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1 Introduction

How may neural dynamics carry conceptual information? This problem is made complex from many

sources. The study of neural systems involves the integration of investigations across many physical

scales, all of which have been argued to contribute to the understanding of how the brain processes in-

formation (genetics, neuron function, synapse function, neuroanatomy, neural networks, connectomics

or whole brain connectivity, behavior, phenomenology). As a result of this, simply integrating im-

plementational knowledge of the brain represents a large challenge by itself (Gordon, 2000). While

complex in implementation, the dynamics of the brain may also come to be simple. Distinct experi-

ences may consistently converge on similar responses or behaviors, providing the tantalizing possibility

that a computationally meaningful reduction may emerge from the brains dynamics.

The appearance of unification, however, cannot be taken for granted. The emergence of meaning-

ful dynamics, by itself, suggests an abundance of philosophical pitfalls that accompany its discussion.

With this in mind, emergence in dynamical systems is here considered with attention to intertheoretic

reduction and relationships across phenomenal scales, building to a treatment of emergence in dynami-

cal systems neuroscience. This assessment motivates a formal notion of causal and existential meaning,

in order to help contribute to our understanding of the neural code by relating its dynamics to the

systems which underly it. Implications from this work are then applied to topics in computational

cognitive neuroscience and philosophy of mind. Acknowledgement of the embeddedness of the signif-

icance of neural dynamics then motivates an extensive parametric study of the relationship between

particular neural network structures and the emergence of significant neural dynamics.

In Chapter 2, I review necessary background material in dynamical systems neuroscience needed

to motivate and understand later chapters. In Chapter 3, I review emergence in the philosophy of

science literature (Section 3.1), show the relationship between the mystery of emergence and historico-

theorical context (Section 3.2), review emergence in dynamical systems for intertheoretic reduction

(Section 3.3), introduce a mathematical formalism for intertheoretic reduction and apply it to gliders

in Conway’s Game of Life (Sections 3.4 and 3.5), and, ultimately, apply the presented intertheoretic

reduction formalism to emergence in neural systems (Section 3.8). Using this foundation, in Chapter

4, I consider implications of polychronous neuronal groups (PNGs) when they are viewed as propa-

gating conceptual information. These implications include moving from conceptual vector spaces to

conceptual PNGs (Section 4.1), capturing conceptual transitions by formalizing PNG trigger dynamics
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in terms of existential and causal meaning (Section 4.2), characterizing conceptual blends (Section 4.3)

through an emergent PNG space (Section 4.4), describe neural dynamics in prefrontal cortex (Sections

4.5.1–4.5.4), interpret frequent spiking dynamics in terms of PNGs (Sections 4.5.5–4.5.6), and use these

intuitions to constrain a PNG account of linguistics, iconicity, and semantic meaning (Section 4.6).

The dependence of neural firing patterns on network topology is examined a large parametric anal-

ysis in Chapter 5, where 15,625 network architectures are analyzed to assess the relationship between

different aspects of network topology and the firing patterns that emerge during 1000 milliseconds of

tonic stimulation. Networks with too short of axonal propagation delays between cortical nuclei or

with too little variability in propagation delay times, are found to exhibit unrealistic saturation levels,

immediately achieving uniform spiking at 1000 Hz for dozens of milliseconds before collapsing to si-

lence. Networks with longer and more variable delays are found to withstand more tonic input without

“exploding,” while also supporting a larger number of overall connections. Results from Chapter 5

suggest that larger and more variable delays may allow for greater connectivity between disparate re-

gions without excessively endangering modularity or producing networks that consistently degenerate

into epileptic-like patterns of neural firing. In Chapter 6, data from Chapter 5 is mined to identify

networks that are significantly active from tonic rate coded stimulation without leading to informa-

tionally catastrophic explosions (Section 6.1). These networks are then analyzed in terms of the extent

to which rate coded stimulation results in rate coded network dynamics (Sections 6.3–6.4). Results

from Chapter 6 imply that the rate coded stimulation of a network does not guarantee rate coded dy-

namics downstream, supporting a characterization of frequent spiking as constraining the emergence

of downstream spiking patterns without necessarily prescribing the information-bearing structure of

that emergence.

2 Background

2.1 Polychronous Computation and Spiking Neural Networks

Polychronous Neuronal Groups (PNGs) have been proposed as a possible unit of representation in the

brain (E. Izhikevich, 2006). A PNG is a reproducible, time-locked, spatiotemporal spike-timing pattern

over a collection of neurons. They are reproducible in the sense that the sequence of spike times tends

to replay when the input conditions experienced by the neuronal network are repeated. They are time-
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locked in the sense that, once the PNG begins, the times between the spikes within the pattern are the

same whenever the PNG is triggered. They are spatiotemporal in the sense that they are defined in

terms of a specific set of neurons that participate in the pattern (spatial) as well as the precise times at

which spikes occur (temporal). Since these spikes can be distributed across many times, in contrast to

being synchronous, they are described as being polychronous. PNGs spontaneously emerge in spiking

neuronal networks that incorporate variance in the amount of time it takes for an action potential to

reach its receiving neurons (conduction delays). There is a growing literature on cognitive processing

using PNGs (E. Izhikevich, 2007; Chorley & Seth, 2011; Szatmáry & Izhikevich, 2011), which builds

on earlier work with synfire chains (Bienenstock, 1995; Hayon, Abeles, & Lehmann, 2005; Trengove,

van Leeuwen, & Diesmann, 2013).

To understand the information-bearing properties of PNGs, it is important to understand how they

are generated and propagated. An individual neuron remains at its resting potential until it receives,

or “observes”, a sufficient number of spikes in a short enough period of time, at which point this

coincident input causes the neuron to generate an action potential of its own. This action potential

is then, in turn, observed by the neurons to which this neuron projects. However, since it takes time

for action potentials to propagate down axonal connections, there is a delay between when a spike is

generated and when it is received (Swadlow, 1985, 1988). For example, in the cat brain, this delay

can be as short as 0.1 ms, or as long as 44 ms (Swadlow, 1992). Since a cortical neuron may project to

anywhere between 1,000 and 10,000 other neurons, a single action potential will be received at many

different times. Thus, spikes that are synchronized on generation will not necessarily be synchronized

on their receipt.

Typically, a single input spike is insufficient to drive the receiving neuron to fire an action potential,

and the membrane potential of such a neuron is constantly decaying toward its resting potential. Within

just a few milliseconds after receiving a single spike, the membrane potential of a neuron will return

to its equilibrium state, removing the electrical effects of the spike (Cessac, Paugam-Moisy, Viéville,

& et al, 2010). This highlights the need for synchrony in the arrival of spikes to initiate firing, but it

is important to remember that spikes that are synchronized at the time of receipt will not necessarily

be synchronized at the time of their initiation, due to variance in conductance delays.

Consider the network portrayed in Figure 1. If neurons a, b, and c spike at the same time, Time

0, those spikes will be received by neuron x at Times 1, 5, and 9, respectively, and those same spikes
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Figure 1: A small neural network with time delays.

will be received by neuron y at Times 8, 5, and 1, respectively. In this case, neither x nor y receive

the coincident spikes needed to fire. The difference in arrival times are caused by differences in axonal

propagation times. If, instead, neurons a, b, and c spike at Times 8, 4, and 0, respectively, neuron x

will receive all three of these spikes at Time 9, potentially allowing the cell to fire. In contrast neuron

y would receive the three spikes at Times 16, 9, and 1, respectively, providing it with no coincident

spikes to drive an action potential. Alternatively, if neurons a, b, and c fire in the reverse order, neuron

y will may spike, while neuron x will remain silent. Thus, the effects of spikes from neurons a, b, and

c on the firing of neurons x and y is critically dependent on the timing of the spikes.

In larger, more connected, networks, like those found in mammalian brains, a particular stimulus

will cause a chain reaction of spikes over time. This group of neurons firing with precise timing is

what forms a corresponding PNG. Importantly, PNG patterns can be strengthened with repetition

through synaptic mechanisms that exhibit spike timing dependent plasticity (STDP) (E. Izhikevich,

2006). Synapses that exhibit STDP are strengthened whenever the post-synaptic neuron fires just after

it receives evidence of a pre-synaptic spike. Conversely, whenever the post-synaptic neuron fires just

before it receives evidence of a pre-synaptic spike, then the synapse is weakened (Dan, Poo, & et al,

2004). Thus, as a PNG unfolds, STDP strengthens the synapses participating in the PNG’s generation

and weakens the synapses that were active but did not facilitate the firing of neurons participating

in the PNG. Thus, every time a particular PNG unfolds, and hence becomes strengthened via the

mechanism of STDP, it becomes easier for that PNG to be reproduced.

As previously defined, a PNG is a reproducible, time-locked, spatiotemporal pattern of spikes. A

PNG is reproducible in the sense that, when the neurons participating in a PNG are stimulated in a

similar way, the PNG will unfold in a similar way. PNGs become more stable through mechanisms of
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synaptic plasticity, such as STDP (Dan et al., 2004; E. Izhikevich, 2006). This increases the likelihood

that the PNG will be triggered in similar situations in the future, and it makes the PNG increasingly

robust to noise. Some input spikes may be omitted or added without substantially effecting the

generation of the PNG. A PNG is time-locked due to the fact that the propagation delays between the

participating neurons are fixed by the anatomy of the network. A PNG is spatiotemporal in the sense

that it necessarily occurs at many times (polychronous) and involves many neurons. Once stabilized

via STDP, subtle variations in spike timing due to noise do not lead to unpredictablely different PNGs,

but generate a member of a family of related PNGs (E. Izhikevich, 2006). Also, it is important to note

that many PNGs may be simultaneously active in a common neuronal network without interacting,

due to the low probability that two arbitrary PNGs will overlap substantially in both the set of neurons

involved and their precise spike times.

PNGs also minimize redundancy through the weakening of synapses via STDP, and they are more

energy efficient than neural coding schemes that depend on neural firing rate (Levy & Baxter, 1996).

It is also interesting to note that the “small world” connectivity structure of the mammalian brain

gives rise to stable PNGs much more readily than networks of neurons that are connected uniformly

at random (Sporns & Zwi, 2004; Vertes & Duke, 2010).

Since their introduction, PNGs have been utilized extensively in computational neuroscience models

of cognitive information processing. The intricate dynamics of PNGs have been used in combination

with models of NMDA receptors and neurotransmitter reuptake to produce a promising account of

working memory function (Szatmáry & Izhikevich, 2011). PNGs have been incorporated into a formal

account of the dopamine system in order to produce a candidate model of neural reinforcement learning

that addresses the problem of temporally distal reward (E. Izhikevich, 2007). In addition to their use in

computational neuroscience models, empirical evidence for PNGs has been reported, with reproducible,

time-locked, spatiotemporal patterns of spikes being observed in cortical slices (Rolston, Wagenaar, &

Potter, 2007).

As this review of PNGs shows, the information carried by a PNG in a neural network is critically

dependent on the timing of individual action potentials. This contrasts with vector space accounts

of mental representation which map vector space dimensions onto the instantaneous firing rates of

neurons. The PNG approach highlights the way in which individual spike times can carry information,

with spiking rates lacking sufficient spatiotemporal detail to discriminate between different represen-
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tational states. It is this shift that changes the way in which similarity is realized in spiking neural

networks when viewing PNGs as the foundation of mental representation.

2.2 Dynamical Systems Neuroscience

The dynamics described in the previous section are general to spiking neural networks modeled with

action potential propagation delays taken into account. There are many kinds of neurons, however,

and there are likewise many ways to model those neurons. Nearly all non-transducing neurons generate

action potentials—an all-or-nothing signal dependent on the membrane potential at a spiking neuron’s

axon hillock. How is this neuron dynamic so predictable even though its components are so complex

and variable?

The membrane potential of a neuron is largely driven by changing intracellular concentrations of

sodium and potassium ions (A. Hodgkin & Huxley, 1952a). Measurements from large squid neuron

electrophysiology experiments were used by Hodgkin and Huxley to create their seminal dynamical

systems model of neuron membrane potential over time (A. L. Hodgkin & Huxley, 1952):

I = CM
dV

dt
+ ḡKn

4(V − VK) + ḡNam
3h(V − VNa) + ḡL(V − VL), (1)

dn

dt
= αn(1− n)− βnn,

αn =
n∞V

τn
,

βn =
(1− n∞)

τn
,

dm

dt
= αm(1−m)− βmm,

αm =
m∞V

τm
,

βm =
(1−m∞)

τm
,

dh

dt
= αh(1− h)− βhh,

αh =
h∞V

τh
,

βh =
(1− h∞)

τh
.

Where I is the electrical current across the neuron membrane, CM is the constant membrane ca-

pacitance per unit area, V is the variable membrane potential, ḡK is conductance per unit area of

potassium, n is the dimensionless proportion of potassium inside the membrane, VK is the voltage

difference between resting potential and the equalibrium potential of potassium ions, ḡNa is the con-

ductance per unit area of sodium, m is the dimensionless proportion of activating molecules within
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sodium channels, h is the dimensionless proportion of inactivating molecules blocking sodium channels,

VNa is the voltage difference between resting potential and the equalibrium potential of sodium ions,

ḡL is the conductance per unit area of ions associated with the leakage of current, and VL is the voltage

difference between resting potential and the equilbrium potential of ions associated with the leakage of

current. Each m, n, and h have their own α and β rate constants that change with membrane potential,

modeling the relationship between m, n and h and voltage. These rate functions can be approximated

by considering their limit as t approaches ∞ and adjusting the τ parameter to fit experimental data.

This can describe action potential propagation by combining this model with the relation

a

2Rθ2
d2V

dt2
= I,

assuming a constant propagation speed θ, given resistivity, R (A. Hodgkin & Huxley, 1952b). For a

particular neuron of interest, numerical simulations can be run by guessing different values of θ. The

model diverges to either ∞ or −∞ if the guessed velocity is too fast or too slow. If θ is just right,

however, the model will converge to its resting membrane potential. The neighborhood of θ where

the membrane potential converges to resting potential serves as a prediction of the velocity of action

potential propagation through the nerve fiber.

The change in model behavior with respect to θ is called a bifurcation, where changing a parameter

qualitatively changes the dynamics of the dynamical system (Poincaré, 1885). Any change to the

above listed experimentally measurable values will likewise shift the bifurcation point of the system

with respect to θ, and hence shift the range of possible propagation speeds. In general, by analyzing

points of bifurcation, we are able to qualitatively characterize the impact of specific parameter changes,

and determine ranges of interest for modeling particular dynamics.

The Hodgkin-Huxley electrophysiological model has many known bifurcations which have been

studied extensively (E. M. Izhikevich, 2000). Indeed, the system only demonstrates “excitability”

when the parameters are such that a bifurcation with respect to membrane potential exists near its

stable resting potential (E. M. Izhikevich, 2007). Using these extensive bifurcation analyses, quadratic

integrate-and-fire models, and β-reductions in a lambda calculus, Izhikevich made a simple neuron

model which preserves the biologically relevant bifurcation dynamics, while reducing the computational

complexity of its simulation:
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dv

dt
= 0.04v2 + 5v + 140− u+ I

du

dt
= a(bv − u) (2)

If v ≥ 30 mV, then
v ← c

u← u+ d

(E. Izhikevich,2003).

In this simplified model, v represents the membrane potential of the neuron, u is the recovery vari-

able which tends to drive the membrane potential back to equilibrium. The dimensionless parameters

a, b, c, and d shape membrane potential dynamics: a scales the change of the recovery variable, where

smaller values slow the recovery of the membrane potential; b determines the sensitivity of the recovery

variable to sub-threshold voltage dynamics; c determines the value to which v is set after an action

potential (when v ≥ 30); and d is the amount to increase the rate of recovery after spiking (invoking a

refractory period). With different combinations of these 4 parameter settings, the model can produce

many significant electrophysiological dynamics. These include regular spiking, instrinsically bursting,

chattering, fast spiking, thalamo-cortical, resonator, and low-threshold spiking dynamics (Figure 2).

Figure 2: The relationships between particular parameter settings and model dynamics in response to
10 mV dc stimulation. RS, IB,TC, and CH are excitatory, while FS and LTS are inhibitory.

(E. Izhikevich, 2003)

9



It is important to recognize, however, that Hodgkin-Huxley type neuron models are only predictive

of a neuron’s electrophysiology around the axon hillock—further details of the neuron model, including

but not limited to action potential propagation dynamics, synaptic dynamics, and dendritic integration

dynamics. Since the model is based on electrophysiological dynamics, and not explicitly implementing

the theoretical mechanisms that give rise to those dynamics, its use depends on the prudence of the

modeler to interface it with other biophysically meaningful models. Polychronization across regular

spiking neurons in a network depends critically on the modeling of action potential propagation speeds,

and the robustness of these dynamics depend on modeling synaptic plasticity.

Figure 3: A heteroclinic chain of saddle nodes. This is the simplest possible heteroclinic chain.
(M. I. Rabinovich, Afraimovich, Bick, & Varona, 2012)

In dynamical systems theory, a limit cycle is a closed (periodic) trajectory in phase space which

can be approached from another trajectory, but continues to cycle as time progresses to ∞. A limit

cycle can be: stable, where trajectories from all sides approach the limit cycle as time goes to +∞ (like

a stable attractor); unstable, where trajectories from all sides approach the limit cycle as time goes to

−∞ (trajectories are repelled going to +∞); and semi-stable, where a trajectory from at least one side

approaches the limit cycle when time approaches +∞, but a trajectory from another side approaches

the limit cycle when time approaches −∞ (the limit cycle can only be approached by trajectories from

some directions).

Considering the dynamics of larger networks, the bifurcations exhibited by individual neural dy-

namics shape trajectories of the whole system. The limit cycles of spiking neurons exhibit bifurcation

with respect to variation of the tonic input current. A saddle node bifurcation is one where variation
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Figure 4: Phase portraits of Equation 2.2, showing a saddle node bifurcation with respect to tonic input
current. On the left, many values of membrane potential converge to a fixed point resting potential.
On the right, all values approach a stable limit cycle that results in a frequent spiking dynamic.

(E. M. Izhikevich, 2007)

of a parameter causes two fixed points to collide, one stable and one unstable, destroying each other.

Moving the parameter in one direction shifts the system into a regime with two fixed points, while

moving the parameter in the opposite direction shifts the system into a regime with no fixed points.

When current is too low, a neuron’s dynamic tends to a resting potential as time approaches ∞, a

stable fixed point (where the dynamics surrounding a spiking event occur as a trajectory approaches a

corresponding unstable fixed point). When tonic current is sufficiently increased, a neuron consistently

builds membrane potential, exhibits a spike, then resets back to resting potential as it builds up more

membrane potential, repeating the process. This oscillation between spiking and resetting is a limit

cycle to be repeated indefinitely as time approaches ∞. The spiking dynamic of an action potential

corresponds to a saddle node bifurcation, because the membrane potential rapidly accelerates toward a

threshold value as a result of increased input current, after which it is repelled back to resting potential.

This limit cycle will be maintained as long as the input current is maintained.

A heteroclinic chain is a trajectory of states that pass through multiple metastable states, like

the ball portrayed in Figure 3, which passes through two saddle nodes before being propelled away

from the final saddle. In some neural networks, if the action potential from one neuron causes an

action potential in another, then the combined dynamic may constitute a heteroclinic chain, in that

the current stimulating the first neuron causes a saddle bifurcation, leading to an increase in current

in the second neuron, which may cause a second saddle bifurcation. If the current stimulating the first

neuron decreases, then so does the heteroclinic dynamic rippling through the coupled neurons. The

robustness of that heteroclinic chain is then related to the degree to which conditions are such that
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the system may exhibit the necessary saddle node bifurcations. If there is a neighborhood in which

the necessary dynamics are guaranteed to propogate the heteroclinic chain, then these heteroclinic

trajectories form a stable heteroclinic flow through a stable heteroclinic channel, portrayed in Figure 5

(M. Rabinovich et al., 2001; M. I. Rabinovich et al., 2012).

Figure 5: In this figure, heteroclinic chains flow through a larger heteroclinic channel, plotted in phase
space. The points in this channel describe the robust metastable states through which dynamics are
stereotyped.

(M. I. Rabinovich et al., 2012).

The stabilization of attractive neighborhoods approaching saddle nodes constituting a heteroclinic

channel result in dynamics that are reproducible, and may be robust to noise (depending on the size

of the neighborhood with respect to noise). Accounts that identify the stability of PNGs as being

reinforced through synaptic STDP processes (E. Izhikevich, 2006) may then be seen as the formation

of a stable heteroclinic channel, where a particular occurrence of a PNG constitutes a heteroclinic

flow of saddle node bifurcations of the membrane potential trajectories of neurons participating in the

chain. This characterization forms a useful foundation for characterizing neuronal network dynamics
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3 Emergent Phenomena

I wish to propose a severe restriction of the term ‘emergence,’ calculated to remove this

disquieting subjective sense of the mysterious - William Marias Malisoff, 1939

Cognitive scientists often describe cognition as emerging from neural processing (McClelland

& et al., 2010). How this emergence occurs is uncertain. What does it mean for something to be

emergent? When has something emerged? O’Conner and Wong describe emergent properties as those

which ‘arise’ out of more fundamental entities and yet are ‘novel’ or ‘irreducible’ with respect to them

(O’Connor & Wong, 2012). Here, ‘arise’ is used because of what it suggests–that it is by the functioning

of these fundamental entities that these properties are birthed. Yet, what has arisen is believed to

be new or distinct–‘novel’ or ‘irreducible.’ We intuitively claim emergence when we ask how a theory

at one level of analysis gives rise to a theory at an adjacent level of analysis, i.e. we attempt an

intertheoretic reduction.

In this section, I will show that the observation of emergence is dependent on the particular

historico-theoretical context of the observer, leading to the reflection of this notion in the contexts

of meaningful emergent dynamics (Section 4.1). In this context, what appears to be emergent are

cases of intertheoretic reduction that are complex or difficult to conceptualize. I will clarify this by

showing a formalization of the relationship between levels of analysis grounded in dynamical systems,

using what I will call “φρψ” relations. φρψ relations will be demonstrated in the domain of gliders

in the Game of Life, as well as for polychronous neuronal groups in spiking neural networks. I will

conclude with the illustration of the use of these φρψ relations to aid in the grounding of polychronous

neuronal groups as a unit of representation for the brain, and apply this grounding to describe the

development of language awareness.

3.1 Emergence in Philosophy

Early approaches regarding emergence arose out of discussions of how to ground biology and chem-

istry in physics. This discussion was in part forced by their parallel advancement, each leveraging

wildly different vocabularies. This discussion yielded mechanists, who emphasized how all things more

complex are reducible to physics, and vitalists, who posited an “entelechy”–an innate force that guided

actions throughout development (Driesch, 1909, 1914).
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Of the mechanists, there were three notably influential writers: Broad, Mill, and Alexander

(Broad, 1925; Mill, 1843; S. Alexander, 1920) (O’Connor & Wong, 2012). Broad and Mill wrote of

a form of ontological emergence, or supervenience emergentism. In this view, emergence implies the

coming into being of a new, fundamental property, with new causal powers. In contrast, Alexander

wrote of an epistemological emergence, the emergence we discuss throughout this paper. Epistemo-

logical emergence only commits to the higher level appearence of novelty; epistemologically emergent

properties do not exist beyond our reference to them in human knowledge.

One example of emergence is perceptual experience arising from brain function. In 1714 Leibniz

posited a mechanistic thought experiment to ponder notions of philosophy of mind:

Moreover, it must be confessed that perception and that which depends upon it are in-

explicable on mechanical grounds, that is to say, by means of figures and motions. And

supposing there were a machine, so constructed as to think, feel, and have perception, it

might be conceived as increased in size, while keeping the same proportions, so that one

might go into it as into a mill. That being so, we should, on examining its interior, find only

parts which work one upon another, and never anything by which to explain a perception.

Thus it is in a simple substance, and not in a compound or in a machine, that perception

must be sought for (Leibniz, 1714 and 1898).

Leibniz paints the portrait of a huge, conscious mill to imagine how it might appear. He concludes

that since he cannot see “anything by which to explain a perception,” that there must be a “simple

substance not in a compound or in a machine that must be sought for.” This has been termed Leibniz’s

gap. Leibniz is right to doubt the dynamics of the mill. The mill that he imagines has simple

mechanisms, built of wood or metal, with relatively stable dynamics. Biological function is dependent

on the unique properties of elements and molecules, which have been structured by evolution to perform

biological metabolic processes. Yet, from the imagined mechanisms of the mill, conscious perception

is to rise. For the mechanisms of a mill to have the dynamics of the mechanism of a neuron, the

components of the mill need initially be assembled to “simulate” the dynamics of a neuron. For

Leibniz to successfully experiment with thought, his intuition would need to include structures greatly

overcomplicated by the nature of the mill’s fundamental components. For us to successfully experiment

with thought, and overcome Leibniz’s gap, our intuition must be in terms of the components from whose

dynamics perception is natural.
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There are two key distinctions discussed regarding emergence: irreducibility, and unpredictability.

To say an account of an emergent property is irreducible is to say that it cannot be reduced to a

fundamental physical theory. Jerry Fodor stresses this point by supposing an ‘immortal economist’

who believes he can explain economic theories from his understanding of physics–something Fodor

argues as fruitless and overcomplicating, hence the economist’s immortality (Fodor, 1974; Nagel, 1961).

Taken weakly, a claim of irreducibility is an issue of the conceptual limitations of a given underlying

theory. Taken strongly, a claim of irreducibility suggests a sort of magic that mysteriously disconnects

a theoretical account of an emergent property from an underlying physical explanation.

To address this distinction, Mark Bedau distinguishes between nominal, weak and strong emer-

gence. Nominal emergence refers to a property that appears to be inexplicable, or is surprising to a

human observer (Ronald, Sipper, & Capcarrere, 1999). This puts no constraints on what is emergent

other than the human capacity to declare something as such. Weak emergence refers to an emergent

property that can only be explained after or by simulation, and hence is either unpredictable or difficult

to predict (Bedau, 1997). This characterization of emergence likely includes most serious examples of

emergent properties. Strong emergence refers to an emergent property that, genuinely, has its own

lawlike functions that are wholly seperated from underlying theories, and therefore cannot be simu-

lated by modelling those underlying theories. This characterization enables downward causation, since

the composition of the substance that exhibits emergent properties cannot be modeled to simulate

the emergent properties, the emergent properties must be taken to cause dynamics of the underlying

system–akin to the strong irreducibility claim (Kim, 1999). However, nominal emergence is subjective

(Nagel, 1961)–what we claim is emergent is dependent on the knowledge of the observer. Thus, we

take it as prudent to recognize that properties which appear emergent are not necessarily strongly

emergent. For this reason, the appearence of downward causation can be thought of as downward

confinement, where the explanation of the overlying system helps us constrain its explanation in the

underlying system (Atmanspacher, 2011). William Wimsatt, a New Mechanist, pragmatically empha-

sizes the importance of understanding the way that features of a system contribute to it appearing

weakly emergent or non-aggregative (Wimsatt, 1997). This approach to understanding the ontology of

emergent systems is argued to help safeguard against “lazy” reductionism in cases where the appear-

ance of complexity and the sensitivity to details may otherwise demotivate attempts to clarify details

of that reduction (Wimsatt, 2006). This argument, combined with downward confinement, implies
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that the ontology of a system may be seen in terms of the properties that lead to dynamics appearing

emergent, while those epistemological properties can be seen as constraining related epistemological

claims.

3.2 Emergence, Theory-ladenness, and Historico-theoretical Context

Our perception is theory-laden; what we observe is in terms of what we have experienced (Kuhn,

1962; Estany, 2001). Our theory-laden perception has been revealed in many contexts: our ability to

judge similarity between perceived colors is dependent on our culture and language (Whorf, 1956a,

1956b; Gilbert, Regier, & Ivry, 2006), our ability to identify spoken phonemes is dependent on our

visual experience (McGurk & MacDonald, 1976)–even our ability to perceive the steepness of slopes

has been argued to be dependent on how encumbered we are (Proffitt, 2006). Further, our perception

is categorical; our knowledge about the world structures what it is possible to perceive (Oppenheiml

& Putnam, 1958; Harnad, 1990). Our knowledge of the world is ever changing. The quality of our

perception seems inextricably bound to the distinct historico-theorical context it is experienced in.

It seems that particular historico-theoretical contexts favor some perceptions, and obscure oth-

ers. If we view theories of emergent properties in terms of the accessibility of their intertheoretic

reduction, then what we claim as a mysteriously emergent phenomenon is dependent on having a

particular historico-theoretical context that either favors or obscures the perception of the theoretical

domains between which the intertheoretic reduction is to be established. This notion seems to im-

ply that some historico-theoretical contexts lead to some phenomena seeming more or less intuitively

reducible. Let us consider phenomena that are described as emergent.

In 1932, fluid dynamicist Horace Lamb is famously reputed to have said:

“I am an old man now, and when I die and go to Heaven there are two matters on which I

hope for enlightenment. One is quantum electrodynamics and the other is turbulent motion

of fluids. And about the former I am really rather optimistic.” (Tabor, 1989)

In this quote, Lamb reveals his belief that the emergence of turbulence is so strong that even a

god could not explain it. While I will not make Lamb’s commitment, it is clear that in our historico-

theoretical context turbulence in fluids is weakly emergent. Considering our characterization of emer-

gence as intertheoretic reduction, turbulence in fluids is very difficult to reduce to our current theory

of fluid dynamics.
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Figure 6: Wolf-pack of three wolves, initially randomly distributed, hunting a reactive prey. (A)
Approaching phase and start of the pursuit. (B) Pursuit and encircling phases. (C) Pursuit, encircling
and capture. The solid black circle is the prey, and the unfilled shapes are the wolves. Once they get
a “safe distance” away from the prey (the black ring around the prey), they move to get equidistant
from each other wolf who is a “safe distance”” away.

(Muro, Escobedo, Spector, & Coppinger, 2011)

Yet, the appearence of complexity does not ensure weak emergence. Canis lupus, wolves, are

credited with having some of the most complex social behaviors of Carnivores (Macdonald, Creel, &

Mills, 2004). One important motivation for this ascription of social complexity is their intricate pack

hunting behaviors, where wolves track prey, carry out pursuit, and encircle that prey until it stops

moving. In 2003, Peterson and Ciucci surveyed well-known wolf biologists regarding their opinions

regarding the intentionality of wolves hunting in a pack, where 15 out of 17 of those surveyed agreed

that wolves used cooperative hunting strategies (Peterson & Ciucci, 2003). Indeed, it is difficult to

reduce pack hunting behavior to our theory of individual wolf cognition. However, recently it has been

shown by simulation that for a wolf pack to have these hunting behaviors, it is sufficient for each wolf

to 1) move toward the prey until a minimum safe distance to the prey is reached, and then 2) move

away from the other wolves that are close to the safe distance to the prey (see Figure 6) (Muro et

al., 2011). This explanation of wolf-pack hunting behaviors does not depend on assumptions of high

levels of wolf intelligence, and seems to match our expectations for the behavior of a wolf. Without

knowledge of a simple solution, the perception of pack hunting behavior as cooperative and complex is

favored as intuitive. As our historico-theoretical context changes, the difficulty of understanding the

intertheoretic reduction changes.

Viewing accounts of the emergence of a property in terms of their intertheoretic reduction suggests

that our understanding of emergence would benefit from a formal account of intertheorhetic reduction.
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3.3 Emergence in Dynamical Systems

We can describe the attempt to explain how a property emerges as intertheorhetic reduction. An

intertheoretic reduction is the illustration of how one theory near perfectly predicts another. For a

given emergent property, there are at least two levels of description: the underlying system that does

not recognize the existence of the emergent property (e.g., physics), and an overlying system that does

recognize the existence of the emergent property (e.g., chemistry). These underlying and overlying

systems are often characterized as dynamical systems, a mathematical concept where a function de-

termines the progression of time through an abstract space. This characterization has fueled recent

thinking in philosophy of on the emergence of mental states from neural dynamics. Atmanspacher,

Butterfield, Rosaler, and Yoshimi each describe the relationship between explanatory levels through a

form of coarse graining–a term from Statistical Mechanics that implies a way of dividing the underlying

space and mapping it onto the overlying space (for Atmanspacher, Butterfield, and Yoshimi: contexts,

meshing, bridge maps, and supervenience functions, respectively) (Atmanspacher, 2011; Butterfield,

2012; Yoshimi, 2012b). A coarse graining is a way of describing groups of states in the underlying sys-

tem that, for the purposes of explanation and prediction, are equivalent. For each of Atmanspacher,

Butterfield, and Yoshimi, this description is essential for discussing how neural dynamics give rise to,

and correspond with, mental states. Here, I introduce the φρψ framework in order to clearly and

flexibly discuss intertheoretic reductions.

In this framework, we define three functions, φ, ρ, and ψ. φ is the underlying dynamical system.

Its space may be conceived as fundamental, and the rule that determines its progression over time

can be thought of as the implementation of physical laws, or a model of our physical theories. In this

space, we may identify ρ, a function that serves as a detector for the existence of some property (or set

of properties) in the space that φ operates on. ρ becomes identical to the definition of the property

in φ and constructs an overlying space ψ. ψ is the overlying dynamical system. Its space is, by the

definition of ρ, descriptive of φ. The rule that determines its progression over time is relative to ρ and

instantiates our theories of how ρ functions. By identifying a property of φ, we implicitly define ρ and

create an overlying system ψ. As a definition, we can think of ρ as implying equivalence classes for the

overlying system ψ, providing a method of coarse graining the underlying system φ.
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3.4 Gliders in the Game of Life

A clear illustration of this framework for intertheoretic reduction can be shown with John Conway’s

Game of Life (Gardner, 1970). The Game of Life is a cellular automata dynamical system that has

many spontaneously emerging structures. It simulates a society of living organisms; each automata,

or cell, has position implied by its location on a grid of arbitrary size, and lives or dies as a function of

population density of adjacent cells. If a dead cell position has exactly three live neighbors, it becomes

alive as if by reproduction. If a living cell has two or three live neighbors, then it stays alive. In

all other conditions, a cell dies or remains dead. The Game of Life is considered an example of how

complex structure emerges from simple rules. Indeed, it has been shown that the living cells in an

arbitrary grid of the Game of Life exhibit self-organized criticality (Bak, Chen, & Creutz, 1989).

The Game of Life has emergent living structures that can be wholly explained by the underlying

rules of the system, but seem to call for further explanation. To make this clear, let us consider a

glider. A ‘glider’ is a pattern of living and dead cells that, if uninterrupted, self-replicates every other

iteration in a position slightly shifted from the previous [Figure 7]. This shifting gives rise to its name,

glider, as it results in the appearance of a shape of five living cells gliding across the grid [Figure 8].

Figure 7: Life of a glider. Every nth iteration is a transposition of the (n-2)th iteration.
(Beer, 2004)

The glider has a long history of being studied in the context of emergence (Bak et al., 1989;

Standish, 2001; Bedau, 1997), including a consideration of the ‘cognitive domain’ of its interactions

(Beer, 2004). Here, we are principally interested in the glider as an example a spontaneously forming

emergent structure that can and has been studied, whose domain of existence is quantifiable and
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Figure 8: Self-Replication results in
the appearance of movement across
the grid. Above, the shaded boxes
represent living cells in past itera-
tions. (Xerol, 2009)

is clearly relatable to the original system. Theories of cognition describe emergent mechanisms of

information flow in the brain, as theories of glider movement describe emergent mechanisms of cellular

automata updating in the Game of Life. We expect the insights gained by relating glider study to the

Game of Life to inform relating cognitive science to neural function.

3.5 φρψ Analysis of Gliders

φ(s0) = s1 Phi, a dynamical system operating on the source space which
represents the causal forces of the Game of Life that maps
a grid state, s0, onto its subsequent grid state, s1.

ρ(s0) = e0 Rho, a definition of a glider that maps a grid state, s0, onto
glider space, e0.

ψ(e0) = e1 Psi, a dynamical system operating on glider space that maps
a state, e0, onto its expected subsequent state, e1.

Figure 9: Emergent structures are embedded in the source space, the original space with independent
causal forces. φ represents the application of theories on the source space s0, instantiated by a model.
This application yields a future source space s1. Our theories of relevant emergent structures from the
source space imply the existence of ρ, which maps from the source space s0 onto a new glider space,
with state e0. ψ represents the application of our emergent structure theories on e0. This application
yields a future state of glider space, e1. This characterization is guaranteed by the identification of an
emergent structure, and implies relationships between all theories of emergent structure.

Let us consider the Game of Life without full knowledge of its function. In this way, we treat

the Game of Life the way we treat our world: the world is, and functions via the causal forces of the

world. Here, we refer to causal forces as being whatever force happens to change the grid. As time

progresses on the grid, the change we see can be described by the grid’s causal forces. We can try as
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Figure 10: Gliders are a natural emergent structure in the Game of Life. Each glider is born, exists for
some time, then dies. Above, we sum up the lifetimes of all gliders that occurred over 100 iterations.
What is plotted is the mean of those sums across 23 different randomized grids. This is identical to,
for each iteration, summing the number of Gliders detected by ρ. Thus, the plot is proportional to the
probability that a Glider is present on any given iteration, where points over 100 imply more than one
Glider.

Figure 11: On the left, we see a Game of Life grid containing a Gosper Glider Gun 200 iterations in.
It has produced 7 Gliders. On the right, we see glider space. Each dot represents the presence of a
Glider centered on that location.

we may to describe these causal forces: let φ be our simplest and finest description of these causal

forces, where φ represents a function which maps any state of the Game of Life onto its succeeding

state. φ implements the rules of the Game of Life as we have defined them, operating on grid states

in the system, s. A grid state, s, can be represented as a square matrix of arbitrary size with integer
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modulo-2 elements, where 1, or 0, implies the existence, or non-existence, of a living cell at a position

implied by that element’s position in the matrix.

In this world, we observe the Game of Life. As we do, tendencies emerge, we notice what we call

gliders and we seek to understand the causal structure of their dynamics. Gliders occur spontaneously

from random initial grids [Figure 10]. As long as the population density of the initial grid is between

1000 and 6500 live cells per 10000 cells, the sum of all the lifetimes of all gliders spontaneously occurring

nears 99.5 iterations if that grid is iterated 100 times. Thus, gliders are an active and near constant

presence in even random grids. It seems gliders are a natural dynamic of cell life in the Game of Life,

yet their behavior, while fully explainable by φ, is not contained in the description φ. By identifying

the existence of gliders, we produce a new space that can be used to more efficiently explain their

dynamics.

The space the gliders exist in is necessarily contained by the grid of the Game of Life; and its

elements are fully dependent on the elements of the grid. In this way, the glider space is embedded

within the Game of Life [Figure 11]. Much like how φ described the mapping of any state of the Game

of Life onto its succeeding state, we can define ψ such that it describes the mapping of any state of

glider space onto its succeeding state. We can define a relationship as ρ; ρ is a mapping from the grid

state onto glider space. ρ thus becomes representative of how we define gliders, and its application

instantiates a glider detector. In Figure 11, we have created and applied ρ, and plotted its results with

the Game of Life grid on the left and glider space plotted on the right. On the left, the grid contains a

’Gosper Glider Gun’, a small structure that produces a Glider every 30 iterations. After 200 iterations,

it has produced seven gliders; their grid structure is visible on the left. With the application of ρ, we

see the glider space formed on the right. As gliders move, we see their corresponding points of existence

move. By identifying the existence of gliders, we imply the glider space and we begin to perceive it.

On viewing, it becomes clear that once a glider exists and is in motion, it stays in motion until it no

longer exists. Gliders always move in the same direction, but the dimension they traverse over varies

every other iteration, resulting in diagonal movement. Since the existence of gliders in future iterations

is dependent on information not available in glider space, complete descriptions of the dynamics of ψ

cannot be wholly independent of the underlying system. Given our φ and ρ, ψ in this case is at least

a discrete markov chain and at best a dynamical system, where ψ predicts probablistic outcomes from

e, the state space that ψ operates on. We can think of this as corresponding to states of phenomenal
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existence (Norris, 1998).

Let us summarize our φρψ description of gliders in the Game of Life [Figure 9]. In the Game

of Life, we have a lattice of arbitrary size. Time progresses as the rules of the Game of Life, φ, are

applied to this grid; φ(s0) = s1. We define a glider as any pattern of on/off cells that can be flipped

and/or rotated to be identical to the pattern in Figure 7. From this definition, a glider detector can

be formed, ρ, that observes the grid, s0, and defines a state e0 that corresponds to locations where

the existence of a glider has been detected; ρ(s0) = e0. This new space, e0, can be described using a

new function, ψ, that corresponds to our understanding of the rules by which time progresses in e0;

ψ(e0) = e1. The glider appears emergent as ψ seems to have simple rules that are not contained in

φ. Furthermore, it may seem overcomplicating–and inefficient–to simply define ψ(e0) = ρ(φ(s0)) to

explain the progression of gliders, even though it may be the only function that can precisely predict

e1.

3.6 Relationships between Mappings

φ, ψ, and ρ, given the grid, represent models instantiating our theories of how these systems function.

Since the glider space is embedded within the Game of Life grid, we assume that there is a relationship

between the mappings that describe them. For Figure 11, we did not need to have an explicit definition

of the contents of ψ because we had the state s0, φ, and ρ. The behavior of gliders became implicitly

defined by knowing the definition of the glider, knowing how the Game of Life works, and knowing the

present state of the grid.

The Game of Life and the glider are interesting because we have full knowledge of the system,

and the definition of a glider is well known and unwavering. The structure of ρ given φ is dependent on

our understanding of what we think causes the phenomenon. As a result, we can use the relationship

between the functions to assess their consistency.
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s0 ρ 7−→ e0

φ ↓ ↓ ψ

s1 e1

...
...

φn ↓ ↓ ψn

sn en

Above, we start with the state s0 and use ρ to determine the state e0. Then, φ operates on s0 n

times, and ψ operates on e0 n times, yielding states sn and en. If there exists a norm ‖ · ‖, we can

consider error for a state at a point in time, ε:

ε = ‖ρ(sn) · ψn(e0)‖.

As ε → 0, ρ(sn) → ψn(e0). If we assume a perfect ψ, then ε implies the accuracy of ρ. Likewise,

if we assume a perfect ρ, ε implies the accuracy of ψ. Considering them both imperfect, ε represents

the quality of the description of the phenomena. As the number of ρs used to describe the system

increases, the potential for error increases. This becomes intuitive if we think of ρ as corresponding to

a level of description. If our prediction is dependent on many levels of description, such as predicting

the stock market from physical theories, then sensitivity to conditions at each scale can exacerbate

errors in the final prediction.

ψ is constrained and produced with respect to φ. This truth enables us to relate beliefs across

scales. ψ is evident in the dynamics of φ given s0. Thus, any property of the dynamics of φ that

makes contact with ρ will be evident in ψ. A property of the system will thus be present in a scale

if ρ measures some aspect of that property. If we have imperfect knowledge of φ, ρ, and the space

φ operates on, then we can use emprical evidence to guide our understanding of these functions. We

can verify and constrain these functions by leveraging their relationships. Here, I conjecture that this

process can be repeated for every space and emergent structure that occurs in nature.

A property can be implicitly defined by what is suggested to exist either perceptually or the-

oretically. We do not need to know the properties of φ or ρ for ψ to exist; we can perceive gliders
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without knowing the rules of the Game of Life. Furthermore, we can theoretically be aware of gliders

before we perceive them or know their shape.

3.7 φρψ-relations and Pluralism

There are many ways to describe the world. Because there are many descriptions of the world, there are

many explanations of the world. This fact yields a plurality of scientific domains, each with distinctly

seperate assumptions for what is fundamental. Many of these explanations may overlap, in the sense

that many explanations may exist for the purpose of explaining similar phenomena. This overlap

builds conflict with a philosophy of fundamentalism, as it has in cognitive science (Cartwright, 1999).

Fundamentalism is a philosophy of science that implies the existence of a single, victorious theory

that explains all of the phenomena deemed relevant by the field. Contrasting with fundamentalism

is pluralism, a philosophy of science that involves embracing the plurality of explanations, identifying

their usefulness with regard to explaining particular phenomena (Kellert, Longino, & Waters, 2006).

This approach has been suggested for cognitive science (Dale, 2008; Abney et al., 2014).

Pluralism, when recognized in terms of φρψ-relations, becomes analogous to considering different

levels of description φ which enable unique definitions ρ that lend themselves to creating scientific

domains ψ that are particularly efficient in a subdomain. Because having different definitions will

yield different systems ψ, as a field we are left to consider how each description can inform each other

description. In order to compare, we must consider the assumptions that imply the underlying system

φ. We do not compare biology with quantum physics, because quantum physics does not consider the

existence of stable molecules as a level of description. While there are plural descriptions of cognitive

theories, most find their instantiation as fundamental: cognitive neuroscience. Part of the reason why

there are so many cognitive theories is a result of a disconnect between neuroscience and the phenomena

that we seek to explain. This disconnect yields a gap that we endeavor to close, where our endeavors

may yield a plurality of theories.

With regard to fundamentalism, φρψ-relations themselves only imply the existence of the un-

derlying space, upon which a plurality of scientific domains may be theorized. Thus, a fundamentalist

must justify their priority for a particular scientific domain as favored over others, perhaps by the

efficiency with which that scientific domain may predict phenomena, or by its ease of explanation.
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3.8 Emergence in Neural Systems

In Section 2.2, it was described how the Izhikevich model (Equation 2.2) preserved most of the impor-

tant dynamics present in the Hodgkin -Huxley model (Equation 1). The most fundamental of these

dynamics is the emergence of a neuron’s action potential. So different are the properties post-spike

that, in order to reduce computational complexity, the Izhikevich model identifies the existence of a

spike (using the threshold v ≥ 30mV ) as a critical point to apply new context-dependent dynamics

(v ← c and u← u+ d). Since the existence of an action potential in a neural system is so contextually

distinct from when an action potential does not exist, this motivates the consideration of an overlying

space which describes the precise timing of action potential initiation in the system. The underlying

space, φ, would be the ensemble of models describing the neural system (including dendrite, axon, and

synapse models for the system). Modeling the membrane potential of neurons using the Izhikevich

model in Equation 2.2 creates a natural ρ mapping definition which simply identifies the timing of the

occurrence of v ≥ 30mV , since that corresponds with the depolarization dynamic and the propagation

of an action potential in the model. The overlying space ψ would then correspond to a description of

the neural system in terms of the existence or non-existence of spikes at particular times, offloading

the impact of the spike to the model’s interface with other components of the system.

When modeling variability of action potential propagation delay along the axon, the timing of spike

arrival is not identical to when the action potential was initiated. The pattern of spike arrivals for a

neuron are, among other factors, dependent on the length and width of the axon. The causally effica-

cious heteroclinic chains through the model will then be constrained by the connectivity and location of

neurons in the system. The heteroclinic chains which are supported by the structure of the network are

called structural polychronous groups or supported polychronous groups (Martinez & Paugam-Moisy,

2009), and these can be shown to emerge from the network from stimulation (E. Izhikevich, 2006).

Martinez and Paugam-Moisy characterized PNGs in terms of the precise stimuli that evoked them,

imitating the 3− tuple probing method originally used to demonstrate their emergence (E. Izhikevich,

2006). The conditions that activate a particular PNG can be formally described. A σ-triggered

polychronous group refers to the spike-time pattern generated by chain reaction, where σ is the number

of spikes required to trigger the PNG (Martinez & Paugam-Moisy, 2009).

Definition A σ-triggered polychronous group refers to the set of neurons that can be activated by

a chain reaction whenever trigger neurons Nk(1 ≤ k ≤ σ) fire according to the timing pattern
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tk(1 ≤ k ≤ σ), where σ is the number of spikes required to trigger the PNG (Martinez &

Paugam-Moisy, 2009).

With a synapse model that takes into account spike-time dependent plasticity, the impact of neuro-

transmitter release on the membrane potential of the receiving neuron is either increased or decreased

according to whether a spike arrives just before or after an action potential of the post-synaptic neuron

(Figure 12).

Figure 12: An STDP model where synaptic strength changes based on the relative time of pre-synaptic
and post-synaptic action potentials.

(E. Izhikevich, 2006)

The bifurcation of synaptic dynamics with respect to arrival time causes an efficacious synapse

participating in the propagation of the heteroclinic chain to strengthen, and those synapses simulta-

neously active—but not contributing to the propagation of the chain—to be weakened. Changing the

synapse strengths also changes what heteroclinic chains are possible. The polychronous groups that

are possible as a result of these changes are called adapted polychronous groups.

Stability of heteroclinic chains depends on there being a vicinity where all trajectories in a neigh-

borhood of metastable states remain (M. I. Rabinovich et al., 2012). By synapses causing larger

post-synaptic potentials, they are expanding the temporal neighborhood wherein coincident spikes

must arrive to continue the chain, and they are expanding the likelihood of continuing the chain by

requiring of fewer coincident spikes—essentially relaxing the conditions of propagation.
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As a result of the shifting stability dynamics of heteroclinic chains from synaptic STDP, and the

dependence of those dynamics on action potential propagation delays throughout the network, the poly-

chronous groups that overlap with the activated heteroclinic chains which propagate will see increased

stability of all heteroclinic channels which prescribe dynamics. In this way, stable PNGs emerge from

the dynamics of spike generation, spike propagation, and synaptic modification. The implications of

the formation of these channeled dynamics on the flow of neural information are considered in Section

4.1.

4 PNGs as Mental Representation

An organism can be described in terms of how it reacts in particular contexts. As an intelligent

organism behaves, it can use the results of that behavior to learn and guide future actions. Yet, the

world may be noisy, chaotic, and, in ways, constantly changing. In order for an organism to use the

results of past experiences to inform behaviors in a new context, it must in some way generalize similar

past experiences to determine how those past experiences should inform behaviors in that new context.

That is, it must have a way of considering the ways in which an experience is similar to a context

the organism had previously experienced. What an organism considers similar will have a non-trivial

impact on how that organism behaves. In Shepard’s “Toward a Universal Law of Generalization for

Psychological Science,” he describes an example of a circumstance where a bird may benefit from

generalization:

a bird that ingested a caterpillar bearing particular coloration and markings and found

it delectable or sickening, must decide whether another object of more or less similar vi-

sual appearance is of the same natural kind and should therefore be seized or avoided,

respectively (Shepard, 1987).

This quote describes how the way that the bird generalizes is critical to predicting its behavior–

future behaviors are not just determined by the birds ability to discriminate the coloration and markings

of the caterpillar. That organism’s generalization may be described in terms of how it characterizes

similarity between stimuli or concepts. Pavlov showed that dogs would salivate not only in response

to the bell that preceded food, but also bells of similar pitch, salivating more as the bell’s pitch

approached that of the conditioned bell (Pavlov, 1927). This finding motivated many researchers to
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develop methods for describing gradients of generalization from empirical data using both animals

through operant conditioning (Guttman & Kalish, 1956) and humans through identification learning

(Shepard, 1957, 1958, 1980). These characterizations quantified the relationship between independent

variables, like sound frequency and light wavelength, and dependent variables, like same-different

judgments or tapping frequency, providing hints at how organisms generalize stimuli.

Yet, our ability to quantify these relationships does not imply that they need be universal, nor

invariant across stimuli, sense, nor species. Similarity between tones of different octaves (Shepard, 1982;

Blackwell & Schlosberg, 1943), between hues at either side of the visible light spectrum (Shepard, 1965),

and between shapes with different symmetries (Shepard & Farrell, 1985) all exhibit non-monotonicity

with respect to independent variables.

Shepard explored ways to model and formalize the generalization data in terms of distance metrics

between points in an abstract, psychological space (Shepard, 1987). The method he proposed assumed

the existence of an n-dimensional psychological metric space for which there may exist an invariant

monotonic function that uniquely maps distances between points in that space onto similarity data.

Given a specified space, one can attempt to find this function numerically by iteratively shifting

elements in a projecting matrix, in the direction of steepest descent in error between distances in

the projected space and measures of dissimilarity, until the distance metric constraints are met to

a tolerance (Kruskal, 1964; Shepard, 1962). The resulting matrix describes a function which, once

plotted with similarity data points against distances between points, describes a gradient of similarity.

This method provided a way to approximate similarity of stimuli in terms of distance metrics in an

abstract psychological space.

The methods of Shepard and colleagues construct high dimensional vector spaces, within which

points signify the experience of particular stimuli. Yet, these methods imply no claims concerning

how such a space may be biologically implemented, or to what extent the characterization of a few

gradients of similarity may describe the generalization of the organism ecologically. A very productive

approach to conceptualizing how a psychological space may be implemented has been motivated by

the application of continuous dynamical systems (Spivey, 2008). With this approach, the experiences

of a cognitive organism are jointly encoded as points in a high dimensional vector space (Churchland,

1989). Much like in the Shepard case, points in this space are considered to be more or less similar

by a distance metric, creating overlapping regions of conceptual similarity at many scales (Gärdenfors,
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2000). Over time, mechanistic cognitive processes (Churchland, 1996) cause sequences of mental states

to form trajectories in vector space (Yoshimi, 2012a).

While there are many ways to quantify similarity of neural dynamics, it is difficult to use those

quantifications to explain the behavioral data of category formation, particularly in complex tasks in-

corporating uncertainty. One such complex task is the sexing of day old chicks at a farm for commercial

egg production—a task studied in detail by Biederman and Shiffrar (Biederman & Shiffrar, 1987). For

these farms, it is essential to separate male chicks from female chicks as quickly as possible, but the

appearance of the genitals on the chicks are highly variable, with many possible arrangements, making

this task very difficult to perform accurately. Maximum accuracy of 99.4% is achieved by experts after

an estimated 2 to 6 years of sexing experience at an average rate of 960 birds per hour (although

accuracy levels over 90% are achieved after a few months). Biederman and Shiffrar ran behavioral

experiments, comparing the photo-based chicken sexing performance of naive subjects before and after

instruction. Naive subjects averaged 60.5% correct before instruction, and 84% after instruction. If

they were tested again without instruction, the accuracy actually decreased by 5% to 54.1%, implying

that their performance increase was a result of the instruction. The instruction described various fea-

tures that are useful for identifying the sex of the chick, all of which are useful in different scenarios,

yet ultimately ambiguous, like“usually, but not always, male genitalia are larger” or “[male chicken

genitals] tend to look round and fullish like a bell or watermelon” or “[female chicken genitals] can look

pointed, like an upside-down pine tree, or flatish” or that “sometimes either sex will appear to have

double genitalia.” The research of Biederman and Shiffrar shows how people are able to succeed at

complex tasks even without knowledge of exact category boundaries, and that nuanced knowledge of

categories in these complex tasks drives performance better than simpler, clearer category boundaries.

This research also exhibits the graded structure of category membership, which is sensitive to details

that may not be explicitly identifiable.

The relationship between neural dynamics and conceptual representation significantly constrain

the foundations of cognitive science and phenomenology. In this chapter, I will argue for some philo-

sophical implications of considering PNGs as carrying conceptual information. A characterization of

the significance of neural dynamics, described in terms of a noisy regular spiking context, will be used

to understand bursting dynamics— particularly in neocortex.
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4.1 From Conceptual Vector Spaces to Conceptual PNGs

One approach to mental representation has involved the application of a continuous dynamical sys-

tems perspective (Spivey, 2008). From this perspective, currently active concepts in a cognitive

system (or subsystem) are jointly encoded as a point in a high dimensional conceptual vector space

(CVS) (Churchland, 1989). Nearby points in this space, according to some distance metric, are seen

as representing similar conceptual states, allowing regions and manifolds within this space to capture

more general concepts (Shepard, 1987). The evolution of mental states over time becomes a trajectory

in this vector space (Yoshimi, 2012a), driven by mechanistic cognitive processes (Churchland, 1989).

In general, the CVS approach has been very productive.

Past challenges to the CVS approach have come from above: from more abstract and symbolic

characterizations of cognitive processing (Fodor & Pylyshyn, 1988). More recently, a challenge has

arisen from below: from insights into the neural coding of information. There is increasing empirical

evidence that, in at least some neural systems, relevant information is encoded in the spatiotemporal

pattern of spikes produced by neurons in a given nucleus (Rolston et al., 2007; Madhavan, Chao, &

Potter, 2007; Pasquale et al., 2008). While information may be carried by synchronous or coherent

firing of neurons, as in synfire chains (Bienenstock, 1995), computational considerations have suggested

that content may frequently be encoded in complex asynchronous patterns of spikes (E. Izhikevich,

2006). As previously discussed, these complex spike patterns have been called polychronous neuronal

groups (PNGs).

The PNG approach to representation differs substantially from the CVS approach (W. St. Clair &

Noelle, 2013). A PNG is a temporally extended pattern of discrete spiking events over a collection of

neurons. It is not clear how such a pattern could be mapped to a point in a continuous vector space so

as to preserve relevant aspects of similarity between representations. A PNG need not be oscillatory,

so it does not make sense to extract features like frequency or phase to map a PNG into a continuous

vector space. In Section 4.2, I will show how the PNG approach differs from the CVS approach with

respect to conceptual transitions, similarity, and other issues of representation.

4.2 PNG Triggering and Conceptual Representation

Past methods have characterized PNGs in terms of the precise stimuli that evoked them. The conditions

that activate a particular PNG can be formally described.
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For example, in the previously introduced definition of a σ-triggered polychronous group, a PNG is

referenced by the precise spike-time pattern that caused it to occur, comprised of precisely σ number

of spikes. However, there may be many possible spike-time patterns that produce that same PNG.

These different PNG evoking patterns can be anywhere between small perturbations of the original

considered σ-trigger neurons and timings, to completely different patterns that happen to trigger the

same PNG. For example, on reoccurrence of a trigger, STDP strengthens the synapses that participate

in the evoked PNG. As a result of this strengthening, the number of action potentials required to cause

the necessary responses in downstream cells can be fewer, resulting in the same stereotyped PNG

dynamic from fewer stimulating neurons.

Additionally, multiple σ-triggered polychronous groups can refer to what is essentially the same

PNG; a specific σ-trigger is sufficient, but may not be necessary, to produce a PNG. The conditions

under which a given PNG appears may be characterized by its trigger set, which I formalize as follows:

Definition A PNG, π, is a spatiotemporal spike pattern in a neuronal network captured by a set of

neuron-time pairs. The trigger set of π, τπ, is the set of spike-time patterns that trigger the

existence of π. Each spike-time pattern in the trigger set of π will give rise to π when presented

in the absence of interfering spikes.

The definition of a PNG’s trigger set highlights the fact that the activation of a PNG can be caused

in multiple ways. Note that each element of a trigger set is, itself, a PNG, since it is defined simply in

terms of the neuron-time pairs that trigger it. This fact allows us to formally characterize the potential

causal relationships between PNGs.

Definition Given a PNG, π0, and that PI is the set of all possible PNGs in the neuronal network,

then the meaning of π0, µπ0 , is a pair of sets: its existential component, µEπ0 , defined as the set

of PNGs that contain a non-empty intersection with an element of the trigger set of π0, τπ0 , or

µEπ0 = {π | π ∈ PI , ∃ πt ∈ τπ0 : πt ∩ π 6= ∅};

and its causal component, µCπ0 , defined as the set of PNGs whose trigger set, τπ, contains an

element with a nonempty intersection with π0, or

µCπ0 = {π | π ∈ PI , ∃ πt ∈ τπ : πt ∩ π0 6= ∅}.

32



By this definition, the forward-looking causal component of µπ0 , µCπ0 , includes any PNG for which

π0 contains some spikes that may contribute to the triggering of that PNG. This means that µCπ0

includes PNGs that may only be triggered by π0 in the context of other spike-time patterns occuring

in the network. The backward-looking existential component of µEπ0 includes any PNG that contains

spikes that may contribute to the triggering of π0. This means that µEπ0 includes PNGs that may

only trigger π0 in the context of other spike-time patterns occurring in the network. Thus, context

sensitivity is intrinsic to the meaning of a PNG.

With this description of PNGs, we have a way of characterizing how two PNGs can have similar

downstream effects. Two similar PNGs, π0 and π1, will have similar overlap in terms of what PNGs

it may help trigger. If we can quantify the cardinality of meaning sets µπ0 and µπ1 , denoted |µπ0 | and

|µπ1 |, then we can quantify the amount of this overlap. Specifically, the similarity between two PNGs

may be described:

Definition Given the existence of two PNGs π0, π1 ∈ PI , and their meaning sets are µπ0 and µπ1 ,

then their real valued meaning set overlap is the cardinality of the intersection of their meaning

sets, divided by the cardinality of the union of their meaning sets, defined both existentially and

causally, or: ∥∥µEπ0 · µEπ1∥∥ =

∣∣µEπ0 ∩ µEπ1∣∣∣∣µEπ0 ∪ µEπ1∣∣ ;
∥∥µCπ0 · µCπ1∥∥ =

∣∣µCπ0 ∩ µCπ1∣∣∣∣µCπ0 ∪ µCπ1∣∣
These definitions form the foundation of a new neural account of conceptual representation. One

leading philosophical account of the grounding of conceptual meaning is Conceptual Role Seman-

tics (Block, 1997). In brief, this theory characterizes the meaning of a representation in terms of the

causal relationships surrounding it. Thus, the meaning of a representation depends on the represen-

tations that can cause it, as well as the representations that it can cause, eventually making contact

with sensory-motor processes interacting with the world. The formal definition of the meaning of a

PNG, µπ, makes explicit and precise the causal relationships between PNGs, allowing them to act as

grounded representations according to Conceptual Role Semantics (W. St. Clair & Noelle, 2013).

There are additional features of PNGs that make them attractive for theories of neural represen-

tation. For example, a special case of PNGs, called synfire chains, have been studied extensively as

a unit of representation. Generalizing from this research, spatiotemporal spiking patterns have been

argued to have the essential properties of conceptual representation, including stability, reproducibil-
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ity, learnability, storage capacity, and even compositionality (Bienenstock, 1995; Abeles, Hayon, &

Lehmann, 2004; Hayon et al., 2005). Indeed, there are natural mechanisms for composing PNGs,

potentially producing complex compositional representations, simply by superimposing them, with

multiple PNGs being simultaneously active. Using my definition of PNG meaning, the meaning of the

union of two simultaneous PNGs will be systematically related to the meanings of the two individual

PNGs, providing an approach to compositional semantics (W. St. Clair & Noelle, 2013).

My definition of PNG meaning is not intended to suggest that every PNG in a neuronal network

corresponds to a psychological concept. Indeed, since any reliably produced set of spikes fits the

simple definition of a PNG, even very short spike sequences are formally PNGs. The definition of PNG

meaning, however, does provide a perspective on which specific PNGs might correspond to useful

concepts. Specifically, a PNG should be considered as a useful unit of representation to the degree

that it arises in many contexts (i.e., the cardinality of its µEπ is large) and it participates in the triggering

of a wide variety of other PNGs (i.e., the cardinality of its µCπ is large). From this perspective, useful

conceptual units are ones that appear relatively independently. Thus, every concept is captured by a

PNG, but not every PNG encodes a concept.

  

Neuron Index

Time

PNG 2
PNG 1

Figure 13: The vertical dimension specifies individual neurons in a group, and the horizontal dimension
is time. Circles correspond to spikes generated by a particular neuron at a specific time. The arrows
between spikes display causal effects between events. The dashed outlines contain groups of spikes
whose existence is sufficient to trigger the following PNG.
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To visualize the dynamics of PNGs, consider Figure 13. On the left, 4 neurons fire in a precise

time pattern. This pattern is sufficient to trigger PNG 1. As PNG 1 unfolds, it includes a 4 spike

sequence that is sufficient to trigger PNG 2. This second PNG can, itself, trigger further PNGs. If

we now consider PNGs as encoding conceptual information, then PNG triggering dynamics can be

seen as underlying conceptual transitions. Note that the triggers for PNG 2 do not need to be fully

contained within PNG 1. We can imagine a different PNG 2 that is triggered with the aid of co-

occurring contextual spikes in addition to those present in PNG 1. While this case is not depicted

in the cartoon of Figure 13, in any complex neuronal network, the triggering of a PNG by multiple

preceding PNGs will be the most common situation. This means that the activation of a PNG can

be highly context sensitive. Also, recall that many PNGs can be simultaneously occurring without

significant interaction, implying that PNGs can robustly coexist without undermining their heteroclinic

stability (E. Izhikevich, 2006). This point about representational capacity is also supported by work

on synfire chains (Trengove et al., 2013; Schrader, Diesmann, & Morrison, 2010).

4.3 Blended Transitions

One important aspect of a conceptual representation scheme involves the transitions from one con-

ceptual state to another. Many researchers have suggested that concepts are best seen as regions in

a CVS. Similarity is captured by distance metrics in this space. The space is also seen as a state

space, through which dynamic trajectories unfold during cognitive processing (Spivey, 2008). The

dimensions of the CVS are sometimes related to the instantaneous firing rates of groups of neurons.

In the CVS approach, a conceptual transition necessarily requires motion through an intermediate

region of conceptual space, as portrayed on the left side of Figure 14. Along this dynamic trajectory,

the system temporarily represents concepts that bear a steadily decreasing degree of similarity to the

first concept, and a steadily increasing degree of similarity to the next concept. In this way, conceptual

transitions inherently involve briefly activating intermediate and blended concepts. Extensive evidence

has been gathered supporting CVS approaches (Shepard, 1987; Rolls & Tovee, 1995; Spivey, 2008),

and a variety of psychological phenomena, including priming effects, have been addressed (Mirman &

Magnuson, 2009; Cree, McRae, & McNorgan, 1999).

No intermediate representations need arise in the PNG approach. When concepts are taken to

be encoded as individual PNGs, such conceptual transitions arise when the existence of one PNG
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Figure 14: Left: A CVS, with concepts encoded as regions, with dimensions either being arbitrary
or related to the firing rates of neurons. Conceptual transitions require motion through intermediate
regions of conceptual space, which necessarily correspond to intermediate and blended concepts. Right:
Both discontinuous and blended transitions between complex concepts, encoded as collections of PNGs,
are shown. At time a, there is a discrete transition from an initial concept to a second one. Between
times b and c, some PNGs from one concept are active alongside PNGs from another concept, capturing
a blended conceptual transition during this period.

(often in the context of other, simultaneously active, PNGs) triggers the existence of another PNG,

as caricatured in Figure 13. The unfolding of the initial PNG triggers the subsequent one, but at no

point during this transition is there a spike-time pattern that is some sort of “blend” between the two

spatiotemporal spike-time patterns that make up any of these PNGs. The only overlap between the

PNGs is the sequence of spikes that trigger the second PNG, and that overlap can be vanishingly small

compared to the extent of the PNGs. In this way, PNG representations allow for discrete conceptual

transitions without the activation of blended concepts. This is possible because, with PNGs, the

mechanisms driving conceptual transitions are decoupled from measures of conceptual similarity.

While spatiotemporal codes allow completely discrete transitions, they do not rule out transitions

that activate intermediate or blended representations. Neuronal networks in the PNG framework may

very well produce such blended states, particularly when the full conceptual state of the system is

captured by multiple simultaneously active PNGs. As previously noted, since PNGs can be super-

imposed without much interference, the simultaneous unfolding of multiple PNGs would be a natural

code for more complex compositional concepts. A conceptual transition from one complex concept to

another might involve the deactivation of PNGs that make up the initial concept during the activation

of PNGs that make up the following concept. If the initial concept PNGs all ended just as the following

concept PNGs started, the transition would be discontinuous. If, however, the initial concept PNGs

dropped out incrementally over time and the following concept PNGs began at a staggered schedule,
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there would be an intermediate time at which some of the PNGs for the initial concept would be active

alongside the PNGs for the following concept. This is a natural characterization of an intermediate or

blended complex concept. An illustration of both discontinuous and blended transitions of these kinds

appears in the right panel of Figure 14. In this way, the PNG framework allows for blended conceptual

transitions, but, unlike the continuous vector space approach, it does not require them.

Finally, it is important to note that discontinuous jumps in conceptual space are possible in other

spiking neuronal network frameworks, such as synfire chain representations (Bienenstock, 1995; Hayon

et al., 2005). While I have used PNGs to highlight this difference between certain spike codes and

CVS approaches, other frameworks could depart from continuous firing-rate models in similar ways.

4.4 Movement through an Emergent PNG Existence Space

The previously discussed φρψ formalization of emergence can be used to characterize conceptual transi-

tions as emerging from neural dynamics. PNGs emerge from an underlying space with neural dynamics

φ. ρπ identifies the existence of sufficient spikes that form an element of the trigger set of π, where

π ∈ PI is emergent from the neural dynamics, φ. Each corresponding PNG space, on which ψπ oper-

ates, propagates in a way similar to a row on the right in Figure 14. If we take ρπ to be
∥∥µCπ · µCπ0∥∥ or∥∥µEπ · µEπ0∥∥, where π0 is constructed from propagating spikes in the underlying spike-time space that

intersect with π, then the black bars in Figure 14 may become real values that may correspond to the

extent to which a particular PNG has propagated, or its subcomponents are present in the network

dynamics. Dynamics through such PNG spaces may be considered as a causally descriptive abstraction

of the underlying neural space φ, with dynamics indicative of the functional properties of the systems

they intersect.

A larger, unified set of PNG spaces may have dynamics that provide a view of cognitive neuroscience

that uses representations that are decomposible into individual spikes, but are propagated in terms

how they trigger other PNGs, providing an alternative to visualizing trajectories in a conceptual vector

space.

4.5 Conceptual Representations and Dorsolateral Prefrontal Cortex

Neural firing patterns in the dorsolateral prefrontal cortex (DLPFC), thought to encode working mem-

ory contents, provide an interesting example of the variety of ways in which the PNG approach to
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conceptual representation can inform our understanding of neural information processing.

4.5.1 Time Structure of Actively Maintened Representations in DLPFC

Mammalian brains represent a temporally rich and spatially complex environment, but are also si-

multaneously capable of representing abstract rules utilizing temporally stable representations. These

representations are selectively preserved in working memory (Baddeley & Hitch, 1974), which neu-

roscientific evidence correlates with the activity of cells in the DLPFC (P. Goldman-Rakic, 1995).

Representations are described as being actively maintained while in use, capable of preserving in-

formation for time scales much longer than dynamics occurring elsewhere in the brain. While the

precise mechanisms of their active maintenence are not exhaustively known, they are thought to in-

clude topographically reciprocal synaptic projections between DLPFC, basal ganglia, and thalamus

(G. E. Alexander, DeLong, & Strick, 1986), along with dopaminergically induced hyper-sensitivity

(Durstewitz, Seamans, & Sejnowski, 2000) leading to the formation of attractors within interdigitated

stripes of DLPFC (R. O’Reilly & Frank, 2006; Rougier, Noelle, Braver, Cohen, & O’Reilly, 2005).

Past approaches to modeling DLPFC representations have done so with the assumption that repre-

sentational content is encoded by a distributed population of active neurons, where different amounts

of activity over those neurons correspond to different possible contents of a particular kind. Here, an

alternative encoding scheme is examined, polychronous neuronal groups, where the precise timing of

neuronal action potentials can provide additional detail to representational contents, triggering po-

tentially distinct responses throughout more posterior regions of cortex (E. Izhikevich, 2006). With

this representational lens, implications are considered regarding essential prefrontal cortex functions,

including the ability to update stored information, robustly maintain information, and drive other pro-

cesses in the brain (R. C. O’Reilly, Noelle, Braver, & Cohen, 2002), though without excising potentially

essential temporal information. I suggest that polychronous information may underlie processes that

are otherwise driven by mean activity dynamics, bearing information accessible upon a representations

propagation to more temporally sensitive cortical subregions.

4.5.2 Neural Correlates of Working Memory

The study of cognition has long made the distinction between controlled, effortful actions, and auto-

matic, effortless actions (James, 1890). Classically, the Stroop task well characterizes this distinction

38



(Stroop, 1935). In the Stroop task, subjects are presented with color word stimuli with a colorized

typeface, and are asked to identify aloud either the word or the color of the ink. In congruent tasks,

the ink and the color word match, resulting in a faster time to name the correct response, while for

incongruent trials the ink and the color word differ, resulting in a much slower time to name the

correct response when asked to name the color of the ink, as reading the word evokes a stronger re-

sponse than identifying the color. Congruent trials are described as being automatic and effortless,

while incongruent trials require great control, requiring the effective inhibition of the otherwise more

dominant word reading response. Critically, those with damage to their DLPFC are much slower still

to respond on incongruent trials, and produce more errors (Stuss, Floden, Alexander, Levine, & Katz,

2001). Baddeley and Hitch distinguished the need for a working memory system with properties dis-

tinct from the strictly described short-term and long-term memory mechanisms, with contents that

could be updated according to task demands (Baddeley & Hitch, 1974). While there is consensus on

the need for something of this vague cognitive scope, its neuronal implementation remains unresolved.

Figure 15: In this figure, spike histograms from recordings of DLPFC in rhesus macaques during the
delayed response task are plotted. On the left, a cell is plotted that showed no correlation with the task
relevant maintenance, as compared to the cell on the right, which shows maintained activity during
the delay period across trials (Fuster et al., 1971).

Prefrontal cortex is suspected to play an important role in the ability to organize thoughts and

actions relevant for internal goals. Indeed, one of our first neural correlates of working memory is from

DLPFC (Fuster et al., 1971). Electrodes inserted into the DLPFC of rhesus macaques to study a

delayed response task showed activity that correlated with the presence of the obscured cue during
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the delay period. In the delayed response task, monkeys observed an apple being placed within one

of two boxes, and the box was covered with a lid. Then, after a delay, the monkeys had to select the

box that contained the apple to receive the reward. During this delay period, the mean activity of

recorded neurons was maintained above baseline (Figure 15). This finding has been generalized to show

that the activity of cell groups in DLPFC during the delayed response task can be specific to different

regions in the monkey’s visual space (P. S. Goldman-Rakic, 1987). Similar effects can be shown for the

encoding of abstract rules and the existence of particular objects (Wallis, Anderson, & Miller, 2001).

Indeed, since failure to maintain this activity is associated with behavioral errors (Funahashi, Bruce,

& Goldman-Rakic, 1989), evidence suggests that activity in DLPFC may constitute the cellular basis

of working memory (P. Goldman-Rakic, 1995).

4.5.3 Physiology of a Working Dorsolateral Prefrontal Cortex

While there is abundant evidence that activity similar to what is expected from a working memory

system is occurring in DLPFC, it remains to be shown precisely how these representations are updated

and maintained. Before we characterize DLPFC’s embedded dynamics, however, we should consider

its internal context.

Figure 16: In this figure, anterograde and retrograde tracers were injected at the point of the asterisk.
The black shapes correspond to regions within which activity is mutually excitatory. These shapes are
spatially interdigitated with similar patterns of shapes, whose activation has an inhibitory effect. In
this way, each interwoven stripe in DLPFC excites or inhibits neighboring stripes (Pucak et al., 1996).

DLPFC has a distinct pattern of internal excitatory projections, seen in Figure 16, forming stripes

within a layer when labeled with retrograde and anterograde tracers (Pucak et al., 1996; Levitt, Lewis,

Yoshioka, & Lund, 1993). There are many groups of interdigitated stripes, each with coherent columnar
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structure across layers. Approximately three quarters of these long range intralaminar connections

are monosynaptic (Henze, González-Burgos, Urban, Lewis, & Barrionuevo, 2000). Because of their

proximity, depolarization induced GABAergic responses resultant from activity within one stripe can

effect nearby stripes, forming a grid of mutually inhibitory patches. This unique connectivity pattern

has been used to motivate models of DLPFC function where each stripe is seen as capable of storing

distinct representations (R. O’Reilly & Frank, 2006). Activity in superficial PFC is relatively sparse

compared to the rest of cortex, though activity in supragranular layers 2/3, which receive projections

from thalamus, is non-sparse (Barth & Poulet, 2012). This carries the implication that the sparsity

of superficial DLPFC is the result of the cellular and physiological mechanisms distinct to the region.

Yet this description is not sufficient to explain how novel items can be stored in these stripes. One

significant component is the existence of NMDA receptors in the synapse (Lisman, Fellous, & Wang,

1998). The impact of NMDA receptors is dependent on the membrane potential of the postsynaptic

neuron. If the postsynaptic neuron has recently achieved an action potential, and its membrane

potential is high, then NMDA receptors proportionally become unblocked. When NMDA receptors are

unblocked, they serve to reduce the rate of repolarization, allowing the cell to continue firing when it

would otherwise require significant input to maintain that level of activity.

Figure 17: This figure shows the difference between high and low dopamine levels on target neurons
(red) as compared to non-target neurons (blue) in a cortical model. The small horizontal red bar
indicates the time and duration of the initial stimulus. On the left, we see the low dopamine case. On
the right, we see the high dopamine case. In the presence of more dopamine, target cells maintain high
firing rates, while non-target cells remain at baseline (Durstewitz et al., 2000).

Another critical component to the ability to update and maintain representations in DLPFC is

the presence of dopaminergic signals from basal ganglia (Williams & Goldman-Rakic, 1995). Peaks

in dopamine serve to amplify NMDA currents, and shift sodium and potassium currents toward hy-
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perpolarization, while also increasing the speed and response of GABA activity (Durstewitz et al.,

2000). The implication is that bursts of dopamine to PFC can serve to strengthen existing dynamics,

making the maintenance more resilient, while also increasing inhibition, which diminishes competing

representations (Figure 17). A reduction of baseline dopamine levels, like when outcomes do not meet

expectations (Schultz, Dayan, & Montague, 1997), would cause a relative destablization of main-

tained representations through the reduction of NMDA currents and the quickening of repolarization.

Dopamine also has a synapse specific impact on DLPFC neurons which reduces the strength of in-

coming signals without reducing excitation between stripes, helping prevent interference with what is

being actively maintained (Gonzalez-Burgos et al., 2002). It also increases the excitability of many

kinds of inhibitory interneurons, which can also help to reduce interference.

Figure 18: This figure portrays the convergent projective overlap of several functionally related cortical
regions within thalamocortical loops. While there are recurrent projections, mapping back onto them-
selves, a single cortical region also facilitates activity in similar functional cortices (G. E. Alexander et
al., 1986).

Recurrent connections can also serve to help maintain active representations (Zipser, Kehoe, Lit-

tlewort, & Fuster, 1993). Beyond the recurrent connectivity within stripes, DLPFC also has reciprocal

topographic projections with striatum and thalamus, where the returning projections significantly

overlap with the neurons that initially projected, portrayed in Figure 18 (G. E. Alexander et al.,

1986). It is important to recognize that activity in thalamocortical loops need not project perfectly
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back onto the cells that were initially active. Nearby projections from PFC to striatum have 40% - 80%

projective overlap with cells as much as 5 millimeters away, approaching an average of 20% projective

overlap 10-50 millimeters away (Averbeck, Lehman, Jacobson, & Haber, 2014). This particular aspect

of thalamocortical loops has been argued not only to facilitate active maintenance (R. O’Reilly &

Frank, 2006), but has also to enable representations to become associated with new information indi-

rectly, which has been shown to allow networks to successfully generalize knowledge to novel stimuli

(Kriete, Noelle, Cohen, & OReilly, 2013).

4.5.4 Temporality of DLPFC

To what extent is precise spike-timing information relevant for DLPFC? There is evidence for spa-

tiotemporal representations throughout cortex: in auditory cortex with millisecond precision (Lu,

Liang, & Wang, 2001; Kayser, Logothetis, & Panzeri, 2010); in visual cortex (Engel, König, Kreiter,

Schillen, & Singer, 1992) and with visual information in thalamus (Reinagel & Reid, 2000); in motor

output and premotor neurons (Fu, Flament, Coltz, & Ebner, 1995); and even in hippocampus (Huxter,

Burgess, & O’Keefe, 2003). Whether or not activity in DLPFC itself contains temporal information,

the systems that it is interacting with do appear to contain temporal information.

Mechanisms of active maintenance of representations in DLPFC appear to be preserving of activity,

but it is unclear how information maps to and from these neurons. While recordings from delayed

response tasks clearly exhibit sustained activity with respect to some feature dimension (as in Figure

15), the firing rates of these neurons vary throughout their maintenance. With such variety, it seems

unlikely that content is significantly preserved through combinations of precise rates of firing. The

sparseness of coding and sustained activity corresponding with particular features, however, seems to

suggest a strong spatial significance to what is maintained. This notion is reinforced by the prevalence

of monosynaptic projections between stripes. Interestingly, these lateral connections are unusually

slow, sending potentials at 0.14 meters per second, around 400 times slower than average, slower

than the slowest unmyelinated axons (Henze et al., 2000). If there were spatiotemporal structure in

the stimulation of DLPFC, it is unclear if the lateral excitatory connections between stripes would

preserve it beyond the temporal dynamics of their mean activity.

There can be temporal information in mean activity, however. Event relative time-stamp informa-

tion emerges in DLPFC, akin to timing signals used in reinforcement learning explanations of dopamine
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Figure 19: Above: Average response profiles of selected neural clusters in DLPFC during the sequential
saccade task. Red bars indicate the presence of the go cue, blue bars indicate the stop cue. At the
end of the trial monkeys still fixated vigilantly until they received their variably timed reward. Below:
This figure shows evidence for time-stamp profiles for single DLPFC neurons. (Jin et al., 2009).

bursts (Schultz et al., 1997), which can be observed in monkeys that are trained on the sequential

saccade task. In this task, monkeys are trained to saccade to four sequential cues presented at gaussian-

distributed intervals, and are rewarded with juice if they successfully fixate (Jin et al., 2009). From

multi-electrode arrays, neurons can be observed that have sharp temporal peaks at points distributed

across times after the task begins, portrayed in Figure 19. Monkeys performed this task nearly au-

tomatically, having performed 800 trials a day for 3 years across studies. This provides insight into

event-relative timing emerges, and how dynamically DLPFC can represent information. In (Jin et

al., 2009), precisely timed saccades appear to be spatially coded events, with peaks at precise times.
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This suggests that systems guiding DLPFC are sensitive to precise temporal information, however that

information is implied to be spatially coded in a way akin to identifying the brief occurrence of an

event.

4.5.5 Regular Significance of Bursting Dynamics

Izhikevich probed randomly connected networks to quantify the number of supported σ-triggered PNGs

to show their ubiquitous emergence, where σ = 3—even in the presence of background noise (E. Izhike-

vich, 2006). The stability of the PNG, in this experiment, was characterized by its imperviousness to

interruption, tested by providing a context of uniform noise. The significance of a particular stimu-

lation in this paradigm is taken to be what emerges out of repeated stimulations an indication, each

measured independently. However, if we were to change the stimulation pattern, different heteroclinic

chains may emerge. The size of the neighborhood where that stimulation can be modified without

changing the way the original PNG from propagates can be seen as indicative of the stability of that

PNG as a heteroclinic channel.

The definition of a PNG from Section 4.2 relies on the notion of a spike’s interference. The

causal meaning, µC , of a particular spike, generated at a relative time, can be approximated in the

σ−triggered quantification case in terms of how adding that spike-time pair to the σ−trigger modifies

the original quantification. If including the spike-time pair modifies the number of 3-triggered PNGs—

or the manner and extent of their propagation—then the that spike-time pair can to be said to interfere

with the 3-triggered PNGs altered by inclusion. In this way, a spike’s interference is inherently in terms

of the network structure in which it is embedded. As a neuron has more and stronger connections, the

interference of its spikes are likewise enhanced.

This test of interference assumes a context of regular spiking neurons. In this regular spiking

context, a spike is only considered as occurring at a particular relative time. However, in the brain,

regular spiking neurons, which tend to fire at no more than 50 Hz, are intermixed with intrinsically

bursting and rhythmically bursting neurons, which can fire between 300 and 600 Hz (Steriade, 2004).

How can we describe the significance of a particular neuron’s bursting in context of a regular spiking

environment? A particular neuron’s firing represents a constraint on what can emerge from the neurons

that it projects to. If that neuron projects to one that exhibits regular spiking, then the impact of its

spiking is over after just a few milliseconds, with less and less residual membrane potential as you get
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further away in time (Cessac et al., 2010). This implies that a single spike can only interfere or apply

constraints within a short time of its receipt. A neuron firing again ostensibly renews that constraint.

As a neuron increases its firing rate, its constraints are applied to more time windows with less time

between those windows (leading to more interference). As the constraint time windows get closer

together and overlap, so does the likelihood that it will interfere with co-occurring propagations. As a

neuron increases its firing rate, it consistently reapplies the constraint implied by the neuron, creating

a context where what emerges must be increasingly harmonious with its activity.

A bursting neuron, which can fire as fast as 900–1000 Hz in thalamus, applies its constraints

in an overlapping manner, in such a way that the likelihood of its interference during the time of

activity becomes much stronger. This near guarantee of interference can also be seen as a guarantee

of facilitation, in that all PNGs which emerge in the context of that neuron’s bursting should either

intersect with that neuron or be in some way harmonious with it. When considering the significance of a

population code, seen as a distribution of firing rates over a pool of neurons, that particular population

code will constrain what emerges in its embedded network without fully prescribing what emerges. In

this way, analogues to population codes, like blood oxygenation in fMRI or the electric field potentials

measured by EEG and ECOGS, can be correlated with hypothesis of information flow—even in the

absence of a more detailed theory of neural coding.

While the notion of interference is in terms of the obstruction of an otherwise capable PNG, the way

that a spike changes a co-occurring propagation may also be considered positively—the significance

of spike can be seen as an unrelated distractor to a propagation or a computationally significant

contributor. In this way, the impact of a spike’s interference can itself propagate, potentially allowing

its residual impact to be observed at different scales. This could allow neurons with sparse firing rates

to significantly contribute to the constraint of processes well between the time windows where the spike

directly interferes.

The repeated activation of a single bursting neuron, projecting to regular spiking neurons, itself

need not be sufficient to prescribe further propagation. However, that bursting neuron may be seen as

providing a strong constraint on accompanied dynamics, leading to meaningfully related propagations.

To clarify the notion of constraint, consider this framing question: when a neuron fires repeatedly,

as in a burst, how does it change its meaning set? Since a meaning set for a single spike contains

all PNGs it intersects with, considering the meaning of that spike in isolation will yield the largest
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meaning set possible for the neuron of interest, while the proportion of PNGs in that meaning set with

sufficient triggers will be the smallest possible for that neuron.

When we include a second spike by that neuron, then the size of that new meaning set is less than

or equal to the size of the meaning set of one of those spikes alone. This is because the meaning set

for a single spike is at its maximum size, and taking the second spike as given excludes all PNGs from

that original meaning set that it interferes with. The reduction of the size of the meaning set with

spike inclusion would not be guaranteed if we considered two spikes from two different neurons, since

in that case the meaning set could grow by the number of PNGs intersecting only with the new neuron,

which may be more than the number of PNGs omitted by interference with the new spike (even while

the number of sufficiently triggered PNGs in their meaning set may increase). If the inclusion of the

second spike increases the number of sufficiently triggered PNGs in the meaning set, then the original

meaning set is ostensibly trimmed by the interference of those spike-times, since a PNG is defined

in terms of propagation in the absence of interference. Furthermore, the assumed silence in the time

between spikes also excludes PNGs which depended on a spike occurring during that time.

To restate, as a neuron spikes a second time, the meaning set created by the original spike may be

seen as being trimmed by the interference of the new spike, while the number of sufficiently triggered

PNGs may increase. The increase in sufficient triggers further changes the considered meaning set by

providing additional interference as the spikes in that chain successfully propagate. As more spikes

are added by the same neuron, the meaning set constructed by the full spike sequence can only get

smaller, while the number of sufficiently triggered PNGs within that meaning set may grow. If we now

consider the trigger set overlap of the PNGs contained in the meaning set, where complete overlap

implies a sufficient trigger, then the degree of overlap of meaning set PNGs may increase as more spikes

are added by the same neuron. If we were to quantify the number of spike-times that would need to

be included for a particular PNG to be sufficiently triggered, then that number may decrease as more

spikes are added by the same neuron. This reduction in required spikes constitutes the facilitation of

that PNG. The landscape of facilitation in the PNG space of the meaning set describes the way in

which a neurons spike shifts the probability of particular outcomes. As a neuron repeatedly fires, the

interaction between the facilitation of PNGs in its meaning set and the interference of the sufficiently

triggered PNGs contained in that set, has the impact of amplifying the reduction in size of the meaning

set while increasing the likelihood of particular outcomes within that now smaller meaning set. The
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way in which this occurs constitutes a particular neurons constraint on the network.

4.5.6 Regular Significance of Superficial DLPFC

Let us now consider bursting neurons in superficial DLPFC. While spatiotemporal coding may not be

propagated laterally, it is possible that which particular neurons become active are dependent on spa-

tiotemporal interactions. Recall that while superficial DLPFC is considered sparse, its supragranular

DLPFC input neurons are not considered sparse (Barth & Poulet, 2012). Since these neurons receive

their input from thalamus and sensory cortex, it may be reasonable to assume they could exhibit

spatiotemporal correlations. Furthermore, because of the partial projective overlap in striatum, the

structure of recurrent patterns could spread out over DLPFC as feedback progresses in a sequentially

meaningful way.

The sequential meaning of partially overlapping thalamocortical feedback loops has successfully

been shown to aid in the generativity of mean activity representations in DLPFC (Kriete et al.,

2013). The difference in this circumstance is that the neurons that are being sparsely activated are

ones harmonious with the spatiotemporal codes that intersect the participating thalamocortical loop.

Because of this, the active maintenance of sparsely coded neurons in DLPFC could effectively drive

the re-activation of a PNG by sufficiently overlapping with that PNGs trigger set. This occurrence

is made more likely in this circumstance because the neurons intersecting with the trigger sets of

PNGs participating in the DLPFC thalamocortical loop are the neurons that were preserved through

dopaminergically induced active maintenance. The high levels of activity of trigger neurons, coupled

with the inhibition of competing triggers, acts as a figurative fire hose of activation sufficient to enable

meaningfully related processes elsewhere in cortex. Continuing with this metaphor, the spatiotemporal

representations of cortex are the resulting dynamics of bursting neurons selected to facilitate particular

PNG families, while being partially agnostic to which particular PNG gets triggered and the timing of

its initiation.

This approach could harness the compositional nature of PNG representations (W. B. St. Clair

& Noelle, 2015). As the DLPFC coding includes more features, the family of PNGs that can be

invoked gets more specific. As the coding includes less features, the PNGs become increasingly under-

determined. As a result, what PNGs get triggered become more contextually defined. Following this

explanation, DLPFC coding enables selective outcomes, while allowing for more detailed nuances in

48



terms of the precise impact of what has been actively maintained.

Brains exist in a spatiotemporally complex environment, and that complexity carries over into

neuronal representations. We are capable of selectively attending and preserving critical features

of those representations in working memory. This working memory can actively maintain, update,

and forget current representations, while also being capable of driving processing elsewhere in the

brain. Neural correlates imply that activity of cells in dorsolateral prefrontal cortex correspond to

the dynamics of working memory. I suggest that the contents of DLPFC representations and bursting

neocortical cells may be developed in harmony with the spatiotemporal representations of a regular

spiking context, and may be best thought of in terms of their intersection with the trigger sets of the

PNGs that they may either facilitate or inhibit.

4.6 PNGs, Linguistics, and Iconicity

As a final example of how the PNG approach to conceptual representation can influence our under-

standing of cognitive processes, I offer a PNG description of the development of language perception.

In linguistics, a phoneme is defined as “the smallest segmental unit of sound employed to form mean-

ingful contrasts between utterances” (IPA, 1999). Over time, the cochlea is a constant source of

spike signals. At a basic level, each inner hair cell corresponds to a physical location in the cochlea.

Movement of the hair cell correlates with release of glutamate in its synapses, generating a membrane

potential in receiving neurons. These neurons send signals through the cochlear nerve to the cochlear

nuclear complex (CNC), where they are received in a tonotopically organized fashion. These hair cells

produce action potentials at the peaks and troughs of their oscillation, exhibiting a transient firing

rate correlating with sound frequency. This implies that spikes in the spike patterns that emerge in the

CNC correlate with the frequencies of a fourier decomposition of the audio signal. Formants are often

used to describe the peaks in this spectral space that are generated by the human voice (Fant, 1960).

Each phoneme has a distinct formant pattern given a particular speaker. In Figure 20, we see two

main formants characterizing the American English vowels i, u, and a. Formants indicate frequency

patterns that are most distinct to those vowels.

An infant hearing a phoneme can be thought of as the triggering of a polychronous group by φCNC ,

which causes a chain reaction in the network. As an infant repeatedly hears a phoneme, the chain

reaction it causes strengthens. Development of phoneme representations is language specific. An infant
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Figure 20: Spectrogram of the American English vowels [i, u, a] as pronounced by a native from
Louisiana demonstrating the frequencies of the first and second formants.

that is repeatedly exposed to the Estonian language will develop increased phonemic awareness of the

phonemes more common in Estonian–a different phonemic awareness than that of an infant exposed to

Finnish (Cheour & et al, 1998). Over development, perception becomes increasingly categorical. By

11 months of age, an infant shows signs of an increase in native-language consonant perception, and

a decline in foreign-language consonant perception (Kuhl, 2004). As a phoneme becomes learned, its

PNGs become strengthened. However, once those neurons strengthen the connections relevant to its

meaning, it weakens connections irrelevant to its meaning. Because of STDP, if a post-synaptic neuron

fires just before its perception of a spike in a synapse, then it weakens the strength of that synapse.

Inherently, signals that are repeated and have systematic correlative structures, like formants, will have

beginnings of PNGs strengthened. Neurons that are participating in those PNGs will weaken their

weights for frequency combinations that are not contained in those PNGs. As those phoneme PNGs

become well learned, their meaning starts to become more significant. This is because the PNGs will

become more easily triggered, and will be perceived in more circumstances, since the PNGs that have

a trigger set overlapping with the triggered PNGs with have a part of their trigger set strengthened.
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Figure 21: A See n’ Say children’s
toy manufactured by Fisher-Price.
The child spins the arrow, which
points to an animal. Then, the child
pulls the chord, which spins the ar-
row as a voice says the name of the
animal, and imitates the sound it
produces. The See n’ Say provides
an example correlated visual and au-
ditory information which can be used
to strengthen PNGs that otherwise
have little else to correlate with.

Latent PNGs with trigger sets dependent on these strengthened components may now, themselves, be

more easily triggered.

Since the mechanism that binds the formants and phonemes together is general, it can be used

to learn multi-modal associations. As PNGs become stable, their meaning can combine with the

meaning of other PNGs that are temporally co-occurring. In Figure 21, we see an example of a See n’

Say, a children’s toy that specializes in combining visual and auditory information. By seeing a cow,

and hearing ‘moo’, a distinct pattern of auditory PNGs – those triggered by ‘moo’ – co-occur with a

distinct pattern of visual PNGs–those triggered by the cartoon depiction of a cow. Given the small-

world structure of the brain, these PNGs will develop to use as much information as possible, likely

combining auditory and visual information. Over time, this multi-modal strengthening of PNGs could

potentially yield a multi-modal PNG representation of a Cow, which contains many PNGs which may

be triggered corresponding to a Cow’s features–implying the formation of an internal representation

of a Cow that is constructed from other PNGs, yet when triggered, has the meaning associated with

the experience of a Cow.

In Section 4.2, I describe how PNGs have context dependent meaning. Consider a sequence of

phoneme PNGs triggered in succession, π1 − · · · − π10. Using the definition of meaning sets, the

meaning of phoneme PNGs may be reconsidered as they become triggered, shaping the structure of

the final PNG that is triggered by the full sequence.

A PNG sequence need not be triggered in full to contribute to a sufficient trigger. PNGs trigger

as soon as their trigger set is satisfied. As we read the example “I am hungry and I am happy,”
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we understand the meaning of “I am hungry” before we combine it with the meaning “I am happy.”

Indeed, spacing them into seperate successive sentences “I am hungry” ... “I am happy” does not

provide the same context for meaning as “I am hungry and I am happy.” By considering the properties

of PNGs in a stable PNG existence space, we find what is fundamental in linguistics to be decomposible

in cognitive neuroscience.

5 How Neural Firing Patterns Depend on Network Topology

The causal meaning of a PNG and the constraint of individual neurons, as described in the previous

chapter, are defined in terms of the dynamics of the network of interest. How does a given network

architecture impact the way that particular neurons constrain dynamics? Particularly, how do the

neural firing patterns emerging from fully recurrent networks relate to changes in the pattern of network

connectivity and conduction delay across and between clusters of neurons? I approached this question

empirically through a large parametric study which simulated clustered network topologies of cortical

excitatory neurons with inhibitory interneurons. Network architecture was algorithmically constructed

from every possible combination of 6 independently varied parameters with 5 settings each to model

a total of 56 = 15, 625 different network structures. These included 3 intercluster parameters and

3 intracluster parameters: minimum conduction delay, range of conduction delay, and connection

density. Each network was stimulated for 1000 ms at various frequencies in a noiseless environment by

an arbitrary rate code. The firing patterns evoked by each network are then described and analyzed

to glean the distinct properties of each parametric variation.

From this massive grid search of the space of network structures, networks were found to be either:

supercritically excited, with a vast array of explosive firing patterns (most common); subcritically

quiescent, where no firing patterns were evoked despite tonic stimulation; or, metastably active, where

tonic stimulation yielded likewise tonic firing within the network. Whether a particular network was

found to be supercritical, subcritical, or metastable ultimately depended on its distinct combination

of parameters.

5.1 Simulation Methodology

Each recurrent network consisted of 800 excitatory regular spiking neurons, modulated by 200 in-

hibitory fast spiking neurons, simulated using the Izhikevich simple neuron model (Equation 2.2) with

52



uniform parameters for each neuron type (E. Izhikevich, 2006). Excitatory neuron models used parme-

ters a = 0.02, b = 0.2, c = −65, and d = 8. Inhibitory neuron models used a = 0.1, b = 0.2, c = −65,

and d = 2 (E. Izhikevich, 2003). These neurons were evenly divided into 5 clusters, each containing 200

excitatory neurons and 40 inhibitory neurons, emulating the 5:1 ratio of excitatory to inhibitory neu-

rons observed in cortex. Each excitatory neuron projected to both excitatory and inhibitory neurons

within its home cluster, but projected only to other excitatory neurons outside of its home cluster and

never projected to inhibitory neurons outside of its home cluster. Each inhibitory interneuron neuron

projected only to excitatory neurons within its home cluster, and never to neurons outside of its home

cluster and never to other inhibitory neurons. Each spike through an excitatory synapse resulted in

a 5mV change in the membrane potential of the receiving neuron. Each spike through an inhibitory

synapse results in a −4mV change in the membrane potential of the receiving neuron. All synapse

strengths were fixed for the entirety of the experiment.

The number of connections that each neuron connected to within its home cluster was set by the

parameter Internal Connection Density, while the number of connections that each excitatory neuron

connected to outside its home cluster is set by the parameter External Connection Density. The

minimum action potential propagation delay along axons which projected within the source neuron’s

home cluster was set by the parameter Internal Delay Minimum. The range of those delays, with

uniform distribution starting from the Internal Delay Minimum, was set by the parameter Internal

Delay Range. The minimum action potential propagation delay along axons which projected outside

of the source neuron’s home cluster were set by the parameter External Delay Minimum. The range of

those delays were set by External Delay Range. Each neuron’s non-repeating projection targets were

determined uniformly at random.

The full 5 cluster network was stimulated by a 200 neuron input cluster which projected to the

remainder of the network with a number of connections determined by the External Connection Density.

This input cluster has no internal connections, serving as the only source of activity to the network.

For each condition to be tested, a new network was generated with the parameters of interest. This

network was then stimulated according to a uniformly distributed rate code which scaled the expected

number of spikes to be generated for each neuron’s interspike intervals. These interspike intervals were

sampled from a poisson distribution with λ mean and variance, where λ was set by the Stimulation

Frequency parameter. Each network is stimulated in this way for 1000 milliseconds, with 1 millisecond
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temporal resolution (computed in two steps of 0.5 milliseconds for numerical stability). This process

was repeated for every unique combination of parameters in Table 1.

Parameter Conditions: 1 2 3 4 5

Internal Connection Density 5 8 11 14 17
Internal Delay Minimum 1
Internal Delay Range 0 4 8 12 16

External Connection Density 5 8 11 14 17
External Delay Minimum 1 7 13 19 25
External Delay Range 0 4 8 12 16

Stimulation Frequency λ 5 15 25 35 45

Table 1: Parameter values explored in the analysis. Connection densities represent the number of
projections per neuron. Delays are listed in milliseconds. Frequency of stimulation is in Hz, and
corresponds to the maximum possible frequency within its rate coded stimulation.

An example of a network connectivity pattern used in the investigation is portrayed in Figure 22,

where each point implies the existence of a projection from the horizontal to the vertical, and color

implies that connection’s action potential propagation delay (ranging from black to copper from 1ms–

25ms. In this example, each neuron projects to 14 neurons within its cluster with a delay ranging from

1–9ms. These internal connections can be seen as rectangles along the diagonal, since the neurons are

ordered with respect to their clusters. The last 40 neurons of each cluster were inhibitory, and hence

only projected locally and never to themselves (made clear by the absence of connections in the top-

right of each internal cluster). Furthermore, the inhibitory neurons were never distally projected to,

shown by the vertical columns of white along inhibitory neuron indexes. Since no part of the network

projected to the input driver, projections to neurons 0–240 are absent (shown by the white band on

the lower portion of the graph). In this example, each neuron also projected to 8 neurons outside of its

local cluster with a delay ranging from 7–25ms. This network had dense and fast local connectivity,

but slower and more sparse intercluster connectivity. Compare this to a second example, shown in

Figure 23, where clusters were less densely connected internally with longer delays, while being more

densely connected externally with shorter delays. A priori, it was unclear how these different network
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Figure 22: This plot portrays the network connectivity when Internal Delay Minimum is 1, Internal
Delay Range is 8, Internal Connection Density is 14, External Delay Minimum is 7, External Delay
Range is 18, and External Connection Density is 8. Axes refer to neuron index, where the horizontal
axis corresponds to the presynaptic neuron, and the vertical axis corresponds to the postsynaptic
neuron. Each point implies the existence of a projection, and the color of that point implies the extent
of the action potential propagation delay (Ranging from black for a 1ms delay to copper for a 25ms
delay.

architectures would vary in the firing patterns that emerged from different patterns of stimulation.

5.2 Analysis Metrics

Dynamics from each experiment were captured by recording the time and source of each spike produced

by the network throughout the 1000 milliseconds of stimulation. A single experiment saw anywhere

from 0 to around 350,000 recorded spikes, excluding the stimuli. To adequately comprehend the impact

of changes across parameters, a suite of metrics were used to process data to facilitate its visualization.

The raw data is simply a list of times that each neuron spiked, shown rasterized in Figure 24 for

a single run. Much can be seen in these spike rasters, but the phenomena observed can be difficult

to quantify for comparison. Describing Figure 24, we see active spiking in all clusters that, beginning

around 600ms, ramps up to a catastrophic explosion of activity which peaks near 700ms, the aftermath

of which is complete silence as neurons return to equilibrium. This narrative of overall activity levels

changing over time is well captured by a windowed histogram plot, shown for this run in Figure 25,
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Figure 23: This plot portrays the network connectivity when Internal Delay Minimum is 1, Internal
Delay Range is 18, Internal Connection Density is 8, External Delay Minimum is 1, External Delay
Range is 8, and External Connection Density is 14.

which sums the number of spikes occurring within an 11ms window centered around each point in

time. This sliding window approach smooths the resulting histogram, providing a clearer image of

transitions in overall levels of activity. Notably, the explosion of activity around 700ms dominates this

plot, dwarfing the visibility of all other spiking throughout the network. The similarity of dynamics

across clusters motivates combining individual curves into a single, network-wide histogram. Statistics

from the resulting histogram can then be used to compare different network results to assess the impact

of parametric variation on the phenomena they describe.

The behavior of a network can be broadly characterized as being either supercritical, metastable,

or subcritical. In the supercritical condition, like in Figure 24, networks exhibit explosive interac-

tions which come to dominate dynamics to the extent that neurons over-stimulate to hyper-synchrony,

massively extending their refractory periods and causing long windows of overall network silence be-

tween explosions despite continued stimulation. The patterns of these explosions of activity varied

widely across parameter conditions, depending critically on network architecture. This contrasts with

subcritical conditions, where stimulation was insufficient to cause significant downstream spiking. Be-

tween these extremes are metastable conditions, which respond enough from stimulation to cause
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active spiking, but that spiking does not come to dominate network dynamics through catastrophic

overstimulation.

It is of great interest to quantify and robustly identify the existence of these dynamics. This task

is made considerably more difficult by a wide variety of explosive firing patterns. An explosion could

appear to be more slowly rising and have a rounded peak, or it could have many rhythmic peaks, as in

Figure 26. One distinct and powerful method utilized here involves employing the frequency spectra

from the Fourier transform of the windowed histogram. Computing the magnitude of the coefficients

using the discrete Fast Fourier Transform (FFT) for the histogram curve, like those in Figure 25 and

Figure 27, yields the power level of the different frequencies of spiking, shown in Figure 28 and 29.

Comparing the spectra of the histogram of the stimuli in Figure 28 to the spectra of other clusters

in the network is striking: the clusters have very powerful low frequency spectra that dwarf the low

frequency spectra of the stimuli. Computing the absolute value of the FFT on a 1000ms vector results in

precisely 1000 real valued coefficients, symmetric around the 500hz, since all low frequency correlations

can also be viewed as high frequencies (information is not known beyond 1000ms to disambiguate). This

relationship implies that all explosive spiking dynamics will be pushed to the edges, as the sharpness of

the histogram serves to amplify the power of the frequencies widened by its windowing. The spectra in

Figure 29 are also massively powered in low frequencies, though the repetition of the explosions yield

sharp peaks in higher, more moderate frequencies. To leverage this effect, these ultra-low frequencies

can be summed and subtracted from those of the stimuli to identify the extent to which the network

is over-stimulated, herein called the histogram spectra metric.

5.3 Parametric Analysis

How do parametric variations impact firing patterns? Since the impact of parameters are interde-

pendent, and their resultant dynamics are so nonlinear, narratives for each parameter will need to be

considered in terms of each other parameter for conclusions to become coherent regarding them. Some

parameters, however, are far more defining of overall network activity than others. Let us consider

these high impact parameters first.

The plot in Figure 30 provides the average number of spikes generated by a network, shown against

the parameter condition index for all varied parameters, where each point averages all runs which used

that parameter setting. This plot reveals which parameters can be changed to reliably increase or
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Figure 24: This is a raster plot of the spike data evoked from up to 25hz stimulation of a network where
Internal Delay Minimum is 1, Internal Delay Range is 4, Internal Connection Density is 11, External
Delay Minimum is 7, External Delay Range is 8, and External Connection Density is 11. Points
correspond to existence of spikes, with neuron index plotted vertically and time plotted horizontally in
milliseconds. The top-left plot is the source network, which stimulates the 5 interconnected subnetworks
shown in the remaining plots. Neuron indexes 201–240 are fast spiking inhibitory neurons.

decrease the amount of spikes produced by the network. It is apparent that the strongest predictors of

the number of spikes in the network are a high External Connection Density (ECD), a high Stimulus

Frequency (SF), and low External Delay Range (EDR). It appears, however, that while Internal Delay

Range (IDR), External Delay Mean (EDM), and Internal Connection Density (ICD) may influence

the spike count of the network, their parametric variation does not necessarily guarantee the explosive

conditions which dominate this plot. It is clear why External Connection Density should be the most

influential factor here; External Connection Density determines the extent of all connections between

clusters, including the density of the projections from the driving stimulus. In this regard, the ECD

limits the bandwidth of network stimulation overall.
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Figure 25: This is a histogram of the spike data portrayed in Figure 24. Each point sums all spiking
activity within an 11 millisecond window centered on that point (+/- 5 milliseconds).

Notably, the top 40 networks that saw the highest amount of spikes in the experiment were all in

cases with maximum External Connection Density and Stimulus Frequency, while having the lowest

possible External Delay Range (which ensures that synchronized spikes are received at a synchronized

time). Interestingly, these high spike count networks all had an External Delay Minimum of at least

7ms. The network which exhibited the most spikes is plotted in Figure 31. Seeing this spike raster

clarifies why the highest spiking cases have External Delay Minimum of at least 7 ms—the existence

of between cluster delays allows for the propagation of synchronous spike volleys that otherwise are

silenced by locally acting fast spiking inhibitory neurons. Since all the delays are identical in the

0ms range case, the full volley is received all at once, ensuring a similarly hypersynchronous response.

The delay is just long enough for each cluster to have quieted before receiving the new stimulation,

though not long enough for ongoing stimulation to offset the rhythmic balance. Reducing the External
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Figure 26: Spike data from up to 35hz stimulation of a network where Internal Delay Minimum is 1,
Internal Delay Range is 8, Internal Connection Density is 14, External Delay Minimum is 25, External
Delay Range is 8, and External Connection Density is 11.

Delay Minimum in this condition from 13ms to 7ms causes the initial wave of explosive synchrony to

excessively reinforce itself, causing a massive 50ms explosion which repeats after a 200ms refractory

period (down to a spike count of 211,286). If we increase the External Delay Range from 0ms to

4ms instead of reducing the External Delay Minimum, as portrayed in Figure 32, the impact is that

synchronous waves are now received over 5 ms, causing the initial wave of explosive synchrony to

cause explosions at a variety of times, resulting in a larger explosion which similarly reverberates until

quieted from its earlier overstimulation (spike count of 170,933).

These examples reveal how large overall spike count is associated with activity which, while exces-

sive, is just under the thresholds which would prevent further explosions. Another way of quantifying

the network activity is to consider the maximum histogram value achieved throughout the experiment

duration, plotted in Figure 33 against each parameter index. With this metric, each parameter is
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Figure 27: Histogram of the spiking data from Figure 26.

described in terms of its average contribution to explosive propensity. In Figure 33, in addition to

the correlations expected from the spike count plots, we now see interesting relationships between the

remainder of the parameters. Intuitively, increasing Internal Connection Density allows for larger ex-

plosive peaks, as its increase leads to an increased coupling within a cluster by increasing the likelihood

that two locally evoked spikes will converge on a single neuron. Conversely, increasing the Internal

Delay Range effectively reduces the size of peak explosions by reducing the likelihood that two locally

evoked spikes will arrive at the same time, just like the External Delay Range parameter does for the

network as a whole. Perhaps the most striking relationship noticeable here, as forecasted by Figure 31,

is seen with the External Delay Minimum. When delays between clusters are allowed to be as short as

delays within a cluster, then the network becomes as if it were one giant cluster—particularly when the

External Delay Range is also small. Critically, these projections do not also connect to that cluster’s

inhibitory interneurons, leading to massively building levels of activity while partially undermining its
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Figure 28: Frequency spectra of the windowed histogram in Figure 25. The horizontal axis corresponds
to coefficients of the Fourier transform with its magnitude plotted vertically. This is used to compute
the histogram spectra metric.

stability mechanisms. Increasing this the External Delay Minimum has the effect of providing time

for the internal impact of a synchronous event to dissipate before spikes arrive from other clusters

that were driven from a similar source. When the External Delay Range is 0, then the emergence of

a hyper-synchronous spike volleys have a guaranteed synchrony upon receipt, causing reverberations

like in Figure 31.

To illustrate the important distributional relationship between spike counts and maximum his-

togram values with respect to the External Delay Range, each parameter setting can be compared

with a suite of scatter plots, like in Figure 34. From these plots, it becomes clear how the maximum

histogram value decouples from the overall spike count in a network in a manner dependent on the

External Delay Range. Since the maximum histogram value was computed from a binned histogram

which counted spikes over 11ms over clusters of 240 neurons, the highest possible histogram value is
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Figure 29: Frequency spectra of the windowed histogram in Figure 27. The horizontal axis corresponds
to coefficients of the Fourier transform with its magnitude plotted vertically. This is used to compute
the histogram spectra metric.

2,640, which forms the ceiling effect seen in most of the plots in Figure 34. Generally, it can be noted

that the highest spike counts are runs which have lower histogram maxima, reinforcing the narrative

implied by the results in Figure 31. In Figure 34, we see that as the External Delay Range gets larger,

so does the correlation between the maximum histogram value and the spike count of the network

(Figure 35).

All of the runs that achieved the cartoonish saturation levels required for a maximum histogram

value of 2,640 were conditions with an External Delay Minimum of 1, which is something easily gleaned

from Figure 36. The vertical striations present when External Delay Minimum is 7, 13, 19, and 25, are

primarily from conditions when External Delay Range is 0, and are a result of stereotyped oscillations

that are present in those conditions.

The most consistent metric to identify the existence of explosions in the data was the histogram
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Figure 30: Average number of spikes generated for each parameter condition.

spectra metric. Figure 37 shows how changes in the External Delay Minimum parameter adjust

the relationship between spike count and the histogram spectra. Consistent with previous analysis,

conditions are most explosive when the External Delay Minimum is 1. These are the explosions that are

most saturated, leading to large gaps where neurons cannot be further stimulated. When the External

Delay Minimum becomes larger, explosions take longer to propagate, allowing the network to become

more stable between volleys. Figure 37 reveals how the histogram spectra metric separates these low

frequency explosions from smaller, more frequent explosions, identifying differences in firing regime

dependent on the External Delay Minimum parameter. The pattern evident in Figure 38 shows how

External Connection Density exaggerates the External Delay Minimum parameter as the number of

connections per neuron increases by either increasing the rate of explosive oscillation, or by increasing

the magnitude of the explosion, in a way that depends on the firing regime. The pattern of firing

exhibited by a network appears to be best described by the way its parameters change the likelihood

that two spikes will be coincident upon receipt, determining the structure of explosive propagation.

Since External Connection Density, Internal Connection Density, and Stimulus Frequency only change

the number of spikes that can propagate in the network, not how those spikes are received, then

these parameters ostensibly amplify the number of spikes flowing through a particular regime without

determining the structure through which those spikes flow. This amplification does, however, serve to
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Figure 31: Spike data from up to 45hz poissonian stimulation of a network where Internal Delay
Minimum is 1, Internal Delay Range is 0, Internal Connection Density is 17, External Delay Minimum
is 13, External Delay Range is 0, and External Connection Density is 17. It generated the most spikes
in its data set, with a total of 349,555.

shift the boundaries within which the network becomes either subcritical (understimulated), responsive

(moderately stimulated), or supercritical (overstimulated).

5.4 Implications

How do the firing patterns emerging from recurrently connected and clustered network architectures

respond to systematic changes in connectivity? Simulation data from an extensive parametric analysis

of connectivity and delay patterning suggest that a lack of variability in external conduction delays,

combined with short external delay means, produce networks that are massively excitable. These

networks respond extremely to stimulation, resulting in distinct firing patterns that wash out informa-

tion as they become stereotyped. Conversely, networks with longer external delay means, combined
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Figure 32: Spike data from up to 45hz poissonian stimulation of a network where Internal Delay
Minimum is 1, Internal Delay Range is 0, Internal Connection Density is 17, External Delay Minimum
is 13, External Delay Range is 4, and External Connection Density is 17.

with a wider range in those external delays, results in a network that can withstand more stimulation

while having more connections per neuron. This result suggests that variability in action potential

propagation delays in cortex may enable a greater density of connectivity between seemingly disparate

subregions with less threat to the stability of the larger network.
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Figure 33: Average maximum histogram value of spikes generated for each parameter condition.

Figure 34: In these scatter plots, each point corresponds to a single run with a particular External
Delay Range, where the vertical axis corresponds to the run’s maximum histogram value, and the
horizontal axis corresponds to the run’s total spike count. Plots are correspond to External Delay
Range values 0, 4, 8, 12, and 16 (from top-left to bottom-middle). The final plot shows all 5 parameter
values plotted together, with low ranges in black, and high ranges in copper.
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Figure 35: This is a correlation plot between the maximum histogram values and the spike counts
when External Delay Range is 16, where plots on the main diagonal are histograms of the data, and
the correlation plots are plotted with a line with slope 0.9092 determined from least-square regression.
When External Delay Range is 0, the slope becomes 0.6668.
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Figure 36: Scatter plots of maximum histogram values against spike counts, separating runs by their
External Delay Minimum parameter. Plots correspond to values 1, 7, 13, 19, and 25 (from top-left
to bottom-middle). The final plot shows all 5 parameter values plotted together, with low ranges in
black, and high ranges in copper.
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Figure 37: Scatter plots of spike counts against the histogram spectra metric, separating runs by their
External Delay Minimum parameter. Plots correspond to values 1, 7, 13, 19, and 25 (from top-left
to bottom-middle). The final plot shows all 5 parameter values plotted together, with low ranges in
black, and high ranges in copper.
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Figure 38: Scatter plots of spike counts against the histogram spectra metric, separating runs by their
External Connection Density parameter. Plots correspond to values 5, 8, 11, 14, and 17 (from top-left
to bottom-middle). The final plot shows all 5 parameter values plotted together, with low ranges in
black, and high ranges in copper.
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6 How the Neural Code Depends on Network Topology

In Section 5, a parametric analysis of a clustered network architecture revealed the impact of varying

network connectivity patterns and delays on emergent firing patterns and network excitability. Infer-

ences, however, were focused on identifying how network parameters contributed to the most explosive

dynamics. Ultimately, these explosive contributions were best described by the way that parameters

shifted the likelihood of coincidence upon receipt of spikes in the network. This was achieved either

by increasing the likelihood that spikes will be sent, as a result of increasing the stimulation frequency

or the number of projections, or by increasing the synchrony of spike receipt, as a result of reducing

propagation delay or its variability. In a supercritical network, however, it’s unclear how information

may propagate through the saturation of hypersynchronicity. Once a network explodes, the stereo-

typed nature of that explosion obscures how that network was originally stimulated, indicating simply

that it achieved sufficient stimulation to explode.

The success of a neural code depends on its ability to distinctly propagate. If we assume that

information is best seen as a firing-rate based population code, then hypersynchronous explosions

force a single rate dynamic to the affected population, yielding a convergent rate code dependent only

on the extent of original stimulation. If we assume information is seen as a heteroclinic chain of spikes,

as in PNGs, then hypersynchronous explosions force a single heteroclinic chain, yielding a convergent

channel that is not reflective of the distinct way in which it was triggered. In both cases, supercriticality

undermines the ability for the network to respond to information in a way distinct to that information,

resulting in catastrophic equivalency. Similarly, subcriticality leads to understimulation, equivocating

all but the most extreme stimulations through quiesence. Thus, neural coding is expected to be most

effective between these two dynamics, where the network is active enough to propagate distinctly, but

not so active as to wash out its significance.

6.1 Identifying Active Networks

To assess the viability of neural coding in different clustered networks, we must identify the networks in

which propagation is at all possible, herein called active networks. This requires the ability to exclude

both supercritical and subcritical networks from analysis. In Section 5.2, it was demonstrated how

the histogram spectra can be used to identify the existence of explosions in firing patterns. A metric

made from these spectra was used in Section 5.3 to characterize the impact of parameters on explosive
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excitability. Here, the histogram spectra metric will be used to determine a diagnostic threshold to

identify the extent to which a particular clustered network exhibits supercritical dynamics.

Figure 39: Spike count plotted against histogram spectra metric for each run.

While there is interesting structure present in Figure 39, nearly all data points that can be distin-

guished are supercritical. This is because the scale of these explosive runs is much larger, on the order

of 105 spikes. However, a little over 61% of all runs have a histogram spectra metric of less than 0,

revealing how the distribution of most runs will only be visible by zooming in on the bottom left corner

of the plot. In Figure 40, the cluster below 0 on the vertical axis can be clearly seen. Furthermore,

the distribution is fairly isolated—it has a large gap between it and when the major distribution of

explosive runs begins.

To determine a value for the histogram spectra metric that is diagnostic of supercriticality, the

lowest value of the histogram spectra metric for which the network is explosive needs to be found. All

networks with a histogram spectra metric less than 0 are ones that have network histogram spectra

that is less than the histogram spectra of the stimulus drive, since the metric is the difference of one

from the other. Thus, if it has a histogram spectra metric of less than 0, it is known that it is at
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Figure 40: Spike count plotted against histogram spectra metric for each run, zoomed in with the
horizontal axis restricted to being from 0 to 30,000, and the vertical axis restricted from -8,000 to
30,000.

least less explosive than its stimulus. In Figure 41, we can only see the 41 runs that lie between 0 and

5,000 with respect to their histogram spectra metric. 37 of the runs have a histogram spectra metric

between 0 and 2,000, plotted in Figure 42—there is no evidence of explosions in these runs. All 4 runs

between 2,000 and 5,000 of the histogram spectra metric exhibit dynamics which ramp up suddenly,

however they do so far more gently than the explosive dynamics discussed so far. In Figure 43, a

binned histogram reveals how spikes begin to ramp up in the last 100 milliseconds of the simulation.

If continued, this run would peak, and then be followed by a period of quiescence, resembling what

is observed in the run with histogram spectra metric value 3,006 (plotted in Figure 44). Plotting all

runs with histogram spectra value 5,000 through 10,000 clarifies that, indeed, all runs with histogram

spectra value 2,000 or greater show signs of at least gentle explosive dynamics followed by network

silence. This suggests that using the upper threshold of 2,000 for a network’s histogram spectra metric

will exclude explosive dynamics, and include all runs which exhibit robust responses.

The histogram of the spike counts of all runs with a histogram spectra value between 0 and 2000
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Figure 41: Spike count plotted against histogram spectra metric for each run, zoomed in with the
horizontal axis restricted to being from 0 to 5,000, and the vertical axis restricted from 0 to 5,000.

are plotted in Figure 45. To remove subcritical networks, a spike count filter can be applied. Limiting

runs to at least 20 spikes shortens the list from 9676 to 4729 runs. Further increasing it to 200 reduces

the list to just 1,637 different runs, with the distribution of spike counts shown in Figure 46. Figure 47

shows the included subset in black, and the excluded subset in red on a plot of histogram maximums

against spike count.

6.2 Describing Active Networks

Now that we have identified the active cluster networks, we can describe the network factors which

prevent their explosion, and describe their dynamics. In Table 3, each column corresponds to a count of

active networks with a different parameter setting (with value implied in Table 2), providing insight into

which parameters are most constrained by the filter. Particularly, the parameters External Connection

Density and Stimulus Frequency are counter to each other, where if one is large, the other must be

small to facilitate significant dynamics. As they get closer together, other parameters shift down to

“compensate,” like Internal Connection Density or Internal Delay Range. Increasing the spread of
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Figure 42: All spike data (37 runs) with histogram spectra metric between 0 and 2,000, with External
Connection Density parameter values highlighted from black to copper. There does not appear to be
any explosions within the data.

delays has the impact of allowing activity to dissipate, since by having a larger range of delays leads to

increased sparsity from the reduced synchrony of spike receipt. These factors work together to enable

a fully recurrent spiking network that responds to constant stimulation without leading to catastrophy.

In Table 4, we see a table similar to Table 2, but now only networks that were metastable under 45hz

stimulation are counted. With such large tonic stimulation, clustered networks are more robust due to

less internal resonance from decreased internal connectivity, and have higher External Delay Ranges

and External Delay Minimums.

6.3 Stability of Firing Rate

The identification of active networks allows for an analysis of the stability of the rate coded persistant

stimulation of those networks. How can a network be said to be unstable or stable with respect to a rate
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1 2 3 4 5

ICD 5 8 11 14 17
IDM 1
IDR 0 4 8 12 16

ECD 5 8 11 14 17
EDM 1 7 13 19 25
EDR 0 4 8 12 16

SF λ 5 15 25 35 45

Table 2: All tested parameter settings: Inter-
nal Connection Density, Internal Delay Mini-
mum, Internal Delay Range, External Connec-
tion Density, External Delay Minimum, Ex-
ternal Delay Range, and Poissonian Stimulus
Frequency.

1 2 3 4 5

ICD 391 381 333 284 248
IDM 1637
IDR 318 321 327 337 334

ECD 0 974 510 81 72
EDM 281 328 336 342 350
EDR 282 313 347 337 358

SF λ 0 153 510 619 355

Table 3: Distribution of parameter settings
that construct an active network. Corresponds
to the number of active networks with a par-
ticular parameter setting (out of 15,625).

1 2 3 4 5

ICD 119 109 69 38 20
IDM 355
IDR 63 74 71 70 77

ECD 0 355 0 0 0
EDM 49 69 74 79 84
EDR 52 68 79 78 78

SF λ 0 0 0 0 355

Table 4: Distribution of parameter settings
that construct an active network when stim-
ulated at 45hz.

1 2 3 4 5

ICD 29 29 35 24 27
IDM 144
IDR 26 24 29 37 28

ECD 0 0 0 75 69
EDM 18 31 30 37 28
EDR 22 22 32 28 40

SF λ 0 144 0 0 0

Table 5: Distribution of parameter settings
that construct an active network when stim-
ulated at 25hz.
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Figure 43: This is the binned histogram for the run with a histogram spectra metric value of 2,116. In
the last 100 milliseconds, activity can be seen ramping up to what will likely become an explosion if
the simulation were to be run longer. Parameters: Internal Delay Minimum 1, Internal Delay Range
12, External Delay Minimum 19, External Delay Range 12, Internal Connection Density 17, External
Connection Density 11, and a Stimulation Frequency of 25hz.

coding information scheme? This question can be addressed by considering the stability of interspike

intervals for particular networks. A rate-based population code depends on having sufficient activity

to drive the dynamic of interest. Let us first consider the most active networks for examination.

In Figure 48, the mean interspike intervals for each neuron in an active run are plotted with their

standard deviations. The excitatory neurons for each cluster have been sorted by their interspike

interval, with a maximum interspike interval threshold of 250ms. Neurons that did not fire at least

3 times within the 1,000 milliseconds were ignored. The stimulus can be see in the top-left, which

reveals the consistency and stability of the network’s stimulation. Recognize that these are in terms

of interspike intervals, so large standard deviations have an even larger impact when they are used to

estimate the expected number of spikes per second (150 milliseconds of interspike interval variability
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Figure 44: Spike raster of the run with a histogram spectra metric value of 3,006. A large bump in
activity can be observed, followed by a period of silence. Parameters: Internal Delay Minimum 1,
Internal Delay Range 8, Internal Connection Density 11, External Delay Minimum 19, External Delay
Range 0, External Connection Density 8, and a Stimulation Frequency 45hz.

on 100 milliseconds becomes 6 Hz variability on a 10 Hz signal). Comparably, the network portrayed

in 49, which represents the most active non-explosive network architecture, also shows poor promise

for propagating rate-related information, where its mean standard deviation is 29.1559.

In Figure 50, the mean standard deviation of interspike interval (red) is plotted along with its

standard deviation (black), and below its mean interspike interval (blue). This plot reveals a common

pattern among clustered networks: low standard deviation of interspike interval is is often indicative

of a low firing rate overall. This is generally illusory, however, as it is an artifact of having just enough

spikes to statistically register an interspike interval, though without producing enough spikes for the

interval to actually be resampled.

After examining the distributions of mean interspike intervals present in Figure 51, it is clear that
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Figure 45: Histogram of Spike Counts for all runs with a histogram spectra metric value < 2000.

Figure 46: Histogram of Spike Counts > 200 for all runs with a histogram spectra metric value < 2000.

blind averaging across neuron interspike intervals will result in data skewed by neurons that fire within

a short period of time, but never again firing, resulting in the appearance of a short interspike interval

with low standard deviation. Increasing the required number of interspike intervals does not solve
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Figure 47: Scatter plot of spike counts against histogram maximums, where all runs with Spike Counts
> 200 and histogram spectra metric value < 2000 plotted in black, and all other runs plotted in red.

the problem, however. Increasing the required number of interspike intervals per neuron decreases the

likelihood that a set of interspike intervals will be recorded at all, and does not change the likelihood

that a set of neurons may stop firing all together.

To avoid these degenerate cases, a method was utilized which compares the amount of spikes

produced over a time window with the number of spikes implied by that neuron maintaining its

rate code for the 1000 millisecond duration. Neurons that suggest a mean interspike interval of 20

milliseconds for a 1000 millisecond duration should produce some portion of 50 spikes total spikes.

The Rate Code Tolerance (RCT) parameter shifts this proportion of spikes required by RCT
100 . In

Figure 52, different RCT values are tested for how they categorize ISI stability of runs (and hence

networks). The horizontal axis corresponds to different runs, and is sorted based on rank inclusion of

interspike intervals. Colors correspond to the lowest level of tolerance required to include the interspike

interval within the filter, computed based on the Rate Code Tolerance listed at the top of each plot.

This reveals that having RCT values more than 50 results in a substantial number of excluded runs

that have larger numbers of interspike intervals, which can be seen by the vertical bars on the left

folding into the included distributions as the considered RCT values decrease. In the bottom right of

Figure 52, the number of networks included in the analysis is plotted against different RCT values.
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Figure 48: This run contains 1,863 spikes, and is one of the most active runs. This plot portrays
the mean interspike interval for each neuron in the network, with bars portraying standard deviation.
The excitatory neurons for each cluster have been sorted by their interspike interval, with a maximum
interspike interval threshold of 250ms. Inhibitory neurons (201–240) are separated for each cluster.
Mean standard deviation of 18.8821, itself with a standard deviation of 24.4567.

Figure 49: This run contains 2,325 spikes, and is the most active run that is not excluded. This plot
shows the mean interspike interval for each neuron with its standard deviation.
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Figure 50: This shows the mean standard deviation of interspike intervals for all active networks in red,
plotted with standard deviations surrounding it. The networks are sorted by mean standard deviation
of interspike intervals. Each network’s mean interspike interval is plotted as a blue dot above the curve.

Around an RCT of 30, there is a steep jump in the number of unique runs included, identifying a value

where the number of interspike intervals and networks jumps up dramatically if continued. Using RCT

of 30, we can more comfortably aggregate interspike interval statistics.
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Figure 51: This plot shows the mean interspike interval for each neuron and its standard deviation,
and has just 341 spikes. This is the lowest standard deviation run, and hence is found as the blue
dot in bottom-left corner of Figure 50 (Internal Delay Range 4, External Delay Minimum 1, External
Delay Range 16, Internal Connection Density 14, External Connection Density 8, with a Stimulation
Frequency of 35 Hz).
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Figure 52: These plots show the way changing the Rate Code Tolerance impacts the number of
interspike intervals to be included in the analysis, shown vertically, where each plot corresponds to a
particular Rate Code Tolerance. Each plot is horizontally plotted relative to the number of interspike
intervals to be included for each network, corresponding to rank of inclusion for a particular network.
In a single plot, each network is vertically plotted as a dot colored twice per Rate Code Tolerance
value from 1–100, where one dot is positively placed according to the number of interspike intervals
to be included, and one dot is negatively placed according to the number of interspike intervals to
excluded (overlapping dots have prioritized color according to the least inclusive Rate Code Tolerance
for the range). The bottom right plot counts the number of networks with interspike intervals included,
plotted across different values of RCT.
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6.4 Parametric Analysis of Rate Code Stability

Using only data with Histogram Spectra Metric < 2000 that has over 200 spikes, interspike intervals

for a neuron were extracted for analysis if the number of interspike intervals was greater than 30
100 of

its mean interspike interval, scaled by the size of the time window of observation. Statistics for each

parameter value were then calculated from each included set of interspike intervals generated from

networks employing that parameter value. On the left within Figure 53, the average of the mean of

each interspike interval associated with horizontally plotted values of Stimulation Frequency, presented

with its standard error. On the right within Figure 53 is the mean standard deviation of interspike

intervals in conditions associated with each value of Stimulation Frequency—also presented with its

standard error. An identical method was used to create each plot from Figure 53–58. These plots

are intended to be used to understand the stability of rate coded information in the networks they

describe. A network with a low average interspike interval standard deviation can be seen as having a

a more identifiable mean interspike interval, requiring fewer rhythmic spikes to convey the mean. The

mean interspike interval then describes the magnitude of the rate coding. The frequency with which

each parameter value appeared in the set of included network simulations is listed in Table 6. This

frequency information is important for understanding the relationships implied by the data.

Increasing Stimulation Frequency has the intuitive impact of decreasing the mean of interspike

intervals within the network. Interestingly, though, as this Stimulation Frequency increases, so too

does the standard deviation of the interspike intervals increase. This is counter to expectation, as

the Poisson spike train stimuli have standard deviations proportional to the mean of the interspike

intervals. This effect is best understood by considering the frequency of parameters that make up each

point. The right most point, when Stimulation Frequency is 45 Hz, has a parameter distribution similar

to Table 4. In this point distribution, ECD is always 8, and timing parameters EDR, EDM, and IDR

are all biased towards sparsity. The lower ECD, combined with the increased sparsity of spike receipt,

results in networks that can see larger amounts of stimulation without exploding. This also means that

causally efficacious patterns will not be reliant on synchrony, resulting in higher standard deviations

of the ISI, despite of having a lower mean ISI. When Stimulation Frequency is 35 Hz, however, the

distribution across these parameters is completely flat—around 124 runs of each EDR, EDM, IDR,

and ICD. When Stimulation Frequency is 25 Hz, the distribution of these parameters is similar to that

of when it was 45 Hz, though instead of 355 out of 355 runs of ECD at 8, the 25 Hz has 510 out of 510
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runs of ECD at 11, while also supporting higher ICD.

A higher External Connection Density leads to increased coupling across clusters, leading to in-

creased synchrony and lower standard deviations of ISIs. Much like in the SF data, Figure 54 exhibits

the same relationship between mean ISI and mean standard deviation of ISIs, though in a reverse

parametric direction for ECD! This relationship is forced by the parameter distributions, as described

for SF. Since each level of SF distinctly implies an opposite ECD value, the patterns mirror each other.

The complexity of the interaction is further reduced from the restrictions on ECD, with 1484
1628 = 0.9115

proportion of the runs being contained in the conditions where ECD is 8 or 11.

External Delay Range, seen in Figure 55, has the impact of reducing the synchrony of receipt of

intercluster spikes, yielding higher ISI means with increase. This effect is muted by the propensity

for low EDR to amplify explosions, resulting in fewer unpruned runs with more gradually shifting

dynamics. Higher EDR sees the average standard deviations of the ISIs trend down, an effect related

to higher EDR enabling higher ECD through decreased synchrony of spikes upon receipt; the ratios of

ECD 8 to ECD 11 runs shifts as EDR gets larger:

[
175

80
,
192

99
,
204

110
,
200

107
,
203

114

]
= [2.1875, 1.9394, 1.8545, 1.8692, 1.7807].

This enables the ECD standard deviation effect visible in Figure 54 to proportionally shift the mean

standard deviations of the ISIs for EDR.

Interspike interval means for External Delay Minimum, in Figure 56, appear uncorrelated with

changes in EDM, as expected from how reliably it produces identifiable patterns of hypersynchrony.

The interaction between EDM and low EDR or high ICD provides a pivoting point between its ex-

plosive parametric frequencies, balancing most parametric standard deviation interactions while being

indifferent to ISI mean (its strongest ISI effects are identified as explosive for this analysis).

Increasing Internal Connection Density has the counterintuitive impact of increasing mean ISI in

Figure 57, as a direct result of its reliability of causing explosive firing patterns. The difference between

ICD of 5 (390 runs) and ICD of 17 (245 runs) is linear across all parameters—increasing ICD eliminates

16 different ECD 17 runs and 99 SF 45 runs—providing a clear source for the increase in mean ISIs

observed here, as well as the unusual interactions seen in its standard deviation means.

Internal Delay Range is likely the least interactive parameter with respect to ISI statistics. Its

ranges, from the expected zero variability cluster dynamics, to the dissipative 16ms delay ranges, play
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1 2 3 4 5

ICD 390 381 331 281 245
IDM 1628
IDR 316 318 326 336 332

ECD 0 974 510 75 69
EDM 278 327 334 342 347
EDR 277 313 346 335 357

SF λ 0 144 510 619 355

Table 6: Distribution of parameter settings that construct an active network included in the interspike
interval analysis.

cleanly with other parameters, operating on those parameters while allowing for lightly higher levels

of activity without explosive drawbacks. As a result of this malleability, it sees no clear trend in this

aggregation.

6.5 Rate Code Implications

While there are clear relationships between network structure and ISI stability, the overall magnitude

of mean standard deviations of those ISIs imply the unreliability of mean ISIs. If these mean ISIs are

taken to encode information, then that information is obscured by the extent of their variability. This

result suggests that rate coded stimulation of clustered neural networks does not guarantee rate coded

dynamics in downstream cells.
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Figure 53: Stimulation Frequency Figure 54: External Connection Density

Figure 55: External Delay Range Figure 56: External Delay Minimum
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Figure 57: Internal Connection Density Figure 58: Internal Delay Range

7 Conclusion

The mystery of emergence reflects the frame of observation. The structure of that frame constitutes the

historico-theoretical context within which phenomena assemble. To de-mystify the emergence of signif-

icant neural dynamics, we must consider those dynamics as supervening onto a space where significant

dynamics appear imperative. Neural systems exhibit sensitivy to many scales. The complexity of these

interactions is a testament to the importance of integrating constraints across scales to simplify the

visualized dynamics. These constraints inform the validity of assumptions which surround the context

wherein a model is seen as embedded. In construction, the impact of underlying assumptions become

amplified as the scale and extent of interaction affects the shape of emergent phenomena. When these

phenomena are considered as intertheorhetically supervening, however, their interpretation takes on

the constraints of the overlying theoretical narrative. Sensitivity of an encompassing system across

scales enhances the significance of these constraints, as nonlinearities exaggerate their impact.

In neural systems, the significance of local dynamics is offloaded into how it constrains the emer-

gence of dynamics in the regions to which it projects. However, the small world connectivity structure

of mammalian brains imply that local dynamics may come to influence what ultimately emerges over

time. This relationship establishes the constraint between the long-term, multi-second behavior of the

full system and the meaning of local dynamics, a notion which reveals the complexity of a genuine

characterization of the neural code. While this sensitivity to conditions must be preserved to cope with
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novel contexts, it is only selectively preserved. Similar initial dynamics can result in the emergence

of similar downstream dynamics through bottlenecks among stable heteroclinic channels. Thus, the

complexity of the neural code may be simplified by expanding the description of a neural dynamic

through the heteroclinic channels through which it may weave.

In their simplest prescriptive expansion, a causally related set of spikes form a polychronous neuronal

group, defined in terms of the triggers which enable its emergence from the network. The significance

of PNGs can be extended both existentially, µE , and causally, µC , in a way that is compositionally

meaningful, dependent on network topology, and context sensitive. The phenomenal flexibility of their

characterization allow for the consideration of groups with arbitrary size and length, which, combined

with their compositionality, provide a lens to observe the structure of significant dynamics across all

scales. Critically, this observation provides a method to relate whole brain dynamical constraints to

the smaller scale dynamics they existentially imply. Claims that apply in general to PNGs inform

dynamics across many scales, providing utility as a faithful account of neural coding.

The fundamental spike composition of PNGs preserves their decomposibility back into those spikes,

which likewise supports their compositional reorganization, allowing PNG dynamics to reinforce the

trajectories that underly rate coded dynamics. This compositionality of PNGs provides a frame to

evaluate supervening coding schemes, such as rate codes, particularly in terms of their impact on a

regular spiking context. PNGs emerge, however, in neural networks with variability in delays of spike

propagation. In past work, alternative coding schemes were cast as dichotonomous, where rate coding

as opposite of synchronous coding or temporal coding schemes (Kumar, Rotter, & Aertsen, 2010).

PNGs, however, employ a narrative that offloads the burden of coding scheme onto network architecture

and manner of stimulation, yielding flexibility with any emerging dynamic. The effectiveness of rate

coding, synchronous coding, or temporal coding, becomes a claim to predictiveness specific to the

properties of the subsystems of interest.

Network structure determines critical points in the network, which changes what dynamics can be

propagated without catastrophic interference (Section 5). In a context of a tonic rate coded stimulus,

networks with larger ranges in moderately ranged delay enabled the stability of more densely connected

networks by increasing their modularity through sparsity of receipt (Section 6). Within a densely

connected, small world brain structure, these results suggest that the naturalistic asymmetry between

distally projecting cortico-cortical patches with locally inhibited nucleic dynamics may provide utility
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for the emergence of significant emergent dynamics. Furthermore, considering clustered networks with

delays that are too short may facilitate catastrophic hypersensitivity, obscuring near-future information

and establishing metabolistically dangerous network interactions. Importantly, these results suggest

that the rate coded firing of an excitatory neuron in a densely connected cortical network cannot be

assumed simply because it received rate coded synaptic stimulation.

These simulations, however, held synaptic strengths equal and constant, with the interest of lim-

iting variability to stimulation and connectivity patterns. Patterned reinforcement of tuned synaptic

strengths may be essential for the emergence of rate code stability. Neurons also did not have reg-

ulatory endocannabinoid systems, which are responsible for adapting the extent of neurotransmitter

release to reduce post-synaptic excitability over longer time scales (Branco & Staras, 2009). While

this study was limited in scope, it provides insight into important issues surrounding the emergence of

neural firing patterns. Importantly, the simulations in Section 6 did not include bursting neurons, like

those in prefrontal cortex or those which guide thalamic rhythms. These results are consistent with

the interpretation that distal bursting projections may constrain the emergence of dynamics without

excessively prescribing their response.
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