each mark is on a right edge, and the corresponding daughter
species is the MRCA of its genus. So by the paraphyletic property (Propo-
sition 2) in the coarse or fine scheme the number of genera is exactly equal
to the number of marks plus one, the “plus one” for the genus containing
the founder of the clade. The case of medium genera is more complicated.
The path upwards from the leaf representing a species will reach a first mark
(or the founder of the whole species clade - let us add one “virtual mark”
with the founding of the clade) which does not depend on choice of species
in the genus, and which is different for different genera. Thus each genus
can be identified with a different mark. For instance, in Figure 5 the genus
{ef} is identified with the virtual mark whereas genus {ab} is associated
with the mark on the continuing edge down from the branchpoint of d to
the branchpoint of c. However, not every mark has an associated genus. For
instance, if e and f were absent from Figure 5, then the virtual mark would
have no associated genus. It is easy to check the following condition.

Lemma 3 For medium genera, a mark is associated with a genus unless
the next downward following branchpoint is a “rule (c)” branchpoint, in
which both parent and daughter subclade contain new type species.

Thus the number of medium genera equals the number of marks (in-
cluding the virtual mark) minus the number of such marks satisfying the
condition above.

13



Operations on trees. Here we briefly say how the genera classifications
can change when the background structure (tree and distinguished “new
type” species) is changed.

(a) Suppose we don’t change the tree, but declare another species to be
“new type”. This can only increase the number of marks and so can only
make the genera partition become less coarse. For the coarse scheme it will
typically create exactly one new genus. For the other schemes it may create
more than one extra genus. For instance, in Figure 1 the designation of s as
a “new type” has created the fine genera {stuv}, {opqr}, {mn}, {l}. For
the medium scheme it typically creates either one or two extra genera.

(b) Suppose we add an extra species to the tree (as the daughter of
some already present species) and this extra species in not “new type”. For
the fine and coarse genera, and typically for the medium genera, the new
species in put into the same genus as its parent. Using Figure 5 we can see an
atypical case with medium genera. If a new daughter of a has branchpoint
between the branchpoints of c and d, it forms a new genus by itself, while
if its branchpoint is between the branchpoints of e and f then it is put into
the {ef} genus.

3 Tree statistics and the probability model

A statistic of a phylogenetic tree or cladogram is just a number (or collection
of numbers) intended to quantify some aspect of the tree. The goal of this
paper is to study, under a probability model for “purely random macroevo-
lution”, how statistics might change when one goes from species-level trees
to trees on higher-order taxa. That is, how statistics might change purely as
a logical consequence of the process of classification, rather than having any
special biological significance. For concreteness let us start by listing some
statistics for trees, in the setting of extant clades. Then we state our model
for species-level random macroevolution, and finally combine ingredients to
derive models of genus-level trees.

3.1 Examples of statistics

(a) Number of extant taxa.
(b) The time series (number of taxa in existence, as a function of past time),
which includes in particular

the time of origin of the tree
the total number of (extinct or extant) taxa
the maximum number of taxa in existence at any one time.
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(c) The time of MRCA of extant taxa
(d) The number of extinct taxa which are ancestral to some extant taxon.
(e) Statistics dealing with the shape of the cladogram on extant taxa (see
[4, 9] for recent references).

3.2 The species-level probability model

We want a probability model for the phylogenetic tree on a clade with n
extant species (for given n) which captures the intuitive idea of “purely
random macroevolution”. Our choice is the model below, studied in detail
in [2], where some arguments (not repeated here) in its favor are presented.
In (b) the phrase “rate 1” means “with probability dt in each time interval
of length dt”. So the time unit in the model equals mean species lifetime.

The species-level model (a) The clade originates with one species at a
random time before present, whose prior distribution is uniform on (0,∞).
(b) As time runs forward, each species may become extinct or may speciate,
each at rate 1.
(c) Condition on the number of species at the present time t = 0 being
exactly equal to n.
The “posterior distribution” on the evolution of lineages given this condi-
tioning is then a mathematically completely defined random tree on n extant
species, which we write as c− TREEn (here c is mnemonic for complete) 1.
See Figure 6 for a realization with n = 20.

1In (a) we use an improper [total probability is infinite] prior distribution, but after
conditioning the posterior distribution of c − TREEn is proper [total probability is 1].
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Figure 6. A realization of c−TREE20, a complete clade on 20 extant species.

The figure is drawn so that each species occupies a vertical line (from time of origin

to time of extinction (or present)), different species evenly spaced left-to-right (so

that each subclade is a consecutive series), using the convention: daughters are

to right of parents, earlier daughters rightmost. On the left are time series: the

outer line is total number of species, the inner line is number of ancestors of extant

species. Marks • indicate “new type” species, used later to construct genera. In

this realization there were a total number 142 of extinct species, with a maximum

of 38 species at one time; Tmrca = 9.05 and T origin = 12.75.
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This model is sufficiently simple that one can do many calculations (ex-
act formulas for given n, and n → ∞ asymptotic approximations). See [2]
for results for the phylogenetic tree statistics mentioned in section 3.1. The
induced cladogram on the n extant species has the same distribution (ERM,
for equal rates Markov) as in simpler models such as the Yule process (speci-
ations but no extinctions: see next section) or the Moran/coalescent models
(number of species fixed at n, with simultaneous extinction/speciation of
two random species). Properties of this distribution are well understood [1].

One lesson from [2] is that in this model, many phylogenetic tree statis-
tics are highly variable between realizations. For instance, the time since
MRCA scales as nT where T is a random variable with mean 1 but with
infinite variance. This phenomenon is rather hidden in our formulas but will
be re-emphasized in the sequel [8].

3.3 The probability model for higher-order taxa

Start with the model above for the complete tree c − TREEn on a clade
with n extant species. Introduce a parameter 0 < θ < 1, and suppose
that each species (extinct or extant) independently has chance θ to be a
new type. Then any of the three schemes from section 2.5 can be used
to define an induced tree on genera, which we shall call GENERAθ,fine

n species

or GENERAθ,medium
n species or GENERAθ,coarse

n species. Figures 7 and 8 show realiza-
tions derived from the 162-species clade in Figure 6. See our web site
www.stat.berkeley.edu/users/aldous/Research/Phylo/index.html for
further realizations. Decreasing the parameter θ will increase the average
number of species per genus: alternatively, regard decreasing θ as moving
up the taxonomic hierarchy.

This framework for probability models of higher-order macroevolution is
the conceptual novelty of this paper, so (before proceeding to mathematical
calculations in the next section) let us add some discussion.
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Figure 7. A realization of the tree GENERAθ,fine
n species on extant and extinct

fine genera, with n = 20 extant species and θ = 0.04. It was derived from the

realization of c−TREE20 in Figure 1, with the “new type” species there indicated

by •. In this realization, there were 7 such “new type” species, producing 25 genera,

of which 5 were extant. Letters {a, b, c, . . . ,m } indicate which of these fine genera

are combined to form medium genera in Figure 8.
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Figure 8. The phylogenetic trees on medium genera (left) and coarse genera

(right) corresponding to the fine genera in Figure 7. There are 13 medium and 8

coarse genera.

Ingredients of model We can view the model as having three ingredients:

• the probability model (section 3.2) for phylogenetic trees on species

• the idea of using “new type” species to define genera, and the proba-
bility model above for new type species

• the particular classification schemes for defining genera.

Obviously one could choose to vary details of the first and third ingredients.

Previous models Yule [14] proposed the basic model for speciations with-
out extinctions. Initially there is one species; each species has daughter
species at rate 1. Though this species model is familiar nowadays, the main
point of Yule’s work is invariably overlooked. He superimposed a model of
genera by supposing that, from within each existing genus, a new species
of new genus arises at some constant stochastic rate λ. This leads to a
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one-parameter family of long-tailed distributions for number of species per
genus (see [1] for brief description). Yule’s model perhaps foreshadows “hi-
erarchical selection above the species level” [5]; in contrast, our model for
higher-level taxa does not assume separate genus-level biological effect, but
rather combines species-level novelty with conventions about how system-
aticians construct genera. In other words, our model is intended to capture
the “neutral” idea that a subclade is defined by a heritable character but
that this character has no “selective advantage”, i.e. that the species in the
subclade have unchanged speciation and extinction rates. This “neutral”
idea was studied in [6], but there the partition of species into genera was
based only on the size of subclades.

Nuances of the model We claim that the model is sufficiently flexible
that any question one might ask about genera-level macroevolution statistics
can be formulated within the model. Our initial description assumed a clade
with a specified number n of species (and hence a random number of genera),
but it’s usually more natural to work in one of the two following settings.

Model for the phylogenetic tree on g extant genera. For a given number
g, we start with the species-level model from section 3.2 with the improper
prior; instead of conditioning on n extant species we define genera as above,
and condition on g extant genera. This gives a model for random phyloge-
netic trees which we call e.g. GENERAθ,fine

g where the superscript records
the value of the “probability of new type” parameter θ and which of the
classification schemes is used. Now the kind of statistics for phylogenetic
trees listed in section 3.1 can in principle be studied within this model.

Model for the phylogenetic tree of species within a genus. The concep-
tual point here is that genera are often not clades (some subtree forming a
different genus may be absent) so that the statistical properties of the tree
on species in a m-species genus will not coincide with those for a tree on
species in a m-species clade. More subtly, even if a genus is a clade then
the fact that some rule is used to select which clades are genera will alter
statistical properties. Our model for the tree on species in a typical extinct
genus, GENUSθ,fine,extinct say, is as the n → ∞ limit of a randomly chosen
genus within the n-species model. Fortunately this limit interpretation con-
stitutes a mathematical simplification (see “proof strategy” in section 4.2).
Similarly, our model GENUSθ,fine,extant for the tree on species in a typical
extant genus is as the n → ∞ limit of a randomly chosen extant genus
within the n-species model. We stress that the main focus of our results in
sections 4.2 and 4.4 is on the analysis of the trees GENUSθ,(scheme),extinct and
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GENUSθ,(scheme),extant for the three different classification schemes.
Several higher levels. Finally, note that it is simple to model simul-

taneously two or more higher levels such as {genus, family} by using two
probabilities θfamily < θgenus. See section 4.3.

4 Mathematical results for the stochastic model

Within the stochastic model that we have defined we have implicitly raised
2× 2× 3×K mathematical problems; where K is the number of interesting
statistics of phylogenetic trees (cf. section 3.1), and where we have 2× 2× 3
probability models arising from different combinations of: tree on genera or
tree of species within a genus; extant or extinct clades; coarse, medium or
fine genera.

In the remainder of the paper we present some solutions, emphasising
those problems for which we can find reasonably explicit analytic solutions
for different genera schemes. Sections 4.2 - 4.3 contain detailed systematic
analysis in the context of extinct clades (which turns out to be mathemati-
cally easier). Section 4.4 outlines one result in the extant setting. Of course
one can answer any numerical question via simulation, and in the sequel [8]
we identify the most interesting features of the model for biology and study
them via simulation where necessary. Tables and graphs illustrating some
of the formulas obtained below will also be given in [8].

4.1 A/Z analysis

For our analysis it is more convenient to work with “lineage segments” than
full lifelines of species. For example, in Figure 2 the species represented by
the vertical line on the left has three lineage segments, determined by the
two cuts at the branchpoints where the two daughter species branched off.
Thus we can re-draw a phylogenetic tree using different lineage segments
(as in Figure 9), where a lineage segment either ends with extinction of the
species (or the current time), or else splits into two lineage segments, the
left one for the parent species and right one for the daughter species. If the
daughter is “new type” this branchpoint is represented by a black circle;
otherwise, a white circle. We can now label each lineage segment as either
“type A” if some descendant species is new type, or “type Z” if not (A and
Z are mnemonics for “any” and “zero”). Here the notion of any or zero
“descendants” does not include the species of the lineage segment itself.

The advantage of this representation is that now the marks which define
the different genera schemes depend only on the A/Z classification of the two
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ZA

coarse

A Z Z Z

Z AA A

ZA

A Z Z Z

Z AA A

ZA

medium fine

A|Z A|ZA|Z A|Z A|Z A|Z

Figure 9: Catalog of rules for assigning marks × in the three classification
schemes. The figure shows a branchpoint in a phylogenetic tree redrawn
as lineage segments. Daughter lineage on right. Black circles • indicate
daughter is “new type”. Z or A indicate zero or non-zero number of new
type species in subclade. A|Z stands for ”A or Z”.

subclades and whether the branchpoint was a new type. Figure 9 catalogs
the rules for creating marks for the three genera schemes.

4.2 Tree of species in an extinct genus

In this section we will derive the following formulas for our probability model
GENUSθ,(scheme),extinct.

Theorem 4 For the tree of species in a typical extinct genus:
(a) The mean number (µ, say) of species in the genus is

θ−1 (coarse) (1)

θ−1/2 (fine) (2)

θ−1(3 − θ1/2)−1(1 + θ1/2) (medium). (3)

(b) The generating function G(z) = EzG of the number G of species in the
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genus is

1
2 +

1−
√

(2−θ)2−4(1−θ)z

2(1−θ) (coarse) (4)

z√
θ

(

1

1−
√

θ+
√

1−z(1−θ)
− 1−θ

1+
√

1−z(1−θ)

)

(fine) (5)

1
3−

√
θ

(

1 −
√
θ + (1+

√
θ)z−(1−

√
θ)√

1−z(1−θ)

)

(medium) (6)

(c) The distribution function P (L ≤ t) for the lifetime L of the genus is

eθt−1
eθt−(1−θ)

, (coarse) (7)

1√
θ
− 2(1−2

√
θ)−1(1−

√
θ−

√
θe(2

√
θ−1)t)−(θ−1/2−

√
θ)(e2

√
θt−1)

(1+
√

θ)e2
√

θt−(1−
√

θ)
(fine) (8)

and for the medium scheme see equation (26).

Proof strategy. The continuous time critical binary branching process
(CBP) starts at time 0 with one individual. Thereafter, each species is
liable to become extinct (rate 1) or to speciate (rate 1). This is of course
the underlying stochastic model for species from section 3.2. An intuitively
easy result ([2] Proposition 4) states that, in the n → ∞ limit of our n-
species model, the process consisting of a randomly chosen species (σ, say)
and its descendants, with time measured from the origin of species σ, is the
CBP process (call it T , say), run until extinction. At each branching point
the processes continuing on either side are independent copies of the CBP.
By now applying A/Z analysis to T , we can assign genera to T and then
study the genus containing σ. This is our proof strategy. But be aware that
the notion of “typical extinct genus” does not correspond exactly to “genus
in T containing σ”. To make an exact correspondence, note (see Appendix
2.7) that each genus can be identified with a mark in the underlying n-
species tree; so we need to condition on T starting with a lineage segment
which contains such a mark in the underlying tree (Figure 9). In practice
this is not difficult to do, using the following lemma.

Lemma 5 In the CBP, the probabilities (pA, pZ) that the initial lineage
segment are (type A, type Z) equal

pZ = 1
1+

√
θ
, pA = 1 − pZ =

√
θ

1+
√

θ
. (9)

The generating function for the number N of species in the CBP is

EzN = 1 −
√

1 − z. (10)
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Proof. Formula (10) is classical ([3] XII.5.). Formula (9) is the solution of
the equation

pZ = 1
2 + 1

2p
2
Z(1 − θ)

which arises as follows. The “1/2” terms are the probabilities of extinction
first (making the lineage be type Z) or speciation. In the latter case the
only way to get type Z is if both lineages are type Z and also the daughter
species is not new type.

Derivation of formulas (a) for mean number µ of species In the
coarse and the fine genera schemes, the fact that distinct genera correspond
to distinct marks implies

µ−1 = P (typical parent-daughter edge has mark) (11)

in the n → ∞ limit. In the coarse case, marks occur only when daughter
is new type, so this probability equals θ, giving (1). The fine scheme result
(2) follows from

Lemma 6 In the n → ∞ limit model, or in T , the chance that a typical
parent-daughter edge has a fine mark equals

√
θ.

Proof. The edge does not have a fine mark if and only if the daughter is not
new type and the lineage starting with daughter is type Z. So the probability
in question equals

1 − (1 − θ)pZ = 1 − (1 − θ)/(1 +
√
θ) = 1 − (1 −

√
θ).

Now consider the medium scheme. Call a lineage “type C” if at its end
the first event is speciation (instead of extinction) and if then both lineages
are type A (so a type C lineage is also a type A lineage, but not necessarily
conversely). Lemma 3 identifies medium genera with marks on lineages
which are not type C. Then using the fact that branchpoints occur at the
same rate as daughter species, the analog of (11) for medium genera is

µ−1 = E(number of marked lineages at a typical branchpoint, not of type C).

We now need four calculations.

P (left lineage has medium mark) =
√
θpA

P (left lineage has medium mark, is type C) =
√
θ 1

2pA

√
θ

P (right lineage has medium mark) = θ + (1 − θ)p2
A

P (right lineage has medium mark, is type C) = θ 1
2pA

√
θ + (1 − θ)pA

1
2pA

√
θ.
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Let’s argue only the final one. If the daughter is new type (chance θ) we
need the daughter lineage to speciate (chance 1/2) and the left sublineage
to be type A (chance pA) and the right sublineage to be type A (chance√
θ by Lemma 6). If instead the daughter is not new type (chance 1 − θ)

then we need the original continuing lineage to be type A (chance pA) and
we need the daughter’s lineage to be type C (chance 1

2pA

√
θ by argument

above) which implies the original right lineage has a mark.
Using these four formulas we get

µ−1 =
√
θpA−

√
θ 1

2pA

√
θ+(θ+(1−θ)p2

A)−
(

θ 1
2pA

√
θ + (1 − θ)pA

1
2pA

√
θ
)

.

Using (9) and some manipulations we find

µ−1 =
θ(3 −

√
θ)

1 +
√
θ

leading to (3).

Derivation of formulas (b) for generating functions of number of
species per genus First consider the coarse scheme. Recall that for
coarse genera, the MRCA of the different genera are exactly the different
“new type” species. So a coarse genus consists of its “new type” founder
and its descendant species, with the modification that any “new type” de-
scendant species are discarded (and so don’t have descendants). Because the
relative chances of a species to first (become extinct; have daughter species
which is not “new type”) are (1; 1−θ), it is clear that the species in a coarse
genus behave as a Galton-Watson process whose offspring distribution D is
shifted geometric(p = 1/(2 − θ));

P (D = d) = 1
2−θ

(

1−θ
2−θ

)d
, d ≥ 0. (12)

By classical theory (e.g. [3] XII.5), the probability generating function
g(z) = E(zG) of the total size G of the Galton-Watson process is deter-
mined by the probability generating function fD(z) = E(zD) as the unique
positive solution of the equation g(z) = zfD(g(z)). When the offspring dis-
tribution is shifted geometric(p) we have fD(z) = p/(1 − (1 − p)z), and
hence g(z) = (1 −

√

1 − 4p(1 − p)z)/2(1 − p). Setting p = 1/(2 − θ) gives
(4).

We now consider fine genera. For a species s write Bs for the event
“neither s nor any descendant is new type”. Writing σ for the daughters of
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s, define

D =
∑

σ

1Bσ

D′ =
∑

σ

1Bc
σ

Nσ = number of species in subclade of σ within the same genus

M = 1 +
∑

σ

Nσ1Bσ .

Take s to be a random species in the n → ∞ limit of the n-species model,
so that the subclade of s is distributed as the CBP. Then s is the MRCA
of its fine genus if and only if event Bc

s occurs, in which case the size of the
genus is M . So the generating function of “number of species per typical
fine genus” is

E(zM |Bc
s) =

EzM1Bc
s

P (Bc
s)

=
EzM − EzM1Bs√

θ
(13)

because P (Bc
s) =

√
θ by Lemma 6.

From the definition of M ,

E(zM ) = z
∑

d≥0

P (D = d)Hd(z)

where H(z) is the generating function of size of a clade for which event Bs

occurs, that is
H(z) = E(zM |Bs).

Event Bs occurs if and only if s is not new type, and D′ = 0, so

E(zM1Bs) = (1 − θ)z
∑

d≥0

P (D = d,D′ = 0)Hd(z).

Throughout the lifetime of s, the chances of the next event being

(s goes extinct; daughter σ and event Bσ; daughter σ and event Bc
σ)

are
(1
2 ; 1−

√
θ

2 ;
√

θ
2 )

which easily implies

P (D = d) = (1 − ρ)dρ, d ≥ 0; ρ = 1/(2 −
√
θ)
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P (D = d,D′ = 0) = 1
2 [12 (1 −

√
θ)]d.

Next, because conditioning on Bs is conditioning on no species to be new
type,

P (M = n|Bs) =
P (M = n)(1 − θ)n

P (Bs)
=
P (M = n)(1 − θ)n

1 −
√
θ

by Lemma 6 again. Thus, in terms of the unconditioned generating function
G(z) = EzN = 1 −

√
1 − z at (10) the conditioned generating function is

H(z) = E(zM |Bs) =
G((1 − θ)z)

1 −
√
θ

=
1 −

√

1 − z(1 − θ)

1 −
√
θ

. (14)

We can now calculate

E(zM ) = z
∑

d≥0

(1 − ρ)dρHd(z) =
ρz

1 − (1 − ρ)H(z)

=
z

1 −
√
θ +

√

1 − z(1 − θ)

E(zM1Bs) = (1 − θ)z
∑

d≥0

1
2 [12 (1 −

√
θ)]dHd(z)

=
(1 − θ)z 1

2

1 − 1
2(1 −

√
θ)H(z)

=
(1 − θ)z

1 +
√

1 − z(1 − θ)
.

Inserting into (13) gives the desired formula (5).
We now consider the medium scheme. Consider the initial lineage in the

CBP. Define M(z) to be the generating function of the number of species in
the CBP such that there is no medium mark on the path between this initial
lineage s and the species label at its extinction time. Define MA(z),MZ(z)
similarly but conditioning on the initial lineage being type A or type Z. So

M(z) = pAMA(z) + pZMZ(z)

for pA, pZ at (9); also

MZ(z) = H(z) =
1 −

√

1 − z(1 − θ)

1 −
√
θ

(15)

forH(z) at (14) because each is the generating function for number of species
in the CBP conditioned on no new type species.

We first show how the desired generating function G(z) of number of
species in a typical extinct medium genus is related to the quantities above.
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Consider medium marks in the n → ∞ limit of the n-species model; recall
(Lemma 3) that we can associate such marks with medium genera but that
such genera may be empty. There are three possible categories of medium
mark which might be associated with a branchpoint; below we state their
probabilities and the generating function (g.f.) of the number of species
below the mark which contribute to the number of species in the medium
genus associated with the mark.

Mark on parent-daughter edge where daughter is new type: chance = θ,
g.f. = M(z) because subclade of daughter is distributed as CBP.

Daughter is not new type but parent-daughter edge has mark: chance
= (1 − θ)p2

A, g.f. = MA(z) because initial lineage of daughter must be type
A.

Mark on continuing lineage of parent; chance = pA

√
θ using Lemma 6,

g.f. = MA(z) because continuing lineage is type A.
Adding these contributions gives

Ḡ(z) = θM(z) +
(

(1 − θ)p2
A + pA

√
θ
)

MA(z)

whose interpretation is as the n → ∞ limit of n−1
∑

i z
gi for the sizes (gi)

of medium genera associated with marks i in the n-species model. To get
the desired G(z) we need to discard the null genera and normalize to a
probability distribution, so

G(z) = Ḡ(z)−Ḡ(0)
Ḡ(1)−Ḡ(0)

.

The formula for Ḡ reduces to

Ḡ(z) = θ
1+

√
θ
(MZ(z) + 2MA(z))

and then, because MZ(0) = 0,

G(z) =
MZ(z) + 2(MA(z) −MA(0))

1 + 2(1 −MA(0))
. (16)

To get an equation for MA(z), consider the initial lineage of a CBP. In order
for this to be type A, one of the following three possibilities must occur
at the first branchpoint; we state their (unconditional) chances and their
contribution to MA(z) if they occur.

Parent-daughter edge has no medium mark; and either continuing lineage
is type A, daughter lineage is type Z, or continuing lineage is type Z, daughter
lineage is type A. Chance 2(1−θ)pApZ ; contribution to g.f. = MA(z)MZ(z)
because both lineages contribute.
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Parent-daughter edge has a mark; continuing lineage is type A. Chance
pA

√
θ; contribution to g.f. = 1 because this is the case where the genus is

null.
Parent-daughter edge has a mark; continuing lineage is type Z. Chance

pZθ; contribution to g.f. = MZ(z) because only the continuing lineage
contributes.

The unconditional probabilities (2(1−θ)pApZ , pA

√
θ, pZθ) of these three

cases become (after normalization to sum to 1) the conditional probabilities
given original lineage is type A: so these conditional probabilities are ((1 −√
θ), 1

2

√
θ, 1

2

√
θ). Thus

MA(z) = (1 −
√
θ)MA(z)MZ(z) + 1

2

√
θ + 1

2

√
θMZ(z)

whose solution is

MA(z) =

√
θ

2
· 1 +MZ(z)

1 − (1 −
√
θ)MZ(z)

=

√
θ

2
· 1 +MZ(z)
√

1 − z(1 − θ)

using (15) in the denominator. Inserting into (16) gives

G(z) = (MZ(z) + 2MA(z) −
√
θ)/(3 −

√
θ)

=
1

3 −
√
θ

(

1 −
√
θ +

(1 +
√
θ)z − (1 −

√
θ)

√

1 − z(1 − θ)

)

which is the desired expression (6).

Derivation of formulas (c) for distribution of genus lifetime As
before we consider the CBP. Write L for the lifetime of the genus (in some
scheme) containing the founding species, and write type(ι) for the type (A
or Z) of the initial lineage ι. Write

qZ(t) = P (L ≤ t, type(ι) = Z)

qA(t) = P (L ≤ t, type(ι) = A).

We shall argue that these distribution functions satisfy the differential equa-
tions

q′Z + 2qZ = (1 − θ)q2Z + 1, (17)

(q′Z + q′A) + 2(qZ + qA) = R(qA, qZ , pA) + 1 (18)
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with initial conditions
qZ(0) = qA(0) = 0,

where pA =
√
θ/(1 +

√
θ) (9) and where R is a function depending on

genera scheme, given in (21,22), for the coarse and fine scheme below. These
equations are derived using the backwards equations method for branching
processes ([3], XVII.8). That is, in initial time dt we have (to first order in
dt)

chance 1 · dt of extinction
chance 1 · dt of a branchpoint
chance 1 − 2 · dt of neither.

To derive (17) note that the “extinction” possibility implies the lineage is
type Z. So,

qZ(t+ dt) = 1 · dt + Ξt 1 · dt+ (1 − 2 · dt)qZ(t) (19)

where
Ξt = P (L ≤ t, type(ι) = Z|branchpoint at time 0+).

This rearranges to
q′Z(t) + 2qZ(t) = 1 + Ξt. (20)

In order to have L ≤ t and type(ι) = Z after a branchpoint at time 0+,
we need the daughter to not be new type, and we need both subsequent
lineages to be type Z, so Ξt = (1 − θ)q2Z(t), giving (17).

To derive (18), repeat the argument for (19) to get

q′Z(t) + q′A(t) + 2(qZ(t) + qA(t)) = 1 +Rt

Rt = P (L ≤ t|branchpoint at time 0+).

We now consider each scheme in turn, to get formulas for Rt. In each case
we condition on a branchpoint at time 0+, and write Ll, Lr for the “lifetime
of genus” quantity L applied to the lineages ιl, ιr after the branchpoint.
For coarse genera, in order to have L ≤ t we need

either: daughter is new type, and Ll ≤ t;
or: daughter is not new type, and Ll ≤ t, and Lr ≤ t.

So,

Rt = θ(qZ(t)+qA(t))+(1−θ)(qA(t)+qZ(t))2 := Rcoarse(qA(t), qZ(t)). (21)

For fine genera, in order to have L ≤ t we need
either: daughter is new type, and Ll ≤ t;
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or: daughter is not new type, and Ll ≤ t, and type(ιr) = A;
or: daughter is not new type, and Ll ≤ t, type(ιr) = Z, and Lr ≤ t .

So,

Rt = θ(qA(t)+qZ(t))+(1−θ)(qA(t)+qZ(t))(pA+qZ(t)) := Rfine(qA(t), qZ(t), pA).
(22)

The case of medium genera is more complicated and will be treated below
separately.

Solving these equations we get the following results:

qZ(t) =
e2

√
θt − 1

(1 +
√
θ)e2

√
θt − (1 −

√
θ)

(23)

qZ(t) + qA(t)
∣

∣

∣

coarse
=

eθt − 1

eθt − (1 − θ)
(24)

qA(t) + qZ(t)
∣

∣

∣

fine
= 1 − 2

√
θ

1 − 2
√
θ
· (1 −

√
θ) −

√
θe(2

√
θ−1)t

(1 +
√
θ)e2

√
θt − (1 −

√
θ)
. (25)

Note that the branching process of a Z lineage is a birth-death process
with birth rate 1 −

√
θ and death rate 1/pz = 1 +

√
θ so (23) also follows

from the standard result on the lifetime distribution of a birth-death process
([3] XVII.10.ex.12). Also, the branching process of the coarse genera is a
birth-death process with birth rate 1− θ and death rate 1, and (24) follows
from the lifetime distribution of such birth-death process.

We now need to translate these formulas P (L ≤ t) = qZ(t) + qA(t)
for the distribution function of L (the size of genus in a CBP containing
the founder species σ) into formulas for the distribution function of L (the
size of a typical extinct genus), the relation being that L has the conditional
distribution of L given that σ (regarded as a species sampled from an n→ ∞
limit clade) is founder of a genus in that clade. For coarse genera, we are
just conditioning on σ being a new type species, which has no effect on the
distribution of the CBP, so formula (24) immediately becomes formula (7)
for L.

For fine genera, the marking rule implies

L has the conditional distribution of L given that either σ or
some descendant of σ is new type.

There is chance θ for σ to be new type, and chance (1 − θ)pA that σ is not
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new type but some descendant is new type. So

P (L ≤ t) =
θ

θ + (1 − θ)pA
(qA(t) + qZ(t)) +

(1 − θ)pA

θ + (1 − θ)pA

qA(t)

pA

=
qA(t) + qZ(t) − (1 − θ)qZ(t)√

θ

using the fact θ + (1 − θ)pA =
√
θ. Now (23,25) give formula (8).

For medium genera. We identify each genus with the oldest species in
the genus (for the fine and coarse schemes this is essentially the same as
identifying a genus with a mark on a tree, but not for the medium scheme),
the birth time of this oldest species giving the “starting point” from which
we measure genus lifetime.

Consider a species a that originates from its parent b at the branchpoint
β. For a to be the oldest species in its genus there are three alternatives:
(1) there is a medium mark on the lineage of a; in this case we say that the
right subtree below β has type B;
(2) there is a medium mark on the parent-daughter edge b - a, but no marks
on the lineage of a;
(3) there are no marks on the lineage of a and no medium mark on the
parent-daughter edge b - a, but a is still the oldest in its genus.

It’s clear that in cases (1,2) no species older than a can be in the same
genus (because by definition the two species are in the same genus only if
the path in the tree between the corresponding leaves contains no marked
edge). Consider in detail how case (3) can arise.

Because a and b are in different genera, but there is no medium mark on
the path from a-leaf to branchpoint β, there is necessarily a mark between
β and b-leaf. In this case we say that the left tree below β has type B.
Note that this means that a necessarily has type Z; otherwise β would be
a branchpoint of type A + A and both edges below it would have medium
marks. If the branchpoint directly above β is the starting point of another
daughter of b (this has probability 1/2), this daughter must be either new
type or type A (probability (1−θ)pA+θ =

√
θ); otherwise it would be in the

same genus as a and a would not be the oldest in its genus. If the branchpoint
β′ directly above β is the starting point of b itself (probability 1/2), then
(denoting by b′ the parent of b) for a and b′ to be in different genera, either
the parent-daughter edge b′ - b must have a medium mark, or the segment
of the lineage of b′ between β′ and b′-leaf must have a medium mark. But
in the latter case, both subtrees below β′ are of type A, so there is a mark
on parent-daughter edge b′ - b anyway (probability θ + (1 − θ)pA =

√
θ).
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The probability for the initial lineage to be of type B satisfies the equa-
tion

pB = 1
2pA

√
θ + 1

2(1 −
√
θ)pB ,

so the first alternative has probability

pB =
θ

(1 +
√
θ)2

,

the second alternative has probability

θ(1 − pB) + (1 − θ)(pA − pB)pA =
θ(
√
θ + 2)

(1 +
√
θ)2

,

and the third alternative has probability

pZpB(1
2

√
θ + 1

2

√
θ − θ) =

θ(
√
θ − θ)

(1 +
√
θ)2

.

Summing these three contributions, the probability that a randomly chosen

species is the oldest in its genus equals θ(3−
√

θ)

1+
√

θ
, which agrees with (3).

Now let’s return to the lifetime distribution. As before we write L for
the lifetime of the genus containing the founding species, and write type(ι)
for the type of the initial lineage ι. We’ll need three types: Z, B (which is
subset of A) and Ā (which stands for “A but not B”). Write

qZ(t) = P (L ≤ t, type(ι) = Z)

qĀ(t) = P (L ≤ t, type(ι) = Ā)

qB(t) = P (L ≤ t, type(ι) = B).

qZ(t) was calculated earlier. qB(t) is defined by

q′B(t) + 2qB(t) = qB(t) + θqĀ(t) + (1 − θ)pAqĀ(t), qB(0) = 0,

qĀ is defined by

q′Ā(t)+2qĀ(t) = θqZ(t)+2(1−θ)qZ(t)qĀ(t)+(1−θ)qZ(t)qB̄(t), qĀ(0) = 0,

where qB̄(t) is defined by

q′B̄(t) + 2qB̄(t) = (1 − θ)qB̄(t)qZ(t) +
√
θpA, qB̄(0) = 1/2pA

√
θ.

Here qB̄ is the probability that the lineage ι has type B and the oldest leaf,
reachable from the initial point of the CBP (that is such that there is no
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medium marks on the path to this leaf) is not older than t. Because it’s
possible that the first branchpoint in the CBP is of type A + A, and no
leaves are reachable from the origin, we need a non-zero initial condition for
qB̄ .

Solving the differential equations above, we find

qB̄(t) =
θ(e2t

√
θ − 1) + θ3/2et

√
θ−t

(1 +
√
θ)2e2t

√
θ + θ − 1

,

qĀ(t) =
ψ(θ, t)

((1 +
√
θ)e2t

√
θ +

√
θ − 1)2(1 +

√
θ)
,

ψ(θ, t) =
(

θ +
√
θ
)

e4t
√

θ + θ
(

2θ − 2t
√
θ − 4t−

√
θ + 2tθ − 1

)

e2t
√

θ

+ θ3/2 −
√
θ − θ

(

θe2t
√

θ + e2t
√

θ
√
θ + θ −

√
θ
)

et(
√

θ−1)

and

qB(t) =
√
θ

∫ t

0
qĀ(u)eu−t du.

Finally, the overall genus lifetime distribution function is a weighted sum
of distributions above, giving

P (L ≤ t) =
1 +

√
θ

θ(3 −
√
θ)

(

qB(t) + θqZ(t) +
√
θqĀ(t) +

√
θ(1 − θ)qB̄(t)qZ(t)

)

.

(26)

4.3 Tree of extinct genera

We now consider aspects of the trees on genera, illustrated in Figures 7 and
8. For the first result, each genus has some number (maybe zero) of “direct
offspring” genera. For instance, in Figure 7 (fine genera) genus b has two
offspring, the first genus c and the genus k. For Figure 7 the numbers of fine
genera with (0; 1; 2) offspring genera are (4; 18; 3). Let us write “offspring
tree” for the tree recording this “direct offspring” relationship between gen-
era. So the offspring tree carries less information than the complete tree
(e.g. the lifetime of a genus is not included) but more information than the
induced cladogram (e.g. it includes the identity of MRCA genera).

Proposition 7 The offspring tree on descendant genera of a typical extinct
genus is distributed as a Galton-Watson branching process, whose offspring
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distribution ξ is as follows.
(a) Coarse genera:

P (ξ = 0) = pZ

P (ξ = i) =
θP (ξ = i− 1) + (1 − θ)

∑i−1
j=1 P (ξ = j)P (ξ = i− j)

2
√
θ

, i ≥ 1

where pZ = 1/(1 +
√
θ).

(b) Fine genera:

P (ξ = 0) = pA

P (ξ = i) = (1 − pA)2pi−1
A , i ≥ 1

where pA =
√
θ/(1 +

√
θ).

For medium genera there is a more complicated result (which we omit)
involving a three-type Galton-Watson process. Note Eξ = 1, so that (as
expected) the “critical” property of the species-level model is preserved at
the genus level. Note also that in Figure 7, where pA = 1/6, the data
on offspring frequency matches well the distribution (b) of ξ, even though
Figure 7 refers to the extant setting.

Proof. (a) For coarse genera, each genus is founded by a new type
species, so clearly the offspring tree we seek is the Galton-Watson process
with offspring distribution ξ described as follows:

start CBP with a species σ which is not new type, but disallow
descendants of any new type species; let ξ be the number of new
type species.

Because σ may (become extinct; have new type daughter; have not new
type daughter) with chances (1/2; θ/2; (1 − θ)/2), the generating function
Φ(z) := Ezξ satisfies the equation

Φ = 1
2

(

1 + θzΦ + (1 − θ)Φ2
)

whose solution is

Φ(z) = Ezξ =
1 − 1

2θz −
√

1
4θ

2z2 − θz + θ

1 − θ
. (27)

One can deduce the recursive formula stated in (a).
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(b) Consider a species σ as the founder of CBP and as a sampled species
from a large clade conditioned on the edge (parent(σ), σ) having a fine mark.
Consider the fine genus g founded by σ. The number of offspring genera is
exactly the number ξ of daughter species σi of σ such that the edge (σ, σi)
has a fine mark. It easily follows that the offspring tree under consideration
in Proposition 7 is a Galton-Watson process with some offspring distribution
ξ. Recall the A/Z analysis from section 4.1. If the initial lineage of σ is type
Z then ξ = 0. If it is type A (probability q, say) then at each marked edge
(σ, σi) there is some probability (r, say) that the continuing lineage of σ is
type A. So the distribution of ξ has the form

P (ξ = 0) = 1 − q

P (ξ = i) = qri−1(1 − r), i ≥ 1.

To calculate r, note that conditioning on a parent-daughter edge having a
fine mark (which forces the lineage above the split to be type A) does not
affect probabilities for the type of the continuing parental-species lineage,
so r = pA in (9). To calculate q, in the setting of the founder σ of CBP,

q = P (lineage is type A|lineage is type A, or σ is new type).

The conditioning event has chance
√
θ by Lemma 6. So

q = pA/
√
θ = pZ = 1 − pA

giving the distribution in (b).

Interpretation There are several ways to interpret Proposition 7 as a
statement about “typical trees on extinct genera”. First, we could consider
the tree on all genera in a large clade; given that a subtree has g genera,
this subtree (that is, its tree of offspring) is the Galton-Watson process in
Proposition 7 conditioned on having exactly g genera.

Another interpretation uses the genus/family model mentioned at the
end of section 3.3. Set θfamily < θ = θgenus and suppose that each species
has chance θ to be new genus type or new family type, and chance θfamily to
be new family type. Now we can consider “the tree on genera in a typical
family” in the way analogous to “the tree on species in a typical genus”
previously studied.

Proposition 8 (a) In the coarse scheme, the offspring tree on genera in a
typical extinct family is distributed as the Galton-Watson branching process
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whose offspring distribution ξ′ has generating function

Φ′(z) = Φ(z + θ′(1 − z)) (28)

where θ′ = θfamily/θ and where Φ(z) is the generating function (27).
(b) In the fine scheme, the offspring tree on genera in a typical extinct family
is a Galton-Watson branching process with offspring distributions η0, η as
follows. After the first generation the offspring distribution η is determined
by the relation

P (η = i)

P (η = 0)
= θ−1

(√
θ −

√

θfamily

1 +
√
θ

)i

, i ≥ 1. (29)

In the first generation,

P (η0 = i) =

√
θfamily

1+
√

θfamily
P (η = i) + 1

1+
√

θfamily
P (ζ = i) (30)

where

P (ζ = i) ∝
(√

θ

θfamily
− 1

)i
∑

j≥i+1

(

j

i

)

(

√

θfamily

1 +
√
θ

)j

, i ≥ 0. (31)

Proof. (a) The process of all descendant species of a typical “new family
type” species σ is just CBP. So as in Proposition 7(a), the offspring tree
of genera (where a genus may or may not be in a new family) is just the
Galton-Watson process with offspring distribution ξ at (27). We want the
subprocess containing only genera in the same family as σ. Because a new
genus type has chance θ′ to be a new family type, the subprocess is just the
Galton-Watson process with offspring distribution ξ′ described by

the conditional distribution of ξ′ given ξ is Binomial(ξ, 1 − θ′)

and (28) follows.
(b) In the fine scheme, a species σ founds a new genus (resp. family)

if the parent-daughter edge (σ′, σ) has a genus (resp. family) mark, which
by Lemma 6 has probability

√
θ (resp.

√

θfamily). Here “mark” means fine
mark. So in particular,

given (σ′, σ) has a genus mark, the chance it has a family mark equals
√

θfamily/θ = ρ, say.
Consider first the case where (σ′, σ) has a genus mark but no family mark.
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In this case all descendant genera are in the same family, and the number η
of offspring genera has distribution

P (η = i) ∝ P (ξ = i)(1 − ρ)i

for ξ as in Proposition 7(b). Now consider the case where (σ′, σ) has a
family mark, so that the genus of σ is the founder genus in a new family. A
daughter genus σ∗ for which the edge (σ, σ∗) has a family mark will be in
a different family. Thus the distribution η0 for number of offspring genera
within a family for the founding genus can be described as:

conditional on (σ′, σ) having a family mark, η0 is the number of offspring
genera without a family mark.
To get an expression for the distribution of η, use Proposition 7(b) to get,
for i ≥ 1,

P (η = i)

P (η = 0)
=
(

1−pA
pA

)2
(pA(1 − ρ))i = θ−1

(√
θ −

√

θfamily

1 +
√
θ

)i

which is (29).
So consider the case where (σ′, σ) has a family mark. This splits into

two sub-cases:
(i) some descendant of σ is new family type;
(ii) σ itself, but no descendant, is new family type.
By considering a typical species σ and using Lemma 5, the relative chances

of (i) and (ii) are

√
θfamily

1+
√

θfamily
and 1

1+
√

θfamily
×θfamily, so the actual chances are

1

1+
√

θfamily
and

√
θfamily

1+
√

θfamily
. We are interested in the number η0 of offspring

genera in the same family, which in sub-case (ii) is the same as η above. In
sub-case (i) the number ζ of same-family offspring genera can be written as

P (ζ = i) = P (ξ′ = i|ξ′′ ≥ 1)

where (ξ′, ξ′′) are the number of (not new family, new family) offspring
genera of a species σ founding a genus. Now ξ′ + ξ′′ has the distribution of ξ
in Proposition 7(b), and conditionally on ξ′ + ξ′′ each genus has probability
ρ to represent a new family, so

P (ζ = i) ∝
∑

j≥i+1

P (ξ = j)

(

j

i

)

(1 − ρ)iρj−i

∝ (1
ρ − 1)i

∑

j≥i+1

(pAρ)
j

(

j

i

)

which leads to (31).
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4.4 Extant clades

In principle the previous calculations could be repeated in the (more inter-
esting, perhaps) setting of extant clades. However, this is more complicated
because in the context of Theorem 4 it is now natural to condition of the
number n of extant species. Similarly, in the context of Proposition 7 it is
now natural to condition of the number g of extant genera. These extra
parameters must make explicit formulas more complicated and we have not
attempted systematic analysis. Let us just give one result avoiding such
conditioning which can be proved by a clever trick.

Proposition 9 In the coarse scheme, the number Ñ of extant species in
the genus of a typical extant species has Geometric(θ) distribution

P (Ñ = n) = θ(1 − θ)n−1, n ≥ 1. (32)

Equivalently, the number N of extant species in a typical extant genus has
the inverse-size-biased distribution

P (N = n) =
(1 − θ)n

cθn
, n ≥ 1 (33)

where cθ =
∑

n≥1(1 − θ)n/n = − log θ. So

EN = θ−1
θ log θ .

Proof. Consider the CBP where the initial species σ is new type. Let Xt

be the number of species alive at time t > 0 which are in the same coarse
genus as σ. Then

P (N = ·) ∝
∫ ∞

0
P (Xt = ·) dt (34)

because in the underlying infinitely-large clade, new type species arose at
constant rate in the past. Now (Xt) is the birth-and-death (continuous-time
Markov) process on states 0, 1, 2, . . ., started at state 1, with transition rates

q(x, x+ 1) = (1 − θ)x; q(x, x− 1) = x.

By Markov chain theory the “mean occupation time” in (34) is proportional
to the stationary distribution π(·) of the process (Xt) (after we insert some
arbitrary transition rate 0 → 1). But the stationary distribution satisfies

π(x+ 1)/π(x) = q(x, x+ 1)/q(x + 1, x) = (1 − θ)x/(x+ 1)

whose solution is (33).
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